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Abstract

Obtaining detailed information about the internal events occurring in an
operating system is a prerequisite for understanding performance, overhead,
and many subtle timing- related bugs and race conditions.

Barrelfish is a research operating system that is developed by ETH Zurich
in collaboration with Microsoft Research. It has a simple tracing mecha-
nism which works together with a visualization tool. The current tracing
infrastructure for Barrelfish is not very sophisticated and unable to handle
traces longer than a few thousand processor cycles.

In this lab, we extend the tracing functionality provided in Barrelfish and
create a more future-rich visualization and analysis tool for the data.
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Chapter 1

Introduction

1.1 Motivation

Obtaining detailed information about the internal events occurring in an
operating system is a prerequisite for understanding performance, overhead,
and many subtle timing- related bugs and race conditions. Most operating
systems provide some kind of tracing infrastructure, e.g. DTrace for Solaris
or FTrace for Linux.

It has been proposed to use a message-passing primitive instead of shared
memory for communication inside an operating system as an response to in-
creasing core counts, more heterogeneous hardware and less uniform mem-
ory systems [2]. Operating systems that use message-passing instead of
shared memory such as Barrelfish are particularly suited for tracing. Be-
cause message-passing makes communication between components of the
operating system explicit, it is easier to capture, visualize and analyse com-
munication flows compared to an operating system that uses shared memory
for communication.

1.2 The Barrelfish Operating System

We present an overview of the barrelfish operating system. This overview is
many taken from [6].

Barrelfish is a research operating system developed in cooperation between
the Swiss Federal Institute of Technology Zurich (ETH) and Microsoft Re-
search. It embraces the networked nature of the machine and rethinks op-
erating system architecture using ideas from distributed systems. Barrelfish
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is an implementation of the multikernel architecture. In a nutshell, the op-
erating system is structured as a distributed system of cores which commu-
nicate using messages and share no memory. The multikernel architecture
is guided by three design principles: Make all inter-core communication ex-
plicit, make OS structures hardware-neutral and view state as replicated
instead of shared [1]. Each core runs its own kernel which is called a ”CPU
driver”. The CPU driver runs in privileged mode and enforces protection,
performs authorization, time-slices processes, and handles interrupts, page-
faults, traps, and exceptions. It is single threaded, event driven and non-
preemptable.

1.2.1 Monitor

On every core runs a distinguished user-mode monitor process. All inter-
core coordination is performed by monitors. Monitors collectively coordi-
nate system-wide state and encapsulate much of the mechanism and policy
to be found in a typical monolithic kernel. On each core, replicated data
structures, such as memory allocation tables, are kept globally consistent by
means of an agreement protocol run by the monitors.

1.2.2 Dispatcher

A process is represented by a collection of dispatcher objects, one on each
core on which it might execute. Dispatchers on a core are scheduled by
the local CPU driver, invoking an upcall interface that is provided by each
dispatcher.

1.2.3 Inter-dispatcher communication

Communication in Barrelfish is not between processes but between dispatch-
ers and hence cores. All inter-dispatcher communication occurs with mes-
sages. Messages are carried over Interconnect Drivers (ICDs), specialized
messaging subsystems which carry small data units between dispatchers. In-
terconnect drivers are highly optimized for particular hardware and do not
expose a standard interface. Instead, interconnect drivers are abstracted
behind a common interface, allowing messages to be marshalled, sent and
received in a driver-independent way. As with conventional RPC systems,
the interface for a particular communication binding is specified in an Inter-
face Definition Language. A stub compiler, called flounder, compiles defined
interfaces into a set of ICD-specific stubs.
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Communication between dispatchers on the same core is performed using
LMP (local message passing). Communication between dispatchers on dif-
ferent cores is performed using a variant of user-level RPC which uses shared
memory to transfer cache-line-sized messages.

1.3 Current state of the tracing infrastructure in
Barrelfish

The tracing library is tightly integrated with the Barrelfish operating system.
It is statically linked into every application and can be used to log events
and dump trace logs. The code of several applications designed to run on
Barrelfish is instrumented with custom trace points. The kernel code also
contains trace points for essential events such as context switches.

The application "Bfscope" has a special connection to the tracing library:
Bfscope is a network server that acts as an interface to external machines.
When connects to Bfscope, the output of the tracing framework is redirected
via Bfscope, and directly forwarded to the remote machine. This allows
developers to directly retrieve the output of the tracing library on a remote
machine. Note however that running Bfscope is not mandatory, i.e. the
tracing library is not depending on Bfscope in order to run; Bfscope simply
adds network support to the tracing library.

Once users retrieve such logs (either by dumping them to the console or
via Bfscope), they want to analyze them. Aquarium is a tool that allows
to visualize traces. It can load a trace from a file or connect to Barrelfish
machine running Bfscope.

The different components of the tracing infrastructure depicted in Figure
1.1.

1.3.1 Limitations

The current tracing infrastructure has issues that reduce code maintainabil-
ity and limits its effectiveness for understanding performance, overhead or
timing-related bugs.

Events are defined as constants

Events are defined as hard-coded constants which are distributed all over the
code base. When defining new events, there is nothing that makes sure that
these definitions do not conflict with already existing events. Events are also
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Figure 1.1: Overview how the different parts of the tracing framework inter-
act. The grey systems (Tracing Library, Bfscope and Aquarium) are parts
of the tracing framework that have been developed or modified in the course
of this project.

hard-coded in the Aquarium visualization tool, which makes it practically
impossible to change existing event definitions.

No support for continuous tracing

The tracing infrastructure is designed for ”one-shot” tracing in an inter-
val between two well-defined events. After that interval buffers have to be
flushed and reset. We argue that in certain situations continuous tracing of
all events can be useful.

No support for excluding certain events from tracing

If tracing is turned on, all events are logged. It is not possible to exclude
certain events.

Use of inter-processor interrupts (IPI)

When flushing buffers, the current tracing infrastructure sends interrupts
to all cores. Upon receipt of such an interrupt, the kernel running on that
particular core determines all running application and adds that information
to the tracing buffer. This is a weird and unnecessary use of inter-processor
interrupts that makes the implementation overly complex and platform de-
pendant.
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Limited feature set of Aquarium

Aquarium can visualize events and messages sent between cores. But it lacks
useful features like showing only certain events that match a filter, grouping
events belonging to the same task together, etc.

Performance issues of Aquarium

The Aquarium tool has sever performance issues. It frequently crashes when
loading trace files that are larger than a few thousand processor cycles. Even
when it successes loading a large trace file, analysing it with the help of
Aquarium is practically impossible because zooming and moving the current
view window is very slow.

Some developers have written custom scripts that they use instead of Aquar-
ium to analyse trace file. However, this allows pure textual analysis and does
not produce any visualizations.

Platform dependency of Aquarium

Aquarium is written for the Common Language Runtime. As most devel-
opers on the Barrelfish team work on Linux-based operating systems, they
can not use Aquarium without using Mono (an open-source implementation
of the Common Language Runtime) or running Aquarium on a Windows
terminal server, making its performance problems even worse. Developers
on the Barrelfish team have cited this as the most important reason why
they don’t use Aquarium for day-to-day development.

1.4 Aim

The goal of this project is to improve the existing tracing infrastructure in
Barrelfish and to address the issues mentioned above.

We want to change the interface to the tracing subsystem as little as possible.
Changes that would brake the existing code base are avoided. Also the
structure of the log files is not changed significantly. This ensures that
the existing scripts can be easily adapted to work with the new tracing
infrastructure.

We develop a successor of Aquarium that is superior to the original version
both in terms of performance and functionality.
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In addition to the existing scripts, we developed a new tool named Aquar-
ium, which is the successor of a tool with the same name. Besides offering
various functionality (see Section 4), it can be extended by adding custom
scripts to it. With the help of such scripts it should be possible to add
many of the desired functionality to Aquarium without even changing its
code (which is, of course, also a possibility).
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Chapter 2

Related Work

2.1 Ftrace

Ftrace is an internal tracing framework for the Linux kernel. Ftrace was
originally a function tracer but it now includes an infrastructure that allows
for many other types of tracing, such as tracing context switches between
tasks, tracing areas that disable interrupts and event tracing. In addition to
that, Ftrace introduced trace_printk(), which can be used to write arbi-
trary output to the Ftrace ring buffer. This has a big performance advantage
over printk() that was traditionally used for kernel debugging.

The function tracer works by having each function in the kernel call a special
function mcount() [8]. All these calls are converted to a NOP at boot time
to keep the system running at 100 % performance. When the function tracer
is enabled, these call sites are converted back to trace calls.
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# tra c e r : f unc t i on
#
# TASK−PID CPU# TIMESTAMP FUNCTION
# | | | |
gnome−s h e l l −1682 [ 0 0 3 ] 2019 .094740 : f in i sh_task_switch

<−__schedule
gnome−s h e l l −1682 [ 0 0 3 ] 2019 .094740 : prepare_to_wait

<−i915_wait_request
gnome−s h e l l −1682 [ 0 0 3 ] 2019 .094740 : _raw_spin_lock_irqsave

<−prepare_to_wait
gnome−s h e l l −1682 [ 0 0 3 ] 2019 .094741 : _raw_spin_unlock_irqrestore

<−prepare_to_wait
gnome−s h e l l −1682 [ 0 0 3 ] 2019 .094741 : gen6_ring_get_seqno

<−i915_wait_request

Listing 2.1: Sample output from the function tracer

The event tracer records events when the kernel steps on a ”tracepoint”
embedded within the kernel. The Linux kernel currently contains more then
300 static tracepoints that are located in the scheduler, memory manager,
file system, etc. A tracepoint is per default ”off” and has no effect except for
adding a tiny performance overhead [3]. Tracepoints that should be recorded
must be explicitly turned on.

2.1.1 trace-cmd

The API to interface with Ftrace is located in the Debugfs file system. This
interfaces is very simple, but can be awkward to work with. trace-cmd
provides more convenience. It is a command line front-end for Ftrace [10].
A standard use case for trace-cmd is to enable tracepoints for Ftrace and
record the Ftrace data (typically in a file called trace.dat).

2.1.2 KernelShark

KernelShark is a GUI front end to trace-cmd. KernelShark can visual-
ize data recorded with trace-cmd [11]. This can make it a lot easier to
understand complex interactions inside the kernel.

KernelShark contains a graph view and a list view. In the graph view, each
CPU visible to the operating system is represented by a plot line and each
task is represented by a different color [9]. This makes it easy to determine
which task was running on which CPU at any given point in time. The user
can filter out any task that he is not interested in. Moreover, KernelShark
also visualizes recorded events. If there are too many events within the
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resolution of the graph, the plots will appear as a rainbow coloured bar. It
is possible to zoom into the graph to make more sense of the output in such
a situation.

The list view displays all recorded events. Each entry in the list contains the
time stamp of the event, the process ID of the task that was running when
the event was recorded, the name of the event, etc. The list view can be
configured with sophisticated filters to only show the events of interest.

Figure 2.1: Screenshot of KernelShark

2.1.3 Evaluation

Ftrace, in combination with trace-cmd and KernelShark, is a powerful tool
for debugging the Linux kernel. It can be used as a profiler and help to
identify performance bottlenecks. The extensive support for event tracing
can also be used to get an understanding of complex operations (such as task
migration) that happen in the kernel. This makes finding problem areas or
tracking down a bug easier. The ability to record events that lead to a crash
gives a better chance of finding exactly what caused the crash [8].

2.2 DTrace

DTrace is a kernel tracing framework created my Sun Microsystems for
Solaris, but it has since been ported to other Unix-like operating systems.
There are two common modes of operation: Trace system calls and trace
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kernel function calls. It can also be used for event tracing. DTrace is similar
to Ftrace but exists in its own right because of licensing conflicts [4].

2.3 DProf

DProf [7] is a statistical profiling tool for Linux that can be used to analyze
the memory efficiency of a system. It depends heavily on hardware support.
It requires both the availability of Debug Registers and the possibility to
use AMD’s Instruction Bases Sampling (IBS) functionality.

Just like other memory profilers, DProf provides information to the user
about the amount of cache misses, and which code and memory address
where involved in the cache miss. The main goal of Dprof is also its main
difference to other profilers: It tries to present the user with not only the
information about which memory address led to the cache miss, but also
which data object led to the cache miss. With the help of this information
it is a lot easier for users to determine the objects that are responsible for
memory issues, rather than having presented only memory addresses, or
even simply the fact that memory caches happened.

Having the information available to which type of object a certain cache miss
belongs, it is also possible to aggregate this information, allowing to present
the user a condensed view. A view that only shows aggregated information
per datatype can be used as an “entry-point” in understanding where the
cache misses happen.

2.3.1 Data Collection

During the execution of a program two different categories of information
are collected by DProf. They call the first category access samples. Access
samples contain information about whether a given access to a memory
location led to a cache miss or not. This information is collected with the
help of IBS. Note that it is not DProf, but IBS, that decides when to generate
the samples – DProf can only instrument IBS in such a way, that it sets the
rate with which access samples are generated.

The second category are access histories. Access histories list all the in-
struction pointers that accessed a given memory address. Such histories are
collected with the help of Debug Registers. Debug Registers allow DProf
to trace a specified memory address, such that always when this memory
address is accessed by a core, DProf receives a notification.

After having collected enough access samples and access histories, DProf
merges the collected information to generate aggregated information. This
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step is necessary for two reasons: First it is obviously not very useful to
present a huge list of single events to the user, and second it is a plain
necessity. As the collection techniques are based widely on randomness1, an
aggregation step is required to alleviate this randomness.

2.3.2 Restrictions and Drawbacks

In order for the type detection (the mapping from address locations to object
types) to work, it is assumed that all objects have a memory layout like C
structs. This restriction does not only narrow the choice of language and
compiler down significantly, it also makes it difficult to analyze complicated
(e.g. nested) data structures.

The overhead of certain mechanics of DProf, such as setting up Debug Reg-
isters in order to trace a given memory address, is huge. Setting up Debug
Registers costs between 130’000 and 220’000 cycles, and must be done for
each data type multiple times, as enough statistical data must be collected.
Even the faster operations, such as reacting to an IBS event, still take about
2’000 cycles.

As the overhead of DProf is quite significant, the collection rate might not
be too high – i.e. DProf must be configured in such a way, that the profiling
does not alter the actual performance too severely. As still enough data
must be collected in order to achieve usable results, the program must be
run for a long period of time. The time period must be indeed so long, that
they require the workload to be cyclic [7]. This might be feasible for some of
the applications, but excludes a wide variety of typical applications.

2.3.3 Evaluation

DProf allows for detailed memory profiling, but the used hardware support
does not only limit the choice of architecture, it is also not a lightweight
profiler. It might be useful as a special tool to have in your toolbox, but
not for everyday profiling, where a more lightweight and general purpose
profiling tool will be more useful.

1IBS decides when and what will be sampled and the tracked memory locations may
not have generated a lot of information for the access history, if they weren’t accessed
anymore.
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2.4 Google Perftools – PProf

When profiling a single application, the call graph is often the first thing
that you want to analyze. For a given program, the call graph shows for
each function how often it invoked its callees, and in addition, how much
time was spent in each function. Such a call graph often allows for easy
detection of bottlenecks in the application.

To generate a completely accurate call graph, one would have to instrument
the code in such a way, that for each function call a logging mechanism is
invoked. A different approach is to select a certain interval at which the code
is analyzed, and to store the according call trace. The latter approach is
used by the Google Perftools. Per default, every 10 milliseconds the program
is interrupted and analyzed to determine its current call trace. Note that
this is also a statistical profiler.

The profiling output can afterwards be visualized using the tool pprof, e.g. to
draw the callgraph for the run of the application. The functionality of the
Google Perftools CPU profiler is hence very similar to the well known GNU
tool gprof [5].
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Chapter 3

Design and Implementation
of the Tracing Framework in
Barrelfish

3.1 Overview

The tracing framework inside of Barrelfish existed already before this project
has been started. In order to break as little as possible in existing code to
work with the tracing system (e.g. tools that have been developed analyzing
trace logs) we decided to change as little as possible on the interface of
the tracing framework. In the end the structure of the trace logs that are
generated did not change, but only some mappings between constants in
code and their interpretation.

In this section we want to look at the part of the tracing framework that
is implemented in Barrelfish, i.e. the actual functionality that developers
use in order to create trace logs. One part of the tracing framework allows
developers to trace events at any point in the code, where the data that is
actually stored is defined in the Section 3.2. The second part is responsible
for delivering the generated trace logs to Aquarium. To achieve the second
goal we changed the existing Barrelfish application Bfscope in such a way,
that it integrates with the new version of the tracing framework. Bfscope is
described in Section 3.5.

The typical lifecycle of using the tracing framework in Barrelfish looks like
this:

0.a (Optional) Prepare the tracing framework.

0.b (Optional) Specify which Subsystems should be logged.
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1. Define the type of event that will trigger the start of tracing.

2. Execute your code, that will log the events.

3. Flush the logged events, e.g. on the console.

To get more information about the optional steps, see Sections 3.4.1 and
3.4.2. The first mandatory step is to define the type of the event that will
start the logging process. Having a mechanism for starting and stopping the
actual tracing may seem like a benefit, but not like a necessity at first – but
our experiments have shown that even with rather small instrumentation of
code (i.e. number of events that actually generate an entry in the trace log),
having the tracing framework log events all the time is no option. Thus
having the possibility to start and stop the tracing framework is essential.
Having the flexibility of specifying a type of trace event that will trigger the
start and stop of the logging is an additional benefit compared to having
simple “start” and “stop” commands, as it allows developers to easily vary
the portion of code they want to trace, without changing the placement of
a “start” and “stop” command all the time.

While the second mandatory step is pretty self-explanatory, the third step
is more interesting again: The old version of the tracing system allowed
only for dumping the stored trace into a provided buffer. This functionality
has now been improved in such a way that we offer developers a method to
flush the current trace log, and the flush functionality automatically detects
the best way to flush. Currently there are two possible destinations onto
which can be flushed: The console and the network. The tracing framework
detects automatically if Bfscope is running and someone is connected to it
– if so, it flushes over the network – else it will flush to the console. The
flushing functionality could also be extended, a possible idea would be to
store the trace log in a file. In Figure 3.1 you can see a sequence diagram
illustrating the process of invoking the new flushing functionality.

3.2 Definition of a Trace Event

Let us now define the structure of events that can be traced. Each event
belongs to a Subsystem and an Event, and has an optional payload called
Argument that can hold 32 bits of arbitrary information. Both the Subsys-
tem and the Event are 16 bit identifiers, allowing us to have up to 65535
Subsystems and for each Subsystem 65535 Events. Note that the Events are
relative to the Subsystems, i.e. a Subsystem called kernel might have the
Event Context Switch with the identifier 0, but the same Event identifier 0
has an entirely different meaning in every other Subsystem.

Having all these different Subsystem and Event identifier available, we think
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NetworkConsole

flush

is bfscope running?
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bfscope not running

someone is
connected
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connected

Figure 3.1: A sequence diagram illustrating the flow of events when using
the flush functionality. “Application” is the application that is using the
tracing framework, and chips is the Barrelfish nameserver. The grey boxes
indicate the destination onto which is flushed.

that the tracing framework will have sufficient space to deal with future
change in Barrelfish1.

In addition to the Subsystem, Event and Argument information, the tracing
framework adds a timestamp to each event that gets logged (the timestamp
is measured in CPU cycles) and remembers the core on which the event was
logged. The core is only implicitly stored, as we have a separate tracing
buffer on each core, allowing us to identify the core for an event at a later
stage automatically, without storing it for each event.

As timestamps are stored as a 64 bit number, we need a total of 128 bits
(respectively 16 bytes) per event that has been logged. The data structure
layout of a single event can be seen in Figure 3.2.

1Currently there exist 16 different Subsystems.
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Timestamp
Subsystem Event Argument

Figure 3.2: Representation of a single trace event in memory in Barrelfish.

3.3 Pleco: A new Domain Specific Language

3.3.1 Overview

As trace events are identified by the type of their Subsystem and Event
(which is a two tier hierarchical structure), the best way to specify those
Subsystems and Events is using a domain specific language. For this purpose
we designed a new domain specific language called pleco, that resembles the
domain specific language for error codes in Barrelfish (called fugu) a lot –
due to the fact that it solves a very similar task.

Pleco allows programmer to easily add new Subsystems to the tracing frame-
work and to extend existing Subsystems with new Events. Note that the
Argument parameter of the trace events is not specified in Pleco, as this
parameter is intended to be a payload, and not to be a means to distinguish
different trace events. A small sample pleco file can be seen in Listing 3.1.
In this file we define two Subsystems: kernel and memserv. Note that the
keyword subsystem is used to define a new Subsystem. The Events for a
Subsystem are defined in the block following its name. Events have both a
name and a verbose description, following the keyword event. The textual
description is not used in the tracing framework inside of Barrelfish, but
Aquarium will use the textual description to display it when analyzing gen-
erated traces. Note that the textual description is not a strict requirement;
if the empty string is provided, during the interpretation of the pleco file,
the name of the event will be substituted for the textual description.
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subsystem ke rne l {

event CSWITCH " Context Switch " ,
event BZERO " Buf f e r z e ro ing " ,
event TIMER " " ,
event TIMER_SYNC " " ,

} ;

subsystem memserv {

event ALLOC " " ,
} ;

Listing 3.1: A small example pleco file with two Subsystems.

3.3.2 Interpreting Pleco Files

Parsing and interpreting of pleco files is part of the Barrelfish build process,
meaning that the according tools are written in Haskell and are integrated
into the Hake build process. An overview of how pleco files are integrated
into the Barrelfish toolchain can be seen in Figure 3.3. Note that the header
file that is created during the build process is directly used in the very same
build process, i.e. it is just an intermediate file.

3.3.3 The Generated Header File

For the pleco file of Listing 3.1, the header file shown in Listing 3.2 has been
generated during the build process. In Barrelfish source code, this file can
be included with the statement:

#include <trace_definitions/trace_defs.h>

Note that the macro that are created for events also contain the subsys-
tem name, so that there will not be any name collisions when two different
subsystem define an Event with the same name.

The generated numbers are not randomized. The reason for this is not that
people can avoid using macros, but rather for a new feature that has been
introduced into the tracing framework to work: enabling and disabling of
Subsystems that are logged. See Section 3.4.2 for detailed information.
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Figure 3.3: Pleco files get translated into both a C header file and a JSON
file. This translation is taking place during the regular build process of
Barrelfish.

#i f n d e f TRACE_DEFS_BARRELFISH__
#de f i n e TRACE_DEFS_BARRELFISH__

#de f i n e TRACE_SUBSYS_KERNEL 0
#de f i n e TRACE_EVENT_KERNEL_CSWITCH 0
#de f i n e TRACE_EVENT_KERNEL_BZERO 1
#de f i n e TRACE_EVENT_KERNEL_TIMER 2
#de f i n e TRACE_EVENT_KERNEL_TIMER_SYNC 3

#de f i n e TRACE_SUBSYS_MEMSERV 1
#de f i n e TRACE_EVENT_MEMSERV_ALLOC 0

#de f i n e TRACE_NUM_SUBSYSTEMS 2

#end i f // TRACE_DEFS_BARRELFISH__

Listing 3.2: A header file that has been generated based on the pleco file
shown in Listing 3.1.
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3.3.4 The Generated JSON File

As the pleco file shown in Listing 3.1 does not only get translated into a
header file, but also into a JSON file, we want to have a look at this file
now. The JSON file that has been generated for said pleco file can be seen
in Listing 3.3.

{
0 : {

"name" : " k e rne l " ,
" events " : {

0 : " Context Switch " ,
1 : " Buf f e r z e ro ing " ,
2 : "TIMER" ,
3 : "TIMER_SYNC"

}
} ,
1 : {

"name" : "memserv " ,
" events " : {

0 : "ALLOC"
}

}
}

Listing 3.3: A JSON file that has been generated based on the pleco file
shown in Listing 3.1. This file can be used by Aquarium to decode log
traces.

As you can see, the textual description in the pleco file was used where
provided, and where it wasn’t, the name of the Event has been used as a
substitution. The generated numbers are the same as the ones in the header
file. This is no coincidence, as the usage of this JSON file is exactly to decode
the numbers from the trace logs into human readable events again.

For the purpose of decoding the events, the old version of Aquarium had the
mapping from numbers to human readable events directly hard coded into
the source code. This new way of defining Subsystems and Events in pleco
files allows programmers to omit duplicate work (and having to check that
both programs are always consistent), and provides them with an automated
way of having a consistent tracing framework and analysis tool.
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Figure 3.4: NTP clock synchronization. Four time measurements t0 to t3
are performed.

3.4 Feature Overview

3.4.1 Preparing the Tracing Framework

The tracing framework does not strictly need any extra preparation, nev-
ertheless depending on the environment, a preparation might be necessary.
For this reason we added the functionality to prepare the tracing frame-
work. Currently the preparation process estimates the offset between the
CPU cycle counters on the different cores. This functionality is not needed
on machines that have synchronized cycle counters, but in the future it
might be possible to run a single instance of Barrelfish on multiple ma-
chines, and in this case the different cycle counters will not be synchronized
anymore.

The cycle counter offsets are all measured relative to core 0. To measure
the offset between a core i and core 0, we execute the Network Time Pro-
tocol clock synchronization algorithm between the two cores. Figure 3.4
illustrates the steps of the clock synchronization between two cores. Four
time measurements are performed and the estimated offset θ between the
two cores is calculated as follows:

θ = (t1 − t0) + (t2 − t3)
2 (3.1)

The tracing framework performs measurements between every core i (i > 0)
and core 0 sequentially, so that the measurements are as precise as possible.
The messages needed to perform those measurements are sent using the
monitor, meaning that the tracing framework does not need to setup any
new channel.
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3.4.2 Enabling and Disabling of Events

With the new version of Aquarium it is possible to filter out events in the
analysis for a given trace log. But it showed that this functionality is not
sufficient, as there are use cases where applications log so many events, that
filtering must already be performed on the fly, i.e. already during the tracing
process itself. An application where this is currently necessary in Barrelfish
is the tracing of the network stack. The current way of achieving this fil-
tering is introducing preprocessor statements at different locations in the
code. Having the new domain specific language available, we implemented
a mechanism to enable and disable Subsystems directly at runtime, using
the Subsystem identifier generated from the pleco file.

It is now possible to change which Subsystems are logged directly at runtime,
removing the need of recompiling the entire tracing framework just because
the type of events that a developer is interested changed. With the hierar-
chical structure of Subsystems and Events it was possible to implement this
enabling facility in a lightweight manner, as the number of Subsystems is
quite small.

3.4.3 Automatic Flushing

The flush procedure described in Section 3.1 can be triggered by manually
calling the according trace framework function. In addition to the manually
triggered flushing, we added a new functionality, namely the one that the
trace buffer is flushed automatically. This functionality is implemented with
in Bfscope, as we think the main use-case for automatic flushing is when the
generated logs are automatically forwarded to a remote machine2. When a
developer decides to enable the automatic flushing and Bfscope is running,
Bfscope will automatically flush the content of the trace buffers periodically.
This feature removes the need of having to call the flush procedure manually,
but it developers should note that if timing is critical for your application,
the automatic flushing functionality can lead to issues. The issues that can
arise come from the fact that it is possible that Bfscope flushes in the middle
of your application executing its code – this does not lead to a problem of
correctness, but it can heavily skew the flow of events in the Barrelfish as a
whole.

2Having the console cluttered with events from the tracing framework can render the
application unusable rather quickly.
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3.5 Bfscope

Bfscope is a Barrelfish program that enhances the functionality of the trac-
ing framework by the possibility to directly flush trace logs over the network.
Note that the tracing in the Barrelfish code itself runs independently of Bfs-
cope – and it even notices when Bfscope is running and changes its behavior
accordingly. Bfscope allows developers to connect from a remote machine
to the Barrelfish OS, using a TCP connection and to get the trace logs
directly onto the remote machine. Note that when a remote machine is
connected, regular flush commands in Barrelfish will automatically be redi-
rected onto the network, and you will not see the trace logs on the console
any longer.

As the remote machine is merely a utility that wants to get the trace log
data, there are no messages exchanged as part of a protocol – Bfscope simply
sends the trace log data onto the TCP connection, once the flush command
is issued (or periodically if automatic flushing is enabled). This has, beneath
being a simple protocol, the additional benefit that it is no longer necessary
to run Aquarium in order to be able to get the trace log onto a remote
machine, but you rather can use any tool that allows you to open a TCP
connection, such as netcat. Using such a tool will allow you to get the trace
log data on a different machine, where you can either later analyze it with
Aquarium, or with custom scripts.

Nevertheless the main intention is to directly connect to Bfscope using
Aquarium, which can interpret and visualize the trace log data directly on
the fly.
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Chapter 4

Design and Implementation
of the Analysis Tool
Aquarium

4.1 Design of Aquarium

4.1.1 Goals

When we designed Aquarium we had several goals in mind, namely the
following ones:

1. Support for live tracing.

2. Support for different ways of input (e.g. reading from file or receiving
data over the network).

3. Being able to handle large trace log data.

4. Being extensible and easily customizable.

5. Aquarium must run on different operating systems.

We decided to tackle the first three goals with the design of the architecture
of Aquarium, which we will discuss in Section 4.1.2. The fourth goal also did
influence the architecture on one hand, but also led to the idea of making
Aquarium scriptable, i.e. to create an interface that allows developers to
add their own scripts to Aquarium. Since those scripts do not work on the
raw trace log data, but rather on already from Aquarium interpreted data,
it offers developers on one hand a more powerful means to write scripts in
a very easy way, and on the other hand the scripts are directly integrated
into the visualization of Aquarium, alleviating the need to write visualization
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code for custom developer scripts. In Section 4.2 we will discuss the different
ways how Aquarium can be extended with scripts.

The fifth goal, i.e. the goal that people should be able to run Aquarium
on different Operating Systems, such as Linux and Windows, arose from a
shortcoming in the old version of Aquarium – namely that it was written in
C# and only runs on Windows. To tackle this requirement we decided to im-
plement our version of Aquarium in Java, so that cross platform portability
will certainly not become an issue.

4.1.2 Architecture

When you analyze trace log data with Aquarium, the main object is a Trac-
ingSession object. Each trace log data is at runtime represented by exactly
one TracingSession object. Figure 4.1 shows the most important classes that
are dealing with getting from trace log data to the according TracingSession.
A TracingSession is associated with a single event provider, currently there
are two different input ways implemented:

• Reading trace log data from a file, using a LogfileReader.

• Reading trace log data directly from a Barrelfish machine, using a
NetworkReader.

The actual interpretation of the trace log data is done using an EventParser;
EventParser objects are independent of the type of data source. Note that
the EventConfigurtion is the responsible for interpreting the JSON file that
has been generated during the build process of Barrelfish, based on the pleco
file.

The trace log data gets interpreted to Events and Activities, that are stored
in the TracingSession object. Note that the flow of data is push based, i.e. it
is the data source that actively creates new Events as soon as more data is
available, and pushes the Events to the TracingSession. Having an active
data source allows us to treat different types of data sources uniformly.

While Events are quite self explanatory, i.e. they are the Aquarium represen-
tation of the actual events in the trace log data, Activities are a new concept
that we introduced in Aquarium. An Activity is a sequence of Events, that
are grouped into a single activity. Activities are a typical constructs that
are needed when analyzing trace log data; an example for that is when
analyzing the network stack, the fact that memory has been allocated (a
single event) might not be very interesting, but the duration of the entire
construction of the packet (an Activity) is what is actually very interesting.
Thinking about Activities, it becomes immediately clear that the different
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types of Activities must be flexibly definable. We achieved this by allowing
developers to create their own scripts that decode Activities.

Figure 4.1: UML class diagram showing the main classes that are concerned
with dealing with input.

Let us now look at how events are processed once the TracingSession re-
trieves a new Event. A class diagram illustrating the handling of Events
and Activities can be seen in Figure 4.2. A TracingSession stores both a list
with the Events that have been extracted from the trace log data, as a list
with all the activities that have been created based on those events. Once
an Event is received by the TracingSession, it notifies all registered Even-
tHandlers to handle the new Event. Such EventHandlers can either be UI
elements, such as an EventListUpdateHandler (an object being responsible
to present a list of all interpreted Events in the UI), or an ActivityDecoder.
ActivityDecoders are objects that create Activities, and one possibility for
that is, as already mentioned, to have external scripts which decode Ac-
tivities. If an ActivityDecoder creates a new Activity, this Activity will be
added to the TracingSession and all registered ActivityHandlers will receive
it. As you can see, the only module that is currently both receiving Events
and Activities is the GraphViewUpdateHandler, an object that is responsible
for visualizing the trace log data graphically.

When developing Aquarium, we initially planned to add a statistics module
as well. Due to a lack of time, we had to omit it in the end. Nevertheless
from the design it can be seen, that such a module could easily be added
to Aquarium: It would simply have to be an EventHandler and an Activ-
ityHandler. Note that the design with having the TracingSession at the
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core, we achieved that all handler classes are always in a consistent state.
For example if an activity is seen by one handler, it is always also seen
by all other handlers. This becomes especially handy when considering the
filtering functionality of Aquarium. In Aquarium we added the functional-
ity to filter out Events based on various different criteria, ranging from the
core on which the Event happened, over the Subsystem type up to custom
scripts that developers can write to create their own filter. When a filter
is applied, it is always applied on the TracingSession, and not on e.g. a UI
element. With this globally applied filtering mechanism a new Handler that
is created to extend Aquarium would immediately benefit from the filtering
functionality, without having to take care of it at all.

Figure 4.2: UML class diagram showing the main classes that are concerned
with handling events and activities.

4.2 Extending Aquarium with Scripts

As mentioned in Section 4.1.2, it is possible to extend the functionality
of Aquarium by adding custom scripts. The scripts are interpreted using
the Java Scripting API, and currently JavaScript is the language for which
support in Aquarium has been implemented. Based on the Java Scripting
API support for other languages could be added.
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4.2.1 Script Filters

Script filters are custom scripts that can be written by developers to filter
out events in which they are not interested. Aquarium itself already provides
the possibility to filter out events based on the following criteria:

• Filter out entire cores (e.g. filter out core 1).

• Filter out entire Subsystems (e.g. filter out the kernel Subsystem).

• Filter out Events from a Subsystem (e.g. filter out ALLOC Events
from the Subsystem memserv).

• Filter out trace events based on their application (e.g. filter out all
events that the application monitor logged).

If a user is not satisfied with these possibilities to filter out events, Aquarium
can be extended with script filters. An example for a script filter would be
to filter out all events, except those that are an ALLOC Event initiated by
the monitor. Such scripts allow users to quickly spot specific events, even
when they are analyzing large trace logs.

4.2.2 Script Activities

Another possibility to extend Aquarium with the help of scripts is to write
custom activity scripts. Such a script works in the following way: It receives
all events that exist in the trace log, in the order they exist in the trace log
itself, and based on these events it can create activities, and deliver them
to Aquarium. In Figure 4.2 we can see that such a Script is wrapped in a
ScriptActivityDecoder inside of Aquarium, which is – as just described – an
EventHandler.

An example for an activity script could be to create an activity for all the
MUTEX_LOCK and MUTEX_UNLOCK pairs – in order to analyze the
locking behaviour. For each activity, certain parameters such as the duration
of each activity, is automatically calculated by Aquarium.

4.3 Working with Aquarium

In this section we briefly want to look at how some of the already described
functionality looks in Aquarium with the help of some examples. Figure 4.3
shows a screenshot displaying a single trace log data file opened in Aquarium.
The largest part of the GUI is used by the so called GraphView, presenting
the information contained in the log in a two dimensional manner. From
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left to right we see the timestamps (measured in clock cycles), and on the
vertical axis we see the different cores.

For each core we show the actual events that have been traced, indicated
using black circles on the bar of the core. The color of the bar shows which
application was running on the core on that time, where the colors are
shown as well in the left menu labeled Filter. In addition to the per core
events, arrows are drawn where messages have been sent between the cores,
indicating the send and receive event. As the messages have the potential
to clutter up the GUI quite a bit, the arrows can be hidden easily using the
envelope button on the right top corner.

Below the GraphView we see a list representation of the event data. With
the help of the sync button (shown on the right top corner of the list),
the GraphView and the list can be linked, meaning that if you select an
event in either of the two, the other view scrolls to that event. Using this
functionality coarse navigation can be done using the GraphView, to then
allow for detailed analysis by quickly looking at the list.

On the left part of the GUI we see the Filter menu. It allows to filter out
events based on the different criteria, as already described. Scripts can be
added using the Scripts tab, and afterwards they will directly appear in the
Filter menu as well.

As we can see in the screenshot shown in Figure 4.4, for all the objects
in the GraphView exist tooltips, when you hover over the according object
with the mouse cursor. On this screenshot you can see that two custom
script activities have been added, and they have already been evaluated.
The created activities are integrated into the GraphView (on a per core
basis) as well as in the Activity tab next to the Events list on the bottom
of a Aquarium. All created activities can also be seen in a list fashion
there.

In Figure 4.5 we activated several filters, thus compared to what we saw in
Figure 4.4, the information displayed in Aquarium has been reduced. We
filtered out several things:

• The entire core 0.

• The Event MUTEX_UNLOCK.

• The Subsystems for sending and receiving messages, hence the message
arrows are filtered as a consequence as well.

• Events belonging to the application spawnd.

You can see that using the filter mechanism, it is possible to quickly find
the part of the trace log data, that is interesting to you.
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Figure 4.3: Screenshot of Aquarium displaying one trace log file.
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Figure 4.4: Screenshot of Aquarium displaying two script activities, one for
mutex activities and one for the monitor application.
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Figure 4.5: Screenshot of Aquarium where core 0 is filtered out, as well as
certain events and applications.

33



Chapter 5

Performance Analysis

5.1 Introduction

This chapter analyzes the performance of the tracing framework only inside
of Barrelfish. The analysis tool Aquarium is not analyzed for its perfor-
mance, as it is intended to run “offline” in the sense that if it is fast enough
the consume the data on live mode from a Barrelfish machine, it is consid-
ered to be fast enough. The impact on performance is also a lot bigger on
the tracing inside of Barrelfish; This stems from the fact that if you do not
want to analyze trace data, you simply do not start Aquarium, and if you
want to analyze data, you are willing to wait until the analysis is performed.
Looking at the tracing framework in Barrelfish, it is on one hand less easy to
disable – once compiled into the system, a certain overhead will exist – and
on the other hand it is important that the tracing does not affect measured
code too heavily, or it will become useless.

5.2 Memory Overhead

The memory overhead for buffers inside the tracing framework is constant
during the entire runtime of Barrelfish, as the only used buffers are allocated
at startup of the system. The used buffer space currently consists of two
main parts that exist for each core:

Application Buffer Up to 128 currently running applications can be stored
per core.

Event Buffer Up to 8000 Events can be stored per core, where ringbuffer
containing these events is cleared during a flush process.
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To store an event or an application 16 bytes are used. As the tracing frame-
work works independently of the actual number of cores, the number of cores
is bounded assuming a limit of 64 cores. This leads to the following memory
usage:

M = (128 + 8000) ∗ 16B ∗ 64 = 8323072 ≈ 8MB (5.1)

In addition to those buffers, a handful of pointers are stored, which in total
use less than 1 KB of memory. Therefore that the total amount of mem-
ory that the tracing framework uses is 8 MB, which does not vary over
time.

5.3 Execution Time Overhead

5.3.1 Cost to Trace a Single Event

We benchmarked the number of cycles that it takes to trace a single event
in the tracing framework. We tested both the case where the Subsystem
is enabled, i.e. we are interested in the event for which the trace_event
function is called, and the case where we are not interested in the even that is
traced, i.e. the Subsystem is disabled. The “enabled” case is straightforward
to benchmark, but we also think the “disabled” case is interesting, as it
might be often the case that code is instrumented with a lot trace_event
calls, even though you are currently not interesting in analyzing this part
of the code. Since we added the functionality do dynamically disable the
appropriate Subsytems, it is also important to know by what degree the
execution of the code will be slower, compared to removing the statement
from the actual code.

The results of the benchmark can be seen in Figure 5.1. The benchmark
shows that on the machine nos5, the average number of cycles that it takes
to trace an event, when the Subsystem is enabled is 40.384. The average
number of cycles for a call, when the Subsystem is disabled is 9.950.

It can be seen that both benchmarks returned very stable results - there are
a few outliers, but the vast majority of the events are closely around the
average. Both benchmarks have been run twice with 1000 measurements
each run.
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5.3.2 Cost to Flush

The cost to flush the collected trace data can vary a lot depending on the
destination onto which is flushed: Directly on the console, using Bfscope to
send it over the network, etc. As the tracing framework is not intended to be
used in a way where flushing is performed during a measurement, but after-
wards, we did not do measurements for the different flushing methods. We
only want to mention that flushing, especially over the network, is not to be
considered a lightweight operation that can be done at any time during your
code, without potentially affecting the outcome of the tracing heavily.
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Figure 5.1: Boxplots showing the number of cycles that it takes to trace a
single event. On the left: The Subsystem is enabled, i.e. the event is stored
in the buffer. On the right: The Subsystem is disabled, i.e. the event is not
stored in the buffer.
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Chapter 6

Conclusion

We improved the tracing infrastructure for Barrelfish. The changes we made
to the Barrelfish source code improve maintainability and usefulness of the
tracing infrastructure.

We think that the new Aquarium tool is very useful for development and
debugging because it visualizes events occurring in Barrelfish and therefore
allows the developer to understand performance, overhead or timing-related
bugs. It is far superior to similar tools available for other platforms, such
as KernelShark for Linux. It is very extensible, e.g. it allows to import user
scripts to define custom filter or define a custom grouping of events that
belong to a particular task.

6.1 Future Work

Different flushing policies Currently we have two flushing policies in Bf-
scope: Entirely manual and totally automatic, meaning that Bfscope
flushes each time it gets scheduled. Different flushing policies, such
as flushing when the buffers are full to a certain percentage could be
thinkable.

Statistics Module We originally planned to implement a statistics module
directly in Aquarium instead of only having a data export function-
ality. Such a module could be implemented rather easily based on
the extensible design of Aquarium. Adding script support to such a
module could allow for easy customization.

Different Scripting Languages The scripting framework could be adapted
to support not only JavaScript but also different script languages.
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Semantic Event Analysis Aquarium could try to analyze trace log data
instead of only visualizing it, trying to present suggestions about pos-
sible anomalies and strange patterns in sequences of events that have
occurred.
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