
Masters Thesis

Power Management in a
Manycore Operating System

by
Dario Simone

Due date
25. August 2009

Advisor:
Akhilesh Singhania

ETH Zurich, Systems Group
Department of Computer Science

8092 Zurich, Switzerland

2

Abstract

The search for managing the increasing power consumption of today’s systems
is still unbroken. The core idea of minimising power consumption while max-
imising the system’s performance has been approached in earlier work using
frequency and voltage scaling. However, with the coming of multi-core systems
new constraints are imposed on power management solutions which make the
single-core solutions difficult to use. A new challenge brought by multi-core,
multiprocessor systems are the different sleep states for cores and processors.

In this work I present a new approach to power management for multi-core,
multiprocessor systems. Using the different power levels of individual cores and
whole processors of a multi-core, multiprocessor system, the system state is
optimised in terms of power consumption and performance.

To show the possible gain for a system’s power management I have imple-
mented and evaluated a possible solution. To weight the cost of diminishing
performance against a possible reduction in power consumption, a formal cost
model of the system is created. The evaluation of the implemented solution
shows a reduction in power consumption while keeping performance as high as
possible.

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Context . 5
1.3 Contribution . 6
1.4 Overview . 6

2 Background 7
2.1 Power Management Overview . 7
2.2 ACPI . 7
2.3 Processor Power Management Features 9

2.3.1 Voltage and frequency scaling 9
2.3.2 Processor sleep states . 9
2.3.3 Observations for Multi-core processor 10

2.4 Barrelfish . 10
2.4.1 Overview . 11
2.4.2 Messaging system . 11
2.4.3 Dispatcher . 11
2.4.4 Monitor . 11
2.4.5 System knowledge base (SKB) 12

2.5 ECLiPSe . 12
2.5.1 Language features . 12

3 Literature Survey 14
3.1 Introduction . 14
3.2 Single-Core Power Management 14

3.2.1 Real-time systems . 14
3.2.2 Non-real-time systems . 16

3.3 Multi-core Power Management 18
3.3.1 DVFS for thermal problems 18
3.3.2 Per-core DVFS . 19
3.3.3 Per-processor DVFS . 19

3.4 Summary . 20

4 Approach 21
4.1 Problem Statement . 21
4.2 General Approach . 22
4.3 Formal Cost Model . 22

4.3.1 Energy consumption . 22

4 CONTENTS

4.3.2 Work output . 25
4.3.3 State definition . 26
4.3.4 Definition of variables . 27
4.3.5 Conclusion . 28

5 Implementation 30
5.1 ECLiPSe Implementation . 30

5.1.1 State generation . 31
5.1.2 State evaluation . 31
5.1.3 Improving execution . 32

5.2 Barrelfish Implementation . 34
5.2.1 Accessing the Barrelfish SKB 34
5.2.2 Apply the system state 34

5.3 Combining ECLiPSe and Barrelfish 36
5.4 Limitations . 36

5.4.1 Simplified implementation 36
5.4.2 Possible optimisation . 37
5.4.3 Possible extensions to the model 37

6 Evaluation 38
6.1 System . 38

6.1.1 Latency measurements . 38
6.1.2 Power measurements . 39

6.2 Evaluation procedure . 41
6.3 Results . 42

6.3.1 Evaluation sequence constant 42
6.3.2 Evaluation sequence exploit 44
6.3.3 Evaluation sequence arbitrary 45
6.3.4 Evaluation sequence overload 46
6.3.5 Cost of Optimisation . 48

7 Conclusion 50
7.1 Future Work . 50

Chapter 1

Introduction

1.1 Problem Statement

Today’s computer users and system administrators are increasingly power aware.
Energy costs money and should be minimised. As the user base grows, the tech-
nology usually adapts. So, today’s hardware usually supports many different
power management features.

Processors in general support two different options to adjust power consump-
tion and performance. The bulk of research has examined the use of frequency
and voltage scaling and its impact on power consumption as well as performance.
As will be shown in the literature survey (chapter 3) only most recent work in
this field has approached the additional constrained given by the relatively new
multi-core architectures. Conversely to single-core processors, multi-core sys-
tems come with constraints to the states of the individual cores. Therefore,
frequency and voltage scaling research on single-core processors cannot be ap-
plied to multi-core systems using the same assumptions.

Apart from frequency and voltage scaling, modern processors support differ-
ent sleep states. If combined in a multi-core, multiprocessor system, similar to
frequency scaling new constraints apply to the processor sleep states. On such
systems cores sharing a processor transition into a deeper sleep state (consum-
ing less power) if all cores on the processor are sleeping. Thus, it is possible to
reduce power consumption through intelligent placement of the threads on the
different cores. Simultaneously, the same mechanism can be applied to control
a system’s performance by scheduling multiple threads on the same core. As
will be shown in the literature review (chapter 3), this opportunity for power
management has not yet been picked up in research.

1.2 Context

In this work I approach the problem of optimal thread placement in a multi-
core, multiprocessor system running a non-real-time OS. I evaluate a running
implementation on top of the Barrelfish [4] operating system. While the Bar-
relfish operating system structure is different from common operating systems,
the approach and much of the implementation are designed to be applicable to

6 Introduction

a variety of systems. My work imposes no additional restrictions on the system
it is run on.

1.3 Contribution

In this thesis I present an approach on power management exploiting the possi-
bilities given by intelligent placement of threads on cores. The solution considers
the different levels of power consumption of a sleeping core depending on which
other cores are sleeping. These power savings compared to the loss in perfor-
mance if multiple threads are scheduled on the same core.

To this end I introduce a formal cost model to quantify the cost a system
state has in terms of power and performance. Using that knowledge the system
can then be put in a low-cost state. The cost model computes the possible power
savings for different thread placements in view of the constraints imposed by
a multi-core multiprocessor architecture. The model also weights the possible
power savings of a system state against the system’s performance in that state.
Wheter more power should be saved or higher performance is needed can be set
by a parameter to the model. Using this parameter the operating system or the
user can adjust the systems power consumption and its overall performance.

The formal cost model is applied and optimised using the constraint logic
framework ECLiPSe [9]. An implementation on the Barrelfish operating system
using this model is provided and evaluated. In the best-case, the implemented
solution reduces power consumption with a minimal impact on performance
compared to a performance-optimal algorithm. Moreover, the impact of the
model’s parameter is shown both on power consumption and performance.

1.4 Overview

In the next chapter, I give background information on power management and
the technologies used in my implementation. Chapter 3 summarises and dis-
cusses past work in the area of power management. Chapter 4 specifies the
problem and presents the approach taken. Chapter 5 describes my implementa-
tion of the presented approach in the Barrelfish [4] manycore operating system.
Chapter 6 evaluates the implementation using different schedules and settings
and in chapter 7 I present my conclusions and possibilities for future work.

Chapter 2

Background

2.1 Power Management Overview

Power management comes in many different flavours. For some time every pro-
ducer (be it software or hardware) tried to give his customers his own set of tools
to reduce power output with a minimal impact on performance. Hardware man-
ufacturers build devices which will spin down independently if the request rate
is low. CPUs and chipsets for some time now implemented different interfaces to
give operating systems or dedicated software the ability to control power saving
and performance loss thereof. The Advanced Configuration and Power Interface
Specification [1] has been introduced as a solution for a unified and coherent
interface for the operating system to all power management aware devices and
functionalities in a computer.

2.2 ACPI

ACPI (Advance Configuration and Power Interface) [1] was specified by dif-
ferent manufacturers to establish common interfaces for platform-independent
configuration and power management. ACPI specifies solely the interface be-
tween hardware and software and the implied requirements of the two. The
specification defines what has to be given and initialised by the hardware and
what assumptions can be made on the software side. In the ACPI specification
software is defined as an operating system component called Operating System-
directed Power Management (OSPM). In contrast to APM (Advanced Power
Management, a predecessor of ACPI) [2], ACPI specifies the operating system
(through OSPM) as the responsible entity for all power management decisions
and actions using the interface defined by the specification. The available hard-
ware is exposed to the operating system through a global ACPI namespace
which not only describes the type of the hardware but also the type of power
management facilities available for each device. Moreover, ACPI defines some
system description tables used to specify special features (such as memory affin-
ity of processors).

ACPI defines many different power states for the system and the different
devices. G0 to G3 define the system’s global power state where G0 is the
working state. G1 through G3 designate the different sleep and off states of the

8 Background

Figure 2.1: All system power states as defined by the ACPI specification 1.

system in which the system is not running (i.e. executing code). In the state G0
the system’s devices (e.g. modem, HDD, CD-ROM) can reside in a state between
D0 and D3 where D0 is the working state. Again, D1 through D3 designate
the different sleep state in which the device is not operational. Similarly, the
CPU can be in the running state C0 or one of the sleep states C1 –Cn. The
individual sleep states differ from each other by their power consumption, by
the time needed to change to and from the running state (i.e. latency) and by
how a CPU enters the specific power state. Of course, these parameters are
architecture specific and have to be provided by the processor manufacturer.

Different from other devices, the CPU has a second power management op-
tion. While in running state (Power State C0) the operating system can adjust
the processor’s voltage and frequency (dynamic voltage and frequency scaling
— DVFS). For DVFS two different interfaces are present in ACPI, one to grant
dynamic and continuous scaling and the other defining a set of performance
states with well known performance and power ratios.

The interface to switch between the different CPU power states is defined
by ACPI using ACPI registers. The registers are defined in the processor object
declared in the ACPI namespace. For standard ACPI registers, a read to that
register will put the processor in the desired state. If the register is defined as
being Functional Fixed Hardware, the state transmission is to be handled by
a manufacturer-provided CPU driver. Besides the interface for power manage-
ment actions, ACPI also defines interfaces to get information on which to base
power management decisions. For instance, when considering to put a proces-
sor in a sleep state, the operating system should take into account how much
power will be saved and how long the state transition will take (i.e. how much
potential computation time will be wasted once we want to schedule something

1Copied from the ACPI specification [1], page 27

2.3 Processor Power Management Features 9

on the CPU). ACPI provides the operating system with an interface to many
such values describing the system. The values, however, still have to be pro-
vided by the manufacturers and at times the values might be unreliable, wrong
or outdated. Anyway, for an operating system not to be bound to very specific
hardware, these values provide the best way and modern operating systems like
Linux are using them to improve their decisions on power management.

2.3 Processor Power Management Features

Modern processors and chipsets come with a multitude of features intended for
power management. Some are hardware triggered and some are expected to be
used by the operating system. As already mentioned in the last section, CPU
power management can be split up into two dimensions. Voltage and frequency
scaling on one hand and sleep states on the other hand.

2.3.1 Voltage and frequency scaling

Voltage and frequency scaling (DVFS) are often named together. While fre-
quency impacts the performance and thus is uppermost in the user’s perspec-
tive, power savings come mostly due to voltage scaling. On the other hand,
voltage scaling does not (directly) impact performance. However, the frequency
and the voltage of a processor are in a close relation which depends on the exact
design of the chip. Meaning that every processor has a minimal voltage needed
to support a certain frequency. Thus, a widely used approach is that the operat-
ing system (or, in general, the system’s power-management component) sets the
CPU to run at the desired frequency and the voltage is set as low as possible.
Equally, the two available ACPI interfaces (throttling and performance states)
do not differentiate between voltage and frequency scaling.

The power output of a processor is the sum of the static power and dynamic
power. The static power consists primarily of various leakage currents. Dynamic
power is a function of the core frequency and the core voltage and can be
approximated by C ·f ·V 2, where C is the capacitance being switched per clock
cycle, f is the core frequency and V is the core voltage. Obviously, a reduction in
frequency will impact the power output only linearly while reducing the voltage
will reduce power output quadratically.

2.3.2 Processor sleep states

A different approach to reducing power output is possible by letting the CPU
sleep while there is no work to do. The ACPI specification tackles this approach
defining different C-states for each core. The individual C-states differ in power
consumption and latency as well as the method to put a core in the specific
state. Modern processor implementations have widely adopted the C-states as
defined by the ACPI specification.

C0 is the running state, meaning that while in this state, the core is executing
instructions.

The shallowest sleep state is C1. All processors have to support this sleep
state in order to conform to the ACPI specification. The state is a special case
as it is firstly entered by calling a native instruction of the processor (HLT for

10 Background

IA-32 processors). Secondly, the latency to enter the state has to be low enough
that the operating system does not consider the latency aspect of the state when
deciding whether to use it. Modern desktop and server processors all support
the C1 state.

All deeper sleep states (C2 and following) are optional and their adoption
in today’s processors is only partial. Obviously, manufacturers have focused
on decreasing the power consumption of processors used in mobile computers
and devices. Modern CPUs intended for use in mobile computers support sleep
states as low as C4. When putting a core in a sleep state deeper than C2, the
operating system has to make sure the core’s cache is coherent once it resumes
operation (a possible, simple solution is to flush the cache).

2.3.3 Observations for Multi-core processor

A special case is covered when dealing with multi-core processors. These pro-
cessors combine multiple cores on one socket. Usually each core has some local,
unshared cache (e.g. L1) and may share some higher level cache (e.g. L2 or L3).
Additionally, depending on model details, processors might support individual
voltage and frequency settings for each core or the voltage and frequency might
be set only for all cores of a package at once.

Sleep states

Likewise, multi-core processors usually differentiate between per-core sleep states
and processor-wide sleep states. For example, both AMD (Opteron) [6] and In-
tel (Xeon) [17] have introduced a proprietary C-state C1E which is hardware
activated and puts the processor in a deeper sleep state C1E when all cores of
that processor reside in sleep state C1, thus further reducing power output. This
deeper sleep state is in both cases an extension of the C1 state where voltage
and frequency settings are set to the minimal possible value.

DVFS

When considering a NUMA (Non-Uniform Memory Architecture) multi-core
processor, an additional performance consideration comes into play. For a
NUMA core some memory is local and directly accessible and some might have
to be accessed by probing another core’s cache. If this other core is running at
a reduced frequency to save power, such a cache probe will be slowed down as
well, as the servicing core will serve the probe at the currently set frequency.
Thus, using DVFS on a core might impact performance on other cores even if
the architecture supports per-core voltage and frequency settings. If the other
core is in one of its sleep states, the core will wake up momentarily to serve the
cache probe and then return to the sleep state.

2.4 Barrelfish

As I will show and evaluate the result of this thesis using the Barrelfish operating
system, I will give a short overview of its workings focusing on the parts more
important to my work.

2.4 Barrelfish 11

2.4.1 Overview

Barrelfish has been developed at ETH Zürich as an implementation of the newly
proposed multikernel architecture [4]. The multikernel model includes the use
of multiple independent operating system instances communicating via explicit
message passing. In Barrelfish each OS instance is implemented as a vertically
structured microkernel where the instance is factored into a kernel and a user-
space part. Further functionality is given by user-space services and device
drivers.

Barrelfish comes with a user-space library which provides helper functions
for most of the available privileged features such as message passing or interrupt
handling. The library functions act as wrapper functions for system calls, calls
to the monitor interface or other special services.

2.4.2 Messaging system

Barrelfish differentiates between intra-core and inter-core communication. Both
systems are accessible to user processes using the Barrelfish library which pro-
vides convenience functions for sending and marshalling messages.

Intra-core communication is handled by the kernel. To send a intra-core
message the sender invokes the kernel and then the kernel delivers the message
to the receiver and if necessary unblocks it.

For inter-core communication Barrelfish uses a variant of user-level RPC
(URPC) [5]. Sender and receiver have to set up a shared memory region repre-
senting the channel between the two. In order to receive a message, the receiver
has to periodically poll the channel for new messages.

In summary, intra-core communication is delivered by the kernel unblock-
ing the receiver if necessary. Inter-core communication is processed completely
within the user processes. When an inter-core message is sent a blocked receiver
will not be unblocked.

2.4.3 Dispatcher

User-space processes consist of several dispatcher objects, one for each core the
process should run on. Dispatchers provide an upcall interface invoked by the
kernel to dispatch the process. Above this upcall interface the dispatcher runs
a core-local user-level thread scheduler. Message handling and reception is also
handled by the dispatcher as implemented by the Barrelfish library. Moreover,
the threads package of the library provides an API for thread creation and
termination as well as for thread synchronisation.

2.4.4 Monitor

The Barrelfish operating system includes a privileged user-space process called
monitor. The monitor process is the user-space element for the operating sys-
tem. In contrast to the kernel, the monitors on the individual cores communicate
with each other. These communication channels are used for inter-monitor coor-
dination and to give other user-space processes the ability to access other cores
(e.g. to spawn a new dispatcher on a different core).

12 Background

2.4.5 System knowledge base (SKB)

The Barrelfish operating system is built with a heterogeneous system in mind.
In order for an operating system to be runnable on multiple different systems,
the system has to be abstracted to let system services and primitives (like the
messaging system) make use of present hardware characteristics. For this pur-
pose, Barrelfish employs a special service known as the system knowledge base
(SKB) [27]. The SKB is loaded with static and dynamic information about the
system’s architecture and characteristics.

The SKB is implemented using a constraint logic programming system called
ECLiPSe [9]. The SKB is a system service serving as a wrapper to the ECLiPSe
platform. An advantage of this combination is that it is possible to use con-
straint optimisation queries to gather information as needed about the system.
Other processes and services interact with the SKB through the standard mes-
saging channels given by Barrelfish.

2.5 ECLiPSe

ECLiPSe is the underlying framework of the SKB and thus the central mecha-
nism used for optimisation in my thesis. In this section I give a short introduc-
tion to its workings and explain the basic terminology used in the paper.

ECLiPSe [9] is a constraint logic programming system. Logic constraints are
written in a constraint-enhanced Prolog-compliant language. ECLiPSe ships
with a multitude of libraries providing normal methods (e.g. list manipulation)
and a set of libraries implementing the constraint logic.

The usual ECLiPSe optimisation application consists of a model of the sys-
tem to be optimised and a cost function to calculate the cost of an individual
system state. Minimisation is then applied using, for instance, a branch-and-
bound method to identify the state yielding the minimal costs.

2.5.1 Language features

ECLiPSe provides a Prolog-like programming language including a collection
of libraries. In this section I will give a short overview over the ECLiPSe pro-
gramming language. For a full introduction or reference visit the ECLiPSe
Website [9].

Terminology

ECLiPSe terminology is mainly borrowed from Prolog with a few addenda.

Logical variables Logical Variables are placeholders for values which are not
yet known. In this they are similar to variables in other programming
languages.

Predicate Predicates are the ECLiPSe equivalent to procedures and functions
in other programming languages. The notation pred/3 denotes a predicate
named pred which has three parameters.

2.5 ECLiPSe 13

Goal A goal is a logical formula that has to be executed. This includes predi-
cates which have to be satisfied. Borrowing from other programming lan-
guages, one could say that a predicate is the definition of a function and
a goal is the execution of the function. An ECLiPSe program can consist
of multiple goals which are combined using conjunctions or disjunctions.

Query The initial goal given by the user is called a query.

ECLiPSe database ECLiPSe holds all predicates which are currently asserted
in a database. This database can be updated at runtime to add new values
or remove old ones. Thus, it is possible to update parameters of the loaded
ECLiPSe program using normal ECLiPSe queries.

Execution scheme

ECLiPSe executes a program by trying to sequentially satisfy each goal that is
part of the program. Whenever a disjunction is encountered, multiple execution
paths are possible. ECLiPSe will choose one path and when it reaches a goal
that can not be satisfied it will backtrack to the last choice made and, if possible,
take one of the remaining paths. In this way an execution tree is constructed.
If no more backtracking options are available, the query fails. If a path is found
that satisfies all goals, the query succeeds.

Chapter 3

Literature Survey

3.1 Introduction

There is an abundance of research in the field of power management. Since the
early nineties, different solutions to the problem of how to best make use of the
different hardware features have been proposed. In general, research in the area
targets high performance and low power consumption. This can be achieved
by minimising the power/performance ratio. Most of the research on power
management concentrated on exploiting DVFS on single-core and SMP multi-
core machines, only more recent research has pursued the additional challenge
presented by NUMA machines and deeper halt states.

The field of processor power management can be separated in several cat-
egories, each category having its unique challenges and encouraging different
approaches.

3.2 Single-Core Power Management

Power management on a single core is particular as one does not have to worry
about inter-core frequency or voltage dependencies. A single-core operating
system usually has a set of tasks which are ready to run and has to decide in
which order they are to be executed. Thus, one of the main research topics in
single-core power management has been the effective use of DVFS to minimise
the power/performance ratio of a system.

Research in the area of single-core power management, while not fully adapt-
able to today’s multi-core systems, has put forward many algorithms in the area
of power-aware scheduling of real-time and non-real-time systems which, lightly
adjusted, have found entry into the multi core research.

A special case in the domain of single-core power management are real-time
systems.

3.2.1 Real-time systems

Power management in real-time system profits from the knowledge inherent to
real-time systems of each tasks deadline and runtime. Therefore, non-real-time
systems can be seen as a generalisation of real-time systems.

3.2 Single-Core Power Management 15

As real-time systems have complete knowledge about the system, most re-
search in terms of applying DVFS for power management has been made in this
area. And the research result has then been adopted to be used in non-real-time
systems as well. Hence, the research in real-time systems has significant impact
on power management of non-real-time systems (which are the target of this
work).

All approaches to integrate DVFS in a hard real-time scheduler need the
runtimes of the tasks they are to schedule, either by prior-knowledge or runtime
measurements (or both). The basic approach is then to choose for each task
a voltage such that overall energy consumption is minimised and all tasks still
meet their deadlines. This can be paraphrased as letting the systems run as
slow as possible given a set of tasks, deadlines and execution times.

Static schedule computation A set of research in this areas uses the afore-
mentioned advantage of knowing each task’s runtime and expected deadline to
statically minimise power consumption of a closed system. A first approach
was developed by Hong et al. [13]. They used the tasks’ parameters to solve
the optimisation problem ignoring possible non-regular impacts on the tasks’
performance. As with all closed systems, their research left little to no room
for non-predictable interference such as user interaction. Okuma et al. [24]
optimised the algorithm by splitting the optimisation task in two parts. In a
first part the scheduler assigns each task a time slice on the assumption that the
highest voltage setting is used (i.e. the scheduler decides on a task order). In the
second part the scheduler optimises for power consumption by assigning each
task a runtime voltage. Quan and Hu [26] used a different approach to the static
solving for a closed system adopting earlier research. They thus reduced the
computational cost of calculating the optimised schedule and frequency setting.

A drawback of the above solutions [13, 24, 26] is that their solution will use
one frequency/voltage setting per task. Shin et al. [28] showed, that a lower
power/performance ratio can be achieved by changing the frequency setting
during a task’s execution (named intra-task voltage setting). Their solution
breaks up a program at its basic blocks and calculates an optimal schedule
considering a distinct frequency/voltage setting for each basic block. Similarly,
Azevedo et al. [3] suggest also a compiler-based approach which additionally
considers power limits given by the user which the solution will not violate. Of
course, these solutions only work as long as the system is the same as at compile
time, as computation time will change if the system suffers a heavy overall load.

These papers [3,13,24,26,28] present highly specialised solutions to be used
primarily in specific closed systems. Their solutions are based on the assumption
that the system is well defined at each point in time and thus will not result
in the same performance on a more general system. However, these papers
made first steps into optimising the use of DVFS on a set of tasks in terms
of power consumption. More important, the work on intra-task voltage setting
[3,28] showed the importance of task characteristics which are not constant over
execution time (such as how memory bound a program is).

Dynamic schedule computation In contrast to the other real-time solu-
tions, Hong et al. [14] and Zhu et al. [34] proposed dynamic scheduling solu-
tions which work with no prior knowledge or pre-compilation of the tasks to be

16 Literature Survey

executed. While Zhu et al. only consider periodic hard real-time tasks, Hong
et al. manage sporadic tasks with unknown arrival time (which makes static
scheduling impossible) as well. Hong et al. present two algorithms to dynami-
cally compute the DVFS settings. Zhu et al. adapt a PID feedback controller
to dynamically set the core frequency.

Both Zhu et al. [34] and Hong et al. [14] present new algorithms and ap-
proaches to the problem of power management using frequency and voltage
scaling. These solution are not restricted to real-time system and have been
adopted by some research on non-real-time systems.

Soft real-time scheduling All previously presented papers deal with hard
real-time scheduling. Soft-real time systems are already close to common non-
real-time systems and the solutions presented in this area are easily applied to
them. In contrast to hard real-time scheduling a soft real-time scheduler does
not have to make promises to hold a deadline. However, missing deadlines will
decrease system availability/usability and therefore the scheduler should still
aim for it. Pering et al. [25] present a scheduler which determines workloads
empirically and schedules them according to these estimates to reach the dead-
lines. Of course, as these estimates may be wrong, deadlines might be missed
(hence soft real-time). This is an example of how the work on hard real-time
power management can be adapted and used in a more general system.

3.2.2 Non-real-time systems

Since in a non-real-time system one does not have the total knowledge given in
a real-time system, total power consumption can not be computed beforehand.
The operating system has to make decisions as to how it can safe power without
losing too much performance dynamically. This results in trying to minimise
the power/performance ratio, sometimes taking into account user preferences.

Similarly to real-time systems different approaches can be taken to facilitate
the decision of frequency scaling. Some solutions make use of pre-runtime com-
putation (e.g. solutions using a specialised compiler) while other solutions try
to minimise power consumption using only runtime computation.

Prior-knowledge DVFS

Hsu et al. [15] used a special compiler to add information about characteristics
of each block of a program which in turn can be used by the operating system to
decide on the throttling factor. Hsu et al. augmented programs with informa-
tion about the memory boundedness. The operating system then can throttle
the CPU during a memory intensive computation where the processor would
be mostly idle. Thus the system will reduce power consumption while losing
only little in terms of performance. The blocks are computed at compile time
and their memory characteristics added. The actual matching from memory
boundedness to throttling factor is computed using a pre-computed table. Such
a table is system specific and Hsu et al. generated it using profiling techniques.

Weissel and Bellosa [32] also consider task characteristics in their solution.
They used hardware event counter to profile the system and to identify the
counters which have most impact on power consumption. For their system the
computation resulting in a memory-related and a performance-related counter.

3.2 Single-Core Power Management 17

At runtime, this profiling data is then used to set the frequency to the best
setting for given counter readings. The event counter values are specific to a
task and the profiling data has to be regenerated for each system.

Both papers [15, 32] show the impact a task’s characteristic have on the
optimal setting of the frequency. Both groups used tasks’ memory characteris-
tics to decide the throttling ratio. However, both papers also need pre-runtime
profiling and in the case of Hsu et al. [15] even recompilation of the program
to be run. These drawbacks put these solutions in a disadvantage in terms of
practicability.

Runtime DVFS

Before any hardware support for frequency and voltage scaling was available
Weiser et al. [31] approached the problem of power management. They pro-
posed three algorithms to minimise their metric of million-instructions-per-joule
(MIPJ). Their three algorithms set a foundation in the area of processor power
management and are often referred to in later publications. Govil et al. [11] pre-
sented several flaws in one of the algorithms from Weiser. Govil proposed new
improved version and compared it to the original version. Lacking appropriate
hardware both Weiser and Govil used simulators to evaluate their algorithms.

Grunwald et al. [12] evaluated the algorithms proposed by Weiser et al. [31]
on real hardware (Itsy Pocket Computer with a StrongARM SA-1100 CPU).
Their test consisted of playing a film using the the algorithms from Weiser with
different parameter settings. However, different to the solutions presented by
Weiser et al. [31] on their simulator, the resulting power savings were minimal.
The poor performance resulted because the algorithms kept oscillating between
two frequency never using the optimal frequency between the two frequencies.

Like Hong and Zhu [14, 34], Varma et al. [30] applied the idea of a PID
controller to power management. Unlike Hong and Zhu, Varma et al. did not
consider a real-time system for their solution. Hence they don’t use the PID
controller to get the next throttling ratio by targeting the deadline of the task.
Varma et al. use the PID controller to predict the workload in the next time
unit. Using the predicted workload their system then adjusts the frequency
setting accordingly. An implicit drawback of using a PID controller is its need
for correct parametrisation. The extensive parametrisation of the algorithm
results in the algorithm becoming tailored to a certain system. This is another
disadvantage when compared to general-purpose algorithms such as the ones
presented by Weiser et al. [31].

The idea of using the memory boundedness of a task was already used in
publications by Hsu [15] and Weissel [32]. Isci et al. [19] use the same core
assumption in their work (i.e. that memory boundedness is the predominant task
characteristic to determine the use of DVFS). Different to Hsu and Weissel their
solution needs no pre-runtime computation or compilation of the program. Their
solution identifies the phases with distinct memory characteristics by matching
selected event counters with earlier values. Each time a previous pattern is
found, the power manager will assume that the load will develop as in the
previous cases and set the core frequency accordingly. Of course, this history
table will need some time first to fill up in order for reasonable decisions to be

18 Literature Survey

taken. Still, the algorithm does not make use of pre-runtime knowledge and its
computation is strictly online.

3.3 Multi-core Power Management

Multi-core system impose additional boundaries and challenges to power man-
agement. For instance, saving power using voltage scaling is usually only sup-
ported per-processor as opposed to per-core. Further considerations are needed
on NUMA systems to deal with performance dependencies between cores (see
section 2.3.3 for details).

Research has approached multi-core systems from different angles. A first
step in the direction has been made by special architectures like the multiple
clock domain processors used by Wu et al. [33]. Their system would allow
individual voltage and frequency settings for different parts of the processor.
For example, the integer processing core and the floating point processing core
might be run at different clock rates. Such systems are similar to today’s multi-
core systems in as much as they too support multiple clock domains, adding
complexity to the DVFS optimisation problem.

Like research on single-core power management, work with multi-core sys-
tems focused on using voltage and frequency scaling with different algorithms.
Thread migration has mostly been used as a method to increase performance
by exploiting tasks characteristics. For instance, two memory-bound tasks will
result in better performance when run on cores using a different memory bus.
Another use of thread migration on multi-core systems is found in work ad-
dressing thermal problems. Thread migrations can be a way to reduce local
hot-spots by scheduling two compute-intensive tasks on separate cores. To the
best of my knowledge, using thread migration to minimise power consumption
has not been addressed.

3.3.1 DVFS for thermal problems

Modern processors often are equipped with automatic temperature control.
When in danger of overheating they will stall execution autonomously to re-
duce heat output. Research in this area has therefore focused on keeping the
system’s core temperature below a certain threshold, or as low as possible.
Powell et al. [10] used a combination of careful assignment of new threads to
cores and thread migration to spread the heat production as evenly as possible
through the system. A similar approach has been chosen by Merkel et al. [23].
They used a special metric to decide on the assignment of threads to cores.
Donald and Martonosi [8] use a distributed DVFS algorithm to keep the core
temperature below a targeted threshold.

To summarise, these papers applied different power management techniques
in order to maximise performance. Some techniques may be applicable to min-
imising power consumption, such as the distributed DVFS algorithm presented
by Donald and Martonosi [8]. However, mainly relevant is the distinct use of
thread migration, even if not primarily to reduce power consumption.

3.3 Multi-core Power Management 19

3.3.2 Per-core DVFS

While current processors do not support full per-core DVFS but usually allow
only one voltage setting per die, this constraint is rarely addressed by research.
Therefore there is a set of papers tackling this special case and proposing algo-
rithms applying voltage and frequency scaling to individual cores.

Kadayif et al. [21] focus on optimising power consumption of parallel com-
putations. Their solution applies frequency scaling to cores trying to minimise
slack time when different threads of the program have to synchronise. The solu-
tion does not reduce performance, as the thread with the longest run-time will
always be scheduled at the maximal frequency. While the algorithm reduces
power consumption in most cases, it will not sacrifice performance for greater
power reductions.

Wu et al. [20] adapt a solution for multiple clock domain processors [33].
The main difference is, that they now have to consider parallel execution. As
a consequence, they change their earlier DVFS algorithm into a distributed
DVFS algorithm to be used on multi-core processors. The solution applies
throttling independently by identifying which cores are running critical threads.
Here, a critical thread is a thread upon which other threads are blocking and
thus is a major performance barrier for the system. A different approach to a
distributed DVFS algorithm is presented by Isci et al. [18]. The authors assign
a local power manager to each core which implements independent, open-loop
core-wide management actions. In addition, a global power manager is used to
issue individual power modes to each local manager. The global power manager
has the unique advantage to easily consider special constraint imposed by the
system’s architecture (such as non-uniform memory access).

3.3.3 Per-processor DVFS

Some of the most recent publications heed the architectural restriction of to-
day’s systems that do not allow voltage scaling to be applied to each core of
a processor individually. Merkel and Bellosa [22] apply DVFS to a processor
if all (or many) of its cores are running memory-bound threads. They reason
that in this situation the cores will mostly be stalled due to congestion of the
common memory bus and thus reducing the frequency will have little impact on
their performance. Their solution uses this method in combination with careful
thread to core assignment only as a last resort (i.e. if too many memory-bound
threads are present). The algorithm is implemented and evaluated on a quad-
core Intel processor running Linux. The evaluation of their DVFS scenario yields
a decrease in the power/performance ratio in the best case and no change in
the worst. While Merkel and Bellosa had mainly performance in mind (voltage
scaling is applied only in very few cases), they present a solution working on
current hardware to decrease the power/performance ratio.

Dhiman et al. [7] analysed the costs and benefits of deeper sleep states (down
to ACPI state C6) against dynamic voltage and frequency scaling. The results
reveal that it is advantageous to always run the processor at full speed and then
switch to a deep sleep state rather than running the processor at a low frequency
when its utilisation is low. However, I see some points of controversy. First,

20 Literature Survey

the deeper sleep states referred to by the paper are far from being supported by
a majority of consumer products. Therefore, the conclusion is not yet widely
applicable. Second, the paper does not deal with the restriction that even on
the latest hardware deeper sleep states (such as the used state C6) can not be
entered by an individual core but only by all cores of a processor in unison.

Snowdon et al. [29] presented in their most recent paper a power management
solution which applies DVFS using different event counters. Similar to Weissel
and Bellosa [32] they calculated which event counter are most important on the
system. Using pre-generated profiling data, their system then applied the best
setting according to the data. A central difference to earlier work is the separa-
tion of the model and the policy. While the model is extremely sophisticated,
it does not consider the dependence of the power consumption on thread/core
assignment. The policy presented in the paper applies DVFS depending on the
prediction of the model.

3.4 Summary

Past research in the area of power management has been focused on the use of
frequency scaling. For early research which was based on single-core processors
frequency scaling presented the only means of saving power without halting
the execution. Frequency scaling for single-core systems has been thoroughly
examined and many different solutions have been proposed.

Exploiting sleep states has until recently been straightforward. For instance
on a single-core machine, if no thread is runnable the processor enters a sleep
state. Apparently, optimising sleep state usage has not proven as effective as
voltage scaling. Only with the improved support of deeper sleep states of recent
processors has this additional dimension come into play.

Systems which consist of multiple multi-core processors are not widely spread
and thus it is not surprising that research in that direction has not had the
attention of others (like DVFS).

Chapter 4

Approach

4.1 Problem Statement

As presented in chapters 3 and 2, there are many possible approaches to power
management. For my thesis I concentrated on a new option given by multi-
core, multiprocessor systems (i.e. systems with multiple multi-core processors).
Such systems get used more frequently as multi-core processors become widely
available.

A particular property of a multi-core, multiprocessor system is the surplus
in power savings if a whole processor is put to sleep compared to if single cores
on different processors are put to sleep.

I therefore defined two different power states. A core resides in the sleep
state when no thread is running on it. The second state is the deep-sleep state
and can only be entered by all cores sharing a processor at once. Of course, the
cores will only enter the deep-sleep state once they have no runnable threads.
The two sleep states are defined by their power consumption and their wake-up
latency. A system running a set of threads will show varying power consumption
depending on which cores the threads are scheduled on. The power optimisation
problem is to choose the cost-optimal system state (i.e. assigning threads to
cores) from all possible system states (an example is given in the figure 4.1).

CPU 0 CPU 1

CPU 0 CPU 1

t0

t2 t3

t1

t0 t2

t3t1

Figure 4.1: An example of two dif-
ferent threads to cores assignment.
In the solution above, four cores
reside in the sleep state. In the
lower solution, four cores reside in
the deep sleep state. Therefore the
lower thread to core assignment is
preferable (in most cases)

22 Approach

I consider only these two power states because between them they make up
the difference of putting a processor of x cores to sleep or x cores on different
processors. Nevertheless, the model is not bound by this definition. The cost
model presented after the next section can easily be extended to include addi-
tional power states. In my model a power state is simply defined by its latency
and its power consumption (which of course are architecture specific and thus
parameters to the model).

4.2 General Approach

The solution to my problem will obviously include an optimisation of a system
state in regard to several constraints. For this I use a constraint logic solving
framework. The strength of such a framework lies in solving a problem where
constraints can be easily added, removed or changed. Of course, the solution
calculated by the constraint solving framework must then be applied to the
system.

As a base for the logic constraints to be used by the framework, I constructed
the formal cost model presented in the next section. The scope of the model is
to calculate the cost of every system state. The power manager can then apply
the state which generates the lowest cost to the system.

4.3 Formal Cost Model

I build the model bottom up, starting with a most idealised view and refining
assumptions each step. At each step I state which assumptions have been re-
moved and which new assumptions have been added in their place. A system
state is defined by the assignment of threads to cores and I assume that the
system may change its state after each (OS-defined) timeslice.

The cost of a state is a trade-off between power consumption and perfor-
mance available to the user. The relation between power (energy consumption)
and performance (amount of work done) is defined by the user.

Knowing the cost of each possible state, the system can choose the state
with the least cost to run next.

4.3.1 Energy consumption

Cores draw different amounts of power while residing in different power states.
The energy needed to run a next state is the energy needed while running in
the next state (state cost) plus the energy needed to change from the current
state to the next state (state change cost).

State cost

Defining the switch between states as instantaneous, I first draw up the cost of
the system being in a given state.

4.3 Formal Cost Model 23

Basic model In the basic model, the cost of running n threads is equal to the
energy used by n cores during the state. The power consumption of the system
in the various states is defined by the architecture.
Assumptions

+ each core has two states

• running (consuming power)

• sleeping (consuming no power)

+ all cores consume the same amount of power

+ each core can run at most one thread

+ state change is done instantaneously

Es = ltimeslice × ncrunning × Prunning

Es : energy used by the system in the given state
ltimeslice : duration of a timeslice in the system
ncrunning : number of cores (and/or threads) running
Prunning : power consumption of a running core

Power states As mentioned above, my model defines 3 different power states
with different power consumptions for each core. However, at this level state
change latency is still ignored.
Assumptions

+ each core has three states

• running

• sleep

• deep sleep

+ the power consumption in the different states is the same for all cores

Es = ltimeslice(ncrunning × Prunning + ncsleep × Psleep + ncdeep sleep × Pdeep sleep)
ltimeslice : duration of a timeslice in the system
Prunning : power consumption of a core when running
Psleep : power consumption of a core when sleeping
Pdeep sleep : power consumption of a core when in deep sleep
ncrunning : number of cores in running state
ncsleep : number of cores in sleep state
ncdeep sleep : number of cores in deep sleep state

24 Approach

State change cost

The model in the last section was used to calculate the cost of the system being
in a given state. It is now adapted to calculate the cost of the system changing
from the current state to the next state and then running in the next state.

As each core might reside longer in the state than only for the next timeslice,
I divide the energy needed for changing the state by the number of timeslices
for which the cores will reside in the state. In doing this not only when the state
is changed, but at every timeslice, the state change cost is ammortized over the
whole period the cores reside in this state.
Assumptions

− state change is done instantaneously

+ state duration is the same for all cores

+ power state change is done instantaneously

+ thread migration is done instantaneously

=⇒ E = Es + (Esc/ntimeslice)
E : total energy consumption of the next state
Es : energy consumption of the system in the new state (from subsection 4.3.1)
Esc : energy consumption during state change
ntimeslice : number of timeslices the cores will stay in the state

Power state change Changing the core’s or processor’s power state is not
instantaneous. As during the power state change the processor continues to
draw power, the model has to incorporate the energy used during this delay.
Assumptions

− power state change is done instantaneously

+ power consumption during state change is constant

+ power state changes are done sequentially

+ all cores have the same latencies for power changes

+ power state change latencies are symmetric (i.e. going to sleep has the
same latency as waking up)

4.3 Formal Cost Model 25

Esc = lsc pow × Psc pow

lsc pow = nscrun sleep × Lsleep + nscrun dsleep × Ldsleep

+ nscsleep run × Lsleep + nscdsleep run × Ldsleep

lsc pow : the time needed for the power state change
Psc pow : power consumption during power state change
nscrun sleep : number of cores changing state from running to sleeping
Lsleep : latency for power state change between running and sleeping
nscrun dsleep : number of cores changing state from running to deep sleeping
Ldsleep : latency for power state change between running and deep sleeping
nscsleep run : number of cores changing from sleeping to running
nscdsleep run : number of cores changing from deep sleeping to running

Thread migration Possible solutions for the next state will not always keep
the current thread/core arrangement and therefore thread migrations might be
part of the system changing from one state to the next. As with power state
changes, the cost of thread migration is the energy used until the migrations
are over and normal operation can resume.
Assumptions

− thread migration is done instantaneously

+ power state change and thread migration are done sequentially

+ the latency of thread migration is constant

+ power consumption during thread migration is constant

+ thread migrations are executed sequentially

Esc = Esc pow + Esc tm

Esc pow = lsc pow × Psc pow

Esc tm = ntm × Ltm × Ptm

Esc pow : energy consumed by the system while changing power states
Esc tm : energy consumed by the system while migrating threads
ntm : number of thread migrations needed to enter the next state
Ltm : latency of a thread migration
Ptm : power consumption during thread migration

4.3.2 Work output

A counterpoint to the energy cost is the performance of the system. The per-
formance of the system is equivalent to the amount of work processed by the
system’s computing cores. For example, if the system decides to run multiple
threads on the same core in order to save power, it will do so at the cost of lost

26 Approach

performance. So, it is necessary to weigh energy consumption of a state against
the amount of work the system will do during that state.

=⇒ Costtot = E − α×W
Costtot : total cost of the next state (to be minimised)
E : energy consumption of the system in the new state (from section 1)
α : user defined parameter to relate energy consumption and work output
W : work output (i.e. performance) of the system during the next state

Running multiple threads on one core

Each core that is running (a thread) contributes to the system’s performance.
Thus, whenever multiple threads are scheduled to run on the same core, work
output is diminished. As the system will stay in the next state only for the next
timeslice, the running thread will not be preempted. Thus, the work output of
each core depends only on the amount of work the core gets done per second
and the length of each timeslice.
Assumptions

+ overheads due to thread switching for pre-emptive multitasking are ig-
nored

+ all cores have the same, constant performance

W = ncrunning × Perf × ltimeslice

ncrunning : number of cores running in the next state
Perf : performance of a core (i.e. amount of work done by a core per second)
ltimeslice : duration of a timeslice in the system

4.3.3 State definition

In order to relate the different variables to each other a state variable has to be
defined. The state is denoted using superscript indices in all state dependent
variables. In the current model state dependent variables are:

• Costitot

• Ei, Ei
s, E

i
sc, E

i
sc pow, E

i
sc tm

• W i

• ncirunning, nc
i
sleep, nc

i
deep sleep

• nscirun sleep, nsc
i
run dsleep, nsc

i
sleep run, nsc

i
dsleep run

• ni
tm

In order to define a state some new architecture-defined variables are needed:

• C : set of all cores (system defined)

• T : set of all threads (user defined)

4.3 Formal Cost Model 27

A state is defined by a schedule Si, defining which thread runs on which core:

• Si = {(t, c)|t ∈ T ∧ c ∈ C ∧ ‘thread t runs on core c’}

Based on the schedule some more state variables can be introduced:

• Ci
running = {c ∈ C : ∃t ∈ T ((t, c) ∈ Si)}

(set of all cores where a thread is scheduled)

• Ci
deep sleep = {c ∈ C : c /∈ Ci

running∧∀c1 ∈ C(‘c1 and c on same CPU’ =⇒
c1 /∈ Ci

running)}
(set of all cores residing in the deep sleep state)

• Ci
sleep = {c ∈ C : c /∈ Ci

running ∧ c /∈ Cdeep sleep}
(set of all cores residing in the sleep state)

• M i = (Si \ Si−1) \ {(t, c) ∈ Si : ∀c1 ∈ C((t, c1) /∈ Si−1)}
(set of all thread migrations from state Si−1 to state Si)

4.3.4 Definition of variables

State-defined variables

Some variables can be defined using the sets defined in the last section. Effec-
tively, these variables are functions of the state Si.

• ncirunning = |Ci
running|

• ncisleep = |Ci
sleep|

• ncideep sleep = |Ci
deep sleep|

• nscirun sleep = |{c ∈ C : c ∈ Ci−1
running ∧ c ∈ Ci

sleep}|

• nscirun dsleep = |{c ∈ C : c ∈ Ci−1
running ∧ c ∈ Ci

deep sleep}|

• nscisleep run = |{c ∈ C : c ∈ Ci−1
sleep ∧ c ∈ Ci

running}|

• nscidsleep run = |{c ∈ C : c ∈ Ci−1
deep sleep ∧ c ∈ Ci

running}|

• ni
tm = |M i|

System constants

Other constants are either system defined, measurement results or need to be
approximated by what is known.

State duration The duration of each state is exactly a timeslice. The times-
lice is given by the Operating System as the unit of time each thread can run
at maximum.

28 Approach

Power consumption constants The power consumption of a core residing
in the different power states (Prunning, Psleep, Pdeep sleep) is usually made public
by the processor manufacturer. Otherwise, the values may be gathered using a
power sensing device either at system start-up, at run-time or beforehand.

The power consumption during certain special states (i.e. during power state
change (Psc pow) and during thread migration (Ptm)) need either be approxi-
mated or measured. As measurement of these values might prove difficult due
to the short interval time and thus high demand to the sensor device, I assume
them to be equal to the power consumption while running (Prunning).

Latency constants The latencies of changing the power state (Lsleep, Ldsleep)
consist of two parts. First, the latency of the actual power state change by the
core or the CPU is usually published by the processor manufacturer. Second,
the time needed for the operating system to halt or restart a single core has to be
measured at start-up or run-time as it is dependent on architectural constants
like number of cores in the system.

The latency of thread migrations (Ltm) depends on the operating system
and the system architecture. Thus it needs to be measured — be it at start-up
or at run-time.

Undefined variables

State duration In paragraph 4.3.1 I introduced the value ntimeslice in order
to amortise the cost of changing state over the whole state period. However,
as I don’t assume to have knowledge about thread lifetimes in my system, the
value must be approximated.

User parameter α As described in section 4.3.2, α is used to compare and
weight the energy consumption to the performance of the system. Using α
the user can choose the cost model to give more weight to the work output
(leading to a more performant system) or to the energy consumption (leading
to a more power economical system). The system constant Perf , introduced
in paragraph 4.3.2, is a constant inherent to the system. As it is a highly
abstract value, definition or measurement of this constant is non-trivial. Thus
it is advantageous to eliminate it mathematically by defining a new user defined
parameter β = α× Perf .

4.3.5 Conclusion

While the presented cost model is not in all parts an accurate description of
reality, it is a fair approximation taking into account the most important factors
of power consumption. Despite the many assumptions, the model has become
increasingly complex. In the following, I list the complete model that has been
extracted after all the refinement steps.

4.3 Formal Cost Model 29

Assumptions

• core has three states

– running

– sleep

– deep sleep

• the power consumption in the different states is the same for all cores

• thread migration is done instantaneously

• power consumption during state change is constant

• power state changes are done sequentially

• all cores have the same latencies for power changes

• power state change latencies are symmetric (i.e. going to sleep has the
same latency as waking up)

• power state change and thread migration are done sequentially

• the latency of thread migration is constant

• power consumption during thread migration is constant

• thread migrations are executed sequentially

• overheads due to thread switching for pre-emptive multitasking are ig-
nored

• all cores have the same, constant performance

Costitot = Ei − β ×W i

Ei = Ei
s + Ei

sc

Ei
s = ltimeslice(ncirunning × Prunning + ncisleep × Psleep + ncideep sleep × Pdeep sleep)

Ei
sc = Ei

sc pow + Ei
sc tm

Ei
sc pow = Psc pow × (nscirun sleep × Lsleep + nscirun dsleep × Ldsleep

+nscisleep run × Lsleep + nscidsleep run × Ldsleep)

Ei
sc tm = ni

tm × Ltm × Ptm

W i = ncirunning × ltimeslice

β = α× Perf

Chapter 5

Implementation

My implementation is described in two parts. In section 5.1 I describe the
implementation of the cost model using ECLiPSe. Section 5.2 describes my
solution to put cores to sleep and wake them up again. How I combine the
two parts is described in section 5.3. Section 5.4 points out what has not been
addressed by my implementation.

5.1 ECLiPSe Implementation

The formal cost model introduced in section 4.3 provides the formulae needed to
calculate the different costs of a system and how they are combined. For a given
state it will produce a corresponding cost value dependent on system and user
parameters. To find the optimal state, I can evaluate the cost of every possible
system state and then choose the state which yields the minimal cost. I chose
to implement this using the constraint logic programming system ECLiPSe (see
2.5). Using its Prolog-like language, adding and removing constraints to build a
complete model comes naturally. Moreover, ECLiPSe already provides libraries
which can be used to minimise the cost of a model. For the optimisation I
chose the branch and bound library. Its minimisation predicate will traverse
the whole solution space returning the solution yielding the lowest cost (for
an explanation of how ECLiPSe traverses the solution space see the paragraph
Execution scheme in section 2.5).

The initial query to calculate the system uses the optimisation predicate
given by the branch and bound library. This will find the state yielding the
minimal cost out of all states satisfying the model. Of course, if no satisfying
state is found the predicate will fail. The model itself consists of two parts: the
predicates which generate the state to be evaluated, and the predicates which
will evaluate the cost of that state using the formulae derived in the formal cost
model in section 4.3. An advantage of the split implementation is that each
part can, if necessary, easily be adjusted to new requirements without having
to change everything.

5.1 ECLiPSe Implementation 31

5.1.1 State generation

As introduced in section 4.3.3, a state is defined as a set of thread/core pairs.
These pairs represent thread to core mappings indicating for each thread on
which core it is to be run. It is possible that multiple threads are mapped to
the same core and that some cores have no threads mapped to them. If a core
has no threads assigned to it, it will sleep.

In the ECLiPSe implementation the state is computed in a central predicate
save_next_state/1. In the general implementation of the predicate any map-
ping of threads to cores which has every thread mapped to a core is a possible
solution. Obviously, this leads to multiple possible solutions which span the
solution space. From the state generated by this predicate, every other state
variable declared in sections 4.3.4 and 4.3.3 of the formal cost model can be cal-
culated. The state variables will then be used in the second part of the ECLiPSe
implementation to calculate the cost of the generated state.

5.1.2 State evaluation

To evaluate a state and compute its cost, I added some code to the ECLiPSe
program which transcribes the formal model from section 4.3. As the model
consists solely of mathematical formulae and all needed variables have been
calculated in the first step, there is a one to one mapping between the predicates
of the ECLiPSe program and the formulae of the formal model. The state
evaluation consists only of the cost formulae derived from the formal model and
the model is not further constrained.

For example, the energy used during thread migration (Esc tm) is defined in
the formal model as:

Esc tm = ntm × Ltm × Ptm

Esc pow : energy consumed by the system while changing power states
Esc tm : energy consumed by the system while migrating threads
ntm : number of thread migrations needed to enter the next state
Ltm : latency of a thread migration
Ptm : power consumption during thread migration

The ECLiPSe implementation of this function is represented by the predicate
thread_migration/1:

thread_migration(EnergyThreadMigration) :-
getval(migrations , Migrations),
NTM is length(Migrations),
lat_thread_mig(LTM),
power_thread_mig(PTM),
EnergyThreadMigration is NTM * LTM * PTM.

The return value of the predicate EnergyThreadMigration is calculated exactly
the same way as the Esc tm variable from the formal model. In section 4.3.4 I
have referenced some variables which are either given by the system or by the
user. All those variables are present in the ECLiPSe model as dynamic variables
which must be set by the system before the first query.

32 Implementation

5.1.3 Improving execution

The general implementation of the ECLiPSe model can be improved in different
parts. Some improvements affect execution in general and some in individual
cases.

Execution frequency

In the formal cost model (section 4.3) I assume the model is reevaluated after
each timeslice. However, the solution retrieved by the model will stay constant
for most of the time. Only the arrival of a new thread or the termination of a
running thread can put the system in a state where its thread/core assignment
is non-optimal in regard to the model’s parameters. Thus, it suffices to query
the model for a new solution only when a thread is created or a running thread
terminates.

As a thread’s affinity might change during its execution, this might seem
to violate the possibility of extending the model to include thread affinity into
the cost computation. As a solution, such a thread could be modelled as two
threads, each with constant thread affinity.

Decreasing the solution space

The general save_next_state/1 predicate will satisfy any assignment of threads
to cores. This leads to a solution space with an exponential size on the order
of mn where m is the number of cores and n is the number of threads. The
ECLiPSe constraint solver will try each of these states. Most will not satisfy
all following goals and many are redundant due to the symmetry of the sys-
tem. The amount of unnecessarily evaluated states leads to a runtime of several
minutes – even for comparatively easy cases.

For any practical use such a runtime for the optimisation is too high. Hence,
I had to optimise the runtime of the ECLiPSe model. Since the whole so-
lution space is traversed during minimisation, runtime can be decreased by
restricting the solution space. If the individual goals of the model are more
constrained (leaving less choice to the interpreter) the resulting solution space
is much smaller and thus the solution will be found faster. While reducing the
amount of states generated is an efficient optimisation, one has to make sure
that the assumptions made to remove states from the solution space do not
remove the optimal state as well.

I have implemented two different specialised versions of the general
save_next_state/1 predicate to handle two special cases. Both cases are op-
timised to handle a single change (either removal or addition of a thread). In
the case of multiple changes the system will process them sequentially. If the
number of pending changes is higher than the runtime gained, the general, non-
optimised version can be queried. As the general version will examine every
possible state, its runtime is not dependent on the number of removed or added
threads.

Adding a thread The first optimisation treats the addition of a single thread
to the system. If a single new thread has to be scheduled, there are only few
sensible actions to be considered.

5.1 ECLiPSe Implementation 33

1. A new thread is assigned to any of the cores.

2. Possibly migrate threads which are sharing a core to a new core.

3. Exclude migrations forming chains from the above rule.

The first action is reasonable since a newly created thread has to be scheduled
on a core. In order not to constrain the solution more than necessary, any core
is a possible destination.

The second action covers the case where the benefit in work output is higher
then the penalty in power consumption if new cores are activated. This can
be the case if enough threads are available to wake up a whole processor which
was sleeping. As the work output is linearly dependent on the number of cores
running, it might exceed the increase in power consumption caused by waking up
the processor (depending on the setting of the model parameter β). Different to
the first action, the section action is optional and the solution might not include
any newly activated cores.

The third action restricts the additional migrations considered by the second
action (to activate new cores). The migrations considered by the second action
include the case where a thread t1 is migrated to a core c1 and a second thread
t2 is migrated from core c1 to core c2 (see figure 5.1). This case would be
identical to the case where thread t1 is migrated to core c2. As more migrations
are involved in the first case, the second case is sure to produce the lower cost
(therefore, the first case needs not be considered).

core c0 core c1 core c2

t1

t2 t2

t1 t1

Figure 5.1: Migration chain — the striped migration will always yield a lower
cost than the combination of the other two

This last restriction might not be applicable in a heterogeneous system where
thread t1 might run on core c1 but, for limitations imposed by the system, not
on core c2, whereas thread t2 can run on both cores.

These optimisations are quite simple and more is possible if one uses the
symmetric property of the system at hand. However, my goal is to keep the
implementation as general as possible. These optimisation sufficed to make the
case of adding a thread usable in this work.

Removing a thread The second optimised case is the termination of a single
thread in the system. To reduce the runtime of this case to an acceptable level,
I had to leave behind much of the generality of the implementation. Similarly
to the case of adding a thread, I have split up the solution space into a few
actions.

34 Implementation

1. Migrate one other thread to the core of the dead thread.

2. Migrate all threads sharing the processor with the dead thread to cores
on other processors.

3. Keep the old state.

In contrast to the actions proposed in the case a thread had been added, all of
these action are optional and exclusive, meaning that only one or none of the
action is considered to generate the solution. The first action will most likely be
considered if there is a core running multiple threads. In that case, migrating
a thread to the dead thread’s core might increase the work output without
increasing the power consumption (in comparison to keeping the old state).
The second action might be taken if moving all remaining threads from the
dead thread’s processor to other processors will save more energy than diminish
the work output (not forgetting the β factor, of course). Finally, the best state
might be just the one the system was in before the thread died. In which case
the third action will be taken and no migrations will be necessary.

These optimisation assume a lot in terms of symmetry and most probably
would have to be replaced when facing a more heterogeneous system. However,
the optimisations run well on today’s hardware.

5.2 Barrelfish Implementation

I have extended the Barrelfish operating system to make use of the information
available from the ECLiPSe model. The system knowledge base (SKB) is used
to query the ECLiPSe program. The computed solution is then applied to
threads of a single process.

5.2.1 Accessing the Barrelfish SKB

The Barrelfish SKB has two ways to be fed information. First, static files can
be put in a special header file and can then be loaded by ECLiPSe just like a
file (Barrelfish currently lacks a real file system, which is why the file has to be
loaded in a header file). Second, the SKB has an asynchronous interface which
will send queries directly to the ECLiPSe framework.

I use the static file to load my ECLiPSe program and then the asynchronous
query interface to assert or retract state and parameter variables.

A set of wrapper functions is used to calculate a new solution and update
the ECLiPSe database accordingly. Also, the ECLiPSe model is initialised to
reflect the system with no running threads (i.e. the initial state). The wrapper
functions return the solution of the query as the list of migrations needed to
alter the current system state to the one returned by the ECLiPSe program.

5.2.2 Apply the system state

After application of the migrations calculated by the SKB, cores which have no
thread running are supposed to halt. As Barrelfish doesn’t yet support halting
individual cores, I implemented the feature as a simple extension.

5.2 Barrelfish Implementation 35

Halting a core

In Barrelfish each core runs its own kernel of the operating system. The kernel
automatically halts the core if the scheduler has no runnable user-space dis-
patcher. The status of a dispatcher (i.e. if it is runnable or not) can be set by
the dispatcher itself and is used by the kernel when it decides which dispatcher
to schedule next. So, if every dispatcher on a core sets its status accordingly,
the core will halt.

Besides the dispatcher used for my implementation (see section 5.3) each
core additionally runs its own monitor. The monitor is a privileged dispatcher
providing part of the operating system interface to user processes. It is natural
to let the monitor take a central role in the process of halting a core. In my
implementation, the monitor provides an interface to other dispatchers which
gives a dispatcher the possibility to register to the monitor as inactive. Once
all dispatcher of a monitor’s core are inactive, the monitor will set its own flag
to not runnable. After that all dispatchers on the core will be not runnable and
the kernel will halt the core. For this evaluation implementing the registration
for only one dispatcher sufficed but the concept and the implementation can
easily be extended.

Waking a core up

Once a core has halted (and thus is sleeping), a mechanism is needed to wake
the core up. A sleeping core will still handle any interrupt. To wake a core
up an inter-processor interrupt (IPI) is sent to that core. Upon receipt of any
interrupt the kernel will send a message to the dispatcher associated to it and
schedule that dispatcher.

Again, an obvious choice to handle the IPI is the monitor dispatcher. Aside
from being the last dispatcher on a core that becomes inactive, the monitor
dispatcher is the first dispatcher on a sleeping core that is scheduled. In order
to return all applications to an active state each dispatcher has to be activated
(i.e. marked as runnable).

To achieve this, the IPI handler within the monitor sets its own status flag
to runnable and then send an intra-core message to each of the dispatchers
registered with the monitor as inactive. As explained in section 2.4, intra-
core messages are delivered by the kernel. A dispatcher which has pending
intra-core messages is scheduled without regard to its status flag. Thus, a intra-
core message can be used to activate a dispatcher. Upon receipt of a monitor
activation message, a dispatcher sets its status flag to runnable and continues
normal operation.

Sending an IPI is a privileged operation and thus I added a system call with
which the monitor can send an IPI to other cores. The feature is exported to
all user processes as a monitor service to notify other cores.

Message handling

The main problem with sleeping cores in an operating system like Barrelfish
lies in the inter-core messaging system. As explained in section 2.4, inter-core
messaging in Barrelfish is essentially writing to and reading from memory shared
by the sender and the receiver. Every dispatcher keeps its own list of inter-core
channels and polls for new messages each time it is scheduled. Therefore, if a

36 Implementation

dispatcher is descheduled — which will happen when halting its core — it will
not notice new messages in the shared memory channel.

Consequently, the sender of a inter-core message might have to activate the
receiving dispatcher after sending the message. To activate the receiver, the
sender can send an IPI to the receiving core. As discussed in the last section,
the IPI will wake up the other core and activate all dispatchers running on
that core. The receiving dispatcher will then handle the message waiting in the
shared channel.

5.3 Combining ECLiPSe and Barrelfish

The previous sections describe how the solution is found (using the ECLiPSe
model and the SKB) and how it can be applied, leaving this section to de-
scribe the part of the implementation which queries the SKB for a solution and
executes thread migration and creation as necessary.

Since the SKB is already a central entity in the system, my implementation
uses a single dispatcher to handle the communication with the SKB. In my
implementation this dispatcher is called coordinator.

The coordinator is the main actor in my implementation. It initialises the
model within the SKB, queries the SKB for a new solution when necessary,
applies the solution to the system and updates the ECLiPSe model to reflect
the new system state. The coordinator has an inter-core connection to a client
dispatcher on each core. Using these connections, the coordinator coordinates
clients to migrate a thread or start a thread. Also, the clients inform the coor-
dinator before going inactive so that the coordinator knows at all times which
cores are running and which are sleeping.

The implementation of the clients is quite simple. The client applies the
commands (migrate a thread or create a thread) sent by the coordinator using
the Barrelfish thread library. If the client has no more threads to run, it notifies
the coordinator and then registers with the monitor as inactive. As in my setup
the client is the only dispatcher besides the monitor, the monitor will make itself
unrunnable and then the core halts.

The communication between the coordinator and the clients is strictly syn-
chronous. Every message has an appropriate response (e.g. an acknowledge-
ment) and the coordinator will wait for each response before sending the next
message. Obviously, I preferred a simple implementation over performance or
feature completeness beyond what I needed for my evaluation.

5.4 Limitations

As already mentioned my implementation neither claims performance optimality
nor feature completeness. This section points out the different limitations of my
implementation and how they affect the resulting solution.

5.4.1 Simplified implementation

In my implementation the solution from the SKB is processed by a separate
dispatcher (the coordinator) and then sent to other cores (the clients) to apply

5.4 Limitations 37

the solution. The main drawback is that only these dispatchers (the coordi-
nator and clients) can create threads obstructing the possibility of Barrelfish
to run multiple processes. An improved implementation should be part of the
Barrelfish library, making the power manager ubiquitous and giving it global
knowledge.

A second drawback in the Barrelfish implementation is the use of thread
migration. As during my thesis Barrelfish was undergoing substantial changes,
thread migration was not available. Instead, I simulate thread migration by
killing a thread on the source core and creating it on the destination core. This
does not impede the conclusions drawn in this paper, as the time it takes to
complete a migration is system specific anyway (and a parameter to my cost
model).

5.4.2 Possible optimisation

My implementation of the coordinator and especially the way it sends out the
commands is as simple as possible. Its strictly synchronous implementation
could gain much in terms of execution speed if changed to be more asynchronous.
Performance was not central to my thesis and evidently my implementation will
need more time to process the solution if many changes (i.e. migrations) are
involved. However, my approach to query for a new state at thread creation or
termination leads to the general case, where only few migrations are necessary.
The disadvantage of a lower performance to update the system state to the new
solution is therefore kept low.

5.4.3 Possible extensions to the model

For sake of practical applicability I had to severely optimise the Prolog model
for a shorter runtime. To make these optimisations I had to exploit the sym-
metric architecture of today’s processors. However, if a different solution for
the runtime problem can be found, the cost model will prove easily extensible.
The model might be extended to consider further sleep states, thread affinity to
other threads or cores, cores yielding varying performance and more.

Chapter 6

Evaluation

As for most power management solutions, I evaluate my solution in terms of
performance and power consumption. In section 6.1 I describe the system used
for evaluation, including latency measurements of changing power state and mi-
grating a thread as well as some preliminary power consumption measurements
of the system. In section 6.2 I describe the exact procedure applied during
evaluation, and finally in section 6.3 I present and discuss the results of the
evaluation.

6.1 System

The ECLiPSe power model can be easily adapted for different machines. For
my evaluation I choose an Intel Xeon system consisting of:

• Intel workstation board s5000XVN

• 2 quad-core 2.66GHz Xeon X5355 processors (see figure 6.1)

• 8GB of RAM

CPU 0 CPU 1

core 0 core 1

core 2 core 3

core 4 core 5

core 6 core 7

Figure 6.1: Processor and core
layout of the system used for
evaluation

6.1.1 Latency measurements

Apart from the layout of the cores and the processors, the ECLiPSe model
needs latencies of power state changes and thread migration. These values are
operating system and architecture dependent. I have measured the latencies
using the HPET clock [16].

6.1 System 39

HPET ticks (σ) ns (σ)
Migration 107 (2.8) 7473.0 (198.4)

Table 6.1: Migration latency measurements

Latency of thread migration

The latency of thread migration depends heavily on how it is implemented. As
explained in section 5.4.1 the user library of Barrelfish does not yet support
thread migration. My implementation is a simple extension and implements
only a limited version of thread migration. The measurements (table 6.1) depict
the whole time span from the message sent to the first client by the coordinator
until the second client confirms successful migration. Of course, the latency for
thread migration increases with the system’s load.

Core state change latency

µs (σ) Halt Wakeup State change
State Change 6004.5 (35.76) 6182.8 (35.20) 6093.7 (95.96)

Table 6.2: State change latency measurements

The latency to halt or wakeup a core does not only encompass the time
needed for the core to change its state. Halting a core as presented in section
5.2.2 of the implementation is more complex than that. Therefore, the latency
must include the full time span from the moment the decision to change the
state of a core is taken to the moment the state has actually been changed.

The latency of halting a core includes the time needed to inform the coor-
dinator and registering with the monitor. After both dispatchers are inactive,
still some more time will be spent by the system until the kernel executes the
actual halt.

The time span to wake a core up starts when an inter-core message is to be
sent to a sleeping core. The coordinator will instruct the monitor to send an IPI
to the other core. Only when the receiving dispatcher is scheduled once more
and handling the message is the wakeup sequence complete.

Table 6.2 shows the resulting measurement data. The difference between
waking a core up and halting a core is most likely due to the IPI which is
needed to wake a core up. Also the latency needed by the hardware as specified
by Intel is not significant if related to the latency caused by the software. My
ECLiPSe model uses the same value for wakeup and halt latency. For a system
with a higher difference between the two latencies, the model can be easily
adapted.

6.1.2 Power measurements

During the evaluation I used a standard watt meter which returned measure-
ments with a period of one second. The power measurements are taken at
the computer’s power outlet. As I am using a normal off-the-shelf system and

40 Evaluation

measuring the power consumption at the computer’s main power outlet, the
processor is not the only power consumer in the system. Thus it is to be ex-
pected that the measurements taken will not be constant but have a certain
variance due to the influence of other system components.

To show the impact the cores’ power states have on the systems’ total power
consumption I have made some preliminary power measurements at different
system states.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160

P
ow

er
 (

W
at

t)

time (seconds)

cores 0 to 7
cores 0 to 6

cores 0 to 5
cores 0 to 4

cores 0 to 3
cores 0 to 2

cores 0 to 1
core 0 running

raw data
average data

base power consumption

Figure 6.2: Halting the systems’ cores sequentially

Figure 6.2 shows the measurements taken while sequentially halting the in-
dividual cores of the system. The base power consumption depicts the system’s
power consumption when all cores are powered down. As one would suspect, the
biggest drop in power consumption is after halting core 4. Because cores 4 to 7
share a core, after halting core 4 all cores of the processor are halted and thus
can transition into deep sleep. Notable as well is that the remaining drops are
not as constant as the specifications suggest. The high drops after halting core
6 and after halting core 2 is explained by the fact that the Intel Xeon quad-core
processor is constructed using two dual-core units. Thus, after halting core 6
and after halting core 2 the benefit is higher than in the normal case because
the whole unit is sleeping. This is similar to what is observed when the whole
processor is sleeping. However, using the measurement tools at hand, the actual
difference is difficult to quantify. Thus and in order to keep the model general,
my parameters for the model stick to the values given by Intel.

I already mentioned that a certain variance is to be expected in all power
measurements. Caused by the power consumption of other system components
than the processor. To visualise the variance, figure 6.3 depicts the power con-
sumption of the system while having all processors running for a longer period.
It can be seen, that even though the system is stable the power consumptions
varies by little more than 10 Watts. The variance is still smaller than the power

6.2 Evaluation procedure 41

 280

 300

 320

 340

 360

 380

 400

 420

 0 2000 4000 6000 8000 10000 12000 14000

P
ow

er
 (

W
at

t)

time (seconds)

Power Consumption

Figure 6.3: Power consumption while all processors are running

savings possible by halting cores and thus no impediment to my evaluation.
To show the power savings possible by optimising the assignment of threads

to cores, I have measured the system’s power consumption for different setups
where four cores are running. Table 6.3 shows the data. The table shows the
four possible setups when ignoring symmetrical possibilities. The measurements
show that the maximal power savings when running four threads are about 25
Watt.

Cores running Watt (σ)
Best case 0,1,2,3 319.9 (1.2)

0,1,2,4 337.2 (0.4)
0,1,4,5 337.1 (0.4)

Worst Case 0,2,4,6 346.1 (0.4)

Table 6.3: Power consumption of different 4-core setups

6.2 Evaluation procedure

To evaluate my implementation I use compute-bound workload threads which
will start and terminate at pre-defined points in time. As the workload I use
a simple prime-number generator. I chose a prime generator for it is obviously
compute-bound and can easily be migrated.

As a comparison a trivial thread-placement algorithm nextFree is considered,
where new threads are simply scheduled on the next free core. My implemen-
tation is tested with different settings of the parameter β myBetaXX. As a
reminder, the β parameter represents the weight of the performance. A higher

42 Evaluation

β results in a solution with higher performance whereas a lower β results in
lower power consumption.

The measurements are taken using four different evaluation sequences. An
evaluation sequence defines when each workload thread is created and when it
terminates. Of course, the implementation of the cost model has no notion of
when a newly created thread will terminate.

The first evaluation sequence constant is the trivial case, where eight threads
are started and kept running for a long time. Thus, when applied to this se-
quence the different algorithms will change the state only at the start. After all
eight threads are running, the system will keep a constant state not effectuating
any migrations.

The exploit evaluation sequence is constructed to exploit the peculiarity of
my implementation that it re-evaluates the system state after threads terminate.

The arbitrary sequence has been arbitrarily put together and uses a total
of 19 threads. The arbitrary sequence has no long spans where no threads are
created or removed because during such periods the system state would not
change.

As a last variation, I use the arbitrary sequence but with much shorter
intervals between the events (thread creation and termination).

6.3 Results

6.3.1 Evaluation sequence constant

The constant evaluation sequence simply starts eight threads and keeps them
running for 165 seconds. I’ve evaluated the sequence with β settings of 25, 50,
85, 100, 200, 300 and the nextFree algorithm.

The graph in figure 6.4 displays the measurements. The system’s perfor-
mance is calculated by averaging the performance of all threads of the system.
The energy is simply measured using a common power meter.

The line Base power consumption at 1100 Wmin is the power that the system
would have consumed if all eight cores were halted for the time of the evaluation
sequence. Thus it represents the theoretical lower bound of what is possible
in terms of energy consumption while applying processor power management.
One has to consider that in order to reach this theoretical lower bound in power
consumption the system’s performance would drop to zero. Thus it is important
to notice that the range possible for evaluation in terms of power consumption is
bound by the system’s base power consumption, while the performance’s range
can drop to 0.

The goal of power management is to minimise power consumption while
maximising the system’s performance. Thus an upper bound for performance
is given in this evaluation by the nextFree algorithm. The nextFree algorithm
needs effectively no computation and by design never does migrations. There-
fore, while using the nextFree algorithm the system does not spend additional
time querying a model or applying new states besides what is necessary for
thread creation.

The two algorithms myBeta300 and nextFree behave exactly the same in
terms of which state was chosen. As the two algorithms generate the same set
of system states, their power consumption is equal. Performance of myBeta300

6.3 Results 43

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

myBeta25 myBeta50 myBeta85 myBeta100 myBeta200 myBeta300 nextFree
 0

 200

 400

 600

 800

 1000

 1200

E
ne

rg
y

(W
m

in
)

P
er

fo
rm

an
ce

 (
m

ill
io

ns
 o

f i
te

ra
tio

ns
 p

er
 s

ec
on

d)

Optimisation algorithm

Base power consumption
Power consumption

Average performance

1267.4

1358.4

1541.3 1548.7 1555.9 1563.4 1563.1

122.9

498.8

933.1 947.2 959.8 965.7 966.1

Figure 6.4: Power and performance values running constant

is slightly lower which can be explained by the additional computation needed
by myBeta300 to query the ECLiPSe model.

The graph shows how power consumption and performance decreases as the
β parameter is decreased. As each new thread is started, the ECLiPSe model
compares the benefit in work output if the thread is put on a new core to the
cost of activating that core from its sleeping state. In the case where the core is
part of a still sleeping processor (i.e. all its cores reside in deep sleep), the cost
of activating that core is much higher (due to the higher power savings when a
core is in deep sleep). This comparison is biased using the β parameter.

The algorithms myBeta85, myBeta100 and myBeta200 show only a slight
decrease. Their solution differs as to when exactly the second processor is acti-
vated. In each case, the first four threads are assigned each to an individual core
(thread 0 on core 0 etc.). Due to the lower β setting (compared to myBeta300),
the fifth thread is not assigned to a core on the second processor but kept on
the first processor. As each new thread starts, the cost of activating the second
processor is compared to the benefit of the additional work output if all threads
were to run on their own core. For myBeta200 this is the case when the sixth
thread starts, for myBeta100 after the seventh thread starts and for myBeta85
after the eighth thread starts. Once all eight threads have been started, these
algorithms all have each thread running on an individual core.

The algorithms myBeta25 and myBeta50 use such a low setting that the
ECLiPSe model will never consider to activate the second processor. Thus in
both cases all eight threads run on the first four cores for the whole length of
the sequence. Thus, the steeper decline in power consumption and performance.
Using myBeta25 only the first core was running all eight threads. As the graph

44 Evaluation

shows, the system’s performance with myBeta25 is one-eighth of the system’s
performance with nextFree.

6.3.2 Evaluation sequence exploit

The exploit evaluation sequence (shown in figure 6.5) is designed specifically in
favour of my solution. It assumes the usual approach would not recompute the
thread to core assignment when a thread terminates. To express this, I compare
the two algorithms myBeta300 and nextFree which displayed similar power and
performance numbers in the last evaluation sequence. NextFree is implemented
with the mentioned flaw that it does not rearrange the threads when a thread
terminates. For both algorithms, the eight threads will initially be scheduled
on individual cores (i.e. thread 0 on core 0 etc.). The difference lies in what
happens after threads 1,3,5,7 terminate.

time (s)

thread 0

thread 1

thread 3

thread 2

thread 5

thread 4

thread 7

thread 6

Figure 6.5: The exploit evaluation sequence

The nextFree algorithm simply ignores thread terminations and lets the re-
maining four threads run on cores 0,2,4,6. Looking back at table 6.3, this is the
worst case possible for having four cores running.

Conversely, the myBeta300 algorithm re-evaluates the system state after
each thread termination and thus migrates the remaining threads (0,2,4,6) all
onto the same processor.

The graph in figure 6.6 displays the measurements taken for the two algo-
rithms. As was to be expected, both algorithms yield close to the same system
performance. The two different core setups are equal in terms of performance.
However, myBeta300 has a lower power consumption. The difference is about
50 Wmin. From table 6.3 it can be seen, that the power consumption difference
of the two core setups (0,1,2,3 vs. 0,2,4,6) is about 25 W. Those 25 W added
over the sequence’s time span yield the 50 Wmin.

The possible energy savings seem small in comparison to the total energy
consumption. However, my solution optimises the use of processors only and
saving 50 Wmin corresponds to saving 16% of the theoretical possible power
savings.

6.3 Results 45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

myBeta300 nextFree
 0

 200

 400

 600

 800

 1000

 1200

E
ne

rg
y

(W
m

in
)

P
er

fo
rm

an
ce

 (
m

ill
io

ns
 o

f i
te

ra
tio

ns
 p

er
 s

ec
on

d)

Optimisation algorithm

Base power consumption
Power consumption

Average performance

1383.1
1438.2

1068.1 1069.6

Figure 6.6: Power and performance values running exploit

6.3.3 Evaluation sequence arbitrary

The graph in figure 6.7 shows the power consumption and the performance of
the system while running the general evaluation sequence (Figure 6.8) and using
the different algorithms for thread placement.

Comparing my solution using different parameters (myBeta50, myBeta100
and myBeta300) additional power savings are observable for lower settings of β.
As already seen in the graph for the constant sequence (figure 6.4), the drop in
performance is much more severe. A possible reason for this is that adjusting a
system’s overall performance by running multiple threads on the same core does
not allow fine-grained tuning. Each time two threads are put on the same core
their performance will effectively be halved. MyBeta50 focuses on minimising
power consumption in such an extreme way that the second processor is never
powered up. Thus, all threads are running on the first four cores leading to a
massive reduction in performance.

A β setting of 300 favours performance at the expense of power consumption.
For the given sequence the model will never result in a system state where mul-
tiple threads are sharing a core. The algorithm myBeta300 performs nearly as
well as the upper bound in performance given by nextFree. However, myBeta300
does significantly better in terms of power consumption.

In contrast, the myBeta50 favours lower power consumption at the expense
of lower performance. Comparing it to NextFree, one has to keep in mind
that, due to the system’s base power consumption, the maximal possible energy
saving would be 399 Wmin while the performance’s range can reach zero. Thus
the maximal possible loss in performance for the nextFree algorithm would be
913 million iterations per second. In view of this, a drop in energy from 1499

46 Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

myBeta50 myBeta100 myBeta300 nextFree
 0

 200

 400

 600

 800

 1000

 1200

E
ne

rg
y

(W
m

in
)

P
er

fo
rm

an
ce

 (
m

ill
io

ns
 o

f i
te

ra
tio

ns
 p

er
 s

ec
on

d)

Optimisation algorithm

Base power consumption
Power consumption

Average performance

1342.1

1432.4 1455.1
1498.8

562.9

801.8

908.8 913.2

Figure 6.7: Power consumption and Performance running arbitrary

Wmin (nextFree) to 1342 Wmin (myBeta50) corresponds to a drop of 39% of
the possible energy savings. While the drop in performance from 913 million
iterations per second(nextFree) to 563 million corresponds to a drop of 38% of
the possible performance loss. Therefore, if put in relation to what is possible,
the changes in power and performance correlate better than the graph would
suggest.

6.3.4 Evaluation sequence overload

The last evaluation sequence uses the same order of events as the general evalua-
tion sequence. However, in order to evaluate the algorithm’s performance under
stress, the time spans between events (creation and termination of threads) is
reduced below thread creation latency. Thus for all algorithms, a queue of events
will build up which has to be processed. While the latency of the nextFree al-
gorithm is bound by the latency of thread creation, the myBeta300 algorithm
needs additional time to query the ECLiPSe model. At three points during the
sequence, the time between events is longer to let the algorithms to catch up.

The graph in figure 6.9 shows the measurements for the two algorithms
myBeta300 and nextFree. The overload evaluation sequence is much shorter
than the other sequences leading to lower total energy consumption. As already
shown, longer computation time does not significantly impact the performance,
and this remains true even under stress.

The energy saving of myBeta300 relative to the lower bound are for over-
load 9.4% whereas for general it results to 10.75%. While myBeta300 performs
slightly worse under stress in terms of energy saving, the difference is not sig-
nificant.

6.3 Results 47

ti
m

e
 (

s)

th
re

a
d

 0

th
re

a
d

 1

th
re

a
d

 3

th
re

a
d

 2

th
re

a
d

 5

th
re

a
d

 4

th
re

a
d

 7

th
re

a
d

 8

th
re

a
d

 9

th
re

a
d

 6

th
re

a
d

 1
2

th
re

a
d

 1
1

th
re

a
d

 1
3

th
re

a
d

 1
8

th
re

a
d

 1
7

th
re

a
d

 1
6

th
re

a
d

 1
5

th
re

a
d

 1
4

th
re

a
d

 1
0

th
re

a
d

 1
9

Figure 6.8: The arbitrary evaluation sequence

48 Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

myBeta300 nextFree
 0

 200

 400

 600

 800

 1000

 1200

E
ne

rg
y

(W
m

in
)

P
er

fo
rm

an
ce

 (
m

ill
io

ns
 o

f i
te

ra
tio

ns
 p

er
 s

ec
on

d)

Optimisation algorithm

Base power consumption
Power consumption

Average performance

538.3 554.5

882.7 882.9

Figure 6.9: Power and performance values running overload

6.3.5 Cost of Optimisation

The nextFree algorithm is straight forward and thus a new state is easily com-
puted. In contrast, my implementation will query the ECLiPSe model after
each event. The total amount of time needed for the optimisation during the
arbitrary evaluation sequence is shown in the graph in figure 6.10. As pre-
sented in section 5.1.3, I have separately optimised the model’s execution when
a thread is added and when a thread terminates. Therefore, the graph distin-
guishes between these two cases. The myBeta50 algorithm used over 8 seconds
of the 254 second evaluation sequence to calculate the optimisation. As would
be expected, the nextFree algorithm needs close to no runtime to generate its
solution.

To illustrate the impact the additional computation has on power consump-
tion and performance I compared my algorithm myBeta300 with a static version
of it mystaticBeta300 which has the solution pre-computed. Thus, the mystat-
icBeta300 algorithm needs almost no time for the optimisation (like nextFree).
Table 6.4 shows the difference in power consumption and performance while
running the arbitrary evaluation sequence between mystaticBeta300 and my-
Beta300. The table shows that mystaticBeta300 does better in performance

Absolute Diff. Relative Diff.
Energy (Wmin) 7.5 0.5%
Performance (millions of
iterations per second) 4.2 0.5%

Table 6.4: Difference of power and performance values of the mystaticBeta300
and the myBeta300 algorithm (running arbitrary)

6.3 Results 49

 0

 1

 2

 3

 4

 5

myBeta50 myBeta100 myBeta300 nextFree

T
im

e
(s

ec
on

ds
)

Optimisation algorithm

add case
remove case

Figure 6.10: Total runtime of ECLiPSe optimisation during the arbitrary eval-
uation sequence

and power consumption. However, in relation to the absolute values from figure
6.7 the difference is only 0.5% in power and performance.

The arbitrary evaluation sequence has a high rate of changes in the system,
leading to more queries to the ECLiPSe model and thus longer total time spent
during optimisation. The additional computation does not go unnoticed in the
efficiency of the system but in relation to the absolute values are not highly
significant to the overall conclusion.

Chapter 7

Conclusion

In this thesis I presented a new technique for managing the power consumption
of processors aside from the already well researched frequency scaling approach.
My implementation on the Barrelfish operating system showed the opportunity
in power management offered by intelligent thread to core assignment. My
solution is easily parametrised as the needed values are either given by the
manufacturer or can be measured at runtime. The model’s main parameter β
gives the user or the operating system a possibility to influence the behaviour
in favour of higher performance or lower power consumption.

If the highest setting for the model’s parameter is used, performance is close
to optimal while power consumption is lower compared to a trivial algorithm. Of
course, the implementation is tightly coupled with the inherent characteristics
of Barrelfish as a multikernel operating system. Nevertheless, the approach and
the cost model are not operating system specific can can be used just the same
on other systems using other parameters.

However, the measurement also showed how small the impact of power man-
agement on processor level is compared to the power consumed by the whole
system. Obviously, applying power management to the processors should only
be a part of a system’s whole power management facilities. In relation to what
can theoretically be achieved, my measurements reveal significant power savings
while the system’s performance can be influenced with the model’s parameter.

7.1 Future Work

My implementation shows a set of problems which make it difficult to apply
to more complex systems. For instance, the runtime of the ECLiPSe optimisa-
tion is a problem if a more complex system is considered. A possible solution
could be found if keeping the system temporarily in a non-optimal system state
would be considered. Then the optimisation could be performed and applied
less frequently in order to keep total optimisation time low. Also, the integra-
tion with the operating system should be more thorough. For example, my
implementation restricts the optimisation to threads of a single process.

Besides the correction of the aforementioned problems, many other possible
extension and refinement points are left open. The core piece of my solution, the
model, is constructed in such a way that further constraints to support different

7.1 Future Work 51

architectures can be added without much effort.
For example, my model possesses a simple view on performance. In reality,

a core’s performance is not simply a linear function of the number of threads
running on it. How well a thread performs while running on a core depends on
its characteristics and the characteristics of the other cores scheduled on that
core. For instance, two threads which are accessing the same physical memory
will perform better if scheduled on the same core or cores sharing a first-level
cache. Obviously the cost and benefits to performance deserve a more accurate
model than given by the current implementation.

A further extension point to the model is its parametrisation. In most sys-
tems, individual threads have different priorities. Including these priorities into
the model, highly prioritised threads could be assigned their own core for max-
imum performance while other threads can share cores to reduce power con-
sumption.

Finally, the model could be extended to encompass more than just the sys-
tem’s processor by including power and performance costs of other system de-
vices like the hard drive.

Aside from the cost model, the Barrelfish implementation could gain from
a better integration with the system. Part of this is the currently imposed re-
striction that only the threads of a single process are monitored and optimised.
Using the user-space library and maybe a new system service, a power man-
agement solution can utilise full knowledge of the systems state, and optimise
thread placement as presented. Additionally, the implementation could adjust
the model’s different parameters (such as migration latency) on-line according
to runtime measurements.

It was not the goal of this thesis to perform a complete implementation of
the approach but rather to show the possible effectiveness of the approach in
view of coming computer systems with multiple multi-core processors.

Bibliography

[1] Advanced Configuration and Power Interface, October 2006. https://www.
acpi.info.

[2] Advanced Power Management v. 1.2 specification, February 1996. http:
//microsoft.com/whdc/archive/amp_12.mspx.

[3] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau. Profile-based dynamic voltage scheduling using program
checkpoints. In DATE ’02: Proceedings of the conference on Design, au-
tomation and test in Europe, page 168, Washington, DC, USA, 2002. IEEE
Computer Society.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In SOSP, 2009.

[5] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-
level interprocess communication for shared memory multiprocessors. ACM
Trans. Comput. Syst., 9(2):175–198, 1991.

[6] BIOS and Kernel Developer’s Guide for AMD NPT Family 0Fh Processors,
revision 3.08 edition, July 2007. http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/32559.pdf.

[7] G. Dhiman, K. K. Pusukuri, and T. Rosing. Analysis of dynamic voltage
scaling for system level energy management. In HotPower’08: Proceed-
ings of the 1st USENIX workshop on power aware computing and systems.
USENIX Association, 2008.

[8] J. Donald and M. Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In ISCA ’06: Proceedings of
the 33rd annual international symposium on Computer Architecture, pages
78–88, Washington, DC, USA, 2006. IEEE Computer Society.

[9] ECLiPSe. The ECLiPSe Constraint Programming System. http://www.
eclipse-clp.org/. [Online; accessed 30-July-2009].

[10] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-run: leveraging
SMT and CMP to manage power density through the operating system.
In ASPLOS-XI: Proceedings of the 11th international conference on Archi-
tectural support for programming languages and operating systems, pages
260–270, New York, NY, USA, 2004. ACM.

https://www.acpi.info
https://www.acpi.info
http://microsoft.com/whdc/archive/amp_12.mspx
http://microsoft.com/whdc/archive/amp_12.mspx
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
http://www.eclipse-clp.org/
http://www.eclipse-clp.org/

BIBLIOGRAPHY 53

[11] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic
speed-setting of a low-power CPU. In MobiCom ’95: Proceedings of the
1st annual international conference on Mobile computing and networking,
pages 13–25, New York, NY, USA, 1995. ACM.

[12] D. Grunwald, C. B. Morrey, III, P. Levis, M. Neufeld, and K. I. Farkas.
Policies for dynamic clock scheduling. In OSDI’00: Proceedings of the
4th Symposium on Operating System Design & Implementation, page 6,
Berkeley, CA, USA, 2000. USENIX Association.

[13] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
optimization of variable voltage core-based systems. In DAC ’98: Proceed-
ings of the 35th annual conference on Design automation, pages 176–181,
New York, NY, USA, 1998. ACM.

[14] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard
real-time tasks on variable voltage processor. In ICCAD ’98: Proceedings of
the 1998 IEEE/ACM international conference on Computer-aided design,
pages 653–656, New York, NY, USA, 1998. ACM.

[15] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of
a compiler algorithm for CPU energy reduction. SIGPLAN Not., 38(5):38–
48, 2003.

[16] IA-PC HPET (High Precision Event Timers), October 2004. http://www.
intel.com/hardwaredesign/hpetspec_1.pdf/.

[17] Intel Xeon Processor 5300 Series Datasheet, September 2007.
http://www.intel.com/p/en_US/products/server/processor/
xeon5000/technical-documents.

[18] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An
analysis of efficient multi-core global power management policies: Maximiz-
ing performance for a given power budget. In MICRO 39: Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 347–358, Washington, DC, USA, 2006. IEEE Computer Society.

[19] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring
and prediction on real systems with application to dynamic power man-
agement. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 359–370, Washington,
DC, USA, 2006. IEEE Computer Society.

[20] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordi-
nated, distributed, formal energy management of chip multiprocessors. In
ISLPED ’05: Proceedings of the 2005 international symposium on Low
power electronics and design, pages 127–130, New York, NY, USA, 2005.
ACM.

[21] I. Kadayif, M. Kandemir, and I. Kolcu. Exploiting processor workload
heterogeneity for reducing energy consumption in chip multiprocessors. In
DATE ’04: Proceedings of the conference on Design, automation and test in
Europe, page 1158, Washington, DC, USA, 2004. IEEE Computer Society.

http://www.intel.com/hardwaredesign/hpetspec_1.pdf/
http://www.intel.com/hardwaredesign/hpetspec_1.pdf/
http://www.intel.com/p/en_US/products/server/processor/xeon5000/technical-documents
http://www.intel.com/p/en_US/products/server/processor/xeon5000/technical-documents

54 BIBLIOGRAPHY

[22] A. Merkel and F. Bellosa. Memory-aware scheduling for energy efficiency
on multicore processors. In HotPower’08: Proceedings of the 1st USENIX
workshop on power aware computing and systems. USENIX Association,
2008.

[23] A. Merkel and F. Bellosa. Task activity vectors: a new metric for
temperature-aware scheduling. In Eurosys ’08: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, pages
1–12, New York, NY, USA, 2008. ACM.

[24] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for a
variable voltage processor. In ISSS ’99: Proceedings of the 12th interna-
tional symposium on System synthesis, page 24, Washington, DC, USA,
1999. IEEE Computer Society.

[25] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the IpARM
microprocessor system. In ISLPED ’00: Proceedings of the 2000 inter-
national symposium on Low-Power Electronics and Design, pages 96–101,
New York, NY, USA, 2000. ACM.

[26] G. Quan and X. S. Hu. Minimal energy fixed-priority scheduling for vari-
able voltage processors. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 22(8):1062–1071, Aug. 2003.

[27] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs. Embracing diversity in the Barrelfish manycore operating
system. In Proceedings of the Workshop on Managed Many-Core Systems
(MMCS), Boston, MA, USA, June 2008.

[28] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using
static timing analysis. In DAC ’01: Proceedings of the 38th conference on
Design automation, pages 438–443, New York, NY, USA, 2001. ACM.

[29] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. Koala: a
platform for OS-level power management. In EuroSys ’09: Proceedings of
the 4th ACM European conference on Computer systems, pages 289–302.
ACM, 2009.

[30] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and
J. Bruce. A control-theoretic approach to dynamic voltage scheduling. In
CASES ’03: Proceedings of the 2003 international conference on Compil-
ers, architecture and synthesis for embedded systems, pages 255–266, New
York, NY, USA, 2003. ACM.

[31] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced
CPU energy. In OSDI ’94: Proceedings of the 1st USENIX conference
on Operating Systems Design and Implementation, page 2, Berkeley, CA,
USA, 1994. USENIX Association.

[32] A. Weissel and F. Bellosa. Process cruise control: event-driven clock scal-
ing for dynamic power management. In CASES ’02: Proceedings of the
2002 international conference on Compilers, Architecture, and Aynthesis
for Embedded Systems, pages 238–246, New York, NY, USA, 2002. ACM.

BIBLIOGRAPHY 55

[33] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online methods
for voltage/frequency control in multiple clock domain microprocessors.
SIGOPS Oper. Syst. Rev., 38(5):248–259, 2004.

[34] Y. Zhu and F. Mueller. Feedback EDF scheduling of real-time tasks ex-
ploiting dynamic voltage scaling. Real-Time Syst., 31(1-3):33–63, 2005.

	Introduction
	Problem Statement
	Context
	Contribution
	Overview

	Background
	Power Management Overview
	ACPI
	Processor Power Management Features
	Voltage and frequency scaling
	Processor sleep states
	Observations for Multi-core processor

	Barrelfish
	Overview
	Messaging system
	Dispatcher
	Monitor
	System knowledge base (SKB)

	ECLiPSe
	Language features

	Literature Survey
	Introduction
	Single-Core Power Management
	Real-time systems
	Non-real-time systems

	Multi-core Power Management
	DVFS for thermal problems
	Per-core DVFS
	Per-processor DVFS

	Summary

	Approach
	Problem Statement
	General Approach
	Formal Cost Model
	Energy consumption
	Work output
	State definition
	Definition of variables
	Conclusion

	Implementation
	ECLiPSe Implementation
	State generation
	State evaluation
	Improving execution

	Barrelfish Implementation
	Accessing the Barrelfish SKB
	Apply the system state

	Combining ECLiPSe and Barrelfish
	Limitations
	Simplified implementation
	Possible optimisation
	Possible extensions to the model

	Evaluation
	System
	Latency measurements
	Power measurements

	Evaluation procedure
	Results
	Evaluation sequence constant
	Evaluation sequence exploit
	Evaluation sequence arbitrary
	Evaluation sequence overload
	Cost of Optimisation

	Conclusion
	Future Work

