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Abstract

The future manycore architectures present serious challenges to operating sys-
tem designers. The traditional operating system designs can no longer manage
the capabilities and power of the diverse heterogeneous cores with complex
memory hierarchies, interconnects resembling networks, and distributed I/O
configurations. The Barrelfish multikernel operating system addresses these is-
sues by treating hardware as a distributed system. Co-operation in such an
environment is achieved by message passing. We borrow similar design ideas
in this thesis and present a distributed USB hot plugging infrastructure for a
multikernel Barrelfish operating system. We have divided the USB system into
three primary modules with different responsibilities: Host controller driver,
USB manager and client drivers. This modular design provides necessary iso-
lation and flexibility required in manycore systems. It also provides freedom to
schedule and, if required, migrate any module independently among the cores
depending upon the system workload and the application requirements. These
modules communicate by explicit message passing but a few frequently updated
and performance critical data structures are shared using shared memory mech-
anism. In this thesis, we try to design, implement and evaluate this system on
top of message services and abstractions provided by the Barrelfish operating
system.
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I would also like to thank Adrian Schüpbach for his constant support, moti-
vation, and inputs that I had during this thesis. His prompt response to my
problems and long debugging emails had definitely helped me getting out of
some tricky situations.

In the end, I would like to thank people of D-INF at ETHZ who directly or
indirectly have helped me to get at this point.



vi



Contents

1 Introduction & Problem Statement 1

2 Device Drivers 3
2.1 Improving Reliability of Device Drivers . . . . . . . . . . . . . . . 3
2.2 By Better Design Choices . . . . . . . . . . . . . . . . . . . . . . 3
2.3 By Improving Reliability and Driver Restart . . . . . . . . . . . . 4
2.4 By Analysis and Verification . . . . . . . . . . . . . . . . . . . . . 5

3 Barrelfish 7
3.1 Barrelfish and device drivers . . . . . . . . . . . . . . . . . . . . . 7
3.2 Service Servers & Flounder . . . . . . . . . . . . . . . . . . . . . 9

4 USB System Overview 11
4.1 Hot Plugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 USB System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 USB Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.1 USB Host Controller . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 USB Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.3 USB Devices . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4 USB Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.1 USB Client Driver . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2 USB Bus Driver . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.3 Host Controller Driver . . . . . . . . . . . . . . . . . . . . 15

4.5 Communication over USB . . . . . . . . . . . . . . . . . . . . . . 15
4.5.1 Control Transfer . . . . . . . . . . . . . . . . . . . . . . . 15
4.5.2 Bulk Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5.3 Interrupt Transfer . . . . . . . . . . . . . . . . . . . . . . 16
4.5.4 Isochronous Transfer . . . . . . . . . . . . . . . . . . . . . 16

4.6 Interaction with Devices . . . . . . . . . . . . . . . . . . . . . . . 16

5 EHCI Overview 19
5.1 Registers and Mackerel Interfacing . . . . . . . . . . . . . . . . . 19
5.2 Associated Data Structures . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Queue Element Transfer Descriptor (qTDs) . . . . . . . . 20
5.2.2 Queue Heads (QHs) . . . . . . . . . . . . . . . . . . . . . 21

5.3 Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Port Routing and Control . . . . . . . . . . . . . . . . . . 22
5.3.2 Periodic Queue . . . . . . . . . . . . . . . . . . . . . . . . 23



viii CONTENTS

5.3.3 Asynchronous Queue Management . . . . . . . . . . . . . 23
5.3.4 PING Protocol Maintenance . . . . . . . . . . . . . . . . 24
5.3.5 Data Toggle Synchronization . . . . . . . . . . . . . . . . 25

6 Distributed USB Infrastructure 27
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Communication Between the Domains . . . . . . . . . . . . . . . 28
6.3 Proxy Function Implementations . . . . . . . . . . . . . . . . . . 28
6.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Hot-plugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 USB Memory Management 31
7.1 Internal Memory Management . . . . . . . . . . . . . . . . . . . 32
7.2 NUMA Aware I/O Buffer Allocation . . . . . . . . . . . . . . . . 34
7.3 Library Interface and Functions . . . . . . . . . . . . . . . . . . . 34

8 Host Controller Driver (HCD) 37
8.1 PCI Interfacing and Booting the Host Controller . . . . . . . . . 37
8.2 Event Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Device Detection and Port Power . . . . . . . . . . . . . . . . . . 39
8.4 Asynchronous Queue Management . . . . . . . . . . . . . . . . . 39
8.5 Transaction Management . . . . . . . . . . . . . . . . . . . . . . 40
8.6 Host Controller Server’s Services . . . . . . . . . . . . . . . . . . 42

9 USB Manager 45
9.1 Device Plug & Unplug . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Device Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 USB Tree Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.4.1 With HCD . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.4.2 With Client Driver . . . . . . . . . . . . . . . . . . . . . . 49
9.4.3 With SKB . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.5 USB Manager Server’s Services . . . . . . . . . . . . . . . . . . . 49
9.5.1 To HCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.5.2 To Client Driver . . . . . . . . . . . . . . . . . . . . . . . 50

10 USB Device Drivers 53
10.1 Mass Storage Protocol Specification . . . . . . . . . . . . . . . . 53

10.1.1 Command Block Wrapper (CBW) . . . . . . . . . . . . . 54
10.1.2 Status Block Wrapper (CBW) . . . . . . . . . . . . . . . 55

10.2 Mass Storage Class Driver . . . . . . . . . . . . . . . . . . . . . . 57
10.2.1 Implemented SCSI Commands . . . . . . . . . . . . . . . 57

10.3 Driver Server’s Services . . . . . . . . . . . . . . . . . . . . . . . 59

11 Evaluation 61

12 Conclusions 67

13 Future Works 69

Bibliography 70



List of Figures

4.1 USB connection topology . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Communication flow in a USB system . . . . . . . . . . . . . . . 13

5.1 qTD data block layout . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Queue head data block layout . . . . . . . . . . . . . . . . . . . . 22
5.3 Asynchronous queue in host controller . . . . . . . . . . . . . . . 23

6.1 Distributed USB infrastructure . . . . . . . . . . . . . . . . . . . 28
6.2 Proxy interfacing on client side . . . . . . . . . . . . . . . . . . . 29

7.1 USB Memory Management . . . . . . . . . . . . . . . . . . . . . 33

8.1 HCD asynchronous queue management overview . . . . . . . . . 39

9.1 Configuration descriptor with interface and endpoint descriptors 46
9.2 USB tree topology as maintained by USB manager . . . . . . . 47

10.1 Command/Data/Status Flow . . . . . . . . . . . . . . . . . . . . 55

11.1 Execution time breakup . . . . . . . . . . . . . . . . . . . . . . . 61
11.2 Execution time breakup on 1 µsecond . . . . . . . . . . . . . . . 62
11.3 Bandwidth observed . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.4 Break up of read command execution stages . . . . . . . . . . . . 63
11.5 Break up of time spent in read command request stages . . . . . 64
11.6 Break up of read command execution stages as ratio of time spent

in each stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



x LIST OF FIGURES



List of Tables

5.1 EHCI capability registers . . . . . . . . . . . . . . . . . . . . . . 20
5.2 EHCI operational registers . . . . . . . . . . . . . . . . . . . . . . 20

10.1 Bulk-Only data interface descriptor . . . . . . . . . . . . . . . . . 54
10.2 Command block wrapper . . . . . . . . . . . . . . . . . . . . . . 56
10.3 Status block wrapper . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.4 Valid command block status values . . . . . . . . . . . . . . . . . 56
10.5 Valid device qualifiers . . . . . . . . . . . . . . . . . . . . . . . . 58



xii LIST OF TABLES



Chapter 1

Introduction & Problem
Statement

Hardware landscape has changed tremendously over the past decade. Intel is
envisioning ’Tera-scale’ computing [1] and AMD is making heterogeneous chips
by putting GPU and CPU in a same package [2]. Things have moved from a
single fast processor to the heterogeneous manycore architectures; from a flat
uniform access memory to the non-uniform memory access; from a centralized
device management to the distributed device management. With hardware
getting more diverse, a system starts to resemble like a network and factors
such as quality of service in system interconnect, congestion, hop counts, delays,
hot plugging (akin to node joining or failure), rapid prototyping and testing are
getting more important. This hardware diversity has three major aspects [3]:

• Non-uniformity: Apart from the much discussed non uniform mem-
ory access (NUMA) architectures, multiple level of cache sharing is also
common in manycore processors. Hence a flat uniform shared memory
model may not be the best way to model this complex memory hierarchy.
Additionally the actual cost of accessing memory depends depends upon
interconnect topologies like Hypertransport and Quickpath, and factors
such as hop count and routing play an important role.

• Core diversity: In near future the processing core will be much more
diverse and heterogeneous. The system will have more number of spe-
cialized cores with different performance, power trade offs and possibly
different instruction sets.

• System diversity: With the internal system components getting diverse,
it will be difficult to write and optimize system software about any specific
target. With a network like interconnect topology the access to devices in
the system also depends on which core driver code is running. Even today,
AMD systems have two PCI root complex and cores near root complex
have faster access to the devices than other cores sitting on the other side
of the bus.

Barrelfish [4] is a new operating system, designed specifically for handling fu-
ture manycore heterogeneous architectures. It is a multikernel operating system,
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which treats computer hardware as a distributed system where a node repre-
sents an entity inside the computer box such as CPU, devices, GPU etc. Nodes
communicate much like as done in a distributed environment by passing mes-
sages on previously agreed protocols.

Handling dynamic plugging and unplugging of devices in such a distributed en-
vironment imposes some interesting challenges such as where to run code for
the drivers, how to manage workloads, how to reflect status of the devices to
the rest of system etc. Modularity in a big system like USB is an important
issue. With three different kinds of controllers and plenty of devices around
it is desired to have a clean design which is flexible and can provide necessary
isolation and protection. With system internals getting much more diverse it is
also important to think about abstraction provided to the higher layers.

In this thesis we present USB hot-plugging infrastructure for Barrelfish operat-
ing system. The thesis is organized as follow. Chapter 2 gives an overview of
related device driver research work. Chapter 3 introduces and talks about Bar-
relfish operating system and its interaction with device drivers. Chapter 4 and
5 give an overview about USB protocol and Intel EHCI controller hardware. In
chapter 6 we introduce our distributed USB infrastructure. Chapter 7, 8, and
9 talk in detail about USB memory management, host controller driver and
USB manager respectively. In chapter 10 we will provide a brief overview of the
USB mass storage protocol and details about our implementation of the device
driver for flash mass storage device. Chapter 11 gives detail about evaluation
and performance. In the chapter 12 we present some conclusions and we end in
chapter 13 after giving some directions about the future work.



Chapter 2

Device Drivers

Device driver is a piece of software which allows operating system kernel and
other higher level programs to interact with a hardware device. Device drivers
make up majority of operating system’s code base, which requires support for
myriad of devices. Also, these are the most buggy and unreliable part of an
operating system code. In Windows XP, drivers cause 85% of reported failures
[5]. Padioleau et al. [6] gives a comprehensive overview of driver evolution in
the Linux kernel.

2.1 Improving Reliability of Device Drivers

Device drivers have drawn considerable amount of attention from systems re-
search community to improve reliability of commodity operating systems. These
efforts can be break down into following sections depending upon their level of
application:

2.2 By Better Design Choices

In a traditional operating system model, device drivers are run into kernel space.
Hence a faulty driver can corrupt internal kernel data structures and can bring
whole system down. To cope up with such situations kernel designers have
advocated moving drivers out into the user space from kernel space and to fa-
cilitate communication through inter process communication (IPC) primitives
[7, 8]. Often due to an inefficient implementation, this design exhibits poor
performance [9]. Though [10] has shown to achieve good performance with the
user space driver designs. This approach can not be applied to already deployed
legacy driver code base which would require a complete rewrite.

Driver virtualization helps in isolating the buggy device drivers from rest of the
systems and hence improves its stability. In driver virtualization device drivers
(often unmodified or with little engineering efforts) are run in separate isolated
virtual machines [11, 12]. It provides better driver re-usability with strong iso-
lation. At the same time it invokes trust issues between the kernel and virtual
machines. Also drivers operating in different virtual machines raise timing and
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lock synchronization discrepancies. Addendum, poor performance in such sys-
tems (specially in server workloads) can [13] be a limiting factor in their deploy-
ment. Twindriver [14] approach tries to address this issue by semi-automatically
deriving hypervisor drivers from guest OS drivers. It runs performance critical
operations directly into the hypervisor and coordinates with the guest OS in-
stance of the driver. It uses Software Virtual Memory (SVM) mechanism to let
hypervisor instance efficiently access the driver data in guest OS address space
while protecting hypervisor address space from corrupted memory access from
guest OS driver.

Chipounov et al. [15] tries to reverse engineer a driver for better reliability and
reasoning, by monitoring the interaction between a device and the driver. It
combines these traces with static analysis of the driver to derive a protocol state
machine. This machine is then used to synthesize new drivers from pre-verified
safe driver templates. New drivers are safe by virtue of construction because
only safe set of traced data was used to extract the protocol.

Microdriver approach [16] offers a trade off between an in-kernel driver’s per-
formance and an user level driver’s isolation. It factors a driver into two parts:
a performance critical part and another non-critical part. Performance critical
code is then moved to the kernel space and non-critical code is run in user space.
I/O data transfer logic, which often resides in performance critical code paths, is
moved into kernel space. Non-critical path usually contains device management
and configuration, error handling etc. Both instances communicate and syn-
chronize to complete a request. User mode driver helps in driver isolation and
error containment. Also driver developers can get a helpful support from the
traditional developing, testing and debugging tools and libraries, which often
are absent when developing in-kernel drivers. Though a faulty in-kernel driver
part can still corrupt kernel data structures. To automatically split driver code
into kernel and user space driver, Microdriver requires manual annotations from
developers to properly identify the shared data structures.

2.3 By Improving Reliability and Driver Restart

To address the issue of in-kernel data corruption, Nooks [5] provides a in-kernel
subsystem that helps in preventing such errors. Nooks executes in-kernel exten-
sions such as device drivers and loadable file-system modules etc. in an isolated
lightweighted kernel protection domain. The domain still is in kernel mode but
with a restricted write access to the critical in-kernel data structures. A new
reliability layer keeps tracks of all the modifications made by an extension and
traps any unwanted changes, such as invalid arguments for a kernel service or
consumption of too many resources in the system. Upon error detection or
failure, recovery logic is triggered. Nooks was able to detect and isolate 99%
of errors injected in a testing Linux system. Though Nooks is not able to dif-
ferentiate between a faulty and a malicious driver. A driver (malicious) still
can corrupt system state by executing privileged instructions. It provides very
basic kind of recovery mechanism by securely freeing all allocated resources to
the failed driver and then restarting it. It relies on virtual memory hardware
support for isolation within kernel. Also, it does not support any user level tools
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during development of a driver which could have been helpful in detecting basic
control flow errors such as infinite loops etc.

Much of the effort in the direction of reliable operating systems has been put
to make OS kernel immune to a faulty in-kernel driver. In such systems if a
driver crashes, then kernel survives but not the driver applications. From an
application’s perspective either both, kernel and driver, should work or none.
Having a surviving lone kernel is not much of a use to an application, which lost
data in driver failure. Shadow driver [17] provides an elegant way to transpar-
ently restart the driver. It inserts a shadow driver tap between kernel and the
driver, and passively monitors all the communication between these two. Upon
detection of a failure, it actively replaces the failed driver with a shadow driver
and triggers the restarting mechanism. Shadow driver is not a true driver as
it does not provide complete driver services but it is used to hide driver failure
from applications by impersonating the communication between applications
and the driver. Once failed driver has been restarted shadow driver delegates
the pending requests and control over to it. Shadow driver uses kernel sup-
port for dynamic loading and unloading of drivers as its primary mechanism to
restart a failed driver. It assumes failed driver subsystem has no side effects.
This assumption may be not true for stacked drivers. A failed EHCI controller
or a PCI driver can cause failure to many other driver systems in a cascading
effect. It also may have limited applicability because it requires explicit com-
munication among driver, applications and kernel for tapping. It is not possible
to deploy it for the class of drivers which use shared memory mechanism for
communication such as video drivers etc. Also due to timing discrepancies it is
ill-suited for applications with real time demands.

XFI [18] suggests a software guard for protection of system address space but
suffers from poor performance and lacks control flow safety checks.

2.4 By Analysis and Verification

Many researchers argue to use a type safe language for driver or kernel extension
development. But because of the high overhead and less control these solutions
are less appealing to the driver development communities. SafeDrive [19] pro-
vides a way to do type checking on existing systems which are coded in C. It
uses annotations in C to define semantics and does fine grained memory safety
checking. Pointers and no-annotation in legacy code can be problematic for its
deployment. To overcome these limitations [20] proposes the use of a Secure
Virtual Architecture (SVA), which performs run time monitoring and checks
based on LLVM.

[21] uses the same technique as of Microkernel architecture by moving device
drivers into the user space but it goes one step further by validating their ref-
erences. It uses device safety specification (DSS), which describes state and
transition of driver state machine. All the references from the driver including
memory, I/O ports, interrupts, registers etc. are validated through reference
validation mechanism (RVM). If a driver is caught attempting to execute an
illegal operation, it then is stopped and restarted. Though approach sounds
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promising but defining and clear state machine for complex devices may require
considerable amount of efforts. Also doing unsafe driver restart is not desirable
in high availability systems.

Due to frantic pace at which modern devices are being developed it is hard to
catch up with them. To improve reliability of hardware operating code for de-
vices Devil [22] attempts to check and verify device register manipulations before
actually writing them to devices. Devil is an interface definition language (IDL)
which upon giving device communication interface and related semantic speci-
fications, generates safe hardware operating code to operate the device. Devil
lacks, run time assembly checks, bus architecture and communication protocol
considerations (like PCIe and USB, packet passing in USB), new features such
as power management etc. Ryzhyk et al. [23] proposes to formalize the commu-
nication interface between device driver and an operating system kernel. Their
solution is based on a formal state machine based verification, which helps in
enforcing correct driver behavior. It requires a major rewrite of device drivers
and extracting state machine information from device specification could be an
error prone task. Similarly, Dolev et al. [24] have also proposed a notion and
requirements for a self stabilizing device drivers based on a state machine ap-
proach.

Ball et al. [25] proposes to perform a comprehensive static analysis of the device
drivers. They emphasize on proper kernel API usage. Their static driver verifier
(SDV) tool uses a static analysis engine (SLAM) with API usage rules to find
kernel API abuses. It reduces the program control flow into a boolean program
abstraction which preserves control flow of the C code. Then system performs
symbolic model checking to ensure that the program obeys the API usage rules.
It is quite useful to find many programming glitches before actual deployment
of the driver. On the other hand it completely ignores the driver behavior and
implementation related bugs and focuses only on API usage aspect of it. Due
to close integration with operating system (in this case, Windows platform) and
its API documentation, it would require significant efforts to port it to other
systems. DDVerify [26] attempts to port technique introduced by it to Linux
with further enhancements such as verifying concurrent software with shared
memory.

As a pure language based solution, Spear et al. [27] proposed a design to verify
and reason about the correctness of a device driver. Drivers are written in a
type safe language. To prevent corruption to system state, drivers are run in
user space. Hardware resources are only accessed through messages, and when
granted access from the verification system. Verification system relies on meta-
data resource declarations for carrying out assessment of a request. It relies on
the type safe language capabilities to restrict malicious behavior of a driver code.



Chapter 3

Barrelfish

The system hardware is changing at a much faster pace than before. The execu-
tion cores are getting heterogeneous in terms of power requirements, instruction
sets, speed, and capabilities. The flat uniform memory assumption on which
traditional operating system designs are built is no longer valid. Barrelfish aims
to manage and exploit power and capability of such future manycores system.

Barrelfish [4] is a multikernel operating system. The kernel design is inspired
by the microkernel design architecture [7, 9]. The Barrelfish kernel only runs
a set of minimal services which are required to run in privileged mode such as
scheduler, message sending services etc. All other responsibilities are managed
by special user space service servers like memory manager, file system manager
etc. By lowering the foot print of the kernel one can also argue about correctness
and reliability of the system. The system design is built around three design
principle. First, make all intercore communication explicit. It removes OS de-
sign reliance on the shared memory model, which is a bottleneck point in the
system. It also improves overall understanding of the system as now operating
system knows what, when and who about system state updates.

Second, have minimum OS design dependency on hardware. The only architec-
ture specific code in Barrelfish is message transport mechanism and interface
to hardware (CPU and device drivers). Hence the higher layer protocols and
algorithms are isolated from the low level hardware details.

Third and the last, replicate instead of share. Many system states like dis-
patcher queues are shared among processors to get a consistent view of the
system. These shared data structures act as contention points and restrict sys-
tem scalability. To counter this issue Barrelfish replicate system state between
core instead of sharing. Consistency is maintained by message passing.

3.1 Barrelfish and device drivers

Like in any other operating system (OS) device drivers are responsible for han-
dling devices in Barrelfish. This new ’distributed’ environment presents many
interesting challenges for driver developers as well as to the OS in terms of effi-
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cient and optimized resource usage. As shown and discussed in [3], in a system
with network like interconnect (AMD NUMA machines) the cost of accessing
a device and memory depends upon on which core the driver is running. The
difference is significant in terms of memory access. Hence it is desirable to do a
topology aware resource allocation for the drivers for better resource usage and
performance. Drivers which run on cores which have direct access to device and
associated data buffers in memory are expected to perform well in such systems.
As shown by [4], with changes in spatial configuration of network card, driver
and memory buffers, the UDP goodput was decreased from 887.9 Mbps to 502.7
Mbps.
To manage complexity of modern systems, Barrelfish makes use of a system
knowledge base (SKB). It contains representation and information about ma-
chine’s hardware and current state. It can be queried by other services in
system to get knowledge about:

1. Resource discovery, such as a new USB device is attached.

2. Online measurement and profiling, for things like available bandwidth,
latency or power on USB. It may be probed to check if with current con-
figuration USB system is able to satisfy requirements of a newly connected
device.

3. A priory knowledge about a device or controller, from data sheets [28].

Such queries can answer about the appearance and disappearance of devices,
their capabilities and requirements etc. Hence pushing conventional driver ar-
chitecture towards declarative systems. Declarative systems are more reliable
and one can reason about their correctness unlikely as in imperative systems.
Also it helps in topology aware device management logic. For example, a USB
device can put it requirements in terms of polling frequency, delay threshold,
bandwidth etc and then controller after consulting SKB about current tree
topology can assert whether it will be able to full fill these requirements or not.
Similarly, it could provide suggestions about device relocation (like in systems
with multiple USB ports), whenever possible, for better performance.

In Barrelfish, device drivers are run as user level processes in their own separate
execution domain. Hence a buggy driver can not crash down whole operating
system. Device access is done by memory mappings. OS services are provided
by the service servers like PCIe server and clients communicate with them by
message passing. In such a distributed environment, USB driver should be de-
veloped as a distributed driver with different functionality such as configuration,
device management, data transfer etc. running on different cores. To make a
better match with current system state and driver requirements one can factor a
driver in performance critical and non-critical segments similarly to the Micro-
driver architecture [16]. Performance critical piece of code can be deployed on
cores near to the device. Driver also can specify their requirements (much like
in [27]) prior to their initialization so that an appropriate core can be selected.
I/O buffers (and their management logic) which often are in performance critical
paths can be allocated in RAM of cores which are nearer to the device. Other
things like configuration management, error recovery etc. which are executed
occasionally can be run on other under utilized cores. A periodic evaluation sys-
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tem, which upon a requirement or request can relocate these pieces to different
cores, if approved by underlying decision making architecture.

3.2 Service Servers & Flounder

Like in a distributed environment the services in Barrelfish are provided by
service servers. Anything from frame allocation, memory mapping, interrupt
delivery, device discovery etc. are provided by specific servers. The requests are
send and response is received by explicit message passing. Example of few ser-
vice servers are memory server, PCI server, EHCI controller server, SKB server
etc.

Barrelfish maintains a name-server called Chips which is a centralized name
server registry. A new server has to register its services and name to the Chips.
All message passing are done on names of servers. Server clients can search
specific server name using SKB, if appropriate entries are made into it.

Since message passing mechanism is vital and used intensively in Barrelfish, a
domain specific language (DSL) Flounder is developed for hiding these explicit
message passing mechanisms. Flounder takes the service interface specifica-
tions and automatically generates associated server and clients stubs. These
stubs help in communicating with Chips for service registration, message pass-
ing between server and clients, registering service handlers, and invoking the
handler when an associated message is received. More details can be found in
Flounder manual [29] at Systems Research Group, ETH.



10 Barrelfish



Chapter 4

USB System Overview

This chapter gives a brief overview of Universal Serial Bus (USB) 2.0 protocol. It
also talks about key elements in USB architecture and how data is moved across
the USB bus. For complete reference please refer to the official USB documen-
tation [30]. The chapter highlights the related sections in the documentation
for cross reference purposes.

4.1 Hot Plugging

Hot plugging or Hot swapping is a technology which enables user to replace, re-
move or add system components to a running system without shutting it down.
Once the appropriate software/driver is installed on the system, user can plug
and play the attached peripheral without rebooting the system. Hot plugging is
a desirable property in the systems with high availability. It enables the system
maintainer to remove faulty component or add additional peripherals for redun-
dancy without affecting the running system. Hot plugging examples include, a
faulty RAID disk can be replaced by a new one with using hot plugging, USB
mass storage devices, USB wireless cards etc.

4.2 USB System

The universal serial bus (USB) is a complex bus design to connect a host com-
puter to a number of different peripheral devices. It aims to replace various
wide range and slow buses like parallel, serial etc. with a standard bus which
can be used to connect variety of devices such as keyboards, mouse, printer,
web cam, storage devices etc. The latest revision of USB is 2.0 (High speed)
which supports bandwidth up to 480 Mbps (or 60 MBps) and 127 devices per
host controller. The next revision, 3.0 is under development and expected to
support bandwidth in the range of 5 Gbps [31].

The design goals of USB system include:

• A single connector to connect any PC peripheral

• A method of avoiding system resource conflicts
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Figure 4.1: USB connection topology

• Hot plug support

• Automatic detection and configuration of the USB devices

• Low cost

• Enhanced performance capabilities

• Support for legacy devices

• Low power consumption

A typical USB system consists of a host controller, hubs and devices. USB
bus topology is laid out as a tree. Host controller acts as the root and others,
hubs and devices, act as internal and leaf nodes respectively, which are con-
nected through several point to point links. Hubs can be seen as expansion
slots which helps in expanding the USB tree as shown in figure 4.1. The hub
uses a master-slave protocol for communicating with the devices. Hence ev-
ery kind of communication (in or out) is initiated by the host controller. By
choosing the master-slave protocol USB does not have to do a distributed bus
arbitration to avoid collision on the shared resource.

4.3 USB Hardware

The USB hardware present the part which is actually implemented in the silicon.
A complete USB system has three major hardware components:

4.3.1 USB Host Controller

The host system hardware contains a USB host controller which is responsible
for initiating the transaction over the USB system under host driver control.
The three generations of controllers have been around which are:

1. Universal host controller interface (UHCI) (USB 1.0)
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Figure 4.2: Communication flow in a USB system

2. Open host controller interface (OHCI) (USB 1.1)

3. Enhanced host controller interface (EHCI) (USB 2.0)

The host controller reads the list of USB transactions and executes them. If a
write to a device has been requested then controller will read data from buffer
supplied from USB client driver and deliver it to device. In case of read, when
device sends data back to host controller, it forwards it to buffer supplied by
USB client driver.

4.3.2 USB Hubs

USB hubs are like attachment points for the USB system where user can insert
a device or even another hub. They are responsible for enabling/disabling the
ports, maintain status of ports and notifying the host controller in case of events
such as attachment/removal of device happens on the port. Every USB host
contains a root hub which is a central attachment point and all USB traffic
originates from it.

4.3.3 USB Devices

USB devices are special devices which can understand USB protocol. Any
device functionality can be ported to USB protocol given bandwidth, delay re-
quirements etc. are met. They are powered and configured after plugging into
the system by the USB driver. Every USB device has a device descriptor which
is presented to host controller at the time of configuration. It contains informa-
tion regarding features and capabilities required to operate the device and help
finding corresponding client driver for it. An USB device can be a low (1.x), full
(1.x) or high (2.0) - speed device. An USB device has only one device descriptor
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but can have multiple configuration descriptors corresponding to device’s power
or bandwidth requirements. Going further, a configuration descriptor can have
multiple interface descriptors, which themselves can have multiple endpoint de-
scriptors. A single USB device can present itself as more than one device having
different interfaces e.g. a web cam with a microphone or speakers, connected
through a single USB connection to host system. Such USB device will require
different client drivers depending upon which interfaces have been enabled on
the device.

An endpoint acts like a data source or sink. The endpoint descriptor provides
information related to endpoint’s transfer type, direction (IN or OUT) and data
rate supported. A pipe is a logical entity that connects endpoint to the client
driver. Pipe can be of two type:

• Message pipe: Content which is delivered through message pipe is re-
quired to have standard USB defined structure. Transfer on message pipe
is done in a three step process, consists of a request, optional data and
status phases. Message pipes allow communication in both direction. De-
fault control pipe, which is used to configure devices, is always a message
pipe.

• Stream pipe: Stream pipes deliver data with no USB required structure
on data content. Stream pipes are always unidirectional in content flow.
Stream pipes support bulk, isochronous and interrupt transfer types.

Section 5.3.2 in USB documentation discusses in detail about pipes and their
types.

4.4 USB Software

The USB software system consists of following three layers:

4.4.1 USB Client Driver

USB client or device driver is the highest layer in the software hierarchy. It is
responsible for implementing a typical device functionality such as keyboard,
mouse, web cam, USB mass storage etc. and often is unaware of underlying
complexity of USB architecture. It issues I/O requests to USB bus driver in
terms of I/O Request Packets (IRPs).

4.4.2 USB Bus Driver

The USB bus driver understands the USB bus topology and target device char-
acteristics. It also keeps track of device bandwidth and power requirements.
When an IRP is received from USB client driver, it breaks the request into USB
transactions which will be executed on the next frame. A frame is a bus time
quanta on which different transactions are scheduled. A typical USB 1.x frame
is 1 ms and corresponding USB 2.0 frame (often called microframe) is 125 µsec.

A USB bus driver is responsible for:
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• Device configuration management

• Data transfer management

• Bus management

4.4.3 Host Controller Driver

The host controller driver (HCD) is primarily responsible for scheduling the USB
transactions over the bus. HCD maintains lists of various pending transactions
(control, bulk, interrupt or isochronous) 1 and schedule them accordingly. The
specifications of scheduler is implementation dependent.
According to Intel EHCI documentation [32], system software maintains two
schedule for the host controller: a periodic schedule and an asynchronous sched-
ule. The isochronous and interrupt USB transactions fall into the periodic
schedule, while bulk and control transfers belong to the asynchronous list. In
each microframe if periodic schedule is enabled then host controller will execute
from the periodic list. It will only execute from the asynchronous schedule after
it reaches the end of periodic schedule. Chapter 5 discuss in detail about EHCI
hardware.

4.5 Communication over USB

An USB device client initiate a transfer when it puts I/O requests in terms of
IRPs to USB bus driver. The client driver supplies a buffer required to hold or
provide data for the transfer. The bus driver breaks the IRPs into small USB
transactions which adhere to the bus and protocol requirements.
A transfer happens between a client driver and an endpoint on the USB device.
USB supports following types of transactions over an endpoint:

4.5.1 Control Transfer

It is used to send and request short data packets to configure an USB device.
It involved reading and setting device, configuration, interface and endpoint de-
scriptors.

A control transfer is consists of a setup bus transaction moving standard request
information from the host to a device, zero or more data transactions sending
data in the direction indicated by the setup transaction and a status transaction
returning status information from a device to the host. A setup transaction is
only considered complete if status returned shows ”success”.

Control transfer is done on messages pipes by sending standard USB commands
codes. The data exchanged on message pipe also has USB defined structure.
The section 5.5 in USB documentation discuss in detail about control transfers.

1explained in next section
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4.5.2 Bulk Transfer

It is used to send and request relatively large amount of data packets using max-
imum allowable bus bandwidth. Modern USB storage devices use this transfer
type. Requesting a pipe with a bulk transfer type provides the requester with:

• Access to USB on a bandwidth-available basis.

• Reliable delivery.

• Guaranteed delivery but no guarantee for bandwidth or latency.

USB imposes no data content restriction on transferred data. Bulk transfer
employs stream pipes hence are uni-directional. The section 5.8 gives more
detail about bulk transfers on USB.

4.5.3 Interrupt Transfer

Interrupt transfer is used with those devices which need to send or receive data
infrequently but with a bounded service periods. Host controller will automat-
ically repeat these type of requests in the specified time intervals. It provides:

• Guaranteed maximum service period for the pipe.

• Retry of transfer attempt on next period in case of a failure.

It uses stream pipes and has unidirectional traffic. Section 5.7 in USB 2.0
documentation gives more comprehensive overview about it.

4.5.4 Isochronous Transfer

It is used to send or receive real time data streams with guaranteed bus band-
width but without any reliability. These are suitable for A/V devices and sig-
nals. The traffic through these pipes is constant-rate and error tolerant. It
provides:

• Guaranteed access to USB bandwidth with bounded latency.

• Guaranteed constant rate data though pipe as long as data is provided to
the pipe.

• No retries on occasional failures.

Isochronous transfer uses stream pipes and is unidirectional. Section 5.6 in USB
2.0 documentation gives more details about it.

4.6 Interaction with Devices

The USB devices operate on two separate layers. The layer one can be seen
as control layer which is responsible for maintaining the device status, process-
ing control requests, setting up configuration and interface. The second layer
is functionality layer. This is the actual functional capability that the device
provides like a mouse, or flash storage etc.
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The communication to control layer is done though message pipes and with set
of standard commands which are explained in section 9.3 and 9.4 of USB 2.0
documentation. The response for these commands are also standard descriptors
(device, configuration, interface or endpoint). These are explained in section
9.5 of USB 2.0 documentation.

Chapter 9 of USB documentation gives comprehensive details of USB devices
framework and associated descriptors.
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Chapter 5

EHCI Overview

Enhanced host controller interface (EHCI) is an USB host controller (HC) hard-
ware specification for USB 2.0 protocol. In this chapter we will discuss about
the Intel EHCI specification [32]. While discussing we will focus on essential
elements of EHCI description which are necessary for better understanding of
host controller driver implementation. For detailed descriptions please refer to
[32].

5.1 Registers and Mackerel Interfacing

The EHCI controller has two different functional register sets. The first set
called capability registers is responsible for laying out the capabilities of the host
controller. The capability registers specify the limits, restrictions, and capabili-
ties of the host controller implementation. These values are used as parameters
to the host controller driver. It contains information such as such as number
of ports, number of companion controllers (CC), routing logic, HC supports 32
or 64 bit etc. It also contains the starting address of memory region for the
second set of registers called operational registers. The operational registers are
used by system software to control and monitor the operational state of the host
controller.

Mackerel [28] is device interfacing language. Mackerel compiler upon giving de-
vice interface related specifications generates C code to safely manipulate device
state by reading or writing registers. Mackerel generated code is used for in-
teracting with the HC registers. The capability register set is a variable length
memory region and operational register set starts after it. Hence it is required
to break single EHCI device into two separate devices: EHCI capability de-
vice and EHCI operational device. The Mackerel dev files ehci_cap.dev and
ehci_op.dev contain registers specification for above mentioned two devices
respectively. Upon initialization first EHCI capability device is initialized and
operation register offset is read from it to initialize the EHCI operational device.

Table 5.1 and 5.2 gives and overview of the registers and their associated
functions. Chapter 2 in EHCI documentation discuss in detail about these
registers.
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Table 5.1: EHCI capability registers

Offset Size Mnemonic Description
00h 1 CAPLENGTH Capability length register contains the begin-

ning of the operation register space.
02h 2 HCIVERSION This register contains a BCD encoding of the

EHCI revision number supported by the host.
04h 4 HCSPARAMS This register contains set of fields that are

structural parameters, like number of ports
etc.

08h 4 HCCPARAMS This register contains multiple mode control
control and addressing capability etc.

0Ch 8 HCSP-PORTROUTE This is an optional register. If implemented
then contains route mappings for companion
controllers.

Table 5.2: EHCI operational registers

Offset Size Mnemonic Description
00h 4 USBCMD Contains commands to be execute by the con-

troller.
04h 4 USBSTS Reflects the pending interrupts and various

states of the controller.
08h 4 USBINTR Enables or disables reporting of the corre-

sponding interrupt to the software.
0Ch 4 FRINDEX Contains the index into the periodic frame list.
10h 4 CTRLDSEGMENT Contains the higher [32-63] bits of EHCI data

structures.
14h 4 PERIODICLISTBASE Contains the base address of periodic frame

list.
18h 4 ASYNCLISTADDR Contains the address of next asynchronous

queue head to be executed.
40h 4 CONFIGFLAG Contains flags for port routing logic.
44h 4 PORTSC Contains status of each USB port.

5.2 Associated Data Structures

In this section we will discuss EHCI data structures used to communicate with
control, status and data between controller driver (software) and controller
hardware. We will focus on how asynchronous queue management is done in
EHCI. All interrupt, control and bulk data streams are managed via queue
heads (QHs) and queue element transfer descriptor (qTDs). These are queued
in asynchronous queue for execution.

5.2.1 Queue Element Transfer Descriptor (qTDs)

The qTDs are only used with the queue heads. These are used for one or more
USB transactions. The structure block contains two link pointers for queue
advancements and five data element array for buffer pointers. This structure
must be physically contiguous and 32 bytes aligned. The table 5.1 shows the
block diagram for the queue element layout. Please refer to the section 3.5 in
EHCI documentation for detailed description.
The status field reflects the current status of the queue elements. Host controller
writes back the qTDs only after the transfer retirement.
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Figure 5.1: qTD data block layout

5.2.2 Queue Heads (QHs)

A queue head is used to perform transfer on a particular endpoint on the USB
device. A data transfer request is made to an endpoint by using a queue head
and associated queue elements. A queue head can only have data transfer in one
direction except on default endpoint which is bi-directional. The queue heads
are linked to each other via physical address pointers to make a circular link
list. This list is called asynchronous link list and controller hardware execute it
in a strict round robin manner.

The dword 1 in queue head contains endpoint characteristics including its ad-
dress, maximum packet size and endpoint speed etc. The dword 2 contains
endpoint capabilities but is mostly used in split transaction for low and full
speed devices. The multiplier is used for high speed isochronous endpoints.

The host controller writable area as shown in figure 5.2 is called transfer over-
lay. Controller driver is only required to initialize the controller’s readable area,
except when driver is maintaining data toggle bit1 in queue head which requires
setting up 1 bit in the overlay. The overlay is automatically initialized by the
queue element which hardware is executing currently. The current queue ele-
ment pointer contains the address of that queue element. When the execution
of queue element is finished the updated status if written back to the queue
element to reflect the changes.

The meaning and semantics associated with every field are explained in great
detail in section 3.5 and 3.6 of EHCI documentation.

1Explained in 5.3.5
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5.3 Operational Model

In the previous section we explained about the data structures used to interact
with EHCI hardware. In this section we will discuss how this interaction is done
and how EHCI handles various responsibilities.

5.3.1 Port Routing and Control

A EHCI controller can consists of one EHCI programming interface and 0 to N
USB 1.1 companion host controllers. These are required to handle low and full
speed devices. When such devices are detected the responsibility of handling
them is delegated to one of the companion controller. The EHCI has port and
status register for every port but companion controller has only the port control
and status registers which it is required to operate. The port activity notifica-
tion is first sent to the companion controller, if it exists.

The routing logic can be defined in two ways: a global policy or per port manner.
The global policy is set by setting configured flag (CF) bit in CONFIGFLAG
register. Upon setting it, all port related activity notifications are sent to EHCI.
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On the other hand the port also can be delegated to companion controller by
setting port owner bit in port status register. For current implementation the
controller driver sets CF bit to 1 so that all notifications on port activity are
routed to EHCI. Section 4.2 in EHCI documentation talks in detail how dele-
gation and routing is done.

5.3.2 Periodic Queue

The periodic queue contains elements from isochronous and interrupt transfers.
It is scheduled in every micro-frame. Hence periodic schedule provides band-
width and latency guarantees to the application. When a new micro-frame is
started controller hardware always start execution by checking periodic frame
list. If there are any more pending execution then they are executed first before
moving on to the asynchronous schedule. A new request is only accepted when
it is feasible to schedule it in periodic list with the current workload.

The current implementation does not support this. The section 5.6 in USB 2.0
documentation and section 4.6 and 4.7 in EHCI documentation discuss it in
detail.

5.3.3 Asynchronous Queue Management

Asynchronous queue is where all the bulk and control transfer is managed. The
host controller executes this list only when it reaches the end of the periodic
schedule. The asynchronous list is a simple circular list of queue heads. The
register AYNCLISTADDR register contains the pointer to the next queue head.
Hence all en-queued queue heads are executed in a strict round robin manner.

List Head

Horizontal Ptr 01 0

Operational 

Area
1

H

Horizontal Ptr 01 0

Operational 

Area

0

H

ASYNCLISTADDR
Horizontal Ptr 0

H

01

Operational 

Area
0

Circular link list

Queue element

Queue element

Figure 5.3: Asynchronous queue in host controller

Figure 5.3 gives an overview how asynchronous list looks like.
As shown in the figure the list always contains one queue head element which
has H bit marked as 1. While traversing the list when controller hardware sees
this bit set again, it knows that it has completed one iteration over the list. The
host controller completes the processing of the list if one of the following events
occur:
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• End of the microframe occurs.

• Controller detects an empty list condition.

• The asynchronous schedule is disabled.

Node insertion

When inserting a new queue head into a activated asynchronous list software
must ensure that schedule is always coherent from host controller’s point of view.
There should not be any invalid pointers in queue head as well as in linked queue
elements. If queue head is the only element in the list then it should have head
bit set. Actual logic for node insertion in the list is pretty much like insertion
in a circular link list. See section 4.8.1 in EHCI documentation for details.

Node removal

Node removal from the list is more complex than insertion. The problem of
node removal become complicated because of cached references to the removed
node in the host controller hardware. Software must not remove any active
nodes from the list. It should first mark them inactive and wait for hardware
to reflect changes. Only then it should proceed to remove the inactive node.

A simple method is to disable the whole list and safely remove the marked node
from the list. But this method has high overhead as for every removal driver
has to disable whole active list.

A more elegant method called handshake mechanism ensures that controller
hardware does not have any cached references to the removed node. This is a
two step process. In the first step, the node to be removed is unlinked from the
schedule by updating the linkage pointer but is not removed from the schedule.
After unlinking from the schedule the driver sets async advance doorbell on host
controller register. In step two, the driver will receive a notification (in form of
an interrupt) that indicates that controller has traversed the whole list and now
it does not have any cached pointers for nodes. At this point driver can remove
the unlinked node from the schedule. Section 4.8.2 in EHCI documentation
gives details about the node removal from the list.

5.3.4 PING Protocol Maintenance

USB 2.0 uses PING protocol on bulk OUT endpoints on high speed devices.
The purpose of the protocol is to avoid unnecessary bandwidth usage. USB
devices are slower than host controller hardware. While doing a transaction on
an OUT bulk endpoint, device needs some time to stabilize and absorb the in-
coming data by writing it to persistent storage. It is possible that data has been
transferred to device but controller did not receive any valid response from the
device. This inefficient mechanism leads to bandwidth wastage. To overcome
such scenarios USB 2.0 employs the PING protocol.

For every bulk out transaction the controller hardware first sends a PING pro-
tocol packet to the device. If a device is ready to accept more data it sends
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acknowledgment otherwise negative acknowledgment (NACK) back to the con-
troller for the PING packet. If device sends a NACK for PING the host con-
troller remains in PING state and postpones sending data to the next attempt.
All bulk OUT data transactions end in PING state unlike IN transactions which
end in complete state. For more details of states and PING protocol please refer
to section 3.5 and 4.11 in EHCI and section 8.5.1 in USB 2.0 documents.

5.3.5 Data Toggle Synchronization

USB 2.0 uses data toggle protocol to ensure correct and orderly delivery of the
data packets. The synchronization is achieved by using DATA0 and DATA1
type of data packets for delivery. The data toggle protocol works like stop-and-
wait protocol with a window size of 1. After a successful reception of a data
packet receiver toggles the packet bit. Similarly on the sender side when sender
receives an acknowledgment for previously transmitted packet, it toggles its bit
sequence. It is responsibility of the host controller driver to properly maintain
these bits. The data toggle fields in queue elements and queue head will govern
how these bit are manipulated. For bit field set to 1, DATA1 type packet will
be used other wise DATA0.

The control transaction has specific requirements that command should always
be DATA0 and status should be DATA1. The optional data stage is started with
DATA1 and toggles with the number of packets. Similarly for bulk transactions
after configuration and interface assignment the data toggle bits are set to zero.
For every successful transaction the corresponding bit is toggled. Any mistake
in data toggle maintenance can lead to obscure debugging situations which are
hard to debug. If wrong data toggle bit is set into the transaction then host
controller will not execute them and the system appears to be stopped, hence
no other debugging techniques could help. Hence utmost care should be used
when manipulating them.

Section 8.6 in USB 2.0 documentation gives details of the protocol and how
synchronization is achieved over it.
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Chapter 6

Distributed USB
Infrastructure

6.1 Overview

In this chapter we will describe in detail about our implementation of distributed
USB infrastructure for Barrelfish. There are four basic blocks in the implemen-
tation:

1. USB Memory Manager: This module is primarily responsible for mem-
ory maintenance. The explicit memory management is required to meet
the complex memory requirements of USB protocol. It is responsible for
allocating memory for control data, requests and I/O buffers.

2. EHCI Host Controller Driver: The EHCI host controller driver (HCD)
is responsible for interaction with the host controller hardware. It ab-
stracts and shields all complexities of managing EHCI hardware and pro-
vides a clean interface for communication with it.

3. USB Manager: USB manager is responsible for all management related
activities for USB such as pipe allocation, keeping track of USB topology,
performing device enumeration, locating device drivers for new device etc.

4. USB Client Driver: After device enumeration the responsibility of de-
vice is handed over to the USB device driver also called USB client driver.
The driver knows how to operate and what services are available on the
device.

The figure 6.1 shows the overall architecture of the implemented USB system.
All modules, except USB memory manager, run in separate domains. The USB
memory manager is compiled as a statically linked library to all three domains.
The USB memory manager can be implemented as a separate domain but since
all these module use it intensively for memory allocation it was decided to im-
plemented it as a library. This design choice is good because every domain is
responsible for managing its own memory usage. A notorious domain can crash
USB memory manager by requesting a large chunk of memory which is first
allocated on behalf of the memory manager. Crashing a single running instance



28 Distributed USB Infrastructure

USB Client Driver

USB 

Manager

Statically linked libmemusb library

Statically linked

 libmemusb library

Statically linked libmemusb library

USB Host Controller Driver (HCD) 

for EHCI

Enhanced Host Controller 

Interface (EHCI) Hardware

Domain 1

Domain 2

Domain 3

Figure 6.1: Distributed USB infrastructure

of USB memory manager will effectively cease the execution of other domains
also. Apart from unnecessary complexity of unmapping and mapping of ca-
pabilities across domains, USB memory manager, if implemented as separate
domain, could also be a point of contention which is not desired from scalability
perspective.

6.2 Communication Between the Domains

All main three modules run a server instance, to export services provided by
them. The communication is done as in a client-server architecture by message
passing. Messages are passed using inter-domain communication primitives pro-
vided by Barrelfish namely IDC and URPC. Each server instance first registers
its services to system wide service registry server called Chips. All clients of a
particular server manage to find it by requesting service name to Chips. These
internal details of server client communication mechanism are hidden by Floun-
der, a domain specific language (DSL). Flounder automatically generated the
necessary back-end required to communicate with Chips and between a server
and its clients.

6.3 Proxy Function Implementations

To shared relevant data structures and service functions, these pieces (proto-
types) are moved to the header files. The definition of a particular service
function depends on the domain. On server side a function is implemented in
a normal manner. On the client side it is implemented as a proxy function.
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These proxy functions hide the internal server client communication mechanism
from the top level logic. In every domain there are two layers of logic. The core
logic is called high level logic which is the actual functionality implemented.
The other, lower level logic, is responsible for taking care of communication and
hiding other details. The figure 6.2 gives an overview of the implementation.
The advantage of such design is that it completely decouples the communica-
tion logic from core logic of the implementation. It also improves readability
because function names are same across the domains and new user can implic-
itly assume that control flow will somehow reach at the corresponding function
in other domain. The inter domain communication is managed by the Flounder
generated server client stubs.

6.4 Synchronization

There is no need for explicit synchronization on the server for multiple clients.
For server client model implemented in Barrelfish every message is delivered one
by one in a message handler loop. Next message is fetched only after processing
for the current message is completed. This basic design choices make sure that
there are no need for explicit locks in case of multiple clients sending requests
concurrently to the server.
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6.5 Hot-plugging

The implemented system is completely event driven. All participating modules
wait for some activity or requests from higher layers. These modules just start as
service servers. USB delivers activities from hardware as interrupts to the host
controller driver. These interrupts drive further execution logic in the controller
driver. Similarly other modules can be activated only upon demand. Upon no
activity, these modules can be shutdown and unloaded ( except for HC driver,
which has interrupt handler required to get notifications on new activities) from
the operating system. For example in current system implementation device
driver starts as a server and waits for the device found notification. It could
also be started only after when device is detected given that every executable
contains same server name as its name.



Chapter 7

USB Memory Management

Barrelfish does not provide complex memory management operations to the
user space applications. Each application is responsible for implementing such
desired operations on a given basic set of capabilities by Barrelfish. These
capabilities include, but not limited to:

1. Frame capability allocation. (assignments)

2. Mapping allocated frames to the virtual memory of applications. (map)

3. Revoking the capability containing frames. (delete)

The USB system implementation has complex memory management require-
ments. It allocates chunks of memory on the demand, pretty much like the
malloc system in GNU Linux. Though USB specification does not put this as
a requirement but in implemented system I/O buffers have to be page aligned.
For all allocated queue heads and queue elements linkage is done in virtual space
as well as physical space. The virtual space linkage is required to keep track of
memory usage. Linkage at physical level facilitates host controller hardware to
traverse and execute queue elements one after another. All relevant data struc-
tures have to be contiguous and 32 bytes aligned in physical space (pspace).
Also USB memory manager has to ensure that no EHCI controller data struc-
ture crosses 4kB frame boundary.

The implemented system does not have to be as comprehensive as malloc utility.
It already knows that all allocation requests are for either queue heads (48 bytes)
or queue elements (32 bytes). Fortunately, all other potential request segments
(specifically in device enumeration) such as device descriptors and command se-
quences also fit in less than that. For example USB device descriptor is 18 bytes
long, which can easily fit in one 32 bytes chunk. The EHCI data structures need
queue heads and elements to be 32 bytes aligned. Thus in the implementation
the queue head size is rounded from 48 bytes to 64 bytes. This rounding up
generates internal fragmentation of 16 bytes per allocated queue head.

The USB memory manager does memory allocation on demand. It supports
chunk allocation of 32 and 64 bytes. For I/O buffers it allocates memory on
page granularity. On initialization it allocates and maps few frames (2 frames
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to be specific) into the virtual space (vspace) of the process. The requests are
allocated on these pages. On a typical x86 64 system page size is 4kB which
equates to 128 and 64, queue elements (32 bytes) and queue heads (64 bytes)
respectively. Memory management is done via link list of arrays. Every node
in the link list contains one page worth of queue heads or queue elements as
an array. USB memory manager maintains separate link lists for both of them.
When a process consumes all free slots in a node, a new node is allocated with
a new page and is inserted into the list.

The frame allocation is done via frame_alloc function call. Function takes
size and capability reference structure. Upon successful allocation, the frame is
mapped to vspace of process by vspace_map_attr. All such mappings created
by USB memory manager are non cacheable. This is required because all such
allocations are I/O memory region. They are readable and writable by hard-
ware as well as by software. Software does the required setup on such regions
in RAM and instructs hardware (here USB host controller) to execute the de-
sired action. The result of execution is written back on these regions in RAM.
For example arrival of data from disk, or setting flags by hardware to reflect
execution status etc. Hence to get an up to date value of data from RAM these
regions are marked non cacheable and every access to these region fetches data
directly from RAM. The mapping flags contains PTABLE_ACCESS_DEFAULT and
PTABLE_CACHE_DISABLED. To keep track of allocated frames memory manager
maintains an internal data structure called usb_page. It contains virtual as well
as physical address of the newly mapped frame with other relevant information.
Every newly mapped page is entered into the link list of type page_list_t

which is used to keep track of all allocated pages.

Memory allocation is done using usb_mem structure. Unlike malloc which re-
turns address of newly allocated chunk (void *), the allocation in USB mem-
ory manager returns usb_mem type structure. The structure contains virtual
address, corresponding physical address, size, type, valid and capref entry for
cross reference purposes. Caller of allocation function has to recast the virtual
memory according to the requirements. Size is size of the allocated block. Type
can be one of the following:

1. Queue head with USB_MEM_TYPE_QH.

2. Queue element with USB_MEM_TYPE_QE.

3. I/O buffer with USB_MEM_TYPE_IO.

Rest of the fields in the structure are self explanatory.

7.1 Internal Memory Management

Internally USB memory management unit maintains three explicit link lists.

1. Link list 1 is named as queue head link list and identified as struct qh_ll.
Allocation on this list is done in chunks of 64 bytes.

2. Link list 2 is named as queue element link list and identified as struct qe_ll.
Allocation on this list is done in chunks of 32 bytes.
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3. Third and the last list is called frame list. It is used to keep track and
maintain the I/O buffers allocated. The granularity of list is one frame
i.e. 4kB on typical x86 64 machines.
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Figure 7.1: USB Memory Management

The figure 7.1 gives an overview of how whole system looks like.

For queue head and queue element link list the management is done similarly
via link list of an array. Every node in the list contains following information
apart from next linkage pointer:

• The corresponding usb_page entry.

• An array of usb_mem entries.

• Next free index in array.

• Total capacity, allocated and free slots in the node.

• An identifier for the debugging purpose.

For new memory allocation requests memory manager first tries to locate a node
which has non zero free capacity. Before traversing the list it checks the global
capacity of system if, that is zero then it immediately allocates a new page to
the system. When the desired node is selected the allocation is done on it. The
next free index on node tells which index in node’s usb_mem array is free. The
index is selected for allocation and it is updated to next free slot. The chosen
slot is returned as allocated entry. The steps in allocation is same for both
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queue head and queue element but are done in different link lists.

Freeing up allocated memory is same. First the look up is done to find out
the node on which allocation was done. This is done by matching the virtual
address range of nodes. When node is identified the index is located by dividing
the offset of usb_mem from node’s virtual base address by the element size. Then
index is marked free and next free index is updated to it.

I/O buffers are allocated on page granularity. Even for the small requests which
are greater than 64 bytes but less than PAGE size a whole page is allocated.
This is a simple but poor memory management. Ideally this should allocate
just the desired amount. For typical for mass storage devices this is justified
because they have block size of 512 bytes or 1 kB and reading them in a group
will require buffer size of few kBs. I/O buffer allocation is done as described
above for page allocation.

7.2 NUMA Aware I/O Buffer Allocation

NUMA stands for non-uniform memory access. The USB memory manager
supports NUMA aware I/O buffer allocation. To initiate services caller first
have to set EHCI core id on which the host controller driver is running. It
can be extracted from HC driver using one of the offered services. In absence
of valid core id, the passed flags are ignored by the allocator. The range of
memory range is extracted from SKB. Upon requesting the SKB returns the
memory range of the supplied core. Memory manager maintains this range for
every core in the system. The data in this list is periodically refreshed to get
more up to data from SKB. While allocating the I/O buffer, memory manager
takes associated flags to do NUMA aware memory allocation. Three types of
flags are supported:

• USB NEAR EHCI. This flag indicates to perform I/O buffer allocation
on memory near to core on which HCD is running.

• USB NEAR SELF: This flag indicates to perform memory allocation near
to core on which driver is running.

• USB DONT CARE: This flag indicates to use whole range of memory.

These flags are guidelines rather than rules to do memory allocation. If memory
manager has not sufficient data to do allocation it will ignore them. Upon fixing
the memory range the ram_set_affinity function is called to set range before
doing the frame allocation for the request.

7.3 Library Interface and Functions

Since all other three modules, namely host controller driver, USB manager and
USB device driver, need functionality of USB memory manager it is linked as
a static library to them. Following functions are provided by the libmemusb

library
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• void usb_mem_init(void): This is an initialization function to the memusb
library. Upon invoking it allocates and initializes the both link lists with
1 page each.

• usb_mem malloc_qe(void): This function is called to allocate a chunk of
USB memory of worth holding a queue element i.e. 32 bytes.

• usb_mem malloc_qh(void): This function is called to allocate a chunk of
USB memory of worth holding a queue head i.e. 64 bytes.

• usb_mem malloc_32(void): This is a wrapper function which internally
calls malloc_qe for allocation. This is used for readability purposes. All
allocations in non-HCD domains are done via this.

• usb_mem malloc_64(void): Similar purpose function as explained above
to allocate 64 bytes worth of USB memory.

• usb_mem* malloc_qe_n(int n): This function allocates an array of n
elements of 32 bytes each.

• usb_mem* malloc_qh_n(int n): Similar function to allocate an array of
n element of 64 bytes each.

• void free_qe(usb_mem mem): This function is free equivalent of malloc
utility which allocates 32 bytes worth of segment. Upon receiving an
invalid mem element it simply ignores the call to free the mem element.

• void free_qh(usb_mem mem): Similar functional equivalent for queue
head allocations.

• void free_32(usb_mem mem): Wrapper utility function for better read-
ability which internally calls free_qe.

• void free_64(usb_mem mem): Wrapper utility function for better read-
ability which internally calls free_qh.

• usb_mem malloc_iobuff(int sz, int NUMA_FLAG): This function allo-
cates I/O buffer of size big enough to hold sz bytes worth of data. The
number of pages required are calculated and are allocated and mapped
to the process’s vspace. The NUMA FLAG is used to do NUMA aware
allocation of request.

• void free_iobuff(usb_mem mem): Equivalent free function to free up
the buffer for future use.

• void* map_cap(struct capref, uint32_t sz): This function is used
to map sz worth of bytes of a given cap to the process’s vspace.

• void print_usb_mem(usb_mem mem): Debugging utility function to print
out usb_mem type structures.

• void print_memory_stats(void): Debugging utility function to print
out memory statistics about the current status of USB memory. It prints
out data about how many frames are in use, how many 32 and 64 bytes
segments are allocated, freed and what is current capacity. It helps in
tracking memory leaks. Every allocation should have corresponding free.
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Chapter 8

Host Controller Driver
(HCD)

The USB host controller driver is responsible for managing the host controller
hardware. The implemented driver is for Enhanced Host Controller Interface
(EHCI) controller. The chapter 5 gives more comprehensive overview of the
host controller hardware and responsibilities. In this chapter we will focus on
software interface and services provided by the implemented host controller
driver (HCD).

8.1 PCI Interfacing and Booting the Host Con-
troller

The primary responsibility of HCD is to manage host controller hardware. EHCI
controller hardware resides on PCI bus, hence the first step towards starting the
driver is to detect device and start associated services.

The stand alone host controller driver starts with initializing USB memory ini-
tialization logic. It then proceeds to initiates the low level server client interfaces
and registers the services to the Chips service server. This much work is done
regardless of whether PCI finds a host controller or not. It also establishes a
client relationship with the USB manager server.

In Barrelfish PCI funtionalities are also implemented as a server (PCI server).
The HCD then connects to the PCI server and probe for EHCI controller hard-
ware. If controller is found (which is typical on every modern day system1),
PCI server notifies the HCD by a PCI callback function. The callback function
contains information for memory mapped PCI region where EHCI controller
registers are mapped. The current implementation does not support 64 bit con-
trollers so upon checking the relevant flag for controller’s capability, memory
affinity is set to 4 GB, which is accessible from 32 bit controllers.

The HCD uses Mackerel interfacing to interact with host controller hardware.

1Qemu does not support EHCI as of with version 0.9.1.
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The memory region, where HC registers are, is mapped into HC driver’s vspace
before actually booting the hardware. Mackerel generated code vastly reduces
the interaction complexity with controller hardware registers and provides a
very clean, efficient interface to write and read them. Since capability registers
set can be of variable length, the implementation uses two different HCD de-
vices to represents two different registers sets. The ehci_cap.dev file contains
capability registers set device information. Similarly ehci_op.dev file contains
operational registers set device information. First EHCI capability device is
initialized and offset of operational set is extracted from there. In second step
EHCI operation device is initialized.

To orderly initialize the controller hardware, the implementation follows the 5
steps as outlined in Intel EHCI documentation ([32]). These are:

1. Specify the 4GB segment where the interface data structure are allocated.
For 32 bit controller this value effectively will reduce to 00000000h.

2. Set the interrupt map and enable the interrupts generation. For the cur-
rent implementation following interrupts are enabled:

• On async advancement.

• On grave host controller errors, on which software intervention is
required.

• On port status change, when a device is inserted or removed.

• On transaction completion (IOC).

3. Write periodic frame base address and if required then enable the schedule.
In the current implementation this is disabled.

4. Set the interrupt threshold, frame list size etc. and set controller ON via
run/stop bit.

5. Enable global routing to route all interrupts to EHCI. Since we are not
targeting the backwards compatibility all interrupts should route to EHCI.
EHCI is capable of handling devices operating on USB 2.0 standards.
OHCI and UHCI are used for USB 1.0 and USB 1.1 standards respectively.

At this point controller hardware is configured, up and running.

8.2 Event Notifications

The controller hardware generates interrupts on new events. There interrupts
are delivered to HCD as IDC messages. Upon receiving any such notification
the interrupt handler function is invoked. The handler function scans the EHCI
status and interrupt registers to locate the source of the interrupt. It then
flags appropriate threads to do the interrupt processing job. The foot print of
interrupt handler should be small to avoid excessive processing while handling
an interrupt. Doing large amount of work in interrupt handler may interfere
with the responsiveness of the system. HCD knows the destination for each
event and proceeds accordingly. Port status change interrupts are forwarded
to USB manager as inter domain messages. Others like transaction complete
interrupts are processed locally in HCD but in different threads.
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Figure 8.1: HCD asynchronous queue management overview

8.3 Device Detection and Port Power

When there is any activity on USB ports, HCD receives an interrupt about port
status change. Here activity can correspond to device attachment or removal.
In both cases, upon receiving the interrupt first port of activity is located by
linear scan of all the ports. Port with activity has connect status change bit
set in associated port register (PORTSC). Upon locating the port the current
connect status bit is checked. If bit is set then a new device has been inserted
otherwise device which was present there is removed.

When a new device is located HCD then proceeds to port reset and power logic.
The line status tells the HCD that whether device is a low speed device or not.
Next the port with device present is reset and enabled. At this moment HCD
notifies the USB manager that a new device has been located to a specific port
number. In a similar way upon device removal USB manager is notified and
USB manager is responsible for proper clean up.

8.4 Asynchronous Queue Management

The primary responsibility of HCD is to manage asynchronous queue. Asyn-
chronous queue elements include control, bulk and interrupt requests. For a
particular type of request a queue head and multiple queue elements are allo-
cated. HCD has to keep track of all requests en-queued, completed or aborted.
HCD also has to allocate and free associated resources with the requests.

EHCI controller traverse physical linkage of these queue elements to fetch next
executable element. On the other hand to keep track of these elements HCD has
to keep track of them in vspace. These requirements lead to queue management
design as shown in figure 8.1.
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The queue management is done on two level, virtual and physical. Physical
linkage is done by putting higher 27 bits of physical address of next queue ele-
ment in next pointer of queue element data structure. The higher 27 bits are
required as all queue elements are 32 bytes aligned. The vspace linkage is done
with queue element/head wrappers. These structures contain required meta
data and information for proper queue management apart from the queue ele-
ment/head references.

The queue head wrapper contains following information:

• Reference to the actual queue head element.

• Pointers for maintaining doubly link list.

• Service reference to the client from where this request has come.

• References to the queue element (qTD) list wrappers.

• Status flag information.

• Total data length expected for this transaction.

• Debugging stamp.

Every allocated queue head is wrapped into this structure and is then passed
to internal queuing mechanism.
Similarly the qTD wrappers also contain following information:

• Reference to the actual queue element.

• Pointers for link maintenance.

• Value of usb_mem.

• Reference to queue head wrapper.

When a new request is received in HCD, the HCD first allocated the necessary
numbers of queue elements and links them in vspace and pspace. Vspace linkage
is done using wrappers. After then, they are passed to to link with allocated
queue head. When whole list in linked then the reference to the queue head is
passed for insertion in asynchronous schedule.

8.5 Transaction Management

After all necessary data elements are allocated they are passed to internal queue
manager. The internal queue manager is responsible for inserting them into the
host controller’s hardware queue. The last queue element in the the queue has
interrupt on completion bit (IOC) set to one. Hence transaction can be consid-
ered complete if device or host2 transfer a short packet or last queue element is
executed. In both cases it will result in an IOC.

2There are no cases when host should do this but USB devices certainly can for IN trans-
actions.
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EHCI controller has very complex queue management logic. It is very impor-
tant to adhere to the guidelines given in EHCI documentation otherwise bugs
generated from these are very hard to debug. As explained in chapter 5, EHCI
controller maintains circular link list of queue heads linked on physical pointers.
The 1 bit flag head in queue head is responsible for telling hardware that one
complete traversal of list has been done. There is only one queue head in whole
hardware queue that has this bit set to 1. Due to caching issues by controller
the removal of a node from the hardware queue is done in two steps. First un-
linking then removal from the asynchronous schedule. This is called handshake
mechanism explained in detailed in chapter 5.

The hardware queue is managed by two separate threads. These two threads
loosely share the responsibilities of two step handshake mechanism. These
threads are started at the boot time when internal queue manager is initial-
ized. Upon receiving an IOC the interrupt handler signals the first thread to
scan the hardware queue and locate which queue heads have completed the
transactions. IOCs in EHCI are cumulative and their frequency depends upon
interrupt threshold. In current implementation we use default which is 1 mil-
lisecond. Hence for a one IOC, there might be more than one queue heads which
have finished processing. The first thread unlink them from hardware queue but
does not de-allocate them because controller might have cached references to
them. If any one of these heads have head bit set to 1, other queue head is
chosen to set its head bit to 1. After complete processing, the first thread set
the doorbell for async advancement on controller. At this stage queue heads are
removed from hardware queue but they are still linked in vspace via wrappers
and are not de-allocated.

Upon receiving the interrupt on async advancement, the interrupt handler sig-
nals the second thread to remove and free the marked queue heads from the
asynchronous schedule. The async advancement interrupt implies that con-
troller now does not have any old cacheable pointers which might lead to re-
moved nodes. The second thread scans and remove all removable nodes from
the list. Wrapper for every node removed contains identification for the client
process. For every node, number of bytes transferred is calculated if transfer
was successful otherwise error number is generated. For every node removed an
IDC is send to corresponding process to indicate that transfer has been com-
pleted. Upon detecting that there are no more nodes in asynchronous schedule,
the schedule is disabled.

A new node insertion in schedule is quite simpler compared to node removal.
The list is checked if it is NULL. If list is found to be NULL to be inserted node
is the only one. The head bit is set and node is inserted into the schedule. On
the other hand if schedule is found not-NULL, node is inserted as done in link
lists. The linkage is done on both vspace as well as pspace.
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8.6 Host Controller Server’s Services

The host controller driver acts as server as well as client to other domains. At
the time of booting HCD registers its services to the Chips service server. Then
it proceeds to connect as client to the USB manager server. USB manager fol-
lows the same procedure. In the end both HCD and USB manager are servers
as well as clients of each other.

The following services are provided by EHCI HCD server:

1. Map shared state: Some crucial device states such as data toggle state3,
device connectivity status etc. are shared between HCD and USB man-
ager. USB manager is responsible for maintaining the USB topology tree.
HCD only notifies USB manager about device removal or attachment.
Similarly, data toggle status is initialized by USB manager but is used by
HCD. HCD does not know when the data toggle bits are re-initialized e.g.
on re-configuration of the USB device. These are frequently used data
structures by HCD but their maintenance responsibility and semantics
lies in USB manager. Hence they are shared between these two. After the
connection between HCD and USB manager is established, USB manager
calls map_dev_arr function to pass capability of shared page. HCD then
maps this capability into its vspace and use it. For current implementa-
tion this is one frame but size can expand as required number of items to
be shared increases.

Function call: void map_dev_arr(struct capref cap, uint32_t sz);

2. Execute data-less control request: As explained before control se-
quences can have optional data stage. Example of data-less control se-
quences being, assignment of address, configuration and interface to the
USB device etc. In data-less control sequence, transaction is done with
only two stages, command and status. The client side implementation of
service function is responsible for marshalling the arguments for the call.
The explicit marshalling is required because USB command sequence is
exactly 8 bytes. In normal structure definition in C, compiler is free to
pad the size of structure to make it word or dword aligned. Hence explicit
marshalling of parameters are done, when passing around in inter domain
communication. The function takes three arguments, USB command re-
quest, device id and debug flag.

Function call: int usb_ctrl_exe(usb_device_request usb_req,

uint8_t device, int debug);

3. Execute with-data control request: Most of the control sequences
have associated optional data stage with them. In 3-stage control trans-
action command sequence is followed by data stage and then status stage.
In data control sequence apart from the command sequence the caller also

3Explained in chapter 5.
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have to provide physical address of the data buffer and expected data
size. USB allows to terminate the data transaction with less number of
bytes expected but it does not allow to overflow it. In case of overflow it
results in data babble error. The HCD takes care of allocating space for
command and status sequences which are 32 bytes each and linking them.
Upon execution termination, the HCD does downward calls to client side
to notify that execution has been done. If execution has been successful
HCD returns number of bytes received or send, otherwise error code. All
control sequence transactions assume that it is done on default endpoint
(0), hence there is no need to pass it explicitly.

Function call: int usb_dctrl_exe(usb_device_request usb_req,

void* buff, uint64_t sz,

uint8_t device, int debug);

4. Execute bulk transaction request: The bulk transaction requests are
done on stream pipes (unlike control sequences which are on message
pipes). The bulk transactions are done on bulk endpoints. Contrary
to default end point, all other USB endpoints are uni-directional. USB
bulk transaction is similar to control transaction in terms of setup but it
does not have explicit command, data and status stages. The only pur-
pose of bulk transaction is to transfer certain amount of bytes from device
to RAM or vice-versa. Queue head allocation, queue element linking is
done similarly as done in command sequences. Number of queue elements
depends upon the data size. One queue element can hold up to 20 kB
worth of data (with proper page alignment, which is implemented in the
system). The queue elements are allocated by HCD and are freed upon
completion of the transaction. A transaction can result in success or error.
Upon successful completion the number of bytes moved is reported back
to the client, otherwise error code is propagated.

Function call: int usb_bulk_exe(usb_pipe_t pipe, void* io_buff,

uint32_t len, int debug);

5. Get HCD core id: This is a simple function which returns on which core
HCD is running. It is required by other module’s libmemusb to perform
NUMA aware memory allocation.

Function call: int get_ehci_core_id(void);
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Chapter 9

USB Manager

The USB manager is responsible for maintaining USB infrastructure related ser-
vices. Similar to HCD, the manager is started as a server. In the beginning the
communication between USB manager and HCD has to be synchronized. These
both modules are servers and clients of each other. The primary responsibilities
of USB manager include device enumeration, USB tree topology maintenance,
allocation of configuration and interface to the device, allocating pipes to device
drivers, maintaining USB device’s meta-data etc.

9.1 Device Plug & Unplug

When a new device is inserted into one of the USB ports (also with device re-
moval), HCD sends notification to USB manager. USB manager is responsible
for taking appropriate actions.

Upon receiving device attachment notification, the USB manager proceeds to
USB device enumeration. After successful enumeration and address assignment,
it looks for driver for the device by asking SKB. When an appropriate driver is
located an entry for the device is made into the USB tree topology and control
is handed over to the device driver.

If a device removal notification is received, USB manager immediately sets the
connectivity status as disconnected and then proceeds to remove all other de-
vices which might be connected by this device1. HCD use this shared connec-
tivity information to accept or reject transactions from device drivers. USB
manager then notifies device driver that the device has been removed.

9.2 Device Enumeration

The USB manager maintains detailed information containing device descriptor,
configuration descriptor, interface descriptor, endpoints, string descriptors etc,
port, address etc. for every enumerated device. When a new device is found

1USB hubs are also treated as USB devices.
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Figure 9.1: Configuration descriptor with interface and endpoint descriptors

following steps are taken by enumeration thread:

1. A new slot is located into the USB device array. Since USB 2.0 can only
support 127 devices, a static array with 127 potential entries is created.
The index into the array is used as address for new USB device. Address
zero is reserved and is only used at the enumeration time before device is
assigned a proper non-zero address.

2. USB manager then tries to read device descriptor. Device descriptor con-
tains information regarding class, subclass, protocol, string descriptors
indexes and the number of configurations etc. The vital information here
is number of configurations. The device descriptor is saved into the USB
device structure.

3. USB manager reads every configuration reported by device descriptor.
The configuration contains information regarding power requirements, in-
terfaces and endpoints numbers. The configuration is actually read twice.
During the first reading only configuration is read to find out total length
of data needed to read interface and endpoint descriptors as well. This is
reported via wTotalLength field. During second reading configuration is
read again but with potential data length as wTotalLength instead of just
configuration size. The total data layout is shown in figure 9.1.

Every descriptor has its associated length in bLength field. Hence during
second read USB manager gets the whole data and initializes all interfaces
and endpoints descriptors and saves them into the device structure.

4. At this step USB manager have all the required information to address
and configure the device. Now USB manager assigns a proper non-zero
address to the device and cross checks by reading device descriptor again
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but from newly assigned address. USB 2.0 documentation does not specify
the exact order when address can be assign to the newly found device.

5. Now USB manager assigns a particular configuration and interfaces to the
device. During the current implementation the flash mass storage device
only reported one configuration and one interface descriptor, hence USB
manager does not have any choices. But in general it should consult SKB
to choose proper configuration. These configuration and interface can later
also be changed by device drivers.

6. After step 5, the USB device is in addressed mode, with configuration
and interface assigned. Now USB manager proceeds to locate appropriate
device drivers for the device by asking SKB. If a match is found, SKB
returns the server name which is running associated device driver.

7. USB manager tries to communicate with the driver server and probe the
server if it accepts new device or not. If device is accepted by the server,
an entry for the device is created into the USB topology tree. Otherwise if
no appropriate drivers are found, the associated slot in device array with
all other resources are released.

9.3 USB Tree Topology
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Figure 9.2: USB tree topology as maintained by USB manager
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The USB manager is responsible for maintaining the USB topology tree. From
the root hub perspective every port seems directly connected to it. If a hub or
device (device may be a compound device supporting multiple device interfaces)
is disconnected from the port then USB manager is responsible for maintaining
the consistent view of USB topology. This topology tree is used to update the
connectivity status which is shared between USB manager and HCD. Figure 9.2
gives an overview of maintained USB topology tree.

Initially USB topology tree contains a single node representing USB root hub.
When a new device is attached directly to the root hub, the associated entry is
made into the tree. If a device is attached via already connected USB hub then
associated hub entry is passed as its parent. For devices connected to root hub,
parent is passed as NULL. When a new device is passed for insertion, first the
parent node is located into the tree. USB 2.0 does not allow depth more than
7 levels. Hence no device below depth 7 is inserted. Upon locating the parent
node, new node representing new device is inserted into the children list of the
parent.

When a device is removed HCD notifies the USB manager. USB manager locates
the node containing the device address. It then proceeds recursively to remove
all its children and their sub-trees. During this process when a device node
is removed corresponding to it status is also updated into the shared array as
disconnected from root hub and corresponding address slot is marked free.

9.4 Communication

USB manager has a very complex communication logic. Not only it acts as a
server to HCD and USB device drivers, it is also client of both. As a server,
it provides different services to HCD and device drivers. There is no common
function which is required by both. Next few sections gives an overview of it.

9.4.1 With HCD

HCD and USB manager have a very critical server client communication setup.
Both are servers as well as clients of each other. They both connect and syn-
chronize at the booting time. The implicit steps followed are:

1. USB manager starts partial server by explicit message handling 2, until
HCD is connected.

2. When connection from HCD is confirmed, USB manager connects to HCD
server. HCD server does same thing as did by USB manager in previous
step.

3. When both are connected to each other as a client, both proceed to do
initialization of internal logic and enter messages_handler_loop.

The synchronization between servers and clients becomes tricky because, right
now, Barrelfish does not support threaded message handling. There should

2i.e. not calling messages handler loop(), which is a non-returning function.
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only be one message handler loop in whole process. Hence these explicit wait-
connect-start steps are required.

HCD and USB manager communication when a new device is inserted or an old
one is removed. More details about these services are given in service section.

9.4.2 With Client Driver

Like HCD, USB manager also connects as a client and as a server to the client
driver. During the device enumeration process, when a device driver is located
for a newly connected device, USB manager connects as a client to the device
server. USB manager then passes the required information to probe function
on server side. If driver is ready to accept the device then it will return ACCEPT

or REJECT otherwise. This is a one time communication and USB manager can
close client connection to the device server after this step.

USB device drivers need certain information about the device from USB man-
ager like availability of particular kind of pipe, configuration and interface in-
formation etc. Hence they connect to USB manager as a client. These service
are provided to client driver and details are outlined in service section. Services
provided to client driver are different from HCD.

9.4.3 With SKB

Unlike other two communication interface, communication with SKB is mostly
one way. USB manager is responsible for adding facts and system updates to
SKB. SKB is responsible for reflecting them to the other modules in the system.
For every device following facts are added to the SKB

1. Port number on which it is connected.

2. Assigned device address.

3. Maximum power, if device is not self-powered.

4. Class, subclass, protocol codes.

5. Enabled configuration and interface number.

SKB also helps USB manager in locating a device driver for new devices. On
booting time device drivers register interest information to SKB. USB manager
search this to match and locate driver server.

9.5 USB Manager Server’s Services

In current implementation USB manager provides following services to HCD
and device drivers.
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9.5.1 To HCD

1. Device connect notification: When a new device is connected, HCD
after port reset and power calls device connect notification function to
notify USB manager about new device.

Function call: void notify_new_device(int port_num);

2. Device disconnect notification: When a device is unplugged, HCD
notifies USB manager about removal of the device.

Function call: void notify_device_removal(int port_num);

9.5.2 To Client Driver

1. Locate pipe: Pipe is a logical connection between a device driver and
data source/sink on the device. The USB driver expects some specific type
of endpoints to be present on the device in order to work properly. When
device responsibility is handed over to the driver after probe function,
device driver requests look-up for specific pipe types to the USB manager.
USB manager after receiving such request looks up in the device structure
and initializes the pipe and returns it to device driver. A valid bit in
pipe structure tells if request was successful or not. A pipe is required for
all transactions done on non-control type pipe. All control transactions
are done on default pipe, hence there is no need for an explicit pipe for
endpoint zero. A pipe structure contains following information:

• Device address.

• Endpoint number.

• Endpoint address.

• Endpoint direction (IN or OUT).

• Endpoint type (control, bulk, interrupt or isochronous).

• Maximum packet size. Though USB standardize packet size for dif-
ferent endpoints, like 64 bytes for control, 512 for high speed bulk
points but few non-complaint devices do not follow these regulation.
Hence it is recommended to extract this information from the end-
point itself.

• Multiplier for high speed isochronous points.

Function call: void init_pipe(uint8_t dev, uint8_t type,

uint8_t dir, usb_pipe_t *req_p);

2. Current configuration: The function returns the current active config-
uration on the device to the driver. Driver may parse it to locate other
capabilities on the device. Return value indicates the success or failure of
the request.

Function call: int get_curr_config(uint8_t dev,

usb_configuration_descriptor *config);
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3. Get number of configurations: This function returns the number of
available configurations on the specified device.

Function call: void get_num_config(uint8_t dev, uint8_t *num);

4. Get specified configuration: This function returns the specific config-
uration descriptor to the caller. The return value indicates the status of
the request.

Function call: int get_config(uint8_t dev, uint8_t num,

usb_config_descriptor *config);

5. Set configuration: This function sets the specified configuration on the
device and returns the status of the request.

Function call: int set_config(uint8_t dev, uint8_t num);

6. Current interface: The function returns the current active interface on
the device to the driver. Driver may parse it to locate other capabilities
on the device. Return value indicates the success or failure of the request.

Function call: int get_curr_intf(uint8_t dev,

usb_interface_descriptor *intf);

7. Get number of interfaces: This function returns the number of avail-
able interfaces on the specified device.

Function call: void get_num_intf(uint8_t dev, uint8_t *num);

8. Get specified interface: This function returns the specific interface de-
scriptor to the caller. The return value indicates the status of the request.

Function call: int get_intf(uint8_t dev, uint8_t num,

usb_interface_descriptor *intf);

9. Set configuration: This function sets the specified interface on the de-
vice and returns the status of the request.

Function call: int set_intf(uint8_t dev, uint8_t num);
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Chapter 10

USB Device Drivers

USB device drivers or client drivers are very much like normal device drivers
except instead of directly communicating to a device (such as writing registers)
they interact with devices over the USB protocol. USB does not interpret the
communication over its stream pipes. The drivers sits on top of USB stack and
knows what services are available on current the device.
USB device drivers are responsible for implementing services on top of USB
protocol, such as receiving or sending data to the device etc. Different type of
devices (bulk storage, human-interaction devices etc.) have different protocol
specifications which run over USB. In this chapter we will talk in detail about
USB mass storage protocol [33] and the current implementation in the system.

10.1 Mass Storage Protocol Specification

A mass storage device is an electronic device which can store information on
persistent storage and supports data transfer on a hardware interface. The data
can be anything ranging from executable files to databases, media files, spread-
sheets etc. USB is used intensively for variety of storage devices. Devices such
as magnetic hard drives, optical drives, flash memory devices, digital cameras,
mobile devices etc. can easily connect over USB to perform data transfer. The
USB mass storage specification does not provide any particular file-system spe-
cific services. Instead it provides a very simple set of services like read, write,
verify data blocks on the device. It is the responsibility of higher layers such as
file system to interpret these data blocks.

The table 10.1 gives overview of mass storage class interface descriptor. The
interface class and protocol code for mass storage are 08h and 50h respectively.
The subclass code specifies which type of device is it. A typical flash drive uses
SCSI transparent command set (06h).

The USB bulk-only mass storage protocol works on command-data-status flow.
The USB host sends command block, the host or device can send data and then
the device returns status. All reading and writing is done on logical blocks. A
driver can assume them to be like a long array. USB transactions does not know
about these details. Device firmware, which implements USB mass storage pro-
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Table 10.1: Bulk-Only data interface descriptor

Offset Field Size Value Description
0 bLength 1 byte 09h Size of this descriptor in bytes.
1 bDescriptorType 1 byte 04h INTERFACE descriptor type.
2 bInterfaceNumber 1 byte 0?h Number of interface.
3 bAlternateSetting 1 byte ??h Value used to select alternate in-

terface.
4 bNumEndpoints 1 byte ??h Number of endpoints used by

this interface excluding endpoint
zero. The value shall be at least
2.

5 bInterfaceClass 1 byte 08h MASS STORAGE class.
6 bInterfaceSubClass 1 byte 0?h Sub class code. Indicates

which industry standard com-
mand block definition to use.

7 bInterfaceProtocol 1 byte 50h BULK-ONLY TRANSPORT.
8 iInterface 1 byte ??h Index to the string descriptor.

tocol, is responsible for interpreting them. Like USB control transactions (but
completely unrelated), the bulk transfer over USB has three phases, command,
optional data stage and status. In command phase host controller send com-
mand block to the device OUT endpoint. It is then followed by optional data
stage where requested data in command phase is transferred. At last, status
block is returned by device’s IN endpoint. The status reports the status of
transaction. It is quite possible that data has been transferred but the com-
mand failed because either the device was busy and did not save the data or
its internal buffer overflowed. For commands which do not have data stage, HC
immediately proceeds to read status. USB does not specify how much longer
the HC should wait before reading status. The figure 10.1 shows how protocol
runs.

10.1.1 Command Block Wrapper (CBW)

The command block is transported in command block wrapper (CBW). CBW is
exactly 31 bytes. The size is important because GCC pads structure to 32 bytes
for alignment purpose. Sending a 32 byte structure to the device may results in
unnecessary stall of endpoint, which is hard to debug. All USB devices follow
little endian formatting hence LSB (byte 0) is transferred first to the device.
The table 10.2 gives an overview of command block wrapper looks like. It
contains following fields:

• dCBWSignature: The signature helps to identify this block as a CBW.
It always contains value of 43425335h.

• dCBWTag: The tag is generated and set by the mass storage driver.
It is used to identify and match corresponding status packet. The device
echoes the tag value in returned status block.
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• DCBWDataTransferLength: The number of bytes that the host ex-
pects to transfer during data stage. The direction is obtained from bm-
CBWFlags field. If transfer length is zero then there is no data stage.

• bmCBWFlags: Following information is saved in the bitmap
Bit 7 : Direction of transfer. 0= Data out, 1= Data in.
Bit 6 : Obsolete.
Bit 5-0: Reserved.

• bCBWLUN: It contains device’s logical unit number (LUN). Device sup-
porting more than 1 LUNs are rare. Number of LUNs are reported in the
INQUIRY command1. For device supporting only 1 LUN, this should be
set to zero.

• bCBWCBLength: It contains length of the SCSI command to be trans-
ferred. The legal values are 1 to 16 bytes.

• CBWCB: It contains actual SCSI command to be executed by the device.

10.1.2 Status Block Wrapper (CBW)

Similar to CBW, status also have status block wrapper. The table 10.3 gives
an overview of the structure.
The CSW is exact 13 bytes. It contains following fields:

• dCSWSignature: The signature that helps in identify this data packet
as a status block wrapper. It always contains 53425355h.

1Explained later.
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Table 10.2: Command block wrapper

Bit
7 6 5 4 3 2 1 0

Byte 0-3 dCBWSignature
Byte 4-7 dCBWTag
Byte 8-11 dCBWDataTransferLength
Byte 12 bmCBWFlags
Byte 13 Rsvd(0) bCBWLUN
Byte 14 Rsvd(0) bCBWCBLength

Byte 15-30 CBWCB

Table 10.3: Status block wrapper

Bit
7 6 5 4 3 2 1 0

Byte 0-3 dCSWSignature
Byte 4-7 dCSWTag
Byte 8-11 dCBWDataResidue
Byte 12 bCSWStatus

• dCSWTag: The device always sets this field to the corresponding value
received in the associated command packet.

• dCSWDataResidue: In this field, the device reports the difference be-
tween the amount of data expected as stated in command block and the
actual data processed by the device.

• bCSWStatus: The value indicates the success or failure of the command.
Valid values are shown in table 10.4.

Table 10.4: Valid command block status values

Value Description
00h Command passed.
01h Command failed.
02h Phase error.
03h and 04h Reserved (obsolete).
05h to FFh Reserved.

For detailed description of protocol please refer to Universal Serial Bus, Mass
Storage Class, Bulk-Only Transport documentation [33].



10.2 Mass Storage Class Driver 57

10.2 Mass Storage Class Driver

Like other modules of USB infrastructure, USB mass storage driver also starts
by registering and starting the device server. It also registers the USB device
of interest to the SKB.

The device control is transferred to the driver2 by probe function. In probe
function USB manager passes device related information and inquires the driver.
The driver upon accepting the device sends notification to USB manager. When
driver accepts the device, it immediately connects to USB manager and HCD
as a client.

The primary responsibility of the driver is to read meta-data and configure the
device to read/write logical blocks. The implemented driver takes following
steps:

1. For a mass storage device to work properly it is required to have at least
one IN and one OUT endpoints. Mass storage protocol can use endpoint
zero as a control endpoint. Hence the driver calls init_pipe service of
USB manager to search and allocate pipe for further data transfers.

2. Driver performs the protocol specific mass storage reset of the device and
checks if it was successful.

3. It then proceeds to execute series of SCSI commands which are explained
in next section. The driver tests if the device is ready to perform transac-
tions or not. If the device is found to be ready, the INQUIRY command is
sent. Response of INQUIRY command contains many relevant information
like SCSI command block structure. The flash drive has command block
structure code as zero, which suggests, it is a direct access block device
with SCSI block command-2 [34] command implementation. Driver then
reads capacity of the device. At the end of execution, it initializes SCSI
device structure scsi_device_t which contains following information

• Block size on the device. For a typical flash device which is 512 bytes.

• Last addressable logical block number. The block size multiplied by
last block’s number yields the capacity of the device.

• Device attribute related meta data e.g. removable, self powered etc.

10.2.1 Implemented SCSI Commands

Following commands are implemented in the mass storage driver. For details
please refer to the official documentations ([34], [35]). Here only the relevant
sections are discussed.

• Test ready device: The TEST READY command tests if the device
is in a good position to accept and process requests. If the device is
unable to accept the requests then an explicit device start is required by
START STOP command.

2Driver here on only refers to implemented mass storage driver



58 USB Device Drivers

• Inquire device: INQUIRY command retrieves many important meta-
data from the device. The information obtained by the INQUIRY com-
mand includes, but not limited to

– Device type: Sequential access, direct access, printer device, optical
memory etc. are to name few kind of device types. Flash drive has
direct access block device type (00h).

– Device qualifier: Current status of the hardware device server.
Valid values are shown in table 10.5. A properly working flash mass
storage device has value 000b.

Table 10.5: Valid device qualifiers

Value Description
000b A peripheral device having the specified pe-

ripheral device type is connected to this logical
unit.

001b A peripheral device having the specified pe-
ripheral device type is not connected to this
logical unit.

010b Reserved.
011b The device server is not capable of supporting

a peripheral device on this logical unit.
100b to 111b Vendor specific.

• Read capacity of device: The READ CAPACITY command reads the
capacity of the device. The data associated with the command block
returns block size (typical 512 bytes) with last addressable logical block.
Multiplication of these two value yields the capacity of the device in bytes.
Total capacity (in Bytes) = (Block size)× (Last addressable block + 1)

The addressable block address starts with zero hence extra 1 is required
to count. All data read or write transactions are done in quanta of block
size. Any other value will result in packet babble error, which indicates
that device tends to send more data to the host controller during read.

The currently implemented command is READ CAPACITY10 which has
8 bytes block counter limit. If the number of logical blocks exceeds the
maximum value that is able to return in 4 bytes, the device server re-
turns FFFFFFFFh. For large storage devices which exceed this limit
READ CAPACITY16 command should be used.

• Read logical block: Read logical block reads a given range of blocks
from the device. It takes two arguments (apart from other non-relevant
arguments), starting block address and number of consecutive blocks to be
read. It also has many flavors e.g. READ6, READ10, READ12, READ16
and READ32, each with increasing number of features and complexity.
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READ6 can only address up to 2 GB and for newer designed device
READ10 is recommended for reading purposes. For current implemen-
tation we use READ10. READ10 contains many protection related flags
and fields. Since a typical flash drive does not support them, most of these
fields are set to zero. The READ10 command is executed in 3 phases. In
phase one, CBW containing READ10 command is send to device. Ex-
pected data bytes are transferred in next stage. In the last stage status
is read and checked against to ensure transfer was successful. Reading an
invalid block address or range will result in endpoint stall.

• Write logical block: Like READ command WRITE also has many
flavors which are comparable to the READ commands e.g. WRITE6,
WRITE10, WRITE12, WRITE16 and WRITE32. For current implemen-
tation we have implemented WRITE10. It takes two arguments (apart
from other non-relevant arguments), starting block address and number
of consecutive blocks to write. Similar to READ command WRITE is
also completed in three phase. During the fist stage, SCSI command is
sent to the device on OUT endpoint. In second stage, data is provided
by HC to the device on OUT endpoint. In last stage, status of command
is read from the IN endpoint. A good status ensures that data is written
successfully to the device.

• Synchronize cache: Synchronize cache command synchronizes the de-
vice cache to the persistent storage. Often to improve read or write perfor-
mance data is fetched from cache. But for proper storage data is written
back to storage in timely manner by synchronize cache command. Appli-
cations which have strict consistency requirements should write directly
to the device.

All commands and device related information is crosschecked with Linux and
found to be same. it ensured the correct implementation of the commands.

10.3 Driver Server’s Services

The USB device driver’s primary task is to execute storage requests of an appli-
cation on the device. Hence the implemented SCSI commands are also exported
as services offered by the driver server. The following services are implemented
in the driver server

1. Probe: Probe provides a way for USB manager to check and ask device
server if it is in position to accept new device. It takes are required pa-
rameters and return ACCEPT or REJECT for a particular request.

Function call: probe(uint8_t dev, uint8_t class,

uint8_t subclass, uint8_t protocol);

2. Disconnect: Similar to probe, disconnect is called from USB manager to
notify driver server that the device has been removed. Upon notification
driver then proceeds to perform clean ups.
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Function call: disconnect(uint8_t dev);

3. Get SCSI device: All the storage operations are done on SCSI device.
An application first have to obtain the SCSI device structure from the
driver. The SCSI device contains capacity, block size, last addressable
block numbers, LUNs etc. which helps in an application to set the re-
quests.
Function call: void get_scsi_dev(scsi_device_t dev);

4. Read logical block: Read logical block service reads the data from a
given range of consecutive blocks from the device. The I/O buffer is pro-
vided by the application. The cache flag indicates to read from cache or
from storage. Zero means that device server may read the logical blocks
from volatile cache, non-volatile cache, and/or the medium. One signifies
that device shall read the logical blocks from the medium. If cache con-
tains a more recent version of a logical block, the device shall write the
logical block to the medium before reading it.

Function call: void read_scsi(scsi_device_t dev,

uint32_t start, uint32_t num,

uint64_t buff, uin8_t cache);

5. Write logical block: Write logical block service writes the given data
on a given range of consecutive blocks on the device. Similar to read, I/O
buffer is provided by the application. Cache is same as explained above.

Function call: void write_scsi(scsi_device_t dev,

uint32_t start, uint32_t num,

uint64_t buff, uint8_t cache);

6. Synchronize cache: This service explicitly purges the volatile cache of
the device so that data is moved to the persistent storage.

Function call: void scsi_sync(scsi_device_t dev);



Chapter 11

Evaluation

This chapter will give an overview of the implemented distributed driver system
performance. The current prototype contains a device driver for flash mass
storage device. All experiments are done on the AMD 2X2 core box (nos4)
which has two dual-core Opteron 2220 cores [36]. It has 8 GB of RAM which is
equally shared between the 2 sockets which are in different proximity domains.
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Figure 11.1: Execution time breakup

The figure 11.1 gives an overview of different stages of execution and how they
contribute to the overall execution measurements. The graph is for read per-
formance on the flash device. Value shown here are averaged over 5 different
runs. On the x axis it shows the amount of data read from the device and on
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Figure 11.2: Execution time breakup on 1 µsecond

the y axis it shows three major phases of execution and how they contribute
to overall process. These three phases are: execution in software, execution in
hardware and IPC done to communicate between the domains. The software
execution time represents the time taken to setup queue, buffers and linkage
in software. The hardware execution time shows the time from when software
enqueues the request into the hardware queue, to when software receives an
interrupt on completion (IOC). The hardware time roughly tells the time taken
by the EHCI controller to execute the request.

The x axis also shows interrupt frequency data. The EHCI host controller gen-
erate interrupts on a specific frame frequency. This parameter is tunable and set
before the controller is started. The default frequency used is 8 micro frames,
which equals to 1 millisecond. All interrupts except controller hardware errors
are generated on the frame boundaries. IOCs are cumulative. For every read
test we have taken data on three interrupt frequency setup, 1 micro-frame or
125 µsecond (minimum possible on the EHCI controller), 1 millisecond (de-
fault on EHCI controllers) and 8 millisecond (maximum possible on the EHCI
controller). As evident from the figure 11.1 that variation in host controller
frequency does not make any significant difference. On 125 µsecond frequency
setup the hardware generates interrupts at every micro-frame and maximum
throughput is observed there.

The graph also shows that for small read requests the IPC overhead is signif-
icant (14%) but as we move on to read bigger chunks it reduces to less than
1%. For bigger read requests hardware execution cost significantly dominates
the overall cost. 33.5 MB is the biggest request that driver can issue in one read
request with READ10 command. The figure 11.2 gives more detailed overview.
For small read requests like 100 kB the IPC contributes to as high as 14.06% to
the overall execution cost. For large requests the overhead is amortized and this
ratio is less then 4% (3.47%, 1.42%, and 1.31% for 10 MB, 30 MB, and 33.5 MB
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Figure 11.3: Bandwidth observed

respectively). On the other hand with increasing request size, the hardware exe-
cution time contributes significantly to the overall cost. For 10 MB, 30 MB and
33.5 MB read it contributes as high as 88.63%, 95.03%, and 95.37% respectively.
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Figure 11.4: Break up of read command execution stages

The figure 11.3 shows the observed bandwidth in the system at the top of the
software stack. The figure shows two type of bandwidths. First one is called
end to end bandwidth. It represents the bandwidth observed by end client af-
ter issuing a read request. It includes all three phases of mass storage protocol,
command, data, and status check. The hardware bandwidth represents the data
processing speed of the hardware. It is the actual time which a request spent
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Figure 11.5: Break up of time spent in read command request stages

in hardware. As evident from the figure the bigger block read request leads to
better bandwidth performance but after a while the gain is not significant. For
example increasing block size from 100 kB to 1 MB (which is a 10X increase)
leads to a big bandwidth improvement of nearly 7.61X (661%) with 0.76 im-
provement factor. But increasing block size from 10 MB to 33.5 MB (which is
a 3.35X increase) leads to bandwidth improvement of only 1.21X (21%) with
0.36 improvement factor. The increase in size from 30 MB to 33.5 MB actually
slightly decreases the bandwidth. The hardware throughput shows a similar
pattern with improvements in the bandwidth with larger chunk sizes.

The Linux reports 13 MBps bandwidth with dd command utility on the same
hardware. Comparing to Linux we have only achieved a fraction of bandwidth
(1/2). As the software’s contribution while executing a request is pretty much
insignificant compared to hardware contribution, the hardware cost dominates
the overall execution time. The peak hardware performance is 6.29 MBps at 30
MB read (it decreases from it to 6.19 MBps for 33.5 MB read). The potential
reason for the low hardware performance is still unknown and requires addi-
tional efforts in this direction.

The read command is executed in three different stages. In first stage command
is sent to the device. In second stage the data is moved across the USB bus and
in third stage the command status is fetched from the device. The figure 11.4
shows in detail the amount of time spent in three different stages as with IPC,
software and hardware execution phases. As evident from the graph that the
IPC, software and hardware execution phases contribute uniformly to command
and status stages of read command with approximately 28%, 57%, and 14% time
spent in each of them respectively. But the data stage of read command vary
depending upon the size of read request. With the larger requests the data-
hardware combination becomes the dominating factor with value as high as
98.19% in 33.5 MB read test.
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Figure 11.6: Break up of read command execution stages as ratio of time spent
in each stage

The figure 11.5 shows the time spent in each stage of read request (command,
data, and status). As expected data moving stage is dominating in every size of
read request. Even for 100 kB read, 66.20% time is spent in data moving stage.
The figure 11.6 shows the data presented in above 2 graphs in one place.

In the currently implemented system the typical device enumeration time is 8
milliseconds. It is the total time spent in USB manager from the device plug
notification to just before when USB manager tries to connect with device driver
server as a client. It includes reading configurations, interface and endpoint
descriptors, allocating and assignment of device address, insertion of device
node in USB tree etc.
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Chapter 12

Conclusions

In this thesis we have presented a distributed driver infrastructure for USB on
top of Barrelfish, a multikernel operating system. We have divided the whole
USB system into three critical modules. First, the core controller driver which
manages the host controller hardware and handles all data transfer logic on the
USB bus. Second, the USB manager which handles the device and bus man-
agement related activities on USB. The last one is client driver, which handles
the device services implemented by the device hardware like storage, mouse,
or keyboard etc. We run all these modules in separate domains and requests
are processed by explicit message passing. There are several advantages of this
breaking such as less interference with each other, more isolation and protection
etc. It helps in future revisions of system. For example, for the next version
of host controller (xHCI [31]) one can just implement the HC driver and can
provide services on same API. The remaining system can remain unchanged.
Also this design gives us flexibility to manage the system workload more effi-
ciently by choosing free cores to run these modules and migrate among them,
if required. A failed module can be restarted transparently. The implemented
prototype is still in a development stage and requires more efforts before these
goals can be fully achieved.
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Chapter 13

Future Works

In this chapter we will present some directions for future works.

1. The end to end bandwidth is still poor as compared to the Linux systems.
A proper diagnosis of the overhead is required.

2. The implemented memory management has O(n) complexity which is not
efficient. A more efficient memory management architecture is desired.

3. In current implementation the HCD allocates the queue heads and ele-
ments in its domain on behalf of client drivers. A notorious driver can
potentially crash HCD by requesting a large chunk of read or write re-
quest. A single queue head (64 bytes) and element (32 bytes) can handle
20kB worth of data transaction. For larger request only more queue ele-
ments are allocated. Hence in more secure implementation, driver should
also provide pages on which queue allocation should be done.

4. In the current implementation (for the flash mass storage device) most
of the configuration options are ignored because often they are the only
ones. So there is no choice in terms of assignment. But a comprehensive
handling of these options should be done.

5. Linux aggressively reuses queue heads and elements in the queue manage-
ment. In current implementation for every requests these are allocated
and then freed. An efficient re-use policy could lead to improved end to
end bandwidth in case of periodic requests.

6. A better SKB integration is required for generating recommendations such
as port swapping for overloaded ports. But since USB does not distinguish
between internal and external ports a port learning algorithm could be
helpful in extracting more useful information about USB system.

7. The current implementation does not support periodic schedule.

8. A periodic monitoring and decision making architecture which could tune
USB performance according to workload is missing. It may be responsible
for deciding which module starts on which core. In case of overloaded sys-
tem it can make recommendation to the system to migrate USB modules
across the cores.
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