

DISS. ETH NO. 20930

TACKLING OS COMPLEXITY WITH DECLARATIVE TECHNIQUES

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

ADRIAN LAURENT SCHÜPBACH

Master of Science ETH in Computer Science, ETH Zurich

19. April 1981

citizen of Landiswil, BE

accepted on the recommendation of

 Prof. Dr. Timothy Roscoe
 Prof. Dr. Gustavo Alonso
 Prof. Dr. Hermann Härtig

2012

ii

Kurzfassung

Diese Dissertation zeigt, dass die erhöhte Betriebssystemkomplexität, die durch die Notwendigkeit ent-
steht, sich an eine grosse Anzahl unterschiedlicher Rechnersysteme anzupassen, mittels deklarativer
Techniken signifikant reduziert werden kann.

Moderne Hardware ist zunehmend unterschiedlich und komplex. Es ist wahrscheinlich, dass sich
diese Entwicklung in Zukunft fortsetzt. Diese Entwicklung erschwert den Betriebssystembau. Betriebs-
systeme müssen sich der Rechnerarchitektur optimal anpassen. Sie müssen den gesamten Funktionsum-
fang des Rechners ausschöpfen, um die volle Leistung des kompletten Systems zu gewährleisten. Vom
Betriebssystem ungenützte, suboptimal genützte oder gar falsch genützte Rechnerfunktionalität führt zu
geringerer Leistung des Gesamtsystems. Traditionelle Betriebssysteme passen sich durch vorgefertigte
Regeln, die im ganzen Betriebssystem verteilt und mit der eigentlichen Betriebssystemfunktionalität ver-
mischt sind, der Rechnerarchitektur an.

In dieser Arbeit argumentiere ich, dass es aus zwei Gründen nicht mehr möglich ist, vorgefertigte Re-
geln für eine Anzahl bekannter Rechnerarchitekturen mit der Betriebssystemfunktionalität zu vermischen.
Erstens garantieren vorgefertigte Regeln nicht, dass alle Rechnerfunktionen vollständig ausgeschöpft wer-
den. Zweitens bedeutet das, dass die Regeln für jede neue Rechnerarchitektur angepasst werden müssen,
wobei die Regeln für bisherige Rechnerarchitekturen beibehalten werden müssen. Dies führt zu erheb-
licher Betriebssystemkomplexität und schliesslich zu einem enormen Anpassungsaufwand. Um dies zu
vermeiden, muss das Betriebssystem während der Laufzeit Wissen über die Rechnerarchitektur aufbau-
en und daraus, durch logische Schlussfolgerungen, die bestmöglichen Anpassungsregeln ableiten. Dies
führt zu einfacheren, verständlicheren, pflegeleichteren und leichter anpassbaren Betriebssystemfunktio-
nen und stellt sicher, dass die Rechnerfunktionalität vollständig ausgeschöpft wird.

Der Wissensaufbau und das Ableiten von Anpassungsregeln durch logische Schlussfolgerungen sind
mit hoher Programmierkomplexität verbunden. Dies gilt insbesondere, wenn dafür maschinennahe Pro-
grammiersprachen, wie zum Beispiel C, verwendet werden. Deklarative Techniken erlauben hingegen,
angestrebte Regeln durch eine einfache und verständliche Beschreibung der gewünschten Art der Anpas-
sung, basierend auf Wissen über die Rechnerarchitektur, abzuleiten. Durch die natürliche Beschreibung
in höheren Programmiersprachen wird die Programmierkomplexität stark verringert.

Um den Vorteil deklarativer Techniken im Zusammenhang mit Komplexität und Anpassungsfähigkeit
in Betriebssystemen zu beweisen, stelle ich in dieser Dissertation verschiedene Fallstudien vor, die, basie-
rend auf deklarativen Techniken, Regeln für die Anpassung an die Rechnerarchitektur, mittels logischer
Schlussfolgerungen, ableiten. Die Fallstudien setzen kein Wissen über die Rechnerarchitektur voraus,
sondern eignen sich dies während der Laufzeit an.

Das Wissen wird in einem zentralen Wissensdienst des Betriebssystems aufgebaut. Regeln werden
in diesem Wissensdienst durch logische Schlussfolgerung abgeleitet. Dadurch, dass die Fallstudien, und
somit die verschiedenen Betriebssystemkomponenten, diesen Wissensdienst benützen können, wird ihre
Komplexität nochmals deutlich verringert. Es ist somit nicht nötig, dass sich jede einzelne Betriebs-
systemkomponente mit der Wissensgewinnung und der Ableitung von Regeln beschäftigt. Mit dieser
Implementation beweise ich die praktische Anwendbarkeit deklarativer Techniken in Betriebssystemen.

iii

iv

Abstract

This thesis argues that tackling the increased operating systems complexity with declarative techniques
significantly reduces code complexity involved in adapting to a wide range of modern hardware.

Modern hardware is increasingly diverse and complex. It is likely that this trend continues further.
This trend complicates the operating systems construction. Operating systems have to adapt to the hard-
ware architecture and exploit all features to guarantee the best possible overall system performance. Not
exploiting all hardware features or using them in a suboptimal or even wrong way results in lower overall
system performance. Traditionally, operating systems adapt to the underlying architecture by predefined
policies, which are intermangled with the core operating systems functionality.

In this thesis I argue that it is not anymore possible to encode predefined policies for a set of known
hardware architectures into the operating system for two reasons. First, predefined policies do not auto-
matically guarantee that hardware features are fully exploited on all hardware platforms. Second, for this
reason, predefined policies would need to be ported to many different hardware platforms, while, at the
same time, it would be necessary to keep the policies suited for older platforms. This leads to significant
operating systems complexity and finally to high engineering effort, when porting the operating system
to new hardware platforms. To avoid this problem, the operating systems must gain hardware knowledge
at runtime and derive policies suitable for the current architecture through online reasoning about the
hardware. This leads to simpler, better understandable, more maintainable and easier portable operating
systems code, while ensuring that the operating system exploits the hardware features as best as possible.

Reasoning about hardware and deriving policies is a complex task. This is especially the case, if
low-level languages like C are used. Instead, declarative techniques allow to derive policies through a
simple description of how to adapt to the hardware based on hardware knowledge gathered at runtime.
The natural description in a high-level declarative language reduces code complexity significantly.

To prove the usefulness of declarative techniques in the context of adaptability of operating systems
and handling of complexity, I present several case studies in this thesis. The case studies are based on
declarative techniques. They reason about hardware and derive policies based on hardware knowledge.
The case studies do not assume any a priori knowledge about the current hardware platform. Instead, they
gain knowledge at runtime by online reasoning about the hardware.

A central knowledge service stores hardware knowledge and allows to derive policies according to
declarative rules. Because the case studies, and therefore the operating system components, can use
the central service, their complexity is again reduced significantly. It is not necessary, that every single
component deals with knowledge gathering and deriving policies by itself. It pushes this part to the
knowledge service. With this implementation I prove the practical feasibility of applying declarative
techniques in real operating systems.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Diversity . 4
1.1.2 The interconnect network . 5
1.1.3 Managing Hardware . 6
1.1.4 Managing Applications . 8

1.2 Problem Statement and Hypothesis . 8
1.3 Goals . 8
1.4 Contributions . 9
1.5 Structure . 9

2 Background 11
2.1 Declarative Techniques . 11

2.1.1 What is declarative programming? . 11
2.1.2 Declarative languages . 12
2.1.3 Constraint logic programming . 13
2.1.4 CLP programming in ECLiPSe . 13

2.2 Barrelfish . 14
2.2.1 The Multikernel . 14
2.2.2 A Barrelfish “node” . 16
2.2.3 Explicit access to physical resources . 17
2.2.4 Messaging . 18
2.2.5 Drivers and services . 18

2.3 Reasoning in operating systems . 19
2.3.1 Hardware representation . 19
2.3.2 Declarative hardware access and configuration 19
2.3.3 Resource allocation . 20

2.4 Declarative reasoning in networks . 20
2.5 Summary . 21

3 The system knowledge base 23
3.1 Introduction . 23
3.2 Background . 24

3.2.1 Knowledge . 24
3.2.2 Knowledge bases . 25

3.3 How does the SKB help the operating system? . 26
3.3.1 Purpose . 26

vii

viii CONTENTS

3.3.2 Examples . 26
3.3.3 Common patterns of resource allocation descriptions 27
3.3.4 When to use the SKB . 28

3.4 Design . 29
3.4.1 Design principles . 29
3.4.2 Overall architecture . 31
3.4.3 Core . 31
3.4.4 Interface . 32
3.4.5 Facts, schema and queries . 33
3.4.6 Data gathering . 34
3.4.7 Algorithms . 35
3.4.8 A note on security . 36

3.5 Implementation . 37
3.5.1 Implementation of the SKB server . 37
3.5.2 Facts and schema . 37
3.5.3 Datagatherer . 39
3.5.4 Common queries . 39
3.5.5 Startup . 40

3.6 Client library . 40
3.6.1 Using and initializing the library . 40
3.6.2 Interacting with the SKB . 40

3.7 Evaluation . 43
3.7.1 Code complexity . 44
3.7.2 Memory overhead . 44
3.7.3 Performance . 45

3.8 Discussion . 45
3.8.1 Advantages . 45
3.8.2 Disadvantages . 47
3.8.3 Approaching a configuration problem in CLP 49

3.9 Summary . 50

4 Coordination 51
4.1 Introduction . 51
4.2 Background . 52
4.3 Approach . 53

4.3.1 Design principles . 53
4.3.2 Octopus . 53
4.3.3 Records and Record Queries . 54
4.3.4 Record Store . 55
4.3.5 Publish-subscribe . 56
4.3.6 Implementation . 56

4.4 Use-cases . 56
4.4.1 Synchronization primitives . 56
4.4.2 Name service . 57
4.4.3 Application coordination . 57
4.4.4 Device management and system bootstrap . 58

4.5 Evaluation . 58
4.5.1 Code complexity . 58
4.5.2 Performance . 58

CONTENTS ix

4.6 Summary . 60

5 Hardware discovery and device management 61
5.1 Kaluga . 61

5.1.1 Architecture . 62
5.1.2 Driver mapping files . 62
5.1.3 Hardware records . 63

5.2 Hardware discovery . 64
5.2.1 Hardware discovery life-cycle in Barrelfish . 64
5.2.2 View hotplugging as the default case . 65
5.2.3 Minimize basic architecture and platform information 65
5.2.4 Device information . 66

5.3 System Bootstrap . 66
5.4 Evaluation . 66

5.4.1 Correctness . 67
5.4.2 Code complexity . 67

5.5 Related work . 67
5.6 Summary . 68

6 Declarative PCI configuration 69
6.1 Introduction . 69
6.2 Background: PCI allocation . 70

6.2.1 PCI background . 71
6.2.2 Basic PCI configuration requirements . 71
6.2.3 Non-PCIe devices . 73
6.2.4 Fixed-location PCIe devices . 73
6.2.5 Quirks . 74
6.2.6 Device hotplug . 75
6.2.7 Discussion . 75

6.3 PCIe resource allocation . 76
6.3.1 Approach . 77
6.3.2 Formulation in CLP . 78
6.3.3 Quirks . 83
6.3.4 Device hotplug . 83

6.4 Interrupt allocation . 85
6.4.1 Problem overview . 85
6.4.2 Solution in CLP . 86

6.5 Evaluation . 87
6.5.1 Test platforms . 88
6.5.2 Performance . 88
6.5.3 Code size . 88
6.5.4 Handling quirks . 90
6.5.5 Postorder traversal comparison . 91

6.6 Summary . 91

x CONTENTS

7 Efficient Multicast Messaging 93
7.1 Introduction . 93
7.2 Background . 94

7.2.1 Multicast messaging . 94
7.2.2 TLB shootdown . 95
7.2.3 Summary . 96

7.3 Design . 96
7.3.1 Design principles . 96
7.3.2 Hardware-aware multicast tree . 97

7.4 Implementation . 99
7.5 Evaluation . 101

7.5.1 Adaptability . 102
7.5.2 Code complexity . 102
7.5.3 Execution time . 102
7.5.4 Effective multicast performance . 102

7.6 Summary . 103

8 Global Resource Management 105
8.1 Introduction . 105
8.2 Background and related work . 107
8.3 Model hardware and global allocation . 108

8.3.1 Hardware model . 108
8.3.2 Application model . 108
8.3.3 Application requirements . 109
8.3.4 Translating requirements to constraints . 110
8.3.5 Decision variables and concrete topology-aware allocation 111

8.4 Resource manager . 111
8.5 Framework to register parallel functions . 112

8.5.1 Using the framework . 113
8.5.2 Terminating threads . 115
8.5.3 Overall architecture . 115
8.5.4 Use-cases . 115

8.6 Use case 1: pbzip2 . 116
8.6.1 Architecture . 116
8.6.2 Evaluation . 117
8.6.3 Summary . 120

8.7 Use case 2: Column store . 120
8.7.1 Problem . 120
8.7.2 Internal knowledge . 121
8.7.3 Registering scanning function . 121
8.7.4 Evaluation . 122
8.7.5 Summary . 124

8.8 Evaluation of the allocation policy code in the SKB . 124
8.8.1 Code complexity . 124
8.8.2 Execution time . 125

8.9 Summary and future work . 126

CONTENTS xi

9 Conclusion 127
9.1 Summary . 127
9.2 Directions for future work . 127

Bibliography 131

xii CONTENTS

Chapter 1

Introduction

This thesis argues that operating systems face a significant challenge to adapt to a wide range of diverse
hardware found already today. As the diversity and heterogeneity of hardware is likely to increase, the
complexity involved in adaptability and smart decision taking is growing. From a portability and software
engineering aspect it is therefore not anymore possible to intermangle policies throughout the operating
system code. Further, generic policies are not an option, because they do not automatically yield to
optimal hardware usage on every platform.

This thesis argues further that the operating system needs to reason online about the current under-
lying hardware to adapt as best as possible to every platform. Reasoning involves deep knowledge of
hardware and can quickly lead to high complexity. Typically there is a lot of data about hardware. Ac-
cording to Niederliński [97], data in a specific context provides information about it. The ability to use
the information to achieve a specific goal, like for example adapting to hardware, leads to knowledge
about hardware, which can be used to derive informed policies (see also section 3.2.1 for the complete
definition).

The complexity involved in reasoning and decision taking has to be taken out of the operating system
code to enable adaptability and portability to a large set of diverse hardware. This thesis presents the
design and implementation of the system knowledge base (SKB), the reasoning facility for the operating
system with the goal to reduce code complexity in both, the operating system’s mechanism code and the
policy code. It is the central place to store knowledge and derive policy parameters online, based on hard-
ware information of the current underlying platform. A clear policy/mechanism separation throughout the
complete system enables to implement policy code and mechanisms separately leading to a much lower
complexity and higher portability. Reasoning algorithms rely on high-level knowledge in a machine-
independent format and mechanism code is simple, because it does not need to take decisions based on
hardware information. For this thesis I chose the ECLiPSe constraint logic programming system to im-
plement reasoning algorithms, because it is an expressive high-level declarative language and it is easy to
port.

The thesis presents concrete use-cases for the SKB, showing what type of data is needed to derive
policies and how algorithms transform this data into context-specific knowledge. I introduce and motivate
the specific use-cases in the respective chapters while also providing the necessary background and a short
use-case-specific evaluation.

The thesis is part of the Barrelfish project [15], a joint work between ETH Zürich, Microsoft Research
Cambridge, Microsoft Research Redmond and Microsoft Research Silicon Valley. Parts of the thesis have
been published in several papers [118, 18, 17, 106, 116, 107, 117, 49, 144, 48] and I refer to the concrete
ones on a per chapter basis. Together with Andrew Baumann and Simon Peter, we worked on the basic
system to bring it up and form a solid and stable basis for doing operating systems research on top of it.

1

2 CHAPTER 1. INTRODUCTION

Andrew Baumann contributed mainly on the distributed nature of Barrelfish, including the Multikernel
and the capabilities [17] and on Barrelfish’s message passing [18]. Simon Peter’s PhD thesis [105] is
mainly about scheduling in a Multikernel while he also contributed to the capability system, the Multi-
kernel and Barrelfish’s message passing. Timothy Roscoe contributed to the Multikernel, the capability
system and the message passing while specifically working on Mackerel [114], a device description lan-
guage and Hake [113], a build system for heterogeneity support. Akhilesh Singhania worked on routing
of messages and contributed to the Multkernel and capability system. Jan S. Rellermeyer contributed
to the message passing and worked on a name service for named communication endpoints lookups.
Pierre-Evariste Dagand contributed an interface description language for message passing [32, 33]. Tim
Harris worked on language constructs to facilitate using the asynchronous message passing interface for
programmers by avoiding the necessity of “stack-ripped” code [55, 56]. Paul Barham and Rebecca Isaacs
mainly worked on message passing and the Multikernel. Pravin Shinde is working on high-performance
networking based on low-level demultiplexing, new hardware features provided by NICs and user-space
network stacks. Kornilios Kourtis is mainly working on scalable file systems. Stefan Kästle is work-
ing on possible hardware designs for hardware-based message passing with demultiplexing facilities in
hardware providing isolation between message channels on the same core.

1.1 Motivation

This section introduces the main reasons for the increased diversity and heterogeneity of current and
future hardware. It motivates the need for adaptability to hardware at the operating system’s level by
showing hardware diversity already found in today’s machines.

To improve execution performance of applications on desktop machines and servers, the clock fre-
quency of processors could be raised, while keeping the architecture mostly the same, in the last few
years. Applications run faster without changing them. Now, a critical point has been reached, where
it is not possible anymore to simply raise the clock frequency due to physical limitations like the heat
produced, for example [128, 129]. Instead, a higher degree of parallelism in terms of multiple cores is
offered by the hardware to improve performance of applications [22]. This has however consequences in
the whole hardware design (which I show below), such as specialization of computing units and increased
heterogeneity, interconnect topologies and memory hierarchies. This again has implications on operating
systems design.

Nowadays we have commodity machines with up to 128 hardware execution contexts (for example
four Intel Xeon E7-4870 CPU packages with a total of 80 hardware execution contexts or a SPARC T3
processor with 128 hardware execution contexts) and they are mostly homogeneous in terms of CPU
type per system. Current operating systems can deal with this number of cores, even if they originally
were not designed for manycore machines. In the future, machines with hundreds of cores are expected
to improve the performance even more by providing a high degree of parallelism [22, 58]. This allows
desktop machines to run a wide range of compute intensive applications like for example RMS workloads
[58]. This trend has implications on the hardware construction side.

Cores are expected to be more specialized to certain functions. Computations will need to be placed
by the operating system on the right core to execute. Not only processor cores, but also special devices like
offloading hardware of smart NICs [96], cryptographic accelerators (for example in Sparc T3 processors),
FPGAs and GPUs [51] will participate in the computation. The hardware is increasingly heterogeneous
and this trend is likely to continue in this direction.

The interconnect between different cores, caches, memory and devices are much more complicated
even nowadays and looking at recent trends, the complexity is likely to grow even further. Current
interconnects look more like a network than like a bus [18]. Some devices will be near together while
the communication between others might be routed over several bridges and switches of the interconnect.

1.1. MOTIVATION 3

Different paths have different characteristics in terms of latency, bandwidth and throughput. Section 1.1.1
shows that there are already clear latency differences in the network-like interconnect.

It is the task of the operating system, to assign hardware resources, such as CPU cores, memory,
accelerators, offloading hardware, devices, disk, interconnect bandwidth or network connections, to ap-
plications. It not only needs to multiplex hardware safely, but it also needs to derive smart allocations
to exploit hardware features, meet application’s expectations on hardware and finally improve hardware
utilization. This is an increasingly difficult task on heterogeneous hardware.

Smart policies decide which parts of the resources are to be assigned to which computation. The
policies become more complex, because, as I show in chapter 8, they need to include hardware topol-
ogy knowledge, hardware feature information and application requirements in order to achieve optimal
performance for the overall system.

The operating system is an important part of the software stack. As the thesis argues in the next para-
graph and in section 1.2, it is impossible to manually tune software to a set of known hardware. Instead,
software needs to adapt automatically to a wide range of divers hardware, where the hardware configu-
ration is not known in advance. Because the operating system is itself an important part of the complete
software stack, it also has to adapt itself automatically to the underlying hardware. The operating system
must never be the bottleneck in terms of scalability, because its scalability directly affects applications’
scalability. Chapter 7 clearly shows how application scalability is affected by the scalability of perform-
ing a globally coordinated operating system operation. A poor, non-hardware-aware implementation of
an operating system operation, which executes on behalf of the application, limits the application’s scal-
ability. Further, it must not prevent applications to extensively use the complete available hardware, even
if it is highly heterogeneous. Instead, the operating system’s task is to actively support applications to use
all hardware as much as possible.

Nowadays, it is not anymore practical to manually tune operating systems and applications for specific
many-core systems when deploying them. In a mass-market deployment scenario, there are too many
different kinds of hardware types available. Generic policies are not suitable for all kinds of hardware
types and do not automatically lead to optimal hardware utilization in all the cases. Instead, operating
systems, language runtimes and applications with help from the operating system have to automatically
adapt to the current hardware in a sensible way. Additional resources should improve performance or
at least not decrease it. Additional cores should not cause contentions in the memory system such that
performance decreases. Sensible allocations of cores and memory by the operating system is important,
independent of the current type of hardware the system is currently running. Furthermore, hardware is
shared by many applications. The system has to manage a dynamic set of different long running and
interactive applications and cannot statically partition the machine to a fixed set of applications. As I
argue in chapter 8, the operating system has to decide how many and which cores to allocate to which
application. Similarly it has to decide on memory region allocations per application. The set of hardware
systems, on which an operating system and applications might run, is increasing over time and therefore
the topology, available features and characteristics are not known in advance. Applications and more
importantly the operating system and language runtimes have to adapt at boot-up and runtime to the
underlying hardware. Adapting to hardware means deriving the best allocation policies per application
according to application provided requirements. Therefore, the operating system needs a smart way to
reason about the hardware and derive policies at runtime based on online discovery of hardware features.
These challenges require a smart and general way of incorporating online hardware discovery information
and application requirements to derive allocation and hardware usage policies.

So far, there has been little work on commodity operating systems to support heterogeneity from the
ground up. This thesis explores techniques to support heterogeneity and furthermore, to deal with the
increased complexity caused by heterogeneity.

The following sections describe the various dimensions of diversity and heterogeneity already found
in current commodity systems.

4 CHAPTER 1. INTRODUCTION

1.1.1 Diversity
In this section I define the three dimensions of “diversity” used in this thesis. The classification is impor-
tant, because in this thesis I explore to what extend the SKB can help the operating system to adapt to
the hardware in each dimension. I term the three dimensions non-uniformity, core diversity and system
diversity.

Non-uniformity

Non-uniformity traditionally refers to non-uniform memory access (NUMA) for scalable multiprocessing.
The classical definition means that memory regions are grouped into NUMA nodes and a group of cores
belongs to one NUMA node. It is still possible to access memory of a different NUMA node, but at
a higher latency. The latency of performing an operation on memory depends on the core performing
it. The latency is therefore non-uniform and depends on the combination of core and memory address.
Table 1.1 in section 1.1.2 shows that the latency differences are significant.

Nowadays the concept of non-uniformity becomes larger. A hierarchy of cache levels where some
cores share a certain cache leads to a non-uniform cache architecture and non-uniform access latencies to
cached values.
Multiple cores in a system generate an increased number of memory transactions. Obviously, the memory
system has to scale with the number of cores. Therefore, most of today’s mutli-socket systems are NUMA
systems, where a separate memory controller per socket or even per core handles memory transactions
to a specific NUMA-domain. This leads to fast local memory access, if OS and applications only access
local memory.

Caches reduce the number of memory transactions and significantly reduce access latencies. Typical
systems today have three levels of caches where the third level is shared by some or all cores of a socket.
The cache-sharing property is important when the OS has to decide which threads to place on which
cores, especially if the operating system would know from the application, whether threads would benefit
from a shared cache or not. Also, as I show in chapter 7, some operations are significantly faster, if the
fact, that some cores share a cache, is exploited.

Overall, the memory hierarchy including NUMA-domains, caches and cache-sharing is becoming
more complex to handle properly by the OS. Only detailed knowledge allows to exploit the full benefit of
the memory system’s design by the OS and applications.

Core diversity

Core diversity refers to the different types of cores within a single system on which a single-image OS
will run. Nowadays most systems still have uniform cores, but trends are towards having different cores
in a single system in terms of power and performance tradeoffs. The ARM big.LITTLE architecture [52]
provides four cores of the same instruction set. Two of them are high performance cores and the other two
consume low power. The operating system can chose to execute a computation by a high-performance
core or by a low-power core. In order to do so, it need detailed knowledge about the cores, but also about
the type of computation. Further, it needs to know, whether the goal at any given moment, is to save power
or provide high performance. Instruction set extensions are a another step towards heterogeneity in terms
of performance and power tradeoffs [58]. The IBM Cell processor [53] has radically heterogeneous cores.
Projects such as HeraJVM [85] and CellVM [99] show how difficult it is to use such a heterogeneous
core. The Intel SCC [62] is itself a homogeneous system in terms of cores, but not in terms of memory
system. An SCC connected to a x86 64 host provides an additional set of x86 32 cores on which the
OS can run. Barrelfish runs as a single-image OS on an x86 64 host and the attached SCC [107, 86].
GPGPUs (General-Purpose computation on Graphics Processing Units) is becoming an increasingly hot

1.1. MOTIVATION 5

topic [51]. GPUs are becoming more general-purpose and participate in the computation. CUDA [100]
and OpenCL [71] are frameworks which allow to offload general-purpose computations to the GPU. The
GPU is treated as a device and can only be used by one application at a time. To handle multiple GPUs in
the same system, a more advanced task scheduling on GPUs is necessary [125]. The netronom netowrk
interface card provides an ARM core on which the OS can run [96]. A while ago, the SunPCi cards [127]
provide an x86 based system on a PCI card plugged into a Sun SPARC system. Windows applications
run together with the Windows operating system on the SunPCi card. The user interacts with Windows
application through a window of the common desktop environment (CDE) or through a separate monitor
connected to the SunPCi card. This form of heterogeneity allows to run applications with different ISA
requirements on the same machine, but a single application cannot run partly on both types of processors.

The work in this thesis does currently not place computations according to CPU core features, but
it attempts to provide CPU core features (like floating point capabilities, streaming extensions, power-
saving modes) in a high-level abstract and CPU core-independent format, such that future extension can
reason about those at a high-level, without needing to first query every core separately.

System diversity

In contrast to non-uniformity and core diversity, the term system diversity refers to the fact that two
completely separate systems are diverse, even if they are of the same base architecture, like for example
x86 64 systems. The number of cores and NUMA regions, the cache hierarchy including cache sharing
and the interconnect topology potentially differ significantly between any two systems. Additionally
the available set of devices and accelerators might be significantly different. Therefore it is impossible
to manually tune code for specific machines. Instead, the software, including the operating system,
has to adapt to the hardware features in an automated way, such that even future hardware types are
automatically supported. This removes the engineering effort of porting software to future hardware. As
I show in chapter 7 and chapter 8, the high-level languages approach allows to reason about hardware in
an abstracted way, such that software automatically adapts to the underlying hardware.

This type of diversity is already present in today’s systems. Figure 1.1 shows three different commod-
ity systems available nowadays with completely different interconnects and memory hierarchies.

1.1.2 The interconnect network
Many-core systems consist often of multiple CPU packages which contain multiple cores per package
where cores might provide simultaneous multithreading (SMT)1. Cores within and between CPU pack-
ages communicate over point-to-point links2, where local communication within the package is much
faster than communication between packages. Additionally the interconnect graph is not a full mesh and
therefore multihop-communication is necessary for non-neighbor cores (see figure 1.1(b) for example).
Different latencies and the non-fully connected nature of the interconnect graph form a sort of diversity
in terms of latency. With these characteristics, the interonnect becomes a network between cores, caches,
memory and devices and is not anymore a bus [18]. In this thesis I argue that consequently, it has to
be treated as such and network-type characteristics have to be part of the knowledge about the system.
As chapter 7 shows, treating it as a network and performing the right communication optimizations has
significant performance impacts. Of course, not only network characteristics, but also communication
pattern knowledge is important, such that the right optimizations can be derived.

Figure 1.1 shows three examples of commodity systems with different interconnect topologies and
different types of cache hierarchies. Figure 1.1(a) is a Tyan Thunder n6650W board with two dual-

1HyperThreads in AMD
2QPI for Intel, HyperTransport for AMD

6 CHAPTER 1. INTRODUCTION

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 1.1: Memory access latencies (in cycles)

Access cycles normalized to L1 per-hop cost
L1 cache 2 1 -
L2 cache 15 7.5 -
L3 cache 75 37.5 -
Other L1/L2 130 65 -
1-hop cache 190 95 60
2-hop cache 260 130 70

Table 1.2: Latency of cache access for the PC in Figure 1.1(b).

core AMD Opteron 2220 processors and 8GB RAM across 2 NUMA nodes. They are interconnected
by HyperTransport [64] point-to-point links. Figure 1.1(b) is TyanThunder S4985 board with M4985
daughtercard and 8 quad-core 2GHz AMD Opteron 8350 processors and 16GB RAM across 8 NUMA
nodes. The cores are interconnected by HyperTransport [64] point-to-point links. Figure 1.1(c) is an Intel
s5000XVN workstation board with two Intel Xeon X5355 quad-core processors with 8GB RAM on 1
NUMA node. The cores and the memory are connected by the front side bus (FSB) which is a traditional
non-NUMA topology. Point-to-point communication over HyperTransport [64] or QuickPath [146] links
mean that the inside of a general-purpose computer resembles a network with non-uniform messaging
latencies due to different numbers of hops and different routing depending on the source and destination
of messages.

As earlier measurements show [118], there is a significant difference in terms of memory access
latencies between access of the local and the remote NUMA nodes (see table 1.1). The increased latency
on a remote access is a result of crossing the interconnect to reach the remote memory.

A similar experiment in [18] shows cache access latencies for the system in figure 1.1(b)3. The results
in table 1.2) show that accessing caches at deeper levels or even remote caches have significantly higher
latencies. Boyd-Wickizer et al. report similar numbers for a 16-core machine [23].

1.1.3 Managing Hardware

Starting at the bottom, the operating system has to discover, enumerate and initialize hardware resources
in such a way that it can best be used by the operating system and finally by applications.

Designing hardware with scalability at the hardware level in mind, increased its complexity. Apart
from having many cores and NUMA-domains in systems, other hardware components are replicated for
similar reasons (scalability with the size of the system). Nowadays hardware systems have multiple PCIe
buses where lots of, increasingly address-space hungry, cards can be plugged-in, event at runtime. Han-
dling address space allocation in PCIe requires a deep understanding of the bus and plugged-in cards,

3This experiment has been conducted by Simon Peter

1.1. MOTIVATION 7

G
b
e

C
o
re

 3

C
o
re

 2

Die Die

CPU

C
o
re

 0

C
o
re

 1

Die Die

CPU

M
em

o
ry

M
em

o
ry

PCI/Host

Bridge

PCI/Host

Bridge

PCIe

(a) 2x AMD Santa Rosa dual-core pro-
cessors.

L3

RAMRAM

L1

L2

CPU

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1
PCIe

PCIe 7531

62 40

HyperTransport links

(b) 8x AMD Barcelona quad-core processors.

M
em

o
ry

M
em

o
ry

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Controller
Memory

Hub

Hub

I/O

ControllerG
b

e PCIe

Die Die Die Die

CPU CPU

(c) 2x Intel Clovertown quad-core pro-
cessors.

Figure 1.1: Different x86-based commodity systems.

including quirks to apply. Chapter 6 shows how much knowledge is required about PCIe buses in order
to correctly configure them. This knowledge has to be created at bootup time, since every system might
be different and the bus configuration is not known in advance. Fortunately, the high-level language algo-
rithm, to configure PCIe buses, presented in chapter 6 handles the high complexity of this configuration
process well. The increased interrupt load is handled by distributing it through different configurable
IOAPIC controllers. Typical systems today have multiple IOAPICs which again have to be initialized
and controlled by the operating system. IOAPICs deliver interrupts to specific cores. The destination is
configured by the operating system. The destination has to be the core, where the receiver of the interrupt
(typically a driver) runs. How to correctly route interrupts is shown in chapter 6. While this chapter
discusses how to configure the interrupt hardware with few lines of high-level code, it does not talk about
where to run the driver. Deciding where to run a driver depends on its associated device and on which
PCIe bus the device is. Each PCIe root bridge is attached via point-to-point link at the interconnect and
therefore is closest to a specific CPU socket. Ideally, the device manager starts the driver on a core close
to its associated device. Although the current implementation does not do that, chapter 5 discusses how
to decide, where to run the driver based on topology knowledge, in more detail.

The operating system not only needs to adapt to CPUs and memory systems, but also varying PCIe bus
configurations, interrupt controller configurations and many more hardware specifics. Again, this stresses
the fact that the operating system needs a reasoning facility to derive correct hardware initializations,
which are automatically adapted to the hardware configuration found on the platform. The goal is to
reduce the code complexity as much as possible.

8 CHAPTER 1. INTRODUCTION

1.1.4 Managing Applications
Obviously applications need to be implemented in a multithreaded fashion to benefit from the available
hardware parallelism. While this is a challenge by itself, it also imposes requirements on the operating
system. First of all, the operating system has to direct applications to create a useful number of threads.
I argue in chapter 8 that this requires the operating system to have a global knowledge of the number
of cores available, the number of applications and how many threads they wish to run at the same time.
Second, the operating system has to place threads on available cores, taking different properties of threads,
like for example communication between threads, into account.

1.2 Problem Statement and Hypothesis
Hardware is changing fast and getting increasingly diverse. The operating system needs to adapt to the
underlying hardware, correctly initialize it and exploit it effectively, even if the hardware’s architecture is
not known at the operating system’s implementation time. Traditional operating systems face significant
challenges in adapting to the underlying hardware, because often policies are encoded throughout the
operating system’s code. This is however increasingly problematic. First, it is impossible to encode
suitable policies for future, not yet known, hardware platforms. Second, encoding policies throughout the
operating system’s code increases complexity and makes it harder to port the operating system to future
hardware platforms, which, however, will be necessary in order to support them.

This thesis investigates how an operating system can adapt to current and future diverse hardware
while keeping the complexity low and portability high. This thesis is guided by the following hypothesis:

If the operating system had a facility for reasoning about hardware and software, it could bet-
ter adapt to a large set of diverse hardware, exploit hardware features and configure software
modules to improve overall system utilization, while reducing code complexity in both, the
operating system and application components.

1.3 Goals
This section defines the main goals of the thesis and lists the main enabling factors to build a facility which
allows the operating system to adapt to a wide range of diverse hardware. These goals are important, be-
cause they guide design decisions and implementations of the SKB and the use cases. Consequently, the
remaining chapters refer to the goals and discuss to what extend they could be achieved. The thesis tries
to achieve the goals by building a reasoning facility with the system knowledge base, which can be used
by the operating system and by applications.

The main goals are as follows:

• Enable the operating system to adapt to the current underlying hardware

• Reduce code complexity involved in decision taking

• Increase portability to current and future hardware platforms

The main enabling factors are:

• Clear policy/mechanism separation

• High-level declarative language to derive policies

• Central global knowledge processing

1.4. CONTRIBUTIONS 9

1.4 Contributions
The thesis investigates how complexity can be handled by applying high-level declarative language tech-
niques to reason about the underlying hardware. It investigates how a reasoning facility, based on con-
straint logic programming, is useful to build an adaptive operating system, which automatically adapts to
diverse hardware. Further, the thesis investigates how a reasoning facility helps to built services on top of
it, which themselves reduce complexity.

The thesis presents several use cases to prove that reasoning in a high-level declarative language
greatly reduces code complexity, both, in policy code and also in the mechanisms. Reasoning about hard-
ware allows to make the operating system adaptable to the underlying hardware with few lines of code.

The contributions of the thesis are the following:

High-level reasoning facility helps to build adaptive OSs The thesis proves that a high-level reason-
ing facility using a constraint logic programming language (CLP) is useful to build an operating system,
which automatically adapts to the underlying hardware. Such a reasoning facility allows to derive hard-
ware knowledge at runtime and to derive policies with low code complexity, such that the operating
system adapts to the underlying hardware. The SKB presented in chapter 3 is the software module used
to prove that high-level languages are useful to build an operating system which is adaptive to hardware.

Services benefit from reasoning and further reduce complexity The thesis shows that services built
on top of a high-level declarative reasoning facility directly benefit from its logical unification and con-
straint satisfaction techniques. Services are much simpler to build. They exploit the high-level language,
store and process knowledge and further reduce code complexity in the operating system by taking over
functionality which otherwise would be intermangled in individual software modules. Chapter 4 presents
a name service and synchronization and coordination services built in this way. Chapter 8 explains a
resource allocation framework which builds on logical unification and constraint satisfaction.

Declarative languages reduce hardware configuration complexity The thesis argues and shows, that
correct and complete hardware configurations can be derived with few lines of constraint logic program-
ming code. As such, it argues, that this approach is preferable compared to an imperative approach using
a low-level language like C. Chapter 6 proves that at the example of PCIe configuration.

Easily adapting to hardware using declarative reasoning Declarative languages allow to derive poli-
cies such that the operating system and applications easily adapt to the underlying hardware. The hard-
ware can be exploited much better, which leads to higher performance. Chapter 7 shows how a hardware-
aware algorithm adapts communication within the operating system to the underlying hardware topology
in such a way, that communication performance is high and scales well with the number of participants.

1.5 Structure
The rest of the thesis is structured the following way. The background for the thesis is given in chapter 2.
The system knowledge base is presented in chapter 3. First, the chapter discusses the design principles
and then the implementation. Also the client interface is explained and examples show how to interact
with the SKB. Finally, the SKB is evaluated in terms of code complexity and resource usage. Octopus, the
coordination service presented in chapter 4, is an extension of the SKB providing distributed coordination
facilities within the operating system.

10 CHAPTER 1. INTRODUCTION

After presenting the SKB and Octopus, four use-cases demonstrate their usefulness. Chapter 5 shows
how to build a device manager on top of the SKB and Octopus. Declarative PCI configuration is explained
in chapter 6. Chapter 7 shows how to derive a hardware-aware multicast messaging tree declaratively.
Chapter 8 presents a framework and a declarative way to allocate CPU cores to a set of running applica-
tions. Finally, the thesis concludes in chapter 9.

Chapter 2

Background

The first part of this chapter discusses declarative techniques and, in particular, provides some deeper
background about constraint logic programming, because this thesis builds on this technique. A better
understanding of the basic concepts helps to understand design decisions of the SKB, the policy code
shown in the use case sections and the interaction with the mechanism code of the operating system.

The second part of this chapter gives an overview of Barrelfish, because its structure and mechanisms
are enabling factors to build a reasoning facility to derive policies outside the operating system’s mech-
anisms. Only the parts relevant for this thesis are discussed to provide the necessary operating system
background.

Finally, the chapter surveys successful applications of declarative techniques in the operating systems
and networks fields.

2.1 Declarative Techniques

As the work of this thesis heavily relies on declarative techniques, this section provides the necessary
related background. After an overview of declarative programming in general, the ECLiPSe [10, 30]
constraint logic programming (CLP) system, in which the work in this thesis is implemented, is explained
in more details.

2.1.1 What is declarative programming?

Declarative programming is a programming paradigm where the programmer describes what he wants,
but not how to get there [97, 54, 81]. The program describes potential solutions by logic rules without
defining the control flow [81, 54]. Complete problems can be described in terms of variables, relations
between variables and logic transformation rules to finally achieve a state the programmer would like to
get, the solution to the problem. Typically, problems are described in terms of values, ranges and their
dependencies.

Typically declarative programming eliminates side effects, since the problem can only be described,
but no concrete steps to be taken can be defined by the programmer. The concrete steps to be taken
are typically defined by the implementation. This allows the implementation to use different techniques
like loops or backtracking to search for a solution without exposing the actual technique used to the
programmer. It also allows the implementation to change the internal technique, as long as the final
solution meets the programmer’s expectations. In some cases, the implementation can automatically

11

12 CHAPTER 2. BACKGROUND

parallelize the search for solutions, because the control flow is not specified by the programmer and due
to the description there are no side effects possible 1.

High-level declarative programming allows to express complex problems in a descriptive way with
few lines of code. It reduces the code complexity significantly, while being extremely expressive. This is
one of the main reasons to chose declarative programming techniques when dealing with complexity. As
long as a complex problem can be described in terms of rules, a declarative language is a good choice.

There are different classes of declarative programming techniques and corresponding languages,
which are explained in more detail in the next section.

2.1.2 Declarative languages

This section surveys common declarative programming techniques, which may be suitable in the context
of an operating system. As such, it is not a complete list of all declarative programming techniques
and languages available, but it helps to understand the reasons why this work builds on constraint logic
programming.

The paradigm “declarative programming” includes a range of subparadigms with each of it having a
number of languages or programming systems.

Logic programming is a well-known form of declarative programming. Prolog [36, 130, 120, 24], as
the programming system for logic programming, allows to describe a problem in terms of information,
variables and logical unification rules. The goal is to reason about information and derive knowledge
in a specific context. Facts store known pieces of information inside the Prolog runtime. The facts can
be accessed by each rule during its complete execution. Variables are unified to constants or facts and
possible to other variables until a solution could by found such that all requirements on all variables are
met or the system recognizes that there is no solution to the problem. Internally, Prolog makes extensively
use of backtracking to search the complete search space. Whenever it has to chose a value to assign to a
specific variable, it creates a choice point on the stack and follows down a branch of the search tree. It will
either output a solution, if there is one, and then backtrack to the choice point or, if there is no solution in
the subtree, it will backtrack to the choice point immediately. At every choice point it assigns a new value
to the variable and tries another subtree of the search space [2]. Obviously, when the search space is huge,
Prolog needs to create a large number of choice points, which will make the search time consuming (or
actually slow). Datalog has its roots in logic programming and is similar to Prolog. Compared to Prolog,
there are a number of restrictions in terms of allowed argument complexity and binding of variables, for
example. Datalog was designed originally for declarative databases [28].

Constraint programming allows to describe a problem in terms of variables and constraints. Con-
straints relate variables to a range of possible values which the system is allowed to assign to them. This
includes restricting a variable to a given set of constant values, but also applying constraints which relate
two (or more) variables to each other. Constraints between two (or more) variables create dependencies
between them. The dependencies can be created even before any of the variables has a concrete value
assigned, which is an important feature on which the algorithms in this thesis rely. An example is a
variable whose value has to be greater than the value of some other variable. The constraint is applied
to the two variables, before concrete values are known. The solver takes all variables and all constraints
into account and only assigns values such that all constraints are met. If there is a solution, it outputs all
possible assignments to all variables. Otherwise it outputs, that there is no solution to the problem.

In functional programming the programmer defines how a goal should be reached, by defining a se-
quence of functions to apply to a given input. Functional programming typically has no side-effects.
Functions purely operate on input parameters and return the function’s output. There is not global state

1In practice most of the languages allow explicit side effects by providing permanent variables on a heap. This, however, is not
the common use of declarative languages.

2.1. DECLARATIVE TECHNIQUES 13

which gets modified by any function during execution 2. Because there are typically no side effects,
the compiler has freedom for radical optimizations including parallelizing parts of the execution with-
out the need that the programmer knows about it. In fact, many tools in Barrelfish are implemented in
Haskell [57], a pure functional language. For this thesis, functional languages are less appropriate, be-
cause the thesis’ goal is to reason about information and derive knowledge, rather than applying functions
on information in a well-known order.

2.1.3 Constraint logic programming
This section explains why constraint logic programming is suitable to hardware configuration and alloca-
tion problems. It lays out why the work in this thesis is based on this technique.

Constraint logic programming (CLP) unifies constraint programming and logic programming. A CLP
system allows to use logical unification in combination with constraints applied to some of the variables.
The logic unification rules prepare the necessary knowledge about the problem to be solved and the
constraints define ranges of valid solutions to the problem.

Programs in CLP are formalized in terms of free variables, facts, logical rules, and constraints. Free
variables can be unified to other variables or to stored facts. In CLP, free variables can also be constrained
to certain ranges of values assignable to a variable. Constraints indirectly influence the unification pro-
cess, because only some values can be assigned to a constrained variable. If the unification process tries
to assign a value outside the range, it fails and triggers a backtrack. To search a valid solution, the solver
enumerates possible values and temporarily unifies a variable to them, until it found one. Backtracking
is expensive, as for regular Prolog programs. The programmer might chose to reduce the number of
choice points to limit the number of backtracks performed by the system. This can lead to a much lower
execution time.

As for regular constraint programming, variables in CLP can be used and constrained even before they
have concrete values assigned. It is possible to express calculations based on variables with no values yet
assigned and constraining the result of the calculation to a range of values. The solver will then search
concrete values such that the calculation leads to a result in the given constrained range. Of course, also
the result range might come from a calculation of other variables.

When implementing a CLP program, the programmer defines a set of variables and logical unification
rules which unify them to stored facts. This step provides the necessary knowledge about the problem.
Second, he constrains the variables (possibly just by relating them somehow) to define valid solutions of
the problem. It then invokes the solver which produces valid solutions in the requested ranges and based
on knowledge coming from stored facts and unification.

CLP programming forms an ideal basis for hardware resource allocations. Logical unification rules
derive hardware knowledge and constraints relate dependencies between pieces of hardware. By under-
standing hardware properties through the logical reasoning and by relating several pieces of hardware
in terms of constraints in variables representing the hardware, the solver is able to find an overall valid
resource allocation. The PCIe bus driver in chapter 6 make extensive use of this technique. Also the the
multicast tree construction in chapter 7 and global resource allocation in chapter 8 make use of logical
reasoning and constraint solving.

2.1.4 CLP programming in ECLiPSe

This section introduces the ECLiPSe CLP programming system, as the work in this thesis is based on
it. The three phases described here need to be followed exactly, otherwise ECLiPSe might behave in an
unexpected way. The technical report on developing applications with ECLiPSe explains in detail how to
correctly develop applications [121].

2In practice, functional languages offer means to store global variables, if really necessary.

14 CHAPTER 2. BACKGROUND

ECLiPSe is a Prolog-based CLP system with constraints extensions. It implements an extended ver-
sion of the “Warren abstract machine” (WAM) [2]. Facts are stored on the heap. Code can be uploaded
to the system in source form or can be precompiled byte code. On the first execution, the source code or
byte code gets compiled to machine code.

CLP programs in ECLiPSe follow three phases. First of all, the appropriate data structure with neces-
sary variables should be constructed in such a way, that the data structure models the problem in a natural
way. This includes rules to match variables with stored facts. In a second step, constraints should be
applied to the variables. During this step, no backtracking should be produced, as that would mean, that
the system creates new variables. While this is fine for pure Prolog, where facts are unified to the new
variables, it does not work for ECLiPSe programs. Constraints are attached to concrete variables and do
not get attached automatically to newly created variables by the system, even if the new variable logically
holds the same value. Therefore, a programmer has to be careful about that. In the last step, a rule has to
invoke the solver and tell it which variables should be instantiated with concrete values. This means, that
the solver enumerates the passed set of variables with the valid range of values according to constraints.
Potentially this trigger backtracks until a solution could be found. During that phase, the logical unifica-
tion rules provide the necessary knowledge such that the solver can relate variables to each other and to
stored facts.

As soon as the system finds a solution, it outputs it and stops searching for further ones. The choice
points however remain and the caller has the option to trigger the solver to search for further solutions.
Alternatively, all solutions can be searched by using the goal findall/3. This produces a list of all
possible solutions. The risk is, that this takes a lot of time as the search space might be large and the
number of valid solutions might be huge.

2.2 Barrelfish
Barrelfish has the right operating system structure to run on a large, possibly non-coherent, heterogeneous
hardware system. Its structure further allows to derive policy parameters outside the core operating system
code, a property which is important for the work in this thesis. The thesis therefore uses Barrelfish
to evaluate the declarative language approach to make an operating system adaptable to the underlying
hardware. The declarative reasoning algorithms in this thesis derive policy parameters which can directly
be used in Barrelfish’s mechanisms. The techniques presented in this thesis are however not bound to
Barrelfish. They can be used in other operating systems in a similar way, if the mechanisms of the
operating system allow to use policy parameters derived outside the mechanism code.

Because the thesis uses Barrelfish to evaluate the declarative language approach for reasoning about
hardware and adaptability to it, this section explains Barrelfish’s structure and the most important prop-
erties relied on by this thesis.

Barrelfish is a new operating system for heterogeneous many-core systems written from scratch. It
implements a new OS architecture, the multikernel [17], presented in the next section.

2.2.1 The Multikernel

The multikernel [17] is a new OS architecture designed for modern and future heterogeneous many-core
systems. It is structured as a distributed system where one operating system node runs on one specific
CPU core. This structure naturally matches the underlying hardware, which increasingly resembles a
network [18]. Furthermore, it naturally supports hardware heterogeneity, as every core runs a separate
operating system node (see section 2.2.2).

The multkernel is guided by the following three design principles:

2.2. BARRELFISH 15

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 2.1: The multikernel model

• Make all inter-core communication explicit

• Make OS structure hardware-neutral

• View state as replicated instead of shared

These three design principles allow to structure an OS in a way that it naturally supports hardware het-
erogeneity, scalability and the ability to adopt distributed systems principles for improving performance
and interconnect usage. The multikernel builds the foundation of running on heterogeneous hardware.
It provides mechanisms to execute tasks on the available CPU cores, but it does not decide by itself, on
which core a task should be executed. The decision has to be made outside the operating system. This is
one feature on which the work in this thesis relies.

Figure 2.1 shows the multikernel model. The three design principles are explained in more detail in
the following sections.

Make all inter-core communication explicit

The multikernel makes all communication explicit. State is kept completely local and no memory is
shared between code executed on different cores. Explicit messaging facilitates reasoning about the
interconnect usage. The knowledge of who is accessing what parts of states and when it is accessing the
state, is exposed. In contrast, a shared-memory-based system with implicit messaging such as the shared
memory itself or the cache coherence messages, does not have this explicit knowledge.

The explicit knowledge of when messages are sent over the interconnect allows to create efficient
communication primitives by deriving policies defining from which source to which destination messages
should be sent. Because it is explicit, messages are only sent as requested by the policies. Chapter 7 makes
use of this explicit communication between cores.

Make OS structure hardware-neutral

The multikernel is structured such that most of the operating system is separated from the hardware. Only
two aspects are specific to a target architecture. The first aspect is message transport mechanism and the
second aspect is the interface to devices and CPUs. Having only these two aspects hardware dependent,
has a number of advantages.

Running the OS on a different architecture with different characteristics in terms of performance or
hardware interface including message transport mechanism, there is no radical code change necessary to
make the system work well. Messaging can be implemented as user-level RPC or on hardware message
facilities, in case the hardware supports this feature. The higher-level interface to the messaging system

16 CHAPTER 2. BACKGROUND

Figure 2.2: The structure of Barrelfish

does not need to change and especially the OS structure does not change, if a new message transport is
used.

Moving to a completely new architecture requires to modify drivers according to the new hardware
interface. In the multikernel model, CPUs are treated as devices and their device driver is a small kernel,
called the CPU driver (see section 2.2.2). Therefore it is sufficient to exchange all drivers and ensure that
the appropriate message transport is used to make the system run on a new target architecture.

In the future these benefits are increasingly important as diversity in hardware is likely to grow, which
makes it impossible to radically re-structure the OS on every deployment. A multikernel is prepared to
easily adapt to diverse hardware.

View state as replicated instead of shared

By keeping all state local to every core, there is no shared state at all. Decisions are based on local
data structures and updates are performed on the same local data structures. In case that multiple cores
have to coordinate and maintain a global view, messages are exchanged between them to update the
same piece of information in the respective local data structures. By making replication a part of the
multikernel, heterogeneity support comes naturally. Cores with different endiannesses for example can
communicate by messages and do not need to take care of the different endianness, as no sharing occurs.
A second advantage is that cores can be hotplugged or shutdown to save power without complicating the
maintenance of shared data structures. A limited amount of sharing, for example between cores on the
same package, could be seen as a local optimization of replication.

2.2.2 A Barrelfish “node”

This section briefly describes Barrelfish’s implementation of the multikernel, because the thesis is about
heterogeneity support and builds on the concrete structure of Barrelfish. Further, the hardware discovery
process, described in section 5, require a basic understanding of the actual implementation of a Barrelfish
node.

Barrelfish is an implementation of the multikernel model. As such, it runs one separate operating
systems node per core without sharing any memory between nodes. The implementation of an operating
system consists of two parts. There is the CPU driver running in supervisor mode and on top of it, there
is the monitor running in user mode. Figure 2.2 shows the structure of Barrelfish.

The CPU driver is capable of executing privileged instructions. Traditionally it would be called
kernel, but in Barrelfish, a CPU core is treated as any other device and therefore the kernel is the driver
of a CPU core. The CPU driver offers a small number of system calls, for example to map a physical
memory page into an application’s virtual address space. The CPU driver checks first, whether the right
to perform the operation has previously been granted to the application. All state is kept purely local to
the core, meaning that no memory is being shared with other CPU drivers. Also, the CPU driver does not
perform any communication to remote cores.

2.2. BARRELFISH 17

The monitor is the user-level part of a Barrelfish node. It is responsible to maintain a consistent view
of the whole operating system. It does not share any memory with other cores, but instead uses messages
to synchronize state among the cores. The monitor offers additional functionality to applications. Appli-
cations can ask monitors to forward messages to applications on other cores. Finally, the monitor is able
to send capabilities to a remote core.

Because neither the CPU driver nor the monitor share memory with other cores, Barrelfish does not
rely on cache coherence. It only needs a way to send messages from one core to another. This may be
implemented on shared memory, but may also use hardware messaging features. As such, Barrelfish is
ready to run on future hardware, which is potentially not fully cache-coherent.

2.2.3 Explicit access to physical resources

This section defines the meaning of explicit access to physical resources as used in the thesis. It explains
the physical resources for which the thesis implemented policy code and to which the use-cases need
explicit access.

Explicit access to physical resources means that the operating system does not enforce any policies
and does not hide the resource behind any layer. There is no translation of any form and no interpretation
of the resource by the operating system’s mechanisms. Policies are pushed into application domains like
in the exokernel approach [40]. This however does not mean, that there is no protection. Protection
is guaranteed through mechanisms at the operating systems level and through hardware support (for
example in the case of memory). The resource requester should decide, which resource or which part
of it would best suit its needs. Once access to a physical resource has been granted by the controlling
mechanism, it is the responsibility of the current resource holder how the resource should be used. The
following paragraphs describe each physical resource directly relevant for this thesis.

The multikernel, in some sense, gives explicit access to CPU cores. The local CPU driver invokes
an upcall interface in user-space, which decides which computation to execute. This is the mechanism
used in Psyche [84] and scheduler activations [7]. It allows to execute code in user-mode on the specific
requested core. Computations are not migrated automatically and there is no automatic decision process
about placing computations on cores. The only policy enforced is basic time-partitioned scheduling. This
makes the operating system code much simpler, as all the complexity involved in taking placing decisions
are taken out and pushed to a separate reasoning facility.

Access to physical address spaces (including memory, non-volatile platform data and memory-mapped
devices) is controlled by a capability system similar to the one of seL4 [72, 39]. The memory server in the
operating system manage capabilities. Applications can ask to get certain capabilities (used to allocate
memory). Managing capabilities is a mechanism which does not decide by itself which ones to return on
a request. External policy code needs to decide which capabilities would best suit the applications’ needs.

An application, which holds a capability to a range of memory, can ask the CPU driver (see sec-
tion 2.2.2) to map it at a chosen free virtual address in its address space, providing it access to the
memory. NUMA-aware allocation means getting a capability pointing to a page within a given physical
address range. It is a policy parameter which instructs the memory server to return capabilities for a given
range. The policy needs to be derived outside the memory server, making the memory server code much
simpler.

Likewise, an application, which holds a capability to a memory-mapped device, can also ask the CPU
driver to map it at any free virtual address in its address space. This gives it access to the device. Device
drivers get safe access to devices using this mechanism.

If an application holds a capability to a device bus (such as the PCIe bus), it can get access to the
configuration registers of all devices. As chapter 6 will show, this allows the PCIe bus driver to configure
base addresses for PCIe devices and bridges.

18 CHAPTER 2. BACKGROUND

Only implementing mechanisms and relying on policy code outside the mechanisms is the right step
towards simpler and cleaner operating systems code and fits well with the goals of this thesis.

2.2.4 Messaging
This section discusses how communication is done in Barrelfish. While most of the code in this thesis
just relies on having messaging, the multicast tree construction in chapter 7 directly interacts with the
messaging mechanism and therefore requires some high-level knowledge about messaging.

Barrelfish provides mechanisms to create message channels between every pair of cores. Two ways
of creating a message channel are possible. First, an application can create a message channel and listen
on it for incoming messages. This allows building operating system services. Second, an application
can connect to a message channel offered by another one. It can start sending commands to the other
application. Message channels are bidirectional. Once they are set up, both ends can send messages to
each other.

The mechanism of creating message channels does not impose any restrictions on the number of
channels and the source and destinations. Consequently it is possible to create several message channels
between every pair of cores. The number of channels grows quickly, which is not desired. Chapter 7
argues that there is a routing problem within the machine. At the example of multicast messaging it
shows how to decide on the number and source and destinations of message channels to decrease latency
and also the number of channels necessary.

As with other resources, Barrelfish gives explicit access to the messaging mechanisms. This provides
a lot of freedom in creating message channels and make the message mechanisms much simpler, as no
policy code is intermangled with it. It builds the basis of reasoning about channel creation and routing of
messages in a separate facility.

2.2.5 Drivers and services
This section explains how operating system services and drivers are being built in Barrelfish and how
they export their service to the rest of the system. This section presents only the mechanisms of exporting
a service, but does not talk about coordination. However chapter 4 argues, that a clean coordination is
necessary and that the complexity should be taken out of the actual service and driver code.

All services and drivers in Barrelfish run in user-mode, as in a traditional microkernel. Services create
a message channel on which they listen for incoming commands. They register the message channel by a
name and with a name server. The name server has a well-known message channel which can directly be
used for registration and lookups of other services.

Basic operating system services have well-known names. Applications use these names to lookup the
service’s message channel to start using the operating system services.

Drivers are services which export a device’s functionality to the rest of the system. They get physical
access to a device and are responsible to initialize and operate it correctly. Drivers are able to send and
receive data from devices. Every driver creates a message channel (as every other service) on which it
waits for commands to be executed on the device. Every driver registers the channel by a name with the
name server.

Bus drivers get access to the configuration space of the bus. They manage resource allocations for all
devices within the bus and are responsible to grant safe access to specific device. Bus drivers export a
message channel by name on which the listen for incoming commands. Device drivers look-up the bus
driver’s message channel, connect to it and ask for access to a specific device.

Starting services and drivers in the right order and resolving dependencies is important for correct
functioning of the system. Section 5 explains, how services and drivers are coordinated in the distributed
nature of Barrelfish.

2.3. REASONING IN OPERATING SYSTEMS 19

2.3 Reasoning in operating systems
The section summarizes related work in terms of hardware representation, hardware configuration, re-
source allocation and reasoning about resource.

2.3.1 Hardware representation
Operating systems need to manage hardware and have to deal with the increased complexity. A repre-
sentation of hardware is therefore an inevitable requirement. The representation of hardware is done at
different layers of the complete software stack, depending on the actual system architecture. Also, the
extent of how much information (hardware and policies) are exported to user space depend on the system.

Traditionally, operating systems tried to abstract resources. concrete low-level details were kept in the
OS and an abstract API was exported to applications. Together with abstracting resources, the OS applied
resource allocation policies without negotiation with applications. Within the OS there is however a long
history of policy/mechanism separation. For example, Hydra [79] applied policy/mechanism separation
as an important design principle.

Commodity OSs and platform firmware increasingly represent at least parts of the resource knowledge
to user-space.

Linux exports hardware knowledge through the sysfs file system [94], and the proc file system.
The SKB allows simple hardware queries, similar to reading the text files in the sysfs or the proc file
system. Additionally to reading out information, the CLP-based approach provides much more powerful
interface allowing to reason about the hardware in a single query.

Windows exports hardware knowledge in its registry[122]. The registry is a key-value store which
can be queried (and updated) by services and applications. The query language is however not designed
to unify different pieces of hardware knowledge in the same query as CLP would allow.

There are a few examples of rich, high-level descriptions of heterogeneous hardware resources at the
platform level. In particular, the ACPI and EFI standards have an explicit representation of many board-
level resources, and the CIM standard[37] defines a schema for a description of higher-level resources. It
is easy and convenient to inject such representations into the SKB with the goal of having all information
in one place in a uniform way.

2.3.2 Declarative hardware access and configuration
At the lowest software level, drivers access registers with typically complex bit field patterns. Declarative
languages reduce the complexity of these accesses significantly and reduce errors due to wrong accesses
in drivers.

Devil [87], an IDL for hardware programming, uses a declarative specification of device ports (base
addresses), registers and their interpretation to generate low-level code for device access. This leads
to simpler and more understandable code for device drivers, in an attempt to improve driver reliability.
ATARE [69] uses a series of regular expressions to extract IRQ routing information from ACPI, without
the need for the usual complex byte code interpreter.

Singularity [123] uses XML manifests to reason about the resources used by a device driver. These
manifests may be analyzed at driver install time to checking for resource conflicts. They also ensure the
correctness of a driver’s interaction with the OS through contracts on message channels.

Prolog has been used in commercial systems such as Windows NT [61] to derive network configura-
tions: a backtrack-based binding algorithm takes facts about interfaces of network modules and derives
valid configurations, including the correct load order of modules, which it then stores to the registry.
DEC developed a series of expert systems to ensure that selected component configurations that include
CPUs and other hardware as well as software are valid and components are compatible to each other [14].

20 CHAPTER 2. BACKGROUND

Hippodrome uses a solver to automatically configure minimal and still performant storage systems by
analyzing workloads and iteratively searching a global minimum [6].

2.3.3 Resource allocation

Resource allocation is a core functionality of every operating system. While traditionally the policies
have been hidden from applications, there were some attempts to provide information about internal
state to applications. Further, some systems have extensions such that applications can reserve resources.
More recently, systems started to use declarative reasoning to allocate resources according to applications
needs. This section give an overview of some related systems.

Infokernel [11] stresses the importance of providing detailed information to user space. An Infokernel
exports general abstractions describing internal kernel state to user-space applications to allow them to
reason online about the system’s state and internal policies used and to build more sophisticated policies
on-top of kernel policies to direct those kernel policies in various ways.

The Resource Kernel[102] is a loadable kernel module which interacts with the host kernel and allows
the applications to reserve system resources which are then guaranteed. The module runs completely in
kernel mode and is designed to run together with the host kernel. The main goal of this work is to satisfy
the reservations made by applications on system resources.

The Q-RAM[109] project is designed to satisfy minimum resource constraints and furthermore to
optimize a utility function to allocate more resources to applications than minimally required, if available.
If an application gets more resources than the minimum specified, it adapts itself to provide better QoS.
Searching for optimal solutions is a hard problem[110] in practice, and quickly becomes infeasible with
many applications. Furthermore, the utility function must be statically specified by the programmer.

Declarative techniques have also been used successfully to specify resources and resource require-
ments. Condor [131, 80] allocates resources in a distributed system from several nodes to distributed
computations. Resources and resource requirements are specified using a declarative approach. A match-
ing algorithm matches the resource requirement descriptions to actual available resources and derives an
allocation from resources to tasks.

Helios [98] tackles heterogeneity by running satellite kernels on heterogeneous cores. Satellite kernels
are light-weight runtimes which run on peripherals and provide a limited set of functionality. System
calls implemented in the coordinator kernel are executed on the host PC. Helios needs to decide where
to run functionality. Is uses manifests which declaratively define positive or negative affinities on a per
channel basis to guide the placement of processes to CPUs in a heterogeneous system. The affinities
define, whether the application benefits from zero-copy messaging or whether it prefers to avoid any
interference. Using the affinity manifest, Helios places the application by considering the affinity manifest
and hardware utilization.

The Hydra framework [139] uses a declarative approach to reason about available hardware resources
in a heterogeneous system consisting of CPUs and programmable offload devices on which tasks can be
executed. Using an XML-based description language, the Hydra framework selects suitable devices to
which it places executions of functionality, thus achieving greater utilization of processor resources while
reducing complexity for the programmer.

2.4 Declarative reasoning in networks
Declarative reasoning in networks is related to the work in this thesis, because first, Barrelfish has a
distributed-systems like structure and second, the multicast tree construction presented in chapter 7 rea-
sons about the network-like hardware and constructs to construct a multicast tree. The section therefore
summarizes some related work of the networking field.

2.5. SUMMARY 21

Rhizoma is an overlay which deploys distributed applications to a set of nodes in the internet [142].
It declaratively reasons about network links and offered features of the nodes (such as CPU, memory or
available disk space). It tries to satisfy application requirements, which are also given in a high-level
declarative way. Based on hardware knowledge (nodes, links) and application requirements it decides on
the number of nodes and locations to use for deployment.

COOLAID is a system which declaratively manages network configurations in the increasingly diffi-
cult to manage large networks [29]. It captures knowledge from device vendors and and service providers
as well as online status information in a formal and uniform way. Declarative queries allow to derive
valid network configurations and support network operators to run a large network.

Declarative routing allows to implement various routing protocols with few lines and therefore low
code complexity [82]. This is a step towards easier deployment of new routing protocols, which makes
the overall network more extensible while still guaranteeing robustness. Somewhat similar, but in a
completely different environment, a declarative query constructs the multicast tree in chapter 7.

In the context of the Semantic Web, the resource description format (RDF) [138] is widely used to
represent and reason online about resources. RDF is a model to describe resources in a machine read-
able way and was originally designed for the Web. It extends the linking structure by named relation
ships, such to support automated reasoning about the content of semi-structured data. RDF is expres-
sively almost equivalent to the logic programming approach (ignoring the constraint and optimization
extensions).

2.5 Summary
In this chapter I explained that declarative languages can reduce the code complexity involved in rea-
soning about complex hardware in order to decide how to adapt to it. This makes declarative languages
interesting in an operating system targeting heterogeneous hardware. Policy code, which decides how to
adapt to hardware, can be implemented at a high-level by describing the desired solution to achieve.

Especially constraint logic programming is interesting in that context. First, the logical reasoning
allows to derive knowledge about the hardware. Second, the constraint solver helps to model resource
allocation algorithms, because resource allocation often means relating resource requirements to each
other. This can easily be modeled as constraints.

To evaluate, whether this technique works, I use Barrelfish, because its mechanisms’ behavior can be
directly influenced by derived policy parameters.

The next chapter explains the design and implementation of the SKB, the reasoning facility used for
this thesis.

22 CHAPTER 2. BACKGROUND

Chapter 3

The system knowledge base

The previous chapter claimed, that high-level declarative languages are suitable to deal with the complex-
ity involved in operating systems, which are adaptive to heterogeneous hardware. To evaluate this, I build
a real reasoning engine for Barrelfish, on top of which case studies prove the claim.

This chapter presents the system knowledge base (SKB). It is the main facility for reasoning about
hardware and software state in Barrelfish. After a short introduction, the chapter defines how the term
knowledge is used in this thesis and gives some motivating examples of knowledge processing in an
operating system. It further presents the design principles and and the implementation, before explaining
how the operating system and applications can use the SKB. Finally, the chapter presents an evaluation
of this main facility.

The system knowledge base (SKB) is a user-level OS service which provides a rich representation
of the hardware in a high-level declarative way [118]. The goal is enabling system services and applica-
tions to adapt the currently underlying hardware by incorporating deep hardware knowledge to improve
performance and optimize resource consumption by using devices and resources in an appropriate way.

3.1 Introduction

As stated in section 1.1, hardware becomes increasingly complex and diverse. It is essential that system
software and applications automatically adapt to the underlying hardware. Manual tuning of software
for a specific hardware system is not possible anymore. Instead, the operating system has to learn about
the underlying hardware. It has to gather information about the hardware during runtime first and then
it has to reason about it and to adapt to it according to the gathered information. Because the hardware
becomes more complex, the operating system has to learn as many details as possible about every single
device and all connections between several devices. This leads to a big amount of data which has to
be interpreted in an accurate way. Obviously, the complexity of interpreting fine-grained detailed data
in many different contexts is a complex task. Ideally, the complexity should not be repeated in every
system component and especially not in every application. There should rather be a service which is
transforming data into context-specific knowledge. Clients of this service should be able to ask high-level
questions and should get the desired knowledge in response. This alleviates applications from the burden
of interpreting low-level data themselves.

Although most of the complexity can be pushed to such a service, it is important to keep the code
complexity as small as possible also in the service itself. Readability and maintainability of code with
low complexity is much higher and results in less bugs. Basing the service on high-level declarative facts
representing information in a specific context and running high-level declarative algorithms describing

23

24 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

a desired solution enable programmers to write concise, understandable and maintainable code. As de-
scribed in section 2.1.3, CLP allows writing high-level declarative code. Rules can be formulated based
on stored facts, variables and constraints between variables leading to a description of the problem or
actually of the desired solution. Due to this reason, CLP is the programming paradigm of choice for this
thesis.

This chapter presents the system knowledge base (SKB), the central OS service responsible to store
and manage hardware knowledge and to execute reasoning algorithms. The SKB allows adding knowl-
edge in a high-level declarative way. Furthermore, it allows to upload and execute declarative algorithms
based on stored facts and additional input parameters.

The SKB’s architecture allows future extensions. It is not at all possible to include all policy or
knowledge code from the beginning in the SKB. In the future, new hardware types and new devices will
appear. Additional facts need to be added by external modules and new declarative algorithms need to be
added. The SKB must allow that external modules provide further facts, knowledge or policy code for
specific scenarios. By choosing an architecture where the core provides the basic infrastructure to add
facts, upload policy code and allow for querying, external modules can be built around it and add their
own facts and policy code, which again will be made available for the rest of the system.

This chapter explains the SKB’s architecture and design principles. It further describes how clients
add facts and how they upload and execute algorithms in the SKB. The chapter also discusses advantages
and disadvantages of this approach.

Parts of this chapter have been published [118, 116, 117]. A tutorial describing how to get a basic
application running with the SKB can be found on the public Barrelfish wiki [16].

3.2 Background
This section defines the term knowledge used in the context of this thesis. The term knowledge appears
throughout the whole thesis and is a key point of it. After the definition, the section gives an overview of
different types of knowledge bases to put the system knowledge base in context.

3.2.1 Knowledge
Data, information and knowledge

The realm of knowledge in knowledge engineering covers a range of specific concepts [97]. In the context
of this thesis, knowledge refers to three of these concepts: knowledge storing (knowledge base), knowl-
edge representation and knowledge application (reasoning) [97]. Knowledge is based on information
which itself is a based on data. Niederliński defines the three terms data, information and knowledge in
the following way [97]:

• data is given by 0/1 vectors. These vectors represent numbers, letters, signs or more complex
structures including pictures or sound. Data vectors are typically classified in data types such as
bytes, chars, floating point values, arrays or structures. Data is a result of measurements, human
interactions or processing of existing data.

• Information = data + meaning of data + purpose of data. Information is therefore a purpose-
oriented set of meaningful data. Information is stored in some form of databases. It appears as a
result of some target-oriented action.

• Knowledge = Information + goal + ability to use information to achieve goal. Knowledge refers
therefore to information relevant to some goal and the ability to process the information in a way
to achieve the goal. Knowledge is represented by a set of facts, rules and mathematical models.

3.2. BACKGROUND 25

Knowledge in the system knowledge base

In this thesis, data is often a result hardware discovery by a data gathering process running in the OS. It
queries the underlying hardware and gets out a lot of data, which it stores in the system knowledge base
and which has to be interpreted and used to achieve specific goals later on.

Information in the context of this thesis is typically a result of some driver which understands the
meaning of the data belonging to a specific device. The driver knows how to use this data and therefore
there is a purpose for the data in the context of the driver.

To reason about the hardware and take smart decisions, declarative algorithms are implemented based
on information stored in the system knowledge base. The purpose of the algorithms is to fulfill a specific
goal based on the information. It knows how to use the information to reach the goal. The algorithms
are typically executed by specific drivers, resource managers or other operating system modules. For
example, drivers have a specific goal, namely correctly initializing and operating a device. This includes
correct hardware resource allocation. Drivers and especially the algorithms used by them gain knowledge
about hardware by using information and transformation rules to achieve the goal. One of the most
complex representatives is the PCI driver (see chapter 6). Its goal is allocating conflict-free physical
addresses to all devices while meeting complex hardware requirements. It uses PCI information and
knows how PCI allocation works.

3.2.2 Knowledge bases
This section shows that there are different interpretations of the term knowledge base possible. Because
the thesis implements a knowledge base, it is important to define what type of knowledge base the thesis
refers to.

The purpose of a knowledge base is storing, organizing and managing knowledge. An interface allows
clients to query the knowledge base and retrieve answers to specific questions. The two main types of
knowledge bases are human-readable knowledge bases and machine-readable knowledge bases.

Human-readable knowledge bases provide information to users in form of text, tables or figures.
A human may search for specific keywords or may follow a predefined structure of categories until he
reaches the knowledge item of interest. “Frequently asked questions” (FAQs) pages are an example of
human-readable knowledge bases. Users read through FAQs and try to match their question with the an-
swers given in the FAQs. Organizations might provide human-readable knowledge-bases in their intranet,
such that users learn about infrastructure, for example. A knowledge base of this from might be organized
as hierarchy of categories. The user selects on of the top categories according to what he needs to learn or
lookup and follows down a tree which allows him to select increasingly fine-grained subcategories until
he finds the item of interest. Another form of human-readable knowledge-bases are used to support users
using a company’s product. The Microsoft knowledge base [92] is a human-readable knowledge base
providing specific technical knowledge to users of Microsoft’s products. A user can search through the
knowledge base to find desired entries. A single webpage contains information regarding the searched
keywords. The users reads through the page to get an answer to his question. Similarly, Apple [9],
Mozilla [95] and many more provide knowledge bases to support their users in many scenarios.

Machine-readable knowledge bases provide knowledge in a form, that a machine can reason auto-
matically about it and take decisions based on the knowledge. Classical deductive reasoning can be used
to start from a set of given facts to reach a logical conclusion. Rules define how facts can be transformed
and combined such that the logical conclusion can be reached. Machine-readable knowledge-bases are
often used in artificial intelligence to reason about available facts and take decisions based on them. Ex-
pert systems [14] take decisions based on facts like a human expert. They consist of a machine-readable
knowledge base and a reasoning engine. The reasoning engine reads the machine-readable facts, applies
rules as described by a programmer and deduces new knowledge. There are systems which use machine-
readable knowledge bases and reasoning engines to decide on further steps to be taken based on current

26 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

knowledge. Rhizoma decides how many and which servers it needs to acquire from the network to reliably
run an application meeting the user’s requirements on latency, connectivity and availability [142, 141].
The Microsoft Registry [122] contains machine-readable information about hardware, software and vari-
ous configurations. While the Registry does not directly contain a reasoning engine, the operating system
has the possibility to read facts identified by keys from the registry.

The system knowledge base in this thesis is clearly a machine-readable knowledge base. Algorithms
rely on machine-readable information and automatically derive new knowledge by applying transforma-
tion rules and unification.

3.3 How does the SKB help the operating system?
It is necessary to know the exact role of the SKB in the operating system. This section section defines
the SKB’s purpose followed by some supporting examples. It further lists common patterns found in
problems for which the SKB is suitable facility to solve the it. Finally, the section provides a guideline
according to which one can decide whether it is worth to model the problem in the SKB.

3.3.1 Purpose

The purpose of the SKB is providing a general storage for high-level declarative facts as well as an
execution environment to execute declarative algorithms. The goal of the SKB is to serve as a central point
where the OS, drivers and applications collect all information which might be interesting not only for
themselves, but also for other modules. The SKB provides a uniform and standardized way of querying
hardware information and software state to OS components and applications. By using high-level facts,
services and applications do not need to know specific details about how to get access to information
registers of devices. They also do not need to worry about how to interpret hardware information, which
is usually provided as bit fields in registers. High-level facts provide the information of interest in a
register-layout-independent way. Facts are therefore easy to read by machines and even by humans and
they always have the same format, independently of how the hardware manufacturer decided to expose
the information on the particular piece of hardware by registers.

Another purpose of the SKB is forming a basis to build reasoning algorithms. These algorithms
describe a higher-level problem based on stored facts. Additionally to stored facts, parameters can be
passed to algorithms. Parameters are the better choice over stored facts, if their values change quickly.
On top of stored facts, rules combine several facts to produce new, high-level knowledge. This new
knowledge can be further processed by higher-level reasoning algorithms which describe a complete
problem. Generally, the reasoning algorithms enable system software and applications to take informed
decisions on how to make best use of available hardware resources.

3.3.2 Examples

So far, the description of the SKB and its purpose was rather abstract and generic. In this section, I sketch
some basic examples of information which goes into the SKB.

The cache is an important part of the hardware which significantly affects software’s performance,
depending on whether it is used the right way or not. Cache information is provided by the SKB as
high-level facts, which means that properties such as cache size, cache line size, level or associativity can
be queried independently of the actual CPU architecture. It is the SKB’s responsibility (together with its
datagathering services 3.5.3) to get the information using the appropriate low-level mechanism. On x86
CPUs, the cpuid instruction provides cache information in an encoded way, while on other architectures
there are other low-level mechanisms to gather low-level data or the information might even come from

3.3. HOW DOES THE SKB HELP THE OPERATING SYSTEM? 27

online measurements instead of information registers. At the end it does not matter for the clients, how the
cache facts were produced, as long as the client can query the SKB for cache line sizes, associativity and
other to the application important properties in a uniform and abstracted way. The schema in section 3.5.2
shows (among other fact formats) the concrete representation of cache information.

Section 3.3.1 mentions that quickly changing values should rather be input parameters to reasoning
algorithms instead of stored facts. The current CPU utilization is one example of information which
changes quickly. It is better to pass this value as argument rather than storing and and constantly updating
it as fact in the SKB.

NUMA-aware allocation makes use of a simple reasoning algorithm. Finding the destination core’s
NUMA region involves combining the core’s affinity domain with the memory region’s affinity domain.
The reasoning algorithm in the SKB derives an allocation policy which gets passed to the actual memory
allocator. The memory allocator only provides the mechanism of allocating memory. With the derived
allocation policy in the SKB, the memory allocator can be instructed to allocate memory from a specific
range (which is not necessarily the calling core’s local memory).

Not only memory appears in physical address range, but also many devices export their registers
through a memory mapping to be set up by the operating system. Algorithms to derive policies on where
to map which device run in the SKB based on facts about available physical address space and facts
about device properties and their dependencies. PCIe allocation is one of the most complex problems of
allocating physical address space. A detailed description of the PCIe configuration and its policy code to
derive physical address allocation based on available address windows and device requirements is given
in section 6.

The SKB derives not only lower-level policies, like memory and physical address range policies, it
derives also policies for complete higher-level problems described in CLP. As an example, applications
describe what properties in terms of hardware resources they would like to meet. A high-level description
of application requirements and available hardware allows the OS to derive a core to application mapping.
Chapter 8 describes in detail how global knowledge about running applications and hardware in the SKB
is used to derive CPU core allocation policies.

3.3.3 Common patterns of resource allocation descriptions

The use-cases often have similar patterns in describing the desired resource properties. Often, problems
need a description of numbers, addresses, address ranges and dependencies between them. The most
generic description starts without assuming any concrete values. This means, the problem description
starts with variables representing the numbers, addresses and ranges. Constraints between them relate the
variables and describe their dependencies in a from concrete values abstracted way. The variables often
describe physical address ranges, RAM, NUMA nodes, number of cores or a cache hierarchy.

For example, bus and device drivers, which need to configure addresses and resources for devices
describe their allocation problems similarly to placing algorithms, which need to place applications on
cores and NUMA nodes. Both types of algorithms operate on addresses or address ranges representing
resources such as RAM or physical address regions. The concrete allocation of an address range de-
pends on many factors which in fact limit the possible address set per resource. In fact, addresses are
integers and hardware or software given limitations on supported address ranges are constraints on these
integers representing addresses. Hardware resource allocation has often hardware given constraints and
clear allocation and dependency rules, such as address alignment requirements or dependencies on other
allocations.

In contrast to mechanism code, complex allocation algorithms only execute once in a while. The
algorithms derive policy parameter which are valid longer term. Mechanism code operates in the fast
path of the system. Mechanisms consider policy parameters to take fast decisions. By separating policy
from mechanism code and running policy code in the SKB off-fast path, system performance does not

28 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

suffer from a high execution time of the policy code, as long as mechanism code works properly on
previously derived policy parameters 1.

Furthermore, it is often desirable, that policies and mechanisms are clearly separate. CLP not only
allows to describe various allocation policies such as physical address ranges for devices or core to ap-
plication allocation, it also naturally leads to a clear policy/mechanism separation. While CLP allows to
describe allocation policies, it does not have direct access to the mechanism code and even less to regis-
ters. The use of the SKB for policy code enforces the programmer to think about a clear policy/mechanism
separation.

To summarize, as long as allocation algorithms operate on integer values and as long as there are clear
allocation rules constraining the possible set of addresses and modeling dependencies between them, CLP
is a perfect match for implementing complex algorithms at a low code complexity for the programmer.

3.3.4 When to use the SKB

At a high-level, the SKB should be used whenever knowledge processing is involved. OS components,
drivers and applications should make their part of knowledge available to other parts of the system.
Likewise, the SKB should be used whenever hardware knowledge or high-level software state needs
to be queried. Ideally, policy code should be implemented in the SKB, as long as the problem can be
described using clear rules. The SKB has a global view and its high-level language reduce the code
complexity. Also, this leads to a natural policy/mechanism separation.

To answer the question of whether to use the SKB in a more general way, I identified a number of
characteristics of formulating problems that may apply. In the following paragraphs I discuss the general
properties of a problem that may suit a CLP-based solution. If most of the following characteristics apply,
a CLP-based solution may be appealing:

Configuration parameters need to be allocated from a constrained region For example, if there is
a set of smaller address regions that need to be allocated from a bigger available address regions, the
base address of every region can be translated to a variable to be assigned a concrete value by the CLP
program.

Parameters have clear constraints If the configuration parameters have clear constraints (for example,
natural alignment), these can easily be expressed as a CLP constraint.

Dependencies between parameters If there are dependencies between multiple parameters (for ex-
ample, the placement of address regions defined by base and size parameters, such that position of one
region influences where others can be placed), it is a good idea to use CLP. Constraints allow to express
these dependencies before concrete values are assigned to variables, leaving great flexibility in parameter
allocation while still meeting the dependencies.

Permutations of configurations If meeting dependencies between configuration parameters might
cause a large permutation and reassignment of other parameters, CLP can handle this cleanly by first
collecting and considering all constraints, before assigning concrete values to variables. The imperative
alternative would be to search for valid permutations by backtracking, which might be too expensive, and
leads easily to complex code.

1High execution time means in the order of tens of milliseconds, as the concrete use-cases will show.

3.4. DESIGN 29

Handling special cases natively and cleanly Handling special cases in an imperative language often
becomes messy quickly, because they are usually treated as workarounds added to the core code. By con-
trast, CLP allows additional constraints to be assigned independently of the core search logic, simplifying
the treatment of special cases.

3.4 Design
This section describes the design of the. The section starts by explaining the design principles, because
they guided the overall architecture. Understanding the overall architecture is a requisite to correctly
interact with the SKB. It further describes the possibilities of adding facts and the role of algorithms.
Finally, the section talks about security.

3.4.1 Design principles
The design of the SKB is guided by a list design principles. The following paragraphs list and explain the
design principles in detail.

The SKB should be the central knowledge engine. The SKB should allow every system component
and application to add, query and modify facts. If it is used as central knowledge engine, it provides a
global view of the overall hardware and system state. Consequently, the SKB is designed as a service
such that clients can connect to it and interact with it through a well-defined interface.

Provide high-level uniform information. The information should be provided in an abstract, easy-to-
use and uniform format. The format of the information should be independent of the actual mechanism
used to gather the information. It should also be easy to search information and match pieces of informa-
tion with known values. While the SKB offers a high-level RAM-based storage for information, it is also
the clients responsibility to prepare the information in the machine-independent format, before storing it
to the SKB. Furthermore, the SKB has to support reading files with a priori knowledge from data sheets.
The files should contain knowledge in the same high-level format.

Allow uploading and executing declarative algorithms. The SKB should allow clients to upload
application-specific policy code to the SKB. The code has to be declarative and should describe problems
based on stored facts and additional input parameters. Algorithms can create variables, match them to
facts or constrain them based on facts stored in the SKB. The SKB tries to assign values to variables such
that constraints and relations on variables and stored facts can be met. The SKB allows clients to execute
algorithms within the SKB and retrieve the results.

The SKB serves as a policy engine. The SKB provides a basis to implement policy code. It does not
itself enforce policies and it provides no mechanism to apply derived policies. Security or register access
for example have to be implemented outside the SKB. Furthermore, the SKB is reactive as in a classical
server approach. It does not execute on itself. It only acts on behalf of clients.

Expressiveness. The SKB should not impose restrictions on the format and types of knowledge added
to its storage. Also, it should not restrict what algorithms in what they want to express. Instead, the
SKB should support as expressive algorithms as possible. The SKB needs to support storing knowledge
of current and future hardware, no matter, how complex hardware will be in the future. Likewise, the
SKB should support any reasoning algorithm, even if it has to express complex relationships between

30 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

several facts in the future. A flexible and expressive query and update language is needed to retrieve the
information stored in the SKB. Clients of the SKB should be able to express exactly what information
they are interested in or how to add new data or update existing data.

Provide a convenient high-level interface to clients. Since the SKB is the central point of knowledge,
it should be convenient for clients to add, modify and query facts by means of a high-level interface. The
interface must be expressive enough to add detailed information about hardware and to add fine grained
performance data from online measurements. The interface should also provide a simple mechanism to
upload algorithms and execute them within the SKB. It should also allow to directly pose constrained
optimization queries on stored facts and input parameters.

Policy/mechanism separation. As already mentioned, the policy/mechanism separation is a main en-
abling factor of simplifying operating systems code in this thesis. In fact, for all use-cases in this thesis
the separation allowed to implement readable small and clean mechanism code as well as readable small
and clean policy code. Furthermore, the mechanisms should work correctly without querying the SKB on
the system’s fast path. The clear policy/mechanism separation enables the system to use mechanisms on
the fast path while executing policy code one on a while off-fast path. The high-level language basically
enforces policy/mechanism separation.

The SKB should be machine independent. More precisely, the way of adding knowledge and the
language, in which algorithms are implemented, should be machine-independent. Two properties are
important to meet this requirement. First, if knowledge is described as uniform facts, it does not matter
of what type the machine architecture is. High-level PCI knowledge (like base addresses and sizes) are
the same on x86 and Sparc64, for example. Second, if algorithms are implemented in a language running
on top of a language runtime, the algorithms are not bound to a specific architecture. The high-level
declarative code will be compiled at runtime to the specific underlying machine.

Data structures should be extensible. It should be straightforward to extend data structures in the
SKB. Together with those extensions, algorithms need to be adapted as well.

The SKB should be modular. It should be easy to build additional functionality around the SKB. This
include support libraries, additional interaction mechanisms, data providing functionality and services
built on top of it.

The SKB has to be able to boot early on system boot-up, Because the SKB is a central knowledge
engine, it is used to configure hardware which is an early task of an operating system. Hardware dis-
covery and configuration as well as booting cores, finding memory regions and coordinating boot-up of
most of the system is based on SKB information. The SKB therefore needs to be self-contained and as
independent as possible from other system components.

Support concurrent access, On a manycore system, there is obviously a lot of concurrency. Since
the SKB is a central point of information and there will be many clients interacting with the SKB at the
same time, there will be concurrent access. The SKB must implement some synchronization to allow
concurrent access in a safe way.

3.4. DESIGN 31

4

2

2

1

1

2

3 3

1: Information source
2: Query results 4: Interaction

3: Policy parameters

Applications

Runtime

SKB
Profiling

Monitoring

Hardware
discovery allocator

Memory

manager
Resource

Scheduler

Figure 3.1: Overall system design

3.4.2 Overall architecture
Based on the design principles, the SKB is a self-contained user-level reactive OS service providing the
facility of storing knowledge and running algorithms. Figure 3.1 shows the overall design of the SKB
and its interactions with other modules.

The central point of the complete knowledge infrastructure builds the SKB. Around the core SKB
service, discovery and monitoring modules provide information and store them as high-level facts to the
SKB. Device manager and resource manager closely interact with the SKB by adding and deleting facts
and running algorithms within the SKB, whenever needed. Complex device drivers, such as the PCI
driver, store all device related information at discovery time to the SKB and finally executes policy code,
like for example an allocation algorithm, within the SKB. Applications can query the SKB for information
about the hardware, such as for example cache hierarchies, directly. Managed language runtimes may
optimize applications execution by querying the SKB and by combining the hardware knowledge with
the internal knowledge of the application.

Apart from the SKB and its clients, there are libraries, event mechanisms, standard query functions
and standard datagathering modules available to facilitate the interaction with the SKB and to provide a
base set of data and queries.

To ensure, that the SKB can serve as policy engine to run hardware configuration algorithms early at
startup of the system, it is built as statically linked and completely self-contained service. It run from a
RAM disk on which the base algorithms are stored. Unlike a physical disk, the RAM disk is accessible
even before any hardware is configured.

3.4.3 Core
The SKB is a single-threaded event-based OS server. It is only reactive and does not perform any op-
eration by itself. On a request, it performs and action and returns the result. In contrast to the base
server, event-mechanism such as Octopus, (see section 4.3) built on top of the core, may actively send
asynchronous notifications on changes to stored facts.

The SKB embeds a CLP language runtime such that expressive algorithms can be implemented by
clients and executed within the SKB on behalf of them. The CLP language runtime does not restrict the
format of stored knowledge nor what an algorithm may express or compute. The only restriction is that
the syntax of facts and algorithms is correct according to the CLP language. As discussed in section 3.8.2,
this freedom is a nice feature for a research system, but it is a risk for a production system. There are
however solutions to this problem.

The core of the SKB exports three basic services. First, the SKB provides storage for facts. Facts are

32 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

kept in memory as long as the SKB is running. The SKB gets populated by external programs whenever
the system boots up. There are different sources from which the SKB gets populated. Most of the facts
are added by discovery and monitoring modules through the exported interface. A second method is to let
the SKB load a file of facts into its memory-based storage. This is especially useful for facts which can
only be known from data sheets. An example are PCI IDs to driver binary mappings (see section 5.1.2).

Second, the SKB allows to execute queries of the facts. Single facts can be queried by matching
the fact name and providing variables for the fields belonging to the fact. Queries can be built in a way
that only fields of interest are returned as the result, instead of returning complete facts. Queries can
also construct results by taking parts of information from different facts. Fields of different facts can be
unified to each other. A typical scenario includes an equality join where one field is available in at least
two facts. Unifying this field of both facts provides corresponding fields of both facts as a result. A query
can combine fields od different facts to a new fact. It can arbitrarily name the new fact and add the desired
number of fields to the new fact. It may or may not store the new fact to the SKB. In most scenarios it
does however not make sense to store these constructed facts, as they can always be reconstructed again.
Storing them would require to update them, in case that the base facts change. Queries do not change the
state of the SKB by themselves. Queries are read-only. Only, if the client instructs the SKB explicitly,
the SKB’s state can be changed. Storing newly created facts explicitly or deleting facts explicitly are two
ways of changing the SKB’s state.

Finally, the SKB allows to load and execute algorithms from a file or through the interface on behalf
of a OS service or an application. The algorithm gets stored in the SKB’s memory. It can be called by
name at any time after it is loaded. Algorithms can use any available facts. Additionally, input parameters
can be passed to the algorithm whenever it gets called. The caller also passes variables to construct the
output of the algorithm. The caller can define the format of the output in a arbitrary way.

3.4.4 Interface

The SKB exports a simple string-based interface through which facts can be added, queries can be sent
and algorithms can be called. A string-based interface does not impose any restrictions at all, which is
according to one of the design principles. Whatever the embedded language runtime supports can be sent
through the interface. While for a production system it may be desirable to restrict the interface, it is
a perfect interface for a research system. It allows to explore many different techniques and algorithms
without complicating the interaction with the SKB.

The basic interface to the SKB is based on messages (see section 2.2.4). The interface allows to send
any string to the SKB. Results are received in form of strings as well. Additionally, the interface returns
an error number and a string containing the error description back to the calling client. The client should
therefore always check the error number for possible errors.

For this thesis I chose to implement a blocking interface to the SKB. Consequently, a call to the SKB
blocks the client as long as the SKB is still executing the client’s request.

The single-threaded nature of CLP makes it almost impossible to execute several requests at the same
time without adding additional external mechanisms. A blocking interface, where one client after each
other is serviced, naturally synchronizes executions of the calls. This facilitates the implementation of the
request handling dramatically. The drawback is that clients do no useful work while they are waiting for
a potentially long running query. Obviously, an asynchronous interface would allow clients to do useful
work while they are waiting. It would still be possible to execute one query after each other. The SKB
would need to buffer requests and remember request-to-client mappings. It would dequeue one request
after each other, execute it and upcall the client with the result.

There is a second reason, why executions cannot easily be parallelized. Every execution of an algo-
rithm potentially accesses every fact and potentially modifies every fact. If multiple algorithms execute at
the same time (even in separate processes), there might be conflicts between algorithms reading facts and

3.4. DESIGN 33

algorithms trying to update the same facts. Isolation mechanisms like in database management systems
would be necessary to guarantee data consistency.

Since the SKB should be used off-fast path, blocking a client for the time of a request should not
harm, especially for the conceptual research in this thesis. Clients which wish to continue processing
while waiting for the result, can create a separate query thread. In this case, the main thread can continue
executing while the waiting thread blocks. It is the client’s responsibility to prevent multiple threads from
calling the SKB concurrently.

The exported interface is the basic mechanism to communicate with the SKB. It only allows to send
and receive strings, but it does not help to produce the right query strings nor to parse result strings. A
client library builds on top of this basic interface and provides many convenient functions to assemble
query strings and parse and interpret result strings. I explain the client library in section 3.6. Most clients
should be fine with the client library, but in any case, they can always use the basic interface. The basic
interface is defined the following way:

interface skb "SKB RPC Interface" {

rpc run(in string input,

out string output,

out string str_error,

out int int_error);

};

The parameter input refers to the input string. This can be any query, update or algorithm call in
string form. More generally, it may be any string which is a valid input to the CLP system. As the
interface does not restrict the input, a client might instruct the CLP system to behave in a certain way,
depending on what special input string the CLP system supports. The parameter output refers to the
output generated by the query or algorithm. The output is exactly as the CLP system produces it. The
query or algorithm should create an output in a suitable way for the client. Even though the client has
complete freedom to generate arbitrary output, there are some conventions, if it wishes to use the client
library to parse the output. If it violates the conventions, it has to parse the output itself using the basic
interface. In case of an error, str error contains the error message, as the CLP system produces it.
int error is the return value of the CLP system invocation in the SKB. The concrete meanings of the
return value depends on the CLP system. Also whether the error string contains additional information
depends on the CLP system used. As explained in section 3.5, this thesis uses ECLiPSe as CLP system.
Therefore the meaning of return values and error strings are defined by ECLiPSe. A value of zero is a
successful invocation of the system while every other value indicates an error.

3.4.5 Facts, schema and queries
The SKB does not enforce any fact format nor does it come with a predefined data schema. Clients can
add facts in a format that suits them. Likewise, clients implicitly define the data schema by adding facts
with a certain number of fields 2. The only restriction is that facts must by syntactically correct according
to the CLP system.

The advantage of such a flexible schema is that applications can start using the SKB as data store
and policy engine without modifications necessary to the data schema. This is especially useful for
applications, because there is no in advance knowledge what kinds of applications will be executed on a
machine. Additionally, applications are developed by people outside the core team.

The risk of not having standardized the data model is that it gets messy. Data may be replicated in a
different format or it might be unclear how to query existing data.

2Fields are like attributes in a database scenario.

34 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

It is a tradeoff between flexibility and keeping the SKB clean. In this thesis, the focus is on the
feasibility and usability of having an SKB at all, rather on how to create a clean data model and how to
enforce and maintain it.

The correct syntax of queries is defined by the CLP system as well. Because the SKB provides a
string-based interface, there are no restrictions of implementing algorithms. They only must be correct
according to the CLP system.

3.4.6 Data gathering

Before the SKB can answer queries about hardware properties or software state, it needs to be populated
with detailed information. Because the SKB is a purely reactive OS service, it does not perform datagath-
ering on its own. It has to be populated with facts by external programs such as bus or device drivers and
applications.

I identified three ways of populating the SKB with information [118]. The first way results from
resource discovery, such as traversing ACPI tables, enumerating and monitoring the PCIe or USB bus
and by querying registers of specific devices. Resource discovery and monitoring is done by drivers,
which understand how to query specific pieces of hardware and how to store high-level general facts to
represent the information in a generic, but still detailed way. This is an ongoing process, as devices may
be hotplugged or removed, in which case the information in the SKB needs to be updated.

Online measurements, such as cache and memory latency measurements, are a second source of
information. Measurements provide a view of hardware characteristics, as an application experiences
them when it is running on this hardware. This derived logical topology view of the hardware does
not necessarily correspond to the actual topology on every machine. As an example, the topology of
the 8x4 cores AMD machine as in figure 3.2 implies that running the network driver code close to the
network interface card (NIC) and allocating packet buffers on this same node leads to the best performance
in terms of UDP echo network throughput. The measured network throughput in this configuration in
figure 3.2(a) is 668MBit/s. However, the measurements show that the packet buffer should be allocated
as in figure 3.2(b). This leads to a network throughput of 888MBit/s. In this case, the actual topology
does not correspond to the derived topology based on the measurements. It is therefore important to
not only learn about hardware by resource discovery, but also to learn the concrete behavior through
online measurements. Only this provides a realistic view of the machine and shows how an application
experiences it.

Finally, there are cases where a priori knowledge derived from device data sheets has to be asserted, as
there is no way of discovering information details at runtime. Device type information or a serial number
of the device is sufficient to load a facts file providing a priori knowledge about this specific device. As an
example, the datagatherer presented in this thesis uses the cpuid instruction on x86-based architectures
to gather information about the cores and caches. This returned information has to be interpreted based
on datasheets which match the current processor architecture.

It is obvious that device drivers should be responsible to add information about their devices. They
know best how to access device registers and how to discover device properties and features. This is also
the case for bus drivers. The PCIe bus driver is basically a device driver which knows how to handle the
PCIe configuration space and how to derive facts for the SKB. It does not need to know details about
every device, as the concrete device driver can take over the responsibility of adding further details of the
device it is taking care of.

There are however cases where the responsibility of adding facts to the SKB are less obvious. Mea-
surements of the memory hierarchy is a good example. The memory system does not need a driver and
therefore there is no specific OS service already running, which could take over these measurements. In
some cases it is even not feasible or not desirable that the driver itself adds facts about its device. An
example of this special case is the CPU driver and its device, the CPU (see also section 2.2). In the

3.4. DESIGN 35

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

PCIe

PCIe

GbE

SATA

PCIe

GbE

SATA

PCIe

RAM RAM RAM RAM

RAM RAM RAM RAM

Floppy disk
drive

Code

Buffers

NIC

(a) Placing according to hardware topology: 668MBit/s

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

CPU,
L2

CPU,
L2

CPU,
L2

CPU,
L2

L3

PCIe

PCIe

GbE

SATA

PCIe

GbE

SATA

PCIe

RAM RAM RAM RAM

RAM RAM RAM RAM

Floppy disk
drive

Code

Buffers

NIC

(b) Placing according to measured topology: 888MBit/s

Figure 3.2: Measured Topology vs. actual Topology: The measurements imply that the rightmost bottom
node is closest to the NIC.

Multikernel architecture, OS functionality is moved out from the CPU driver to user-space. The CPU
driver should not need to connect to the SKB and start adding facts about the CPU. To solve this prob-
lem, the SKB provides datagathering modules to query hardware information of common interest and to
perform measurements. The datagathering modules run as separate applications and have to be started
externally. The SKB does not start the datagathering application by itself. The concrete implementation
of the datagathering application is described in section 3.5.3.

3.4.7 Algorithms
Algorithms transform information into knowledge by means of logical or mathematical rules, as explained
in section 2.1. They match a number of facts, combine or transform them or parts of them and provide
an answer to the client. There are basically three different types of algorithms and three different ways of
loading them into the SKB.

While every client has full freedom of creating its own queries and algorithms, there are common
queries which are used by different clients in different scenarios. It is not necessary to re-implement those
in every client. It is advantageous, to collect these queries at a single place and load them once.

Some queries however are application-specific and only serve one application. In those cases, it is
best, if the application provides its queries and if it is responsible to load then into the SKB.

Finally, some queries might be of common interest, but depend on information provided by a certain
external application. In this case, it makes most sense, if the external application provides the information
first and loads the high-level queries later on. Other applications can execute those queries, without
needing to know where the information came from and how the queries have been implemented.

Common queries

The generic ability of querying hardware information provides a great flexibility. Every fact can be
considered in the query and facts can be matched to each other. However the complexity grows in the
number of facts which have to be joined to derive an answer to a typically high-level question. A better
strategy is to define goals3 for commonly used queries. These goals answer high-level questions by
always matching the necessary set of facts. This way, the complexity is removed from the client. The

3Goals are like functions in ECLiPSe. These are basically rules defining how to combine facts

36 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

maintainability is much higher, because only one goal needs to be adjusted in case the fact formats change.
Additionally, these goals are reusable for many clients and scenarios.

Therefore, the SKB loads standard common queries. Typical common queries are about basic hard-
ware properties. The OS and applications need to know how many cores are installed and how much
memory is available. Furthermore, the OS and applications often want NUMA-aware memory allocation
and query the SKB for NUMA regions and core to NUMA affinity. Similarly, applications which care
about cache optimizations query the SKB for cache information. These queries do not need to be repli-
cated in every application. Instead, they belong to the basic set of queries which get directly loaded by
the SKB.

The ACPI driver is an example which adds platform facts for general use to the SKB. Other clients
can make use of them. The common queries loaded by the SKB access some of the facts added by the
ACPI driver.

Application-specific queries

Every application has the freedom to add its own facts and to execute its own policy code. The policy
code can access its own facts and combine them with system facts already contained in the SKB. Since
there is no access control in the SKB (see also section 3.4.8), every application-specific fact uploaded by
the application can also be accessed by every other client. Section 8.7 gives an example of an application
which makes use of application-specific facts and algorithms.

External queries of common interest

The typical case is that clients are responsible for parts of the information in the SKB. In the common
case, they also load the corresponding goals, rules and algorithms into the SKB. The client, which adds
the data, knows best how to interpret it and what types of high-level questions can be asked. It knows
exactly, how to get knowledge out of the gathered information. Also, if the facts need to be extended, it is
one step to also extend the queries and algorithm based on them, without necessarily needing to change
the high-level query.

The PCIe driver is one example which provides detailed facts about all devices and loads a set of
functions to process the facts. It does not only run the allocation algorithm based on its own facts, but
it also enables other clients to learn about PCIe devices. To facilitate processing PCIe information, the
PCIe driver loads a second set of generic queries. The device manager is one example which needs to
have at least a high-level understanding of which devices are installed. Specific device drivers can query
high-level PCIe information related to the device. It is even extremely simple to implement a lspci-like
tool to display all PCIe devices installed in the system in a nice way.

3.4.8 A note on security
The current version of the SKB does not have any security mechanisms for different reasons.

First, Barrelfish does not have a security framework. There is no notion users or superusers and there is
no possibility to identify processes 4 as trusted or not trusted. Consequently, there is no authentication and
no authorization possible and the SKB accepts queries, updates and algorithm calls from every process.

Second, the SKB does not check the submitted queries, updates and algorithm calls for embedded
update and deletion statements. This means that code can be injected which alters or deletes all facts in
the SKB.

These two security issues have impact in a number of ways. Apart from the problem, that every pro-
cess can alter or delete everyone else’s facts, arbitrary long running algorithms can be executed within

4A process is called domain in Barrelfish.

3.5. IMPLEMENTATION 37

the SKB. Since the SKB is single-threaded that prevents any other processes from using it. This could
be solved by creating a new instance of the SKB, whenever an algorithm has to be executed. The main
instance serves as a master and keeps the most up-to-date data and loaded algorithm code, but does not
execute algorithms itself. It would however complicate the implementation, especially the data manage-
ment. If algorithms execute on different instances, data consistency has to be ensured similar like in a
database management system (see also section 3.8.2).

This thesis is about the feasibility and usability of a service like the SKB. Security issues are not
addressed in this thesis.

3.5 Implementation
This section presents the concrete implementation of the SKB server and, most importantly, the concrete
CLP system used, as this has implications on the syntax of facts and queries accepted by the SKB. As
mentioned in section 3.4.4, the interface does not restrict what facts, queries or algorithms are sent to
the SKB, but the concrete CLP system embedded in the SKB does. Therefore, the section presents a
summary of the accepted syntax for facts. It then moves to the implementation of the datagatherer, which
queries information interesting for most of the clients. Finally, it describes, how common queries get
loaded and how the implementation handles the early startup of the SKB, which necessary to be available
for hardware configuration tasks.

3.5.1 Implementation of the SKB server
The core of the SKB is implemented partly in C and partly in ECLiPSe [10, 30]. The SKB program
itself is implemented in C. The SKB program starts up and initializes itself as an OS service. It creates a
message channel, and starts listening for incoming commands (see also section 2.2.4).

The SKB program embeds the ECLiPSe engine, which itself is implemented in C. The ECLiPSe

engine is a managed language runtime for the high-level ECLiPSe CLP language. It is responsible to
execute all CLP code. It also takes care of storing, searching modifying and deleting facts, as instructed
by the executed CLP code. The ECLiPSe runtime does therefore not perform operations by itself. It only
performs operations on behalf of the executed CLP code. The ECLiPSe engine comes with a source code
compiler and a byte code to machine code compiler with optimizer. Source code gets compiled down at
least to byte code at runtime. The language runtime might decide to compile parts of the code – either
source code or byte code – to machine code at runtime. The actual functionality of the language runtime is
implemented in ECLiPSe CLP code as well. When the main function of the SKB invokes the initialization
function of the ECLiPSe engine, the ECLiPSe engine loads core functionality from a compiled ECLiPSe

CLP file. This CLP code instructs the ECLiPSe engine to load more compiled files, as the functionality
is all implemented in CLP and not in C.

The main SKB program interacts with the ECLiPSe engine by means of function calls. Every function
call invokes the ECLiPSe runtime which executes some CLP functions. After reaching a defined state,
the CLP code returns causing the invoked C function to return back to the invoking SKB function.

The main server functionality is implemented in a loop. Whenever the SKB receives a request through
the exported interface, it reads the input, invokes the ECLiPSe engine and sends the computed output back
to the client.

3.5.2 Facts and schema
Because the SKB is based on ECLiPSe and the interface directly passes strings to the CLP engine, facts
and queries are given in ECLiPSe syntax. Facts are basically named tuples. The syntax is given below in
a EBNF-like format.

38 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

lower ::= "a" - "z".

upper ::= "A" - "Z".

digit ::= "0" - "9".

number ::= digit {digit}.

fact ::= predname"." | predname "(" args ").".

predname ::= lower {lower | upper | digit | "_"}.

args ::= arg {"," arg}

arg ::= atom | variable.

atom ::= atomname | number | fact | list.

atomname ::= lower {lower | upper | digit | "_"}.

variable ::= "_" | upper {lower | upper | digit | "_"}.

list ::= "[]" | "[" fact {"," fact} "]".

Facts are not only identified by their names. The arity (the number of arguments) further defines the
facts. This means that facts with the same name, but different arities can co-exist. A query needs to
provide the name of the fact it wishes to match and an arity. It will only match those facts with the same
arities, even if more facts with the same name, but different arities, exist.

Building a knowledge base out of flexible ECLiPSe facts results in a extremely flexible data schema.
The data has an implicit schema given by the names, arities and argument values of the facts. There is
no prior schema or type definition available. Numbers and lowercase strings are just treated as constants
without type. Furthermore, every application adds its own facts with an own format during runtime. The
schema is therefore changing or rather extended constantly. Because ECLiPSe uses unification to search
for specific facts, it allows queries to try to match everything with everything. If it is not the same (for
example a number and a string), it is not unifiable and it will fail.

To query the SKB, the names and formats of the facts of interest have to be known. It is therefore nec-
essary to follow conventions about fact names, arities and attributes and their meanings. The declarative
nature of the facts facilitate understanding their meaning from looking at them. The ECLiPSe command
listing outputs the complete dynamically added data5. Some well-known facts are listed below.

apic(ACPI_ProcessorID, APICID, Availability). % 1 = Yes, 0 = no

bridge(pcie|pci, addr(Bus, Dev, Fun), VendorID, DeviceID,

Class, SubClass, ProgIf, secondary(Sec)).

device(pcie|pci, addr(Bus, Dev, Fun), VendorID, DeviceID,

Class, SubClass, ProgIf, IntPin).

interrupt_override(Bus, SourceIRQ, GlobalIRQ, IntiFlags).

rootbridge_address_window(addr(Bus, Dev, Fun), mem(Min, Max)).

bar(addr(Bus, Dev, Fun), BARNr, Base, Size, mem|io,

(non)prefetchable, Bits (64|32)).

fixed_memory(Base, Limit).

apic_nmi(ACPI_ProcessorID, IntiFlags, Lint).

memory_region(Base, SzBits, SzBytes, RegionType, Data).

currentbar(addr(Bus, Dev, Fun), BARNr, Base, Limit, Size).

pir(Source, Interrupt).

ioapic(APICID, Base, Global_IRQ_Base).

prt(addr(Bus, Dev, _), Pin, Source).

rootbridge(addr(Bus, Dev, Fun), childbus(MinBus, MaxBus),

mem(Base, Limit)).

mem_region_type(Nr, Type).

memory_affinity(Base, Length, ProximityDomain).

cpu_affinity(APICID, LocalSAPIcEID, ProximityDomain).

tlb(APICID, level, data|instruction, AssociativityCode,

NrEntries, PageSize).

cache(name, APICID, level, data|instruction, size,

AssociativityCode, LineSize, LinesPerTag).

associativity_encoding(vendor, level, AssociativityCode,

Associativity).

5It does not return the statically defined facts in an algorithm file.

3.5. IMPLEMENTATION 39

cpu_thread(APICID, Package_ID, Core_ID, Thread_ID).

maxstdcpuid(CoreID, MaxNrStdFunctions).

vendor(CoreID,Vendor (amd|intel)).

message_rtt(StartCore, DestCore, Avg, Var, Min, Max).

nr_running_cores(Nr).

3.5.3 Datagatherer

As mentioned in the design section of the SKB (section 3.4.6), some hardware pieces do not have a
specific driver, which could add hardware facts to the SKB. In some cases there are drivers, but it is not
desired that the driver adds facts to the SKB. Therefore, the SKB provides modules, which add facts for
parts of the hardware which are of common interest.

The current implementation consists of several separate functions linked to one program: the data-
gatherer. The datagatherer needs to be started separately from the SKB. Once the first instance of the
datagatherer runs, it spawns itself on every available core 6. So far, there is only a datagatherer for
x86-based platforms implemented 7.

First, each datagatherer instance queries CPU core information by calling the cpuid instruction sev-
eral times according to the specification [5, 65]. It interprets this data based on the specification and
adds facts about CPU features as well as the cache hierarchy to the SKB. The complete cache hierarchy
including sharing of caches between cores can later by derived by SKB queries. Every cache has its own
identifier. The identifiers allow to derive knowledge about sharing between the cores. Since every core
runs its own datagatherer, the combined information is only available after they all terminated. As a con-
sequence, the information of which cores share the same cache is only available after the datagatherers on
the sharing cores are done adding the cache identifiers. All information is added on a per core basis. This
is important to support core heterogeneity, as other core types might have different cache characteristics.

Each datagatherer also measures the latencies to all levels of caches and to all available NUMA-
nodes. It adds this information to the SKB. This provides a logical measured view of the complete
memory system. To ensure clean measurements, the instances measure the latencies one after each other.
Measuring latencies concurrently from all CPU cores would result in high interconnect usage and finally
in wrong numbers. The synchronization is done using Octopus, which I explain in chapter 4.3.

After that, each instance queries supported features on each core. This includes for example power
management capabilities and various other features. The features are added to the SKB per core.

3.5.4 Common queries

The SKB implements common queries in the file queries.pl. These queries are mostly related to plat-
form information. Clients can learn about installed cores, NUMA regions and affinities. Also, Barrelfish
uses an internal continuous core numbering. This numbering might differ from the actual hardware iden-
tifiers of CPU cores. The mapping is stored to the SKB. Clients can use these facts to translate core
numbers to hardware core identifiers and vice versa.

The SKB always loads this file when it initializes itself. Because it is a regular CLP file, it might
instruct the ECLiPSe engine to load further files. In case that in the future more files of common interest
should be loaded an initialization time, the additional file names can be added to the queries.pl file. It
is not necessary to change the source code of the SKB.

6The available cores are read from ACPI tables
7Datagatherers are platform-dependent, because they need to know how to get access to information at the register level.

40 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

3.5.5 Startup

The SKB starts early in the boot process of Barrelfish. A RAM disk contains all necessary rules and
facts files as well as the compiled core functionality of the ECLiPSe engine such that the SKB can run
even before hardware like a disk is configured. This enables the SKB to be used for basic hardware
configuration like PCIe as well8. The SKB is completely self-contained and compiled as a statically
linked application. The only dependency is on the memory server. However given that every other part
of the OS needs memory, the memory server gets started early in the startup procedure of the system
as well. A soon as it starts executing, it initializes itself, loads core functionality from the RAM disk
and then loads standard query files from the RAM disk. It exports itself as a service and the rest of the
system can start using it. Barrelfish treats the SKB as a special service, like few other services such as the
memory server. Because regular services export their references by means of the SKB, it is unfeasible
for the SKB to export itself by means of itself. The connection endpoint of the SKB is therefore treated
specially and belongs to the few well-known ones.

3.6 Client library
The section describes the client library, because this is the common way of interacting with the SKB.
Small code fragments illustrate the most common ways of using the library.

On top of the basic interface described in section 3.4.4, the client library provides higher-level APIs to
interact with the SKB. This library takes care of connecting to the SKB, sending requests using the basic
interface to the SKB and receiving results. Additionally, the library includes functionality to create query
strings in a similar way printf() creates strings from text and variables. Likewise, the library includes
functionality to parse the result strings in a scanf()-like way. Parts of the result strings can therefore be
copied or converted to variables in a easy way. Because many queries produce lists as a result, the library
implements a simple form of a cursor to walk through lists and to extract all elements to C variables.

Typically, clients link to this library and use its functionality, rather than using the basic interface
directly.

3.6.1 Using and initializing the library

The applications just need to link to libskb.a and include <skb/skb.h>. First of all, the library has to
be initialized and a connection to the SKB has to be setup. A single function call takes care of both:

errval_t err = skb_client_connect();

if (err_is_fail(err)) {

DEBUG_ERR(err, "connection to SKB failed");

... some useful error handling ...

}

This call sets up internal data structures like buffers for queries and results. It then creates a connection
to the SKB and prepares everything for receiving results. The function indicates errors in its return value.
On success, the rest of the functions defined in the header file can be used to interact with the SKB.

3.6.2 Interacting with the SKB

Four main functions are used to interact with the SKB:
8This is a requirement to access a disk afterwards.

3.6. CLIENT LIBRARY 41

• int skb add fact(char *fmt, ...);

• int skb execute query(char *fmt, ...);

• errval t skb read output(char *fmt, ...);

• bool skb read list(struct list parser status *status, char *fmt, ...);

The following subsections explain these functions in more detail.

Adding facts

Facts can conveniently be added using the function skb add fact(). This function works in a printf()
manner. The first argument is a format string. After that, an arbitrary number of parameters can be passed
such that they match the format identifiers in the format string. The function then produces a complete
string and sends it as a message on the basic interface to the SKB.

The code fragment below shows how to add a simple fact. Only the fact name has to be provided,
because it does not have any fields. Note that all facts have to be terminated with a dot.

errval_t err;

err = skb_add_fact("simple_fact.");

if (err_is_fail(err)) {

DEBUG_ERR(err, "adding fact to the SKB failed");

... some useful error handling ...

}

The next code fragment shows how to add an n-ary fact. Fields can either be “hard-coded” or passed
as parameters. In this case here the constant number “17” and the constant string “pcie” are hard-coded
while the other parameters are passed as variables and matched in the format string.

int id = 5;

char description[] = "device";

int value = 0xfa;

err = skb_add_fact("nary_fact(%d, %s, 17, pcie, %d).",

id, description, value);

if (err_is_fail(err)) {

DEBUG_ERR(err, "adding fact to the SKB failed");

... some useful error handling ...

}

Executing queries

Queries are executed in a similar way. The query string is prepared in a printf()-way. Queries match
facts to variables. The variables of interest should be included in the output. The query has to explicitly
construct the output by writing variables to the memory-based output stream. Not only variables, but
additional text to structure the output and facilitate parsing can be written to the output stream. The
following code fragment queries the nary fact which was added above. The ID which is of interest is
defined by the variable id. The description is not important for this query, this means that it does not
define it by not passing a value it should match and it does not read it by not passing a variable at that

42 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

position. Instead it uses the underscore character which stands for an anonymous variable in Prolog [24].
Therefore every value will unify with the anonymous variable which basically is the same as ignoring it.
Leaving it away is not an option, because the arity has to match the arity of the stored fact. In this case
here, the fact has an arity of five. The query makes sure that only facts with the constant number “17”
will be unified. The fields of interest are the type and value. Therefore, the query provides two variables
to be unified with the stored fact. These variables are part of the result. The query writes them to the
output stream. To make parsing easier, it encapsulates the values in a res() tuple.

errval_t err;

int id = 5;

err = skb_execute_query("nary_fact(%d, _, 17, T, V),

write(res(T, V)).",

id);

Executing algorithms

At a high-level, algorithm execution is the same as query execution. Parameters with concrete values can
be passed and variables to be matched are passed the same way as in query execution. The difference is,
that the “query” string does not directly match stored facts, but instead a rule (or function). An algorithm
can be seen as a CLP program consisting of several rules which transform stored facts or output of
underlying rules into knowledge within a given context.

Rules have to be created first. Either they are uploaded directly through the interface or they are
loaded from a file. Assume that the file rules.pl contains the following rule:

binary_fact(ID, V2) :-

nary_fact(ID, _, 17, _, V),

V2 is V * 2.

The nary fact is matched first and the value is doubled before returning it. The code fragment below
shows how to load the file.

errval_t err;

int id = 5;

err = skb_execute_query("[rules].");

The next code fragment shows how to execute the algorithm. It is perfectly fine that the execution
passes a variable named Val instead of V2, because Val will be unified to the value of V2. How to
implement programs can be learned from the Prolog book [24] and the ECLiPSe book [10].

errval_t err;

int id = 5;

err = skb_execute_query("binary_fact(%d, Val),

write(res(Val)).",

id);

3.7. EVALUATION 43

Reading the output

The client library provides the function skb read output() to interpret the output string. Matching a
number is similar to matching a number in scanf(). The %d conversion matches a decimal number.
Matching text has to be done using %[a-z], because the %s conversion would eat the rest of the string.

The res(Type, Value) output is a res element with a string value and an integer value. It can be
read like in the code fragment shown below. The program passes res(%[a-z], %d) as pattern to the
skb read output() function together with the two variables used to store the result in a scanf()-like
format.

errval_t err;

char text[80];

int val;

err = skb_read_output("res(%[a-z], %d).", text, &val);

Reading an output list

In some cases an algorithm produces a list of output elements. As an example, the algorithm could
collect the type and value fields of all nary facts stored in the SKB and return them in a single list of
the form [output(string1, integer1), output(string2, integer2), ...]. In this case, the
caller should iterate over the result list and convert all values to the corresponding C values.

The program prepares the pattern to be matched. Here it reads output elements with a string and
an integer value, each. The skb read list() function parses the current element and stores the val-
ues in the passed variables. A status element remembers which element was processed last by this
function. The status has to be initialized before using it in the while loop, by calling the function
skb read list init(). The code fragment below queries the SKB, initializes the status structure
and iterates over the output list.

errval_t err;

char text[80];

int val;

struct list_parser_status status;

... execute query ...

skb_read_list_init(&status);

while(skb_read_list(&status, "output(%[a-z], %d)",

textoutput, &number,) {

... do something with the values ...

}

3.7 Evaluation
This section evaluates the SKB in terms of code complexity and resource consumption characteristics.
Because the SKB provides a service to its clients, but does not perform operations by itself, it cannot
be evaluated in terms of performance. The performance evaluation depends heavily on how the SKB is
being used by the client. The use-case chapters evaluate the algorithms in terms of performance.

44 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

Table 3.1: LOCs

Functionality LOCs C LOCs ASM LOCs CLP

ECLiPSe 97161 110 51469
SKB server 510 0 0
ClientLIB 300 0 0

Total 97971 110 51469

Table 3.2: Memory overhead

Size

Solver executable (statically linked) 1.5MB
RAM disk 600kB
Dynamically allocated RAM 60MB

Total 62.1MB

3.7.1 Code complexity
One of the most important goals of this thesis is building an infrastructure which not only enables clients
to take informed decisions, but to take those also with a small code complexity. This means that ex-
pressive algorithms should be implementable with few lines of code and they should be as readable and
maintainable as possible. It should be clearly stated that the property of reduced code complexity applies
mostly to the use-cases. It does however not necessarily mean, that the infrastructure provided by the
SKB can be implemented with only few lines of code. It is ok, if the complexity is pushed towards the
central SKB, if it helps to reduce the code complexity for most of the clients. Table 3.1 summarizes the
number of lines of code needed to implement the SKB.

As the table shows, the total number of lines of code is relatively large9. This is not problematic for
several reasons. First, as the table shows, the largest part is the ECLiPSe code. It accounts for 97161
lines of C code, some lines of assembly code and 51469 of CLP code providing the core functionality of
ECLiPSe. Fortunately, programmers of clients (OS services and applications) do not need to maintain the
ECLiPSe code. Second, the part of the SKB code which has to be maintained (initialization, exporting as
a service) is only 510 lines of C code. This is relatively small and easily understandable.

3.7.2 Memory overhead
This section summarizes the memory overhead caused by the SKB. Because the SKB is used by various
clients, the overhead does not account completely for each of them. In contrast to execution time, it can
be amortized over several hardware and system configuration use cases.

Table 3.2 shows the breakdown and the total memory overhead of the SKB. The statically linked SKB
program of 1.5MB includes the complete necessary code with library functions, which normally would be
available as shared libraries. It also includes the complete language runtime with compiler and optimizer.
The 600kB for the RAM disk not only contains user CLP programs (such as the algorithms), but also
the complete CLP core logic and basic ECLiPSe CLP goals, which are all implemented in CLP itself
and stored as precompiled CLP files. Finally, CLP requires a sufficiently large preallocated heap, used to
store facts as well as to compile, store and run CLP code. Additionally, CLP code creates many temporary

9LOC counts were generated using “SLOCCount” by David A. Wheeler.

3.8. DISCUSSION 45

variables and lists during execution on the heap. Finally, the backtracking stack needs to be large enough
to allow creating the necessary choice points when searching the solution tree. The 60MB dynamically
allocated RAM is used both for temporary working heap and all hardware-related facts used by Barrelfish.
This includes PCI data, and a description of available cores, memory hierarchy, performance profiles, etc..

3.7.3 Performance
Performance in terms of CLP code has different meanings. First, the time to execute a specific CLP
algorithm can be measured. This time needs to be related to the actual compute complexity of the algo-
rithm, which is not always obvious. The declarative nature allows to concisely describe a problem, even
if it has the same complexity as for example the bin-packing problem. Second, “performance” might be
measured in terms of how well the result of an algorithm is. In this case, it depends on what the actual
goal of the algorithm is and how well it can reach it or how close the result will be from the optimum.
Finally, performance might be measured in terms of performance increase of a specific mechanism, if it
is configured with the “right” policy parameters produced by CLP code.

All the three cases heavily depend on the actual algorithm executed, its goals and the mechanisms,
which use the derived parameters. It is therefore not feasible to provide performance evaluations in
this chapter. Instead, every use-case provides a separate performance evaluation in terms of algorithm
execution time and “goodness” of the derived parameters according to the goals it should reach.

3.8 Discussion
This thesis evaluates the declarative language approach to express complex decision and hardware config-
uration problems. It also evaluates how well a new operating system on increasingly diverse and complex
hardware can reason about hardware and adapt to it at runtime without prior hardware knowledge. My
hypothesis is that the SKB as a reasoning engine, which runs high-level declarative algorithms, forms a
good foundation to reason about the complexity of modern hardware, while reducing code complexity of
the algorithms.

As the use-cases shall show, the approach is positive and turns out to be useful, but not without
challenges. This section describes the common advantages and disadvantages of this approach.

3.8.1 Advantages
Clear policy/mechanism separation Maintaining a sharp distinction between, on the one hand, the
algorithm code used to derive suitable policy parameters and, on the other, the mechanism applying the
policy parameters has a number of strong benefits.

First, the algorithm can be clearly understood in isolation from the mechanism code, making it easier
to both debug and maintain. Indeed, I developed, tested and debugged every algorithm “offline” in a
vanilla ECLiPSe running on Linux using facts from a variety of machines copied out from ECLiPSe’s
listing command on a running SKB instance. Only after this phase, I put the algorithms into service in
Barrelfish’s SKB. It is also useful to be able to test this code by writing correctness conditions in ECLiPSe

which are then validated automatically.
Second, the mechanism code is simplified, since it is no longer threaded through the algorithm code.

Verifying that the mechanism code, written in C, is correct, becomes a simpler task, and the chances of
breaking this code when changing the algorithm code itself reduces to almost zero.

Separation of special cases Special cases can be handled entirely in the declarative language, without
polluting the mechanism code, written in C. The mechanism code only applies the final result, no matter

46 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

how many special cases are modeled in the declarative algorithm code.
Moreover, special cases often are additional constraints which can be added besides the mainline

algorithm code, without actually changing the mainline algorithm code. For the most part, additional
constraints are one-line references to existing functions, and hence easy to add to the system.

All of this results in a clear separation within the declarative code between special cases and the
solution description.

Flexibility of data structures Hardware information in traditional operating systems is typically rep-
resented by a set of simple, ad-hoc data structures (tables, trees, hash tables) whose design is determined
largely (and rightly so) by performance concerns in the kernel. Using the SKB, detailed hardware infor-
mation is represented in form of facts. The only exception is the system’s fast path, which needs fast and
specific data structures providing the minimal necessary information as quickly as possible.

High-level facts greatly facilitate reasoning about the information in ways not foreseen at design
time. Facts added by independent programs and originally thought to be used for specific use-cases can
be unified later on by third processes to gain further knowledge. For example, ACPI information about
physical address region types can be transformed easily into regions not suitable for device mappings.
The logical unification mechanism provided in languages like ECLiPSe makes this expressible in a single
rule. Furthermore, this representation can be changed over time without concern for disturbing critical
kernel code.

Late-binding of algorithm ECLiPSe allows for adding new functionality as well as replacing function-
ality at runtime. This feature provides considerable flexibility. At any time, parts of an algorithm can be
exchanged as needed without needing to change the mechanisms applying the algorithm’s result. Even
if the algorithm was executed already, it is possible to replace single parts of it. The next invocation will
execute the new functionality.

Platform independence In many cases the policy code remains the same over different architectures.
Because ECLiPSe is a managed language runtime which executes a high-level description of a problem
formulation and because facts are given in a uniform way, it can run unmodified on different architectures.
Only the architecture-specific mechanism code needs to change. This makes algorithms highly portable.
Furthermore, only short mechanism code has to be ported, reducing the chance of introducing bugs when
porting.

Reuse of functionality While CLP may be regarded as a somewhat heavyweight approach, the func-
tionality provided is close to that required by many parts of a functional OS – in some ways, the system
knowledge base might be regarded as analogous to parts of the Windows Registry[122] or the Linux
sysfs file system[94], albeit with a much more powerful type system, data model, and query language.
Barrelfish uses this functionality to represent various types of hardware knowledge and internal software
state. Along with the authors of Infokernel [11], the thesis argues for making a rich representation of
system information available for online reasoning and CLP provides a powerful tool for achieving this.

Complete description with constraints The complete solution to a problem can be described solely
on variables and constraints on and between them. Variables can be related to each other even before
concrete values have been assigned. By implementing algorithms in this abstract form, the programmer
leaves complete freedom to the solver, which assigns values to variables. Therefore, no solution will be
missed just because of suboptimal values assigned by a programmer.

3.8. DISCUSSION 47

Reduced code complexity and maintainability The use-cases show, that complex algorithms and pol-
icy code can be implemented with few lines of code. The complexity is reduced significantly. The code is
not only better maintainable, because of the reduced complexity, but also because of the better structure.
As already described, there is a clear structure between the mainline algorithm and special cases, for
example.

3.8.2 Disadvantages
Unsurprisingly, the approach also has some significant drawbacks.

Constraint satisfaction is no silver bullet Many allocation problems can be translated to simple rules
and ,consequently, can be expressed in a natural way. Special cases can be modeled as additional con-
straints to the base formulation of the allocation problem, keeping everything, with special cases, in a
declarative description. However, this does not automatically lead to a solution in a reasonable time.
Constraint solvers have a well-known tendency to explode in complexity (and, consequently, time of ex-
ecution) without careful specification of the problem, and the use-cases in this thesis are no exception in
this regard.

Part of this is due to ECLiPSe being a relatively simple solver by modern standards, but much of
the complexity is inherent. In practice, the onus is on the programmer to guide the solver by careful
annotation of the problem. In some cases it is advantageous, if the programmer knows how the solver
instantiates the rules and variables and what strategy it uses to probe values. Rules, which are “solver-
friendly” reduce the runtime involved in searching valid values meeting all the constraints. This makes
the source code more complex than a simple specification of the constraints – the ECLiPSe code in this
thesis is carefully written to avoid an explosion in complexity and runtime.

For example, in the concrete case of ECLiPSe, the programmer first creates variables, applies con-
straints and finally passes all variables to be probed in form of a list to the solver. Even if the declarative
description of a problem has no order or control flow, the solver is still deterministic. The solver probes
the variable list starting at its end. If the programmer knows that a re-probing of one variable would cause
an almost complete permutation of the search space, this variable should be probed first (or at least as
early as possible). Re-probing other variables might be fine, because they do not largely influence values
of all remaining variables. In this case, the programmer can greatly reduce execution time by sorting
variables first in a way, that the “hard” variables are at the end of the list and get probed first. And still,
the problem is described in its full generality and in a complete declarative way. Sorting variables, before
passing them to the solver, does not influence the problem description.

Increased resource usage Even with the heuristics described above, ECLiPSe is an interpreted, high-
level language with high execution time overhead compared to C. Additionally, a CLP algorithm works
by propagating constraints and then probing values rather than assigning values in a straight-forward
iterative way. Clearly this leads to longer execution times.

While the ECLiPSe CLP solver used for this thesis was easy to port and embed in an OS, it is relatively
slow by modern standards. An alternative would be a more modern Satisfiability Modulo Theories (SMT)
solver like Z3[34]. Z3 could express most of the constraint constructs used in the use-cases. The logical
unification would need to be expressed differently. However most probably it would significantly improve
the execution time. SICStus Prolog [120] and SWI-Prolog [130] allow CLP programming through the
CLPFD library [27]. GNU Prolog [36] allows CLP programming and comes even with a compiler to
produce standalone executables.

Nevertheless, for some classes of problem the execution time overhead is not critical as long as it re-
mains reasonably small relative to the use-case’s complexity. Given that it runs off-fast path, an execution
time of less than a second should be acceptable.

48 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

Apart from being a programming language, CLP can also be used as an algorithm design tool: it aids
in considering requirements, constraints and rules. Once implemented, CLP code can be compiled to
C code and finally to a standalone executable – although ECLiPSe cannot currently output its internally-
generated machine code in the form of an independent executable, other systems such as GNU Prolog [36]
do produce standalone executables of constraint logic programs. This combination of CLP as design tool
and compiling the code down to an executable preserves many of the benefits, such as maintainability and
clean design, while offering reasonable performance.

In the extreme, CLP solutions can be applied completely statically. For example, resource constrained
devices such as small battery powered sensor nodes or embedded systems usually have a fixed hardware
configuration and often even a fixed set of tasks to run. The algorithm can run offline, on a standard PC
with facts gathered on the device. The outcome of the algorithm can be embedded in the devices boot im-
age and applied, as if it was run on the device itself. With the approach in this thesis, it is particularly easy
to run the algorithm on a standard PC. The algorithm and the facts are written in a platform-independent
way and can be executed on every ECLiPSe instance, independently on the underlying device.

Large code base While the SKB enables clients to implement their algorithms with considerably less
code (C and ECLiPSe), it does employ a large body of code in the form of the CLP solver. The port
of ECLiPSe in Barrelfish consists of 97161 lines of C10, plus a handful of assembly-language lines. In
addition, the core CLP libraries add 51469 lines of CLP, many of them quite long. The complete solver
executable (statically linked) consists of 1.5MB for a 64-bit x86 OS. Additionally, a compressed RAM
disk of 600kB provides the necessary ECLiPSe files. This is clearly significant, and adding this amount
of code to the boot image of an OS raises at least two concerns.

First, there is the issue of code bloat. On modern hardware, the boot process is not unduly impacted
by the overhead. Still, loading the SKB and running hardware configuration algorithms in CLP at boot
up increases the boot up time. On the other hand, as mentioned above, the CLP solver does provide a
valuable data management service to many parts of the OS as a general name server and policy engine,
and so the cost in code size should be amortized over the whole set of client subsystems which use it.

Second, there is the extent to which the CLP solver itself can be trusted. The OS and all the SKB
clients rely on ECLiPSe behaving correctly. Since it is a mature, general-purpose system which is actively
maintained, the expectation that it is reliable and relatively bug-free should mostly hold. However, it is
unlikely that a complex piece of code like ECLiPSe will be formally verified, which makes this approach
less attractive for high-assurance operating systems. However, such systems typically are written to
specific hardware platforms, obviating the need for complex configuration logic.

For high-assurance, formally verified systems, a better application of this approach would be to apply
the ideas at compile time, which would integrate with the seL4 approach [72] of modeling the entire OS
in a high-level language, which is then translated (in a way that preserves the verified properties) to C.

Finally, it is often worthwhile to model complex algorithms in CLP for which an imperative solution
would otherwise be too complex to implement. It is however often simple to check the correctness of the
algorithm’s output in an imperative way. the correctness checking code can easily be implemented in C
and fully verified. This property would allow runtime validation of the results of the CLP search, without
the need to rely on ECLiPSe behaving correctly for all possible inputs.

Boot sequence Configuring hardware at OS boot time in a high-level language like CLP means that the
language runtime has to be started early in the boot process. Barrelfish may be unique in loading a full
CLP system before configuring hardware.

Perhaps surprisingly, this imposes very few requirements on the OS. The SKB, like most of the
components, executes in user space as in a classical microkernel design. However, CLP requires very

10LOC counts were generated using “SLOCCount” by David A. Wheeler.

3.8. DISCUSSION 49

little of the OS to be functional beyond basic (non-paged) virtual memory and a simple file system,
initially from a RAM disk image.

The dynamic nature of the solution allows to load further functionality after an initial configuration
when disks, networking interfaces, etc. come online.

Learning curve Most OS programmers use C rather than ECLiPSe to implement algorithms, and the
learning curve for a language like ECLiPSe is almost certainly steeper than for C. However, it is likely that
someone with a basic knowledge of ECLiPSe will find it easier to understand small and simple high-level
code than a complex, imperative C version.

Furthermore, the SKB is by no means the first system which employs logic programming in an oper-
ating system – for example, Prolog has been successfully used to provide network configuration logic in
Windows [61].

Expressiveness is a risk Using a complete CLP language runtime with no restrictions at all allows to
express any problem in form of a CLP program. While this is a desired feature, it comes also at a risk.
Long-running algorithms block the SKB and make it unusable for other clients, while the algorithm is
still executing.

For a research system it is a nice feature, however for a production system it would be necessary to
either restrict algorithms or to bound the execution time. Another approach would be to spawn a child
SKB for every execution of an algorithm. This would lead to a similar architecture as many internet
servers. Every client is handled by a separate thread or even separate process. Algorithms would still
have access to all facts, but would not block other clients, even if their execution time would be high.

Apart from a long execution time, there is a second risk which may arise. Conflicting constraints
prevent the solver from finding a valid solution in which case the output is simply “No.”. Algorithms
need therefore be designed carefully in any case. Algorithms specifically designed to solve one problem
can easily be implemented in a way that no conflicting constraints are applied. However more dynamic
algorithms, where multiple applications can add more requirements in form of constraints are at the risk of
not finding a solution. In these cases, the mainline algorithm needs to check in advance whether conflicts
may arise. They need a fallback scenario or a way to restrict what additional constraints applications can
add.

3.8.3 Approaching a configuration problem in CLP

CLP can handle many complicated requirements on resource configuration. However, its expressive
power is also dangerous: one can easily create unmaintainable and sub-optimal code in CLP if a problem
is tackled in the wrong way. It is essential to follow some general rules when approaching a problem
formulation in CLP.

First, it is essential to define an appropriate data structure and to create every configuration parameter
variable (such as for example memory addresses) only once, so that all necessary constraints can be
applied to the single variable standing for a parameter. For hardware configuration, a data structure which
mirrors the hardware topology is natural, and allows dependencies between devices to be expressed in the
data structure between the items representing them. The data structure should contain one variable for
each parameter (such as memory address), which will be be assigned a concrete value by the CLP system.
Next, the data structure is walked and constraints applied to the variables in such a way that no temporary
variables are created, and constraints mistakenly applied to these temporary variables. Unfortunately,
when using a mix between CLP and Prolog (as in ECLiPSe), it is easy to create temporary variables by
mistake. Finally, the variables should be collected and passed to the CLP solver to instantiate them with
concrete values.

50 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

3.9 Summary
With the SKB I built a central service which takes care of storing knowledge in a high-level declarative
way. Furthermore, its embedded declarative language allows clients to run declarative algorithms based
on these high-level facts. The SKB servers as a policy engine for various configuration and decision
problems. Furthermore, complexity of decision and configuration tasks can be pushed to the SKB and
significantly reduced through the use of a high-level declarative language.

A simple client library facilitates the interaction with the SKB, without restricting the expressiveness
provided by the CLP language.

Several use-cases presented in the following chapters prove the usefulness of the SKB. The problems
to be solved and how they are approached using the SKB are described in the respective chapters. A
discussion of advantages, disadvantages and possible challenges along with an evaluation of the concrete
algorithms is given on a per chapter basis.

Chapter 4

Coordination

This chapter presents Octopus, the coordination service in Barrelfish. While a distributed structure allows
applying algorithms from the distributed field, it also suffers from similar problems like synchronization,
naming, distributed locking and coordination of service instances. Services running on different cores
do not necessarily know each other and still have dependencies. The service dependencies need to be
resolved externally and services need to be coordinated.

This chapter presents the design and implementation of Octopus, which is a native extension of the
SKB It provides easy-to-use, high-level, uniform coordination primitives and event mechanisms. It di-
rectly benefits from the nice advantages provided by the language runtime of the SKB. Further, the SKB
already runs as a centrally available service. This forms a nice ground to embed coordination and event
functionality which is available from the point where Barrelfish starts up. Although it is implemented on
top of the SKB, the careful implementation ensures reasonable performance.

4.1 Introduction
The distributed structure of Barrelfish reduces complexity of single software components. Each compo-
nent is only responsible for a specific task. On the other hand, the OS still provides functionality as a
whole to the complete software stack. This requires components to interact correctly, even if they do not
know each other. An external coordination and synchronization service enables them to coordinate. At
the same time it removes complexity involved in synchronization code from the components.

To take an example, the basic hardware configuration must be done, before drivers initialize single
devices. Likewise, device drivers need to initialize devices, before services, based on them, can be used
by the rest of the system. A network interface card (NIC) driver, for example, executes as a separate
program. It must however wait for the PCIe driver to configure the PCIe bus, before the NIC driver is
allowed to access the network card’s registers.

At boot time, services must be started in an order which respects their dependencies and, preferably,
minimizes startup latency. As devices (and cores) come and go, drivers must be started up and shut down,
while meeting their dependencies. Effective power management requires knowledge about device depen-
dency: shutting down a USB controller or PCI device should only be done if the dependent devices are
safely shut down as well, for example. Moreover, the OS now has complex synchronization requirements
between components: hotplug events may involve careful coordination between PCI managers, ACPI
subsystems and device drivers.

In existing systems, resolving these dependencies and implementing synchronization patterns be-
tween OS components and modules is typically hard-coded into the components themselves. In some
cases, the synchronization is implicitly ensured by the control flow of the program. A Linux kernel, for

51

52 CHAPTER 4. COORDINATION

example, initializes subsystems by calling the initialization function from the main initialization function.
There are however cases, where synchronization between concurrently running components is hard-coded
in an ad-hoc way. This leads to high complexity in the OS and therefore also to correctness and reliability
issues.

The main goals of Octopus are to provide a clean and high-level interface such that dependencies
can be expressed by components, which do not necessarily know each other. Octopus should also serve
as a basis to implement distributed synchronization primitives with a small code complexity. Finally,
as coordination of OS components is necessary from the boot up of the system, it is a requirement that
Octopus runs from the beginning, without depending itself on other OS services.

Octopus is inspired by facilities such as Chubby [26] and Zookeeper [63]. It is based on the SKB
for several reasons. First, it directly benefits from the declarative language facilities and thus, the code
complexity involved in synchronization primitives can be reduced. Second, the SKB is a central service
running anyways. By putting Octopus functionality on top of the SKB, it will always be available without
increasing the OSs complexity be means of additional services. Finally, the SKB is designed in a way
that it can boot up early. Therefore, Octopus is available early as well, one of the important requirements
to synchronize OS boot up.

Octopus has been mainly implemented by Gerd Zellweger. He describes the work in his Master’s
Thesis report [143]. Additionally, the design, concepts and the use-cases presented in this chapter have
been published in a recent paper [144].

4.2 Background

Octopus is a synchronization facility with events and a fast and simple key-value store. Therefore, this
section summarizes related work on both topics.

Octopus builds on ideas from the distributed computing field. Traditionally, data centers have faced
complex coordination problems at the level of distributed systems on clusters. Chubby [26] and Zookeeper [63]
provide coordination and synchronization for large collections of machines. They organize information
in a hierarchical name space and export a file system-like API. Zookeeper and Chubby are used as a mul-
tipurpose tool for various coordination tasks such as configuration management, storage, group member-
ship, leader election, locking and mutual exclusion. Somewhat unexpectedly, Chubby also increasingly
replaced DNS as a general-purpose name server internally at Google. Both systems use state-machine
replication to achieve high availability, using variants of Paxos [76] for consensus among nodes.

With the increasing demand of fast access to data at massive scale, key-value stores favor simplicity in
terms of data model and query complexity over strong guarantees such as the ACID properties provided
by centralized relational database systems. Distributed key-value stores implement a form of distributed
hash table [35, 47], providing eventual consistency. Redis [111] is one example of a centralized RAM-
based key-value store with optional master-slave replication and persistence. It aims to be lightweight
and high-throughput, and stores schema-less data under keys. Redis provides a flexible set of atomic
operations on single data items.

Publish-subscribe systems allow flexible interaction in distributed systems and feature three key
ideas [41]. First, space decoupling means that interacting parties do not need to know each other. Second,
time decoupling means that interacting parties do not need to be actively participating at the same time.
Finally, synchronization decoupling means that publishers never block on generating data and subscribers
get asynchronous data events.

In the OS context, D-Bus [46] is an interprocess communication facility for Linux and other operating
systems which also supports a limited from of coordination: processes can wait for events from specific
objects, and the D-Bus daemon can start processes when messages are sent to them.

4.3. APPROACH 53

4.3 Approach
This section explains the design of the Octopus service and shows in detail, how data items are stored and
forwarded. It is important to know that the high-level language in Octopus serves to reduce complexity
in building distributed synchronization primitives.

4.3.1 Design principles
Octopus borrows ideas from the interfaces provided by Chubby and Zookeeper. The main goals are
facilitating distributed coordination and event handling, while reducing the code complexity involved
in programming such functionality. However, the OS environment is somewhat different from a large
cluster. The requirements and resulting design principles are therefore different. The paragraphs below
summarize the design principles applied for the Octopus design.

Independent service The service must be self-contained. Octopus should make the coordination of the
OS boot-up possible. This is only feasible, if it does not rely on many other OS services (such as the file
system or network). Octopus should help to model dependencies, but it should not create new ones itself.
Every functionality necessary should be included in a single program image.

Centralized service The code complexity should be as low as possible. To reduce the code complexity
and to make the first goal possible without needing anything special from the OS, Octopus should be a
lightweight, centralized coordination service rather a replicated system. On a single machine, an OS can
still assume a reliable interconnect and no single CPU failures, at least in medium term. A centralized
service should therefore not cause availability issues.

Loosely coupling Information providers and consumers should be loosely coupled. Services, which do
not necessarily know each other, appear and disappear during runtime of the system. A loosely coupling
can be achieved by an asynchronous interface with a fast, flexible and scalable data and query model.

Non-blocking interface The query interface should never block clients, even if their queries cannot
be answered at the query time. The interface should be completely non-blocking. Instead of blocking,
clients should be able to sign-up for future notifications, which Octopus sends, whenever the query can
be answered. Asynchronous events should notify clients about data store changes of their interest.

High-level interface The code complexity involved in using the coordination service and implementing
additional synchronization and coordination primitives based on Octopus should be minimized. A high-
level interface achieves high expressibility at a low code complexity. This is why Octopus should export
a high-level interface to its clients.

4.3.2 Octopus
This section describes the overall architecture of Octopus. Based on the design principles listed in the
previous section, Octopus implements distributed, named synchronization primitives such as locks, bar-
riers and semaphores above a key-value store and associated event delivery system. Octopus unifies
synchronization, name service, and event handling for the OS. Octopus exports a convenient API for the
key-value store to clients. Using the API, clients access the key-value store. They can add, modify and
delete data or search for data items. Also, the API allows to enable notifications for specific changes of
the key-value store. Finally, for the publish-subscribe system, clients can subscribe using the API and

54 CHAPTER 4. COORDINATION

Main Thread

Client 1

Server

liboctopus
liboctopus_parser

Main Thread
SKB / ECLiPSe CLP

liboctopus_server
liboctopus_parser

RPC
BindingEv

en
t B

in
di

ng

Main
Thread

Client 2
liboctopus

liboctopus_parser Event
Thread

RPC
Binding

Event
Binding

Figure 4.1: Octopus: General Architecture

publishers publish data by means of the API. It is therefore a complete, but still simple and convenient
API providing access to all functionality of Octopus.

Octopus handles two types of data. On the one hand, it handles transient data in the publish-subscribe
case. This data does never get stored, but only forwarded in form of notifications or publish events to
clients. On the other hand, it handles persistent data. This data gets stored to the key-value store and
remains in RAM during lifetime of the OS or until it is deleted.

Octopus abstracts the key-value store behind high-level record entries, and a query and update lan-
guage enables clients to add, query and modify records. Clients register for events at the record level.
The two advantages of a high-level language are reduced code complexity and independence of the im-
plementation. Section 4.3.3 describes records and the query language in more detail in section.

Octopus is built as an native extension to the SKB as shown in Figure 4.1. Server functionality
is in a library liboctopus_server linked with the SKB. Clients link to liboctopus which exports the
Octopus API and communicates with the Octopus service. The liboctopus_parser library parses query
and answer strings on both sides.

While Octopus is strongly integrated with the rest of Barrelfish, the ideas it embodies are widely
applicable to any OS trying to manage a complex multicore machine.

4.3.3 Records and Record Queries
Records are the basic data unit in Octopus. Clients add records to persistent storage and retrieve, modify
or delete them. They can also register for addition and deletion events on patterns matching records of
interest. Octopus also provides a publish-subscribe API for records which is similar but bypasses storage.

Records

Records consist of a name and an optional list of attribute-value pairs. The syntax is based on JSON
(JavaScript Object Notation) [67], since it is easy to read and write for humans and machines. The
following example shows a record called hw.pci.device.1 representing a PCI network card:

hw.pci.device.1 {

bus: 0, device: 1, function: 0,

vendor: 0x8086, device_id: 0x107d,

class: ’C’

}

4.3. APPROACH 55

Sequential records are a special form of records. Octopus appends a monotonically increasing number
to the name defined by the client. It returns the new name to the client, allowing clients to create multiple
unique ordered records, and serving as the basis for synchronization primitives.

Record Queries

Record queries use an extended version of the record entry syntax, allowing regular expressions for
record names and attribute values and the special character ’ ’ to match to any name or attribute value.
Constraints on attribute values further specify whether records are part of the result or not. Record updates
can depend on the currently stored value, as in SQL’s UPDATE statement.

The following example matches records with any name but only those with device <= 1, vendor >
100 and class matching the regular expression C|X|T belong to the result. An update sets bus to 5, but

only if the current value is 0.

_ { bus: 5, bus == 0, device <= 1,

vendor > 100, class: r’C|X|T’

}

4.3.4 Record Store
Whenever the Octopus service receives a add or del query from a client, it parses the query and performs
the respective operation on persistent storage. Octopus stores the attribute-value pair list to the storage
hash table with the record name as key. For get and update queries, it matches them to the stored records
and returns the result to the client.

If the client is interested in future add or del events it creates a trigger along with the query and passes
it to Octopus. The client specifies whether the trigger is persistent and should send an event whenever the
query matches, or whether it should be automatically removed after the first event.

Octopus stores the trigger to the persistent storage hash table. Because record queries do not need to
specify a fixed name, Octopus generates a trigger ID which serves as the key. Expected attribute-value
pairs and constraints get stored with this ID.

The full record store API of the server is:

(names, err, t_id?) = get_names(q, trg?);

(record, err, t_id?) = get(q, trg?);

(err, record?, t_id?) = set(q, trg?);

(err, t_id?) = del(q, trg?);

(err, t_id?) = exists(q, trg?);

get names returns an array of record names matching the query. get returns the first record to match the
query. set inserts a new or updates an existing record. del deletes a record. exists is similar to get,
but only returns an appropriate error code. All calls may install a trigger, in which case the server returns
the trigger ID to remove it in the future. Creating triggers is done as follows:

(trg) = mktrigger(in_case?, send_async, mode, handler_fn, client_state);

(err) = rmtrigger(t_id);

mktrigger creates and configures a trigger according to flags passed by clients. It also installs the user
handler function and user state. rmtrigger removes the trigger identified by its ID.
in case defines to install the trigger only if a specific error happened during the query invocation

(e.g., no record found). send async is used to indicate whether the trigger event should be returned to
clients in a synchronous or asynchronous fashion. mode is a bitmask used to indicate interests in specific
(i.e., add or delete) events. handler fn and client state are arguments supplied by the user. In case

56 CHAPTER 4. COORDINATION

of an asynchronous trigger, liboctopus uses these to call handler fn and supplies client state
along with the matching record and event type as an argument.

4.3.5 Publish-subscribe
Apart from storing records, Octopus offers the publish-subscribe model to clients. Publishers publish
records and subscribers get these records in form of an event. Octopus does not store published records.
The record format is the same as described in section 4.3.3. Subscriptions are defined using the same
record query language. Similar to triggers, subscriptions have to be stored to persistent storage. Whenever
a record gets published, Octopus considers stored subscriptions, matches their specified constraints and
in case of a match, it sends an event to the corresponding client. On the client side, the same handler
function can be used as for triggers. Subscriptions remain installed until they explicitly get removed by
the client. Octopus provides a simple API for the publish-subscribe model described below.

(subscription_id, err) = subscribe(handler_fn, client_state, subscription);

(err) = unsubscribe(subscription_id);

(err) = publish(record);

4.3.6 Implementation
Octopus is implemented as a native extension to the SKB. As such it benefits from ECLiPSe’s logical uni-
fication, backtracking, constraint evaluation and regular expression facilities, Queries are automatically
matched to stored records. This reduces code complexity both for applications and Octopus itself.

Octopus allows searching for records based on attribute values, and potentially all records need to
be considered. While this matching works fine with ECLiPSe’s backtracking and matching facility, its
performance suffers doing such a full search. to overcome this problem, Octopus implements an attribute
index specifically to improve matching/search performance. The attribute index remembers all record
names having a given attribute. Thus, Octopus quickly finds all potential matching records. The index is
implemented as skip list [108], which behaves similar to a binary tree. Finding triggers or subscriptions
given a record is the opposite problem. A bitmap index indicates whether a trigger or subscription ID is
relevant, given a record.

4.4 Use-cases
This section presents use-cases, derived from real problems in Barrelfish. Especially the name service
and the device manager (see also chapter 5) are heavily used in Barrelfish and as such important parts to
understand.

4.4.1 Synchronization primitives
Octopus implements high-level synchronization primitives based on records. These are intended to coor-
dinate distributed applications and are not suitable for fine-grained access control among threads sharing
an address space. Following the general goal of this thesis to reduce code complexity wherever possi-
ble, it is clearly a goal to build synchronization primitives with few lines of code, while still providing
the necessary functionality. The key-value store in combination with change events provides a useful
basis for such primitives: new clients can query existing state, such as whether a client already holds
a lock for example, and existing clients receive change events, such as a client has released a lock for
example. Currently, Octopus implements two synchronization primitives. These are based on the ones in
Zookeeper [63]:

4.4. USE-CASES 57

Locks: In an approach reminiscent of eventcounts and sequencers [112], acquiring a lock creates a
sequential record using the lock name, agreed on by the clients. The client owning the record with the
lowest number holds the lock. Other clients issue an exist call on the previous record to their own and
pass a one-time trigger on its deletion. When the lock holder releases the lock (i.e. deletes the record),
the next waiting client wakes up on the deletion event. As with eventcounts, no starvation occurs and the
locks are fair in waiting time. The unification of the key-value store exist call and the event registration
for the deletion of a record to wake up the client when it gets the lock allows to implement distributed
locks with only few lines of code, which reduces the code complexity of the implementation of distributed
locks significantly.

Barriers: Barriers ensure that different tasks start executing a section simultaneously. Octopus con-
tains a double barrier implementation based on sequential records. Every client entering the barrier creates
a sequential record and queries if the number of records is the expected number of clients entering the
barrier. If so, it creates a special record indicating that all clients are ready. Otherwise, it creates a trigger
waiting for this special record. Leaving a barrier works the other way around. Every client deletes the
previously created record and waits for deletion of the special record. The last client deletes the special
record which triggers the event that all clients left the barrier. Again, triggers for creation and deletion
of the special record when entering or leaving the barrier respectively ensure that clients wake up only at
the time when all clients reached the synchronization point.

4.4.2 Name service
Barrelfish needs a service registry or name service, as every distributed system [101, 133]. As explained
in section 2.2.5, every service registers a message channel by name.

Clients resolve them by name, or more complex attribute-based queries. Octopus allows to implement
an expressive service registry in Barrelfish using records of the form

servicename { iref: <nr> }

where servicename is the well-known name and <nr> is the internally used reference expected by Bar-
relfish’s connection function. Service dependencies are resolved by searching for a specific service name
and waiting until it appears as a record. Octopus’s trigger API allows clients to install triggers for service
references. While services, upon which a client might depend, are not up yet, it can do useful work. As
soon as the service appears, Octopus sends a notification to the client. An event-based internal structure
of the client directly benefits from this mechanism. Dependencies can easily be solved this way. Further-
more, clients and services are loosely coupled and do not need to know each other. The only knowledge
a client must have is the service name.

4.4.3 Application coordination
A manycore machine offers a high degree of parallelism. Ideally, applications make use of real paral-
lelism. The common way of exploiting parallelism is creating threads on multiple cores and synchroniz-
ing them using shared locks. In a Multikernel architecture, the OS assumes there is no shared memory
and no cache coherence. OS services and applications exploit parallelism by creating process instances
on several cores. These instances have to be synchronized using explicit message-passing. Coordinating
instances using the low-level messaging interface quickly gets complicated. Synchronization protocols
have to be designed and implemented over the messaging interface.

The presented synchronization primitives drastically reduce this complexity. There is a trade-off

between performance and code complexity. If it is performance critical, an application might rather use
synchronization directly based on Barrelfish’s message passing facilities. Otherwise, using the primitives
provided by Octopus might just be as fine.

58 CHAPTER 4. COORDINATION

An example application in Barrelfish is the datagatherer application presented in section 3.5.3, which
collects information of every core. A separate instance runs on every core and collects per core informa-
tion. Gathering per core information does not depend on other instances and the instances therefore not
need to be synchronized. However datagatherers also measure access latencies of the cache and memory
hierarchy. The measurements are only stable, if not all instances measure all memory locations (such as
NUMA nodes) at the same time. This would stress the interconnect which finally leads to the illusion of
a flat memory hierarchy. The datagatherer synchronizes the measurements of the memory hierarchy by
high-level synchronization primitives provided by Octopus.

Applications which want to make use of information collected by the datagatherer obviously depend
on its termination. Each datagatherer instance adds a record after it is done collecting all information.
Applications can install a trigger to get a notification, as soon as the datagatherer instance terminated.
While waiting, the applications can do useful work.

4.4.4 Device management and system bootstrap
Device management and system bootstrap require careful synchronization between different layers of
drivers and OS services. Especially at bootstrap, the right order of drivers need to be started, depending
on what devices have been discovered by previous drivers and finally OS services export higher-level
functionality on top of certain devices.

Kaluga, Barrelfish’s device manager, coordinates starting of drivers as well as the hardware-related
parts of the system bootstrap. Because CPU cores are treated as regular devices with the CPU driver as
device driver, Kaluga coordinates basically the Barrelfish’s bootstrap. Kaluga and the system bootstrap
are explained in detail in chapter 5.

4.5 Evaluation
The evaluation of Octopus in this section is mainly about code complexity, because reducing complexity
involved in synchronization primitives is one of Octopus’ the main goals. Still, a reasonable performance
is of importance and evaluated in this section as well.

4.5.1 Code complexity
The code complexity is measured in terms of lines of code needed to implement distributed synchro-
nization primitives. Table 4.1 shows a functionality breakdown with lines of code1. As the table shows,
Octopus itself is implemented partly in C and ECLiPSe. It needs about 3200 LOCs of C code and about
360 LOCs of CLP. Additionally, the lexer and parser of the records and record queries are implemented
in a handful LOCs of flex [45] and bison [20]. More importantly, the synchronization primitives built on
top of Octopus are implemented in roughly 100 LOCs of C code. They only need to add records, install
triggers and finally delete records using the Octopus API. Because the Octopus service runs inside the
SKB, the records are available to any client and therefore these synchronization primitives work for dis-
tributed synchronization without any additional protocol necessary. The goal of keeping code complexity
low for building synchronization primitives can be met.

4.5.2 Performance
While high performance is not the primary goal, Octopus should at least provide reasonable performance.
The microbenchmarks in this subsection prove reasonable performance compared to existing systems.

1Generated using David A. Wheeler’s SLOCCount

4.5. EVALUATION 59

Functionality C CLP Flex Bison
Octopus 3188 355 150 94
Barriers 102
Locks 87
Semaphores 106

Table 4.1: Lines of code

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30

R
e

q
u

e
s
ts

 /
 s

e
c

Clients

Comparison Octopus vs. Redis (Get Call)

Octopus (Barrelfish)
Redis (Linux)

Figure 4.2: Throughput Octopus vs. Redis

The test system, on which the measurements were done, is a TYAN Transport VX50 B4985 PC with
two dual-core AMD Santa Rosa CPUs running at 2.8 GHz. The Octopus server and the client ran on
different cores on the same CPU package. The preallocation of a big heap as described in section 3.7.2
and the big size of internal dictionary hash tables reduce garbage collection during the experiments almost
completely. Single outliers due to context switches and other system effects are removed from the graphs.

The first experiment 2 is a strawman comparison to Redis [111]. Octopus is similar implementation-
wise to Redis, though simpler and less optimized. The client-server connection on both systems is dif-
ferent. In Redis, the client-server connection goes through a Unix domain socket, while for Octopus
it is a regular message channel in Barrelfish. The two test setups are as follows: Redis 2.4.7 runs on
Linux 2.6.32 pinned to one core. The provided redis-benchmark program plays the role fo the client and
performs the measurement. Octopus runs on Barrelfish. A separate client program performs the measure-
ments. On both test setups, the client issues get calls with 256 byte payload. The clients measure the
achieved throughput of get calls on both systems

Figure 4.2 shows that the peak for Redis is at about 90000 ops/sec and for Octopus around 60000.
The scalability of both systems is similar. The performance hit in Octopus is due to ECLiPSe. Each get
call involves the ECLiPSe engine.

A second benchmark 3 therefore measures the overhead caused by ECLiPSe on get calls. The client
retrieves a specific record of an increasing number of stored records, up to 1.4 million.

Figure 4.3 shows the latency to retrieve one record out of a varying number of stored records, as
shown on the graph’s x axis. The “RCP call” line includes the complete time to retrieve a record. The
“ECLiPSe CLP” line shows only the portion of the time spent in the ECLiPSe engine. The overhead of
ECLiPSe compared to the overall latency it roughly 80%.

The measurements show, that Octopus’s performance is reasonable. It can be used to coordinate
different applications or synchronize a distributed application without suffering extremely from the per-
formance. Obviously, if high-performance is necessary, a application-proprietary manually optimized
synchronization mechanism based directly on Barrelfish’s message-passing interface is advantageous. A
high-level generic coordination and synchronization service can never achieve the same performance as

2The experiment has been conducted by Gerd Zellweger.
3The experiment has been conducted by Gerd Zellweger.

60 CHAPTER 4. COORDINATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

L
a
te

n
c
y
 (

c
y
c
le

s
)

Records stored

Get Record

RPC Call
ECLiPSe CLP

Figure 4.3: Time spent in ECLiPSe compared to overall time used to retrieve a record.

a specifically to one application tuned mechanism.

4.6 Summary
Octopus has been proven to be useful to solve some of the coordination and synchronization problems
found in Barrelfish, as the use-cases demonstrate. The low code complexity involved in implementing
primitives on top of it have been a net benefit. The performance costs are acceptable compared to the
much simpler code to manage distributed applications and dependency resolving of different drivers and
OS services. A key insight borrowed from large-scale clusters systems is that it is beneficial to separate
coordination from the rest of the system code.

Chapter 5

Hardware discovery and device
management

This chapter describes the device discovery and management process with Kaluga. Kaluga is the device
manager in Barrelfish. Kaluga is based on Octopus records, described in chapter 4. It is entirely event-
driven and keeps all the state in the SKB.

At power-on of a computer, devices, memory and even CPU cores have to be initialized before they
can be used. Before that, the operating system has to scan the hardware and check, what kinds of devices
are installed in the machine. This is the process of hardware discovery. It is typically an ongoing process.
The user might plug in more devices at runtime. A common example is a USB device, which the user can
plug in and remove at any time.

Once a device is discovered, the OS needs to start the right driver and assign the device to the driver
instance. The OS needs to keep track of discovered devices and associated drivers, a task termed device
management. More concretely, the OS’s device manager is responsible for device management.

Part of this work has been published in Gerd Zellweger’s master’s thesis [143], which also imple-
mented most of the code, and in a recent paper [144].

5.1 Kaluga
Kaluga is the device manager in Barrelfish. It coordinates all processes involved in discovering and
operating devices, starting at the bottom with CPU drivers 2.2, whose devices are CPU cores, up to
“regular” devices, such as an ethernet card driver. Kaluga is based on Octopus (see section 4) and keeps
all state in form of records in the SKB.

As the term “device manager” implies, Kaluga is responsible of managing the process of discover-
ing devices and managing the drivers responsible of initializing and operating specific devices. It does
however not access any device by itself and therefore also does not discover any device by itself. Kaluga
starts the appropriate drivers at the appropriate time based on the current state. These drivers either ex-
plore the hardware, discover devices and add information to the SKB or they attach to a specific device
and initialize and operate it. Kaluga reacts to every hardware-related information added by drivers. Based
on the type of information, it starts a new driver or possibly signals an already running one. This is an
ongoing process and allows a continuous process of hardware discovery.

To operate correctly, Kaluga needs two types of information. On the one hand, it needs to know what
types of devices are installed, such that it can start the right device driver. On the other hand, it needs to
know which driver is suitable for a specific device. The former type of information results directly from

61

62 CHAPTER 5. HARDWARE DISCOVERY AND DEVICE MANAGEMENT

SKB

Octopus

Kaluga

Driver
Starting drivers New records

Triggers

Binary resolution

Figure 5.1: Interactions between Kaluga, Octopus and the SKB.

the device discovery process, while the latter has to be defined by the device driver’s programmer, as he
is the only one which knows exactly what kind of driver he implemented. This information is stored in
driver mapping files (see section 5.1.2).

5.1.1 Architecture
Kaluga is implemented as a user-space service on Barrelfish. It is purely event driven and reactive. The
implementation uses Octopus records and the event mechanism to get notifications about future records
added by drivers. The hardware records are explained further in section 5.1.3. Kaluga’s task is to start
the appropriate driver, whenever a new record has been added by a driver. It translates the information
contained in the record to a driver binary by looking up the driver binary name in device mapping files.
The device mapping files are explained in section 5.1.2.

As section 5.2.1 explains, hardware discovery is a recursive process. Drivers add records about dis-
covered devices. This will trigger Kaluga to start appropriate device drivers, which will possibly add
more records.

Figure 5.1 shows how Kaluga interacts with Octopus, the SKB and the bus and device drivers. The
interaction with Octopus is installing triggers for hardware records and getting notifications about new
records. The interaction with the SKB is unifying hardware ID information with a suitable driver binary.
Finally, the figure shows that drivers add records about discovered devices.

5.1.2 Driver mapping files
Every device has a physical device ID of some form, depending on the type of device (e.g. PCIe device
or USB device). To make a device usable for the system, a specific device driver needs to initialize and
operate it. Every device also has at least one driver binary which is able to operate the device and export
its hardware capabilities in a form such that the upper layers of the software stack can use it.

Driver mapping files contain a mapping between device IDs and names of executable driver binaries.
The driver mapping files form a hierarchy. There is a main file which may include further mapping files
for specific drivers. The driver knows exactly for which device IDs it is suitable. Each driver should
have its own driver mapping file, such that it can be included in the main driver mapping file at install
time 1. The driver might specify a range of device IDs which it can handle. In case multiple drivers
have a mapping for the same device, the device manager choses one to run. Kaluga loads the main driver
mapping file at startup. Because the driver mapping files are written in CLP, each include statement
causes the SKB to load the included files as well. This part of the necessary information is now available.

1Barrelfish has no facility to “install” a driver yet. It basically means, that a driver developer has to add the necessary mapping
entries by hand, at the moment.

5.1. KALUGA 63

The current format of the mapping files is as follows:

pci_driver{

binary: "e1000n",

supported_cards:

[pci_card{ vendor: 16’8086, device: 16’107d,

function: _, subvendor: _, subdevice: _ },

pci_card{ vendor: 16’8086, device: 16’1096,

function: _, subvendor: _, subdevice: _ }],

core_hint: 0,

interrupt_load: 0.75,

platforms: [’x86_64’, ’x86_32’]

}.

The device ID is defined here by the vendor, device, function, subvendor and subdevice fields.
These values are device characteristics which appear whenever the PCIe driver scans the bus for devices.
These are not the only characteristics provided by the PCIe hardware, but the ones which make most
sense to identify devices based on what they are, rather then where they are located. Fields like PCIe bus
or PCIe device numbers would make less sense, as these values depend on the slot, into which the user
installed the device. A device driver will never know that in advance and should only care about constant
(and PCIe-slot independent) values as found in the driver mapping files.

Whenever Kaluga receives a notification, that a new PCIe device was discovered, it considers all the
entries by a unification algorithm and finds the most appropriate driver to start.
interrupt load is for future use and should provide and initial hint on the expected interrupt load.

This allows Kaluga to reason about that and to distribute drivers, with a high expected interrupt load, to
different cores.

5.1.3 Hardware records

Kaluga queries hardware records to learn about installed hardware. It issues a get names call and installs
a trigger, such that it gets future records, whenever a new device has been discovered. It makes use of
the regular expression facility provided by Octopus to specify a range of names, all related to discovered
hardware. The format of the records is as following:

r’hw\\.some_name\\.[0-9]+’

Basing device management on Octopus records has a number of advantages. First, dependencies are
resolved by the event mechanism. For example, the PCIe driver first initializes the basic PCIe infrastruc-
ture, before it starts adding device records. This ensures, that specific device drivers start only after the
basic configuration is done. Second, the driver framework is flexible and modular. Whatever device might
be found in the future, it will work, as long as a driver is available. It does not depend on the implementa-
tion of Kaluga. In Barrelfish, every device is treated like a regular device with a device driver, even CPU
cores. By adding records also for CPU cores, Kaluga starts the CPU driver for every discovered core,
although the mechanism of actually starting the core is somewhat different than for PCIe devices. Finally,
this driver architecture naturally supports hotplugging. Independent, of whether the initial hardware scan
finds a device or a later hotplug event triggers the bus driver to initialize the new device, the bus driver
will add a hardware record for the discovered device. Because Kaluga keeps the trigger for ever, it will
be notified about the new device and will start a driver, whenever it receives an event. This works even
for cores. Similarly, Kaluga can easily be extended to support deletion of records. In this case, it might
shutdown the associated device driver and possibly notify further dependent services.

64 CHAPTER 5. HARDWARE DISCOVERY AND DEVICE MANAGEMENT

5.2 Hardware discovery

Hardware discovery refers to the process of learning, what kinds of hardware are installed in a given
machine. Depending on the type of hardware, there are different techniques to be used to discover in-
stalled hardware. This is not a problem, because Kaluga only coordinates hardware discovery. It is the
responsibility of the concrete bus and device drivers to use the right technique to discover hardware.

At the early stage of booting, the hardware discovery process has to check for the availability of basic
hardware features. In Barrelfish, this is partly done by the basic system and partly by Kaluga, as explained
in more detail in section 5.2.1. Based on that, the discovery process starts the right platform driver which
finally scans installed hardware to learn which drivers need to be started.

Hardware discovery needs knowledge about the current state. Only after the architecture is known,
concrete hardware features can be queried. Likewise, only after knowing, whether a PCIe bus is available,
PCIe devices can be scanned.

This section explains the hardware discovery life-cycle as well as the basic information required to
work correctly. A short evaluation shows that Kaluga, based on Octopus and the SKB, is implemented
with few lines of code while providing a rich functionality.

5.2.1 Hardware discovery life-cycle in Barrelfish

On x86-based system, the BIOS runs only the bootstrap core, on which the OS gets started-up. All
the other cores remain in a halted state and the OS is responsible to start them. Devices are not fully
configured, only the really necessary ones to load the OS get configured by the BIOS.

The hardware discovery life-cycle starts by discovering the base architecture and basic hardware fea-
tures on the single core, on which Barrelfish starts up. It adds all basic information about the architecture
to the SKB, which is already running at that stage (see section 3.5.5).

As an example, the first CPU driver and monitor (see section 2.2.2) already know on what architecture
they are running. This information is known (at least at a high-level), because the right binary is loaded
and executed by the bootloader. The monitor adds a fact 2 to the SKB, saying of which architecture at
least the first core is.

Kaluga, running on the first core, queries the CPU core for the ACPI availability flag. Based on ACPI
availability, Kaluga starts the ACPI driver. On x86-based systems, ACPI is the starting point to find “root”
pieces of hardware, such as PCIe root bridges, I/O APICs and CPU cores. The “root” pieces of hardware
have a separate driver which Kaluga starts based on the new record added for the “root hardware”. It is the
responsibility of the concrete drivers to initialize the “root devices” and to further query them, whether
more hardware is attached under them. From there it continuous with the rest of the hardware by letting
drivers scanning the device tree of their responsibility.

To continue the example, Kaluga starts a PCIe bus driver, if the ACPI driver discovered a PCIe root
complex. The PCIe bus driver enumerates devices under this root, performs a basic address configuration
(see chapter 6) and generates new records. This triggers Kaluga to start PCIe drivers, such as, for example,
a PCIe USB host controller. This driver in turn enumerates the USB bus and adds further records causing
Kaluga to start USB device drivers, and so on. CPU cores beyond the first one are treated the same as
regular devices. Whenever Kaluga receives a record event for a core (typically from ACPI), it starts an
appropriate kernel (or “CPU driver” in Barrelfish parlance) based on the driver mapping database.

The discovery and driver startup process is recursive. Starting a driver is caused by previously adding
a record by another driver. Every driver can, in turn, add more records, which will cause Kaluga to start
more drivers. This is an ongoing and never ending process. Figure 5.2 shows the hardware discovery
life-cycle.

2In this case a regular fact, not a record.

5.2. HARDWARE DISCOVERY 65

Kaluga

SKB

Register trigger

hw.<name>....

Driver

Octopus

Add records for

new hardware

Resolve driver binary

Binary to be started

Notify about new hw record

Start driver

Get algorithm results

Add facts

Figure 5.2: Hardware discovery life-cycle.

5.2.2 View hotplugging as the default case

Having such an event-based device manager, which interacts with the SKB, is the basis for hotplugging
devices. In fact, all devices in Barrelfish are treated as hotplugged devices at least from the perspective
of device management.

While it is common to support hotplugging USB devices, it is less common to support CPU hot-
plugging in current commodity systems. The driver framework of Barrelfish offers this functionality
in a natural way. Kaluga’s architecture is the first step of supporting hotplugging in the system. Even
more importantly, it is the first step of supporting a completely distributed system structure. This kind
of device management and ongoing device discovery process in combination with treating CPU cores as
regular devices with a device driver allow to add and remove any device – including cores – at runtime.

Obviously, drivers (and finally applications) need to support hotplugging as well, a feature, which
leads to many interesting questions, if it should be supported at its full flexibility in a distributed systems
like OS. Drivers (and applications) need to react correctly on hotplug events. Especially the removal of
devices may cause interesting interactions between different running services depending on the device.
Kaluga, however, is the first enabling step towards this direction.

5.2.3 Minimize basic architecture and platform information

Although most of the hardware knowledge can be queried and derived by looking at different pieces
of information, some basic “hard-coded” information is necessary to boot a computer. First of all, the
system’s bootloader needs to load the right binary for the architecture, which means, that this information
is known, at least to the bootloader. Depending on the hardware system, knowledge about basic memory
mappings or available mechanisms to query hardware information is necessary to load the right drivers
which finally scan the hardware. For example, knowing that the architecture is “x86 32” is not sufficient,
if the code runs on a SCC. The memory architecture is completely different than on a regular “x86 32”
computer.

Supporting a flexible, modular distributed systems-like OS targeting an unforeseeable range of diverse
hardware demands that the “hard-coded” or a priori knowledge even of basic information is minimized.

66 CHAPTER 5. HARDWARE DISCOVERY AND DEVICE MANAGEMENT

This makes it possible to hotplug complex devices, which provide more cores (such as an SCC for exam-
ple), in the future.

At startup of Barrelfish, only the CPU driver, the monitor, the memory server, the device manager and
the SKB run on the bootstrap core. At this stage it is already clear, what type of architecture the system
has, because the right binaries have been loaded by the bootloader. This basic information is kind of
“hard-coded” and can go directly to the SKB. It is however the only “hard-coded” information necessary
to decide how to continue. For example, it is enough information to decide, whether the ACPI feature
flag needs to be queried or not and finally, whether the ACPI driver should be loaded or not.

5.2.4 Device information
There are two classes of device information: the high-level information, that a device is installed and the
detail knowledge about how it is working. In order to start the right driver, Kaluga needs to know about
a device’s availability. It does however not need to know exactly, how the device works.

The detailed device knowledge can be in a format suitable to the device driver. This knowledge
gets mainly processed by the driver and should be optimized for its needs. In contrast, the high-level
information, that a device is installed, should be as generic as possible. This information is added in form
of records (as described in section 5.1.3) and used by Kaluga to get notifications. The set of different
records added should be as small as possible, because for every record format, Kaluga needs to install a
trigger to watch for it.

The PCIe bus driver is a complex hardware configuration example, which needs a deep hardware
knowledge (see chapter 6). The hardware knowledge is gained by scanning the PCIe hardware and storing
basic information using different facts to the SKB. Later on, PCIe uses these facts to run the PCIe address
allocation algorithm. This knowledge is mostly local to the PCIe bus driver and PCIe device drivers. But
Kaluga only needs to know that PCIe devices are installed, such that it can start the appropriate device
driver. The basic PCIe records therefore only needs to provide information about the vendor, device ID
and so forth, as described in section 5.1.2. It does not care about base addresses or requesting physical
memory sizes.

5.3 System Bootstrap
Booting an OS is a complex task. Hardware has to be initialized and exported to clients, drivers and OS
services have to be started. On modern hardware, other CPU cores also need to be started by the OS.
Kaluga and Octopus have proved very useful so far in simplifying the bootstrap process in Barrelfish.
The current solution builds on both the name service and the Kaluga device manager.

As the hardware life-cycle section explained (see section 5.2.1), a significant amount of the bootstrap
process depends on discovering and initializing devices by starting the appropriate device drivers. Drivers
not only start and operate the device, they also register with the name service to make the device available
to the rest of the system. Depending services wait for required service references before they register
with the name service. This way, the OS boot process is well coordinated. The uniform abstraction of
dependencies behind Octopus records and triggers has significantly reduced special-case code in many
parts of the OS.

5.4 Evaluation
The evaluation in this section is of qualitative nature. First, the section evaluates whether Kaluga works
correctly by checking that drivers for available devices get loaded. Second, the section evaluates the
number of lines of code necessary to implement Kaluga. It is one of the thesis’ main goals to keep code

5.5. RELATED WORK 67

Functionality C ECLiPSe

Kaluga 759
Unification algorithm in driver mapping files 19
Driver mapping entries for 5 drivers 36
Data structure definitions 23

Total 759 78

Table 5.1: Lines of code

complexity as low as possible. Performance is not evaluated, as the bootstrap process depends on various
things not controllable solely by Kaluga.

5.4.1 Correctness
“Correctness” in the case of a device manager means that the right drivers should be started according
to the driver mapping database, whenever a new device was found by some previous device driver. It
is therefore necessary to manually inspect the system configuration and to derive expectations on which
drivers get loaded by Kaluga.

Evaluating whether Kaluga works correctly was done by booting Barrelfish on our different x86 64-
based development machines and by ensuring that all the drivers, for which a device is available in the
system, get started. All of the machines support ACPI and all of them have at least one PCIe bus and at
least one e1000 network card. Kaluga should therefore start the PCIe bus driver and at least the e1000
driver. By manually checking the booted system, it became clear that the drivers got started correctly by
Kaluga.

5.4.2 Code complexity
Table 5.1 shows a breakdown of the LOCs used to implement Kaluag and the device mapping files.
Kaluga is implemented in only 759 lines of C code 3. Additionally, there are 78 lines of ECLiPSe code
in form of driver mapping files and unification algorithms to match stored device IDs with device IDs
passed to Kaluga by record events. Kaluga loads these files at startup. This is why the LOCs account for
Kaluga for this evaluation. The small device manager is capable of fully controlling device drivers. The
ECLiPSe approach, to reason about suitable driver binaries, offers a great flexibility on deciding which
drivers to start.

Currently, Barrelfish only has five drivers as separate modules which can be started on demand by
Kaluga. This explains, why the driver mapping files only consist of 78 lines of ECLiPSe code. The driver
modules have to appear as multiboot modules in the menu.lst file, otherwise Kaluga has no access to
the binaries 4.

5.5 Related work
Devices in Linux are represented by entries in the /dev directory. Early versions of Linux used a statically
populated directory with a fixed name to major/minor number mapping according to the “Linux Assigned
Names and Numbers Authority” (lanana) [77]. This approach had a number of problems [75]. First,
devices were bound to names in /dev according to the enumeration order. A device, which was found
first, got the first name of this class of devices. In the case of USB devices, for example, it means that USB

3LOC counts were generated using “SLOCCount” by David A. Wheeler.
4At the moment, Barrelfish does not have a filesystem. If it had one, it still would have to be available from a RAM disk together

with the disk driver, because these modules are a requirement to load files from a disk.

68 CHAPTER 5. HARDWARE DISCOVERY AND DEVICE MANAGEMENT

devices can get new names, if other USB devices are plugged-in or removed. Second, Major and minor
numbers are only 8bit values. The static mapping of major numbers to device classes limit the classes
of devices and if vendors invent new devices, it becomes increasingly hard to assign a new static major
number. Third, /dev became too big. A statically populated Red Hat 9 has over 18000 entries [75].
Recent versions of Linux use udev which populates the /dev directory with device nodes, whenever
devices are actually discovered by the kernel. In contrast to the older devfs, udev does not enforce any
name policies in the kernel, but follows name policy rules defined in configuration files.

FreeBSD uses a kernel-based DEVFS [68] on which device nodes are created on demand whenever a
new device gets discovered. The devd daemon [83] receives events from the kernel when new devices are
discovered or devices disappear. It is able to configure devices and to load device drivers by considering
a configuration file telling which driver is suitable for which device. devd’s configuration files allow the
administrator to define arbitrary commands to be executed on every attach, detach and nomatch event.
The nomatch event is generated, if no currently available (loaded or compiled-in) driver claimed the
discovered device.

5.6 Summary
Device management on a distributed systems-like operating system requires a flexible approach of device
management. The distributed systems nature assumes nodes (like CPU cores or devices) to join or leave
the system during runtime. Managing hardware and system bootstrap is complex enough, but allowing
hotplugging and removal of any kind hardware complicates it even more.

Further, Barrelfish targets a wide range of diverse hardware. It is unknown, how the hardware looks
like and how architectures ar going to evolve. The effort of manually adapting software to new architec-
tures, as they come up, is too high. Instead, the system should adapt itself to the actual hardware. For
device management, this means, that the device manager should not assume any knowledge. Further, it
should not need to deal with concrete hardware knowledge. Keeping the management at a high-level, such
that it really only performs the task of management, abstracts the device manager completely from the
hardware. The abstracted high-level unification mechanism to match driver binaries and devices works
on all hardware platforms, even on future hardware.

With Kaluga, Barrelfish’s device manager based on Octopus, a first step towards a distributed system
with hotplugging as default case could be realized. Kaluga is flexible and easily extensible, because
the reasoning is based on Octopus records and on knowledge in form of CLP facts. Furthermore, the
evaluation shows, that Kaluga has a low code complexity, which is one of the main goals of the thesis.

Chapter 6

Declarative PCI configuration

This chapter presents the first case study of the SKB. To validate that the CLP approach can be used
nicely for low-level hardware configuration, I implemented PCIe configuration as a high-level declarative
CLP algorithm. PCIe configuration is one of the most complex hardware configuration problems found
in current systems. Therefore it is a good case study to demonstrate that even complex problems can be
solved by means of CLP programs.

Programming PCIe bridges in a modern PC is a surprisingly complex problem, and is getting worse
as new functionality such as hotplug appears. Existing approaches use relatively simple algorithms,
hard-coded in C and closely coupled with low-level register access code, generally leading to suboptimal
configurations.

The PCIe driver implemented for this thesis follows a radically new approach. Along the discussion
of policy/mechanism separation (see section 3.4.1), this PCIe driver separates hardware configuration
logic (algorithms to determine configuration parameter values) from mechanism (programming device
registers). The latter is implemented in C, and the former as concise CLP algorithm in the SKB. The
PCIe driver implements full PCI configuration, resource allocation, and interrupt assignment.

The work presented in this chapter has been published [116, 117].

6.1 Introduction
Configuring physical address regions of the PCIe bus for all devices and bridges is a complex problem.
Many dependencies between base addresses of devices and bridges have to be met and special cases
have to be handled. Fortunately, the PCIe allocation specification follows clear rules and as stated in
section 3.3.4, this makes it a candidate for a CLP-based solution. The same is true for allocating and
routing interrupts. Existing operating systems code uses relatively simple algorithms to configure the
PCIe bus. These algorithms are simple by the necessity of being hard-coded: they require low-level
access to device registers to achieve their goals, and usually run early at system start-up within the OS
kernel.

Figure 6.1 illustrates a simplified PCIe configuration. The OS code must allocate memory regions
to each PCIe device and each PCIe bridge in the bus hierarchy, in such a way that every device receives
correctly-sized areas of physical addresses in two different address spaces (I/O and memory mapped) and
two distinct address regions in the memory mapped case (prefetchable, and non-prefetchable). These
areas must all be aligned to device-specific boundaries, may not overlap, and should fit into the total
amount of physical address space available for such hardware in the system.

This allocation problem is particularly hard, because there are numerous restrictions on device alloca-
tion: certain devices must be placed at a fixed address, others incorrectly decode addresses not assigned

69

70 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

physical addresses

root bridge

bridge 3

bridge 2

bridge 1

dev 2dev 1

dev 4dev 3

dev 5 dev 6 dev 7

Figure 6.1: Example PCI tree with one root, three bridges, and 7 devices, showing the decoding of
addresses from one of the three physical memory spaces (e.g. non-prefetchable). Bridge base addresses
and limits are bounded by the union of the base and limit addresses of their children.

to them, and platform hardware components such as ACPI sometimes reserve regions of physical address
space, which means that the address ranges must be allocated around these “holes”. Furthermore, the list
of problems varies from machine to machine, requiring the allocation code to adapt automatically to the
underlying hardware.

Most existing operating systems deal with this problem with simple algorithms in C. Special cases are
intermangled in the main allocation code. The result is complex and hard to debug, and (as the evaluation
in section 6.5 shows) can lead to unpredictable and inefficient allocation of space. In some cases (such as
Linux on Intel platforms) the OS does not even try to solve the full allocation problem, instead it relies
on the platform BIOS to provide an initial allocation, which is difficult to change.

In this chapter I show that pushing the allocation algorithm logic into the SKB and separating it from
the configuration mechanism, which writes the derived values into the base address registers, leads to
much simpler, more maintainable and easily portable code. I exploit the unification facility of ECLiPSe

to turn PCIe information into knowledge about bus hierarchy and I model the actual hardware-given
constraints and allocation rules as constraints on base addresses per PCIe device. Only the register access
functions are written in C. These are extremely simple, because they just write the derived addresses into
base address registers. The result is a PCIe bus driver, which completely solves a complex problem with
few lines of code.

6.2 Background: PCI allocation

Configuring the PCIe bridges found in a typical modern computer is emblematic of a wide class of
hardware-related systems software challenges: it involves resource discovery followed by allocation of
identifiers and ranges from compact spaces of identifiers and addresses. More importantly, a range of
hardware bugs and/or ad-hoc constraints on particular devices lead to a plethora of special cases which
make it hard to express a correct algorithm in imperative terms. Worse, new hardware (whether system
boards or devices) appears all the time, and system software must continue to work, or evolve to handle
new cases with a minimum of disruptive engineering effort.

This section describes the PCI programming challenge in detail by starting with the “idealized” prob-
lem, which appears relatively straightforward, and by progressively introducing the complexities that,
combined, are the reason that even modern operating systems only partially solve the problem.

6.2. BACKGROUND: PCI ALLOCATION 71

6.2.1 PCI background
A PCI (or PCI Express) interconnect is logically one or more n-ary trees whose internal nodes are bridges
and whose leaves are devices [104, 25]. The root of each tree is known as a root bridge or root complex.
Connections in the tree are known as buses (in legacy PCI they are electrically buses, whereas in PCI
Express the bus is a logical abstraction over point-to-point messaging links). Non-root bridges are said to
link secondary buses (links to child bridges and devices) to a primary bus (the link to the bridge’s parent).
High-end PCs often have two or four root complexes, and hence multiple PCI trees within a single system.
Non-root devices can be attached to any bus in a PCI interconnect. Each device implements one or more
distinct functions. A PCI “function” is in fact what most people think of an independent “device” which
has its own bus address represented by the bus number, the device number and the function number and
which operates independently of other functions.

Driver software on host CPUs accesses PCI functions by issuing memory reads and writes or (in the
case of the x86 architecture) I/O instructions. These requests are routed down the tree by the bridges,
before being decoded by a single leaf device. Each function decodes a portion of the overall memory and
I/O address spaces using a mapping that is configured by the host system through standard PCI-defined
registers on each bridge and function.

Each function of a non-bridge device may decode up to 6 independent regions of either memory or I/O
address space. These regions are defined and configured by base address registers (BARs) implemented
by each function. The PCI driver queries each BAR to determine its required size, alignment, address
space (memory or I/O), and, in the case of a memory-space BAR, whether the memory is prefetchable or
non-prefetchable, and then reprograms the same registers to allocate definite addresses. Although it goes
against strict PCI terminology, in the rest of this chapter the term “device” denotes a PCI function, i.e. a
single logical device with up to 6 BARs.

Bridges also decode addresses to route requests between their parent and secondary buses. Unlike
other devices, however, bridges use three pairs of base and limit registers instead of BARs, one each
for prefetchable memory, non-prefetchable memory, and I/O space. Each bridge therefore decodes 3
independent, contiguous regions of IO or memory address space. The addresses used by every device
below a bridge (including bridges on secondary buses) must lie within these three regions.

In summary, a host CPU accesses a PCIe device by issuing a transaction on the system interconnect
with a physical address that lies in a region decoded by the root bridge of the corresponding PCIe tree.
This is routed down the tree by bridges; at each level, each bridge on a bus compares the address issued
by the CPU to the ranges defined by its base and limit registers. If it matches, the bridge forwards the
request to its secondary bus. Each device on a bus compares the address to the regions defined by its
BARs, and if the address matches, consumes it and generates a reply.

The PCIe programming problem is to configure the base and limit registers of every bridge, and the
BARs of every device function, to allow all the hardware registers for every device to be accessible from
a CPU. As Figure 6.2 shows, this can be achieved in many different ways, leading to different usage of
the available physical address space and different device locations in that space.

The next section specifies the requirements for any PCIe programming solution, starting with the
basic properties of a solution in the “ideal” case, and progressively refining the list by adding real-world
complications.

6.2.2 Basic PCI configuration requirements
Every bridge in a correctly-configured PCI tree decodes a subrange of the addresses visible on its parent
bus. In order for all devices behind a bridge to be reachable, PCI requires that:

1. The bridge window, defined by its base and limit registers, must include all address regions decoded
by all devices and bridges on the secondary bus.

72 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

d7

bridge 1 bridge 2 bridge 3

root bridge

physical addresses

d2 d5d1 d3 d4 d6

(a) Sorted according to alignment in descending order

physical addresses

bridge 1

root bridge

bridge 3 bridge 2

d1 d2 d5 d6 d7 d3 d4

(b) Position of bridge 2 and bridge 3 exchanged

d6

bridge 1

root bridge

bridge 3 bridge 2

d1 d4d5

physical addresses

d3d2 d7

(c) Devices under bridge 3 reordered

Figure 6.2: Alternative PCI configurations (only memory space resources are shown)

6.2. BACKGROUND: PCI ALLOCATION 73

In order that a request is forwarded by at most one bridge, sibling bridges sharing a bus must decode
disjoint address ranges. Since a bus may contain both bridges and devices, all bridges and devices on a
given bus must decode disjoint address ranges within the range of the parent bridge. This applies in all of
the address spaces:

2. Bridges and devices at the same tree level (siblings) must not overlap in either memory or I/O
address space.

3. The prefetchable and non-prefetchable memory regions decoded by a bridge or device must not
overlap.

Regions of addresses in PCIe must also be aligned. For a BAR, the base address must be “naturally”
aligned at a multiple of the region’s size. Similarly, a bridge’s base and limit registers also have limited
granularity, giving us the following alignment constraints:

4. BAR base addresses must be naturally aligned according to the BAR size.

5. Bridge base and limit register values for both memory regions must be aligned to 1MB boundaries.

6. Bridge base and limit register values for the I/O region must be aligned to 4kB boundaries.

These requirements constrain the possible locations of device BARs and child bridge base and limit
registers within the region decoded by the parent bridge, potentially leading to gaps in address space for
padding, as in Figures 6.2(a) and 6.2(b).

As described so far, configuring a PCIe tree is a non-trivial problem, but can still be efficiently pro-
grammed by, for example, executing a post-order traversal of the PCIe tree, sorting devices and bridges
by descending alignment granularity, and allocating the lowest suitable address range in the appropriate
address space at each step. Unfortunately, requirements like the need to align region addresses make it
non-trivial to generate configurations that make efficient use of address space, and the simple post-order
traversal results in a solution like that in Figure 6.2(a) where large padding holes need to be inserted
between devices.

The following subsections progressively list the additionally complications that make an imperative
solution to this problem a considerable programming challenge.

6.2.3 Non-PCIe devices
The first complication is that certain non-PCIe devices and hardware registers appear at fixed physical
memory addresses inside the region allocated to a PCIe root complex – for example, IOAPICs and other
“platform” devices on PC systems. The presence and location of these devices vary from machine to
machine and may be discovered through platform-specific mechanisms such as ACPI [59]. For correct
operation, no PCIe device should be configured to decode such an address region.

7. Devices must not decode reserved regions of physical address space given by, for example, ACPI,
or used by other known non-PCIe devices such as IOAPICs.

6.2.4 Fixed-location PCIe devices
Some PCIe devices may be initialized and enabled by platform firmware at early boot time, for example
USB controllers, network interfaces, or other boot devices. Naı̈vely reprogramming the BARs of such
devices may lead to machine check exceptions or crashes since the device may be active, and performing
DMA operations. Most operating systems avoid reprogramming the BARs of such devices, which means
that their existing address assignment must be preserved. This further constrains the address ranges usable
by parent bridges.

74 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

Table 6.1: Changes to Linux
quirks.c

Year Number of commits

2005 26
2006 47
2007 49
2008 43
2009 42
2010 23

8. Certain PCIe devices determined at boot cannot change location, and must retain addresses assigned
to them by the BIOS.

6.2.5 Quirks
Hardware has bugs, and both devices and bridges can report incorrect information, fail to support valid
resource assignments, or behave incorrectly when specific register values are programmed. These prob-
lems are known as PCIe “quirks” and affect a wide range of shipping devices – the Linux 2.6.34 kernel
lists 546 quirks – leading to a collection of workarounds in commodity operating systems. As Table 6.1
shows, in the Linux kernel there have been between 20 and 50 commits to the file quirks.c (which
contains workarounds for buggy or otherwise anomalous PCIe devices) every year since 2005. Since new
hardware appears every year, and does not seem to be any less complex or buggy with time, this trend is
likely to continue and therefore a clean, portable, maintainable, and easily evolvable way to handle quirks
in software is desirable.
The PCIe quirks currently handled by the Linux kernel mostly fall into several categories:

• devices that provide incorrect information about their identity as bridges or non-bridges;

• devices which decode more address range than advertized, or which decode address regions not
assigned to them;

• standard devices which are hidden by platform firmware, but which could otherwise be normally
used;

• undefined device behavior (data loss on the bus, reduced bandwidth, system hangs, etc.) when
particular (and otherwise valid) values are written to the device’s configuration registers.

In the latter case, the PCIe configuration process must ensure the problematic register values are never
written, which imposes additional constraints on valid address assignments. Thus:

9. Configurations that would cause problematic values to be written to registers on specific devices
must be avoided.

10. Incorrect information from PCIe discovery must be corrected before calculating address assign-
ment.

A further complication arises from ambiguity as to whether some hardware is a PCIe device or not. For
example, on some (but not all) contemporary PC systems, IOAPIC registers appear to software as the
BAR of a PCIe device, but the IOAPIC is also defined as a “platform device” whose location in the

6.2. BACKGROUND: PCI ALLOCATION 75

physical address space can also be configured using other mechanisms (such as setting the base address
value by ACPI mechanisms), or in some cases may not be changed as this would violate assumptions
in firmware such as ACPI or would simply crash the machine, because, while routing interrupts, the
IOAPIC cannot be reached anymore. On such systems, the BAR corresponding to the IOAPIC must be
programmed with a fixed value to ensure it is consistent with other assignments of the address. This can
be summarized as follows:

11. Certain platform devices appearing within a BAR of a regular PCIe device or bridge must be treated
as PCIe devices with fixed a address requirement.

6.2.6 Device hotplug
Hotplugging, the addition or removal of PCIe devices at runtime, raises another challenge. When a
device is plugged in, the OS is notified by an interrupt from the root bridge, and must allocate resources
to the BARs of the newly-installed device before it can be used. However, this may require reconfiguring
and/or moving the address allocation of bridges and other devices in order to make enough address space
available for the device, since it was not present at system boot.

Changing the resource allocation of existing devices requires the driver to temporarily disable the
device, potentially saving its current state first. After the new resources are programmed to the BARs, the
driver needs to restart the device using the newly allocated resources. Depending on the device, it may
need to bring the device to the saved state.

This is a disruptive process and, worse still, may not be supported by all devices, so the reallocation
of resources which occurs on hotplug typically attempts to move the fewest possible existing devices and
bridges.

12. Configuration should minimize the disruption caused by future hotplug events as much as possible.

13. Hotplug events should cause the minimal feasible reconfiguration of existing devices and bridges.

14. Hotplug-triggered reconfiguration may not move devices whose drivers do not support relocation
of address ranges.

6.2.7 Discussion
It should by now be clear that PCIe configuration is a somewhat messy problem characterized by a large
(and growing) number of hardware-specific constraints which nonetheless have effects which propagate
up and down the PCIe tree. Consequently, most “clean” solutions written imperatively in a language
like C sooner or later fall foul of an exception which can greatly complicate the code, compromise its
correctness, reduce the efficiency with which it can manage physical address spaces, and in some cases
prevent it from supporting the full PCIe feature set.

The PCIe specification [104, 25] describes the mechanisms and requirements for correct configuration
of a PCIe system, but does not specify any particular algorithm to be used in this process, leading to a
variety of different (usually incomplete) solutions in current systems. These solutions are being iteratively
refined and improved to handle more complex scenarios such as device hotplug [134, 89], leading to
greater complexity.

A resource allocation algorithm for a hierarchical tree structure such as PCI has been patented by
Dunham [38]. This algorithm sorts devices with fixed requirements according to their base address in
ascending order, and all other devices according to their alignment requirements (size) in descending
order. It then allocates resources to devices and bridges using a first-fit strategy starting at the lowest-
level secondary bus, allowing it to determine the size requirement for the lowest-level bridge. Once its
size is set, a bridge is then treated as a fixed-size device for allocation at the upper levels, and placed using

76 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

the same first-fit allocation. Bridges are considered to have fixed address requirements if a device at any
level below the bridge has a fixed requirement. As it encodes a specific traversal of the resource tree, this
algorithm is roughly comparable to the postorder traversal discussed in section 6.5.5 and used in varying
forms by several current systems.

Most current operating systems, including Linux [115, 134] and FreeBSD [13] on x86-based plat-
forms, rely on platform firmware (BIOS or EFI) to allocate resources to most devices before the OS
starts, and then run one or more post-allocation routines [12] to correct any problems in the allocation,
allocate resources to devices left unconfigured by the firmware, and handle known quirks as devices are
discovered and started. This approach cannot guarantee success (though it often works): if a bridge is
programmed with an address region that is too small to allocate all the devices behind it, there may be no
way to grow the size of the bridge’s address region without moving other bridges, and thus some devices
behind the bridge will be rendered unusable despite sufficient address space being available overall. This
problem is exacerbated by device hotplug, as it is impossible to predict at start-up the required size of
all devices. Even so, this simplistic allocation strategy leads to substantial code complexity: the com-
plete PCIe drivers of x86 Linux and FreeBSD account for approximately 10k and 6.5k lines of C code
respectively, and device-specific quirks account for an additional 3k lines of code in Linux.

On hardware platforms other than x86 (such as Alpha/AXP), the firmware does not implement PCIe
configuration, and Linux instead performs a complete allocation using a greedy approach: devices are
sorted by their requested size in ascending order, and resources allocated for each device in that or-
der [115]. This can also lead to unusable devices behind a bridge, due to a suboptimal ordering of devices
causing a shortage of address space. Note also that very little code is shared between this implementation
and that for the PC platform: bug fixes or feature enhancements for one architecture may not be easily
applied to another.

Until recently, Microsoft Windows used a similar strategy to x86 Linux and FreeBSD for PCIe con-
figuration, running a fix-up procedure to correct deficiencies in the firmware allocation. As with Linux
and FreeBSD, this was unable to resize or change the address regions decoded by bridges, leading to
potentially unusable devices [90]. Windows Vista and Server 2008 introduced a new re-balancing al-
gorithm [89], allowing a bridge’s resources to be modified according to the needs of its secondary bus,
and increasing the likelihood that all PCIe devices could be configured. However, this requires addi-
tional driver support for re-balancing, and the iterative approach can lead to highly complex multi-level
re-balancing. Multi-level re-balancing is a potentially complex operation because increasing a bridge’s
window size can require the bridge to be moved to a new address region, in turn requiring more space
from the parent bridge due to address alignment constraints. In the worst case, multi-level re-balancing
can lead to a complete permutation of the PCIe tree.

6.3 PCIe resource allocation

The previous section detailed the PCIe configuration problem and current approaches to solving it. This
section describes the implementation of PCIe configuration in Barrelfish, and the following section 6.4
describes a solution to the closely-related problem of interrupt allocation, before evaluating both in sec-
tion 6.5.

PCIe resource configuration can be viewed as a constraint satisfaction problem. For a given system
the variables are the base address allocated to each device BAR, and the base and limit of each bridge for
each memory region it decodes. A correct solution may be expressed as an assignment of integer values
to these variables satisfying a series of constraints: alignment, sizes, and non-overlap of regions.

The difficulty in PCIe resource allocation arises from satisfying these complex constraints. Such
complexity is difficult to manage in a low-level systems language like C, but fortunately its runtime per-
formance is not critical to the functioning of the system as a whole. This gives the freedom to reformulate

6.3. PCIE RESOURCE ALLOCATION 77

1. scan

 hardware

 information

5. program

 PCI registers

2. hw information

3. call algorithm

4. get the result

PCI driver

PCI bus

CLP engine
SKB with

Figure 6.3: Interaction between the PCIe bus driver and the SKB.

it in a declarative language, where the challenge becomes closer to defining what result is required, than
how the result is to be produced.

The implementation of the PCIe resource configuration algorithm is a constraint logic program. This
program operates on a high-level data structure representing the PCIe tree, consisting of numeric variables
and constraints between them that determine the possible solutions. Rather than worrying about how to
allocate concrete addresses to bridges and devices, it is important to specify the correct set of constraints
to guide the CLP solver. Before explaining the constraint logic in detail, the next section describes the
separation between C and CLP code.

6.3.1 Approach

The PCIe driver in Barrelfish explicitly separates the PCIe configuration algorithm, expressed in CLP and
running in a user-space service, from the register access and device programming mechanisms, imple-
mented in the usual C code as part of the PCIe subsystem of the OS. This has several advantages. First,
it decouples the details of the configuration algorithm from the device access code, allowing to exchange
and evolve the algorithm independently of the device access mechanisms. Second, the algorithm is ex-
pressed only in terms of the generic PCIe bus – all architecture-specific details are confined to the device
access code, or to quirks expressed independently of the main logic. This makes the allocation algorithm
portable, because it only operates on high-level facts about the PCIe devices, bridges and memory re-
gions. Finally, the device programming code written in C remains small, simple and robust, reducing the
likelihood of bugs. The CLP code is loaded and executed in the SKB.

Figure 6.3 shows the steps performed to configure the PCI bus using the declarative algorithm running
in the SKB. The explanation below of the steps taken during configuration of the PCI bus refer to this
figure.

The PCIe driver performs device discovery as the first step in configuring the PCIe bus (figure 6.3).
The location of root bridges is determined by platform-specific mechanisms such as ACPI [59]. The driver
then walks the entire bus hierarchy, determining the complete set of bridges, devices and BARs that are
present by reading out PCIe registers. During this step it also assigns bus numbers to un-numbered bridges
and disables address decoding such that the newly computed addresses can later be safely programmed.
As part of this pass, the PCIe driver inserts high-level ECLiPSe facts in the SKB (step 2 in the figure).
These facts describe the set of present bridges, devices and BARs, according to the following schema:

rootbridge(addr(Bus, Dev, Fun),

childbus(MinBus, MaxBus),

mem(Base, Limit)).

78 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

bridge(pcie | pci,

addr(Bus, Dev, Fun),

VendorID, DevID, Class, SubClass,

ProgIf, secondary(BusNr)).

device(pcie | pci,

addr(Bus, Dev, Fun),

VendorID, DevID, Class, SubClass,

ProgIf, IntPin).

bar(addr(Bus, Dev, Fun),

BARNr, Base, Size,

mem | io,

prefetchable | non-prefetchable,

64 | 32).

These facts encode all information needed to run the PCIe configuration algorithm. A root bridge is
identified by its PCIe configuration address (bus, device and function number), the range (minimum and
maximum) of bus numbers of its children, and its assigned physical memory region. Bridges and devices
are identified by their address, and carry standard identifiers for their vendor, device ID, device class and
subclass, and programming interface. A bridge also includes the bus number of its secondary bus, and
a device includes the interrupt pin which it will raise (which is used by the interrupt allocation routines
described in section 6.4). Finally, for each BAR it stores its base address (which may have been previously
assigned by firmware), required size, region type, and whether it is a 64-bit or 32-bit BAR.

After creating the facts, the PCIe driver causes the SKB to run the configuration algorithm to compute
a valid allocation (step 3 in figure 6.3). The initialization algorithm is described in the following section.
Its output is a list of addresses for every device BAR and every bridge, which can be directly programmed
into the corresponding registers by the driver. For example:

buselement(device, addr(6,0,0), 0, 0xC0000000, 0xD0000000,

0x10000000, mem, prefetchable, pcie, 64),

buselement(bridge, addr(0,15,0), secondary(6), 0xB0100000,

0xD0000000, 0x1FF00000, mem, prefetchable, pcie, 0).

In this example, the 64-bit PCIe device at bus 6, device 0, function 0 requests a physical address range of
256MB in prefetchable memory space for BAR 0. The base allocated to the device is 0xC0000000 and
the limit will thus be 0xD0000000. The bridge at which the device is attached has a base of 0xB0100000
and a limit of 0xD0000000 in the prefetchable memory space, clearly including this device (along with
others, not shown here).

In step 4, the PCIe driver reads the result back from the SKB. It takes the addresses and BAR numbers
as well as bridge base and limit values from the output, and programs the specified registers (step 5).
While reprogramming devices and bridges, they are disabled to prevent transient address conflicts.

Once reprogramming is complete, the bus is fully configured and device drivers can be started. Ad-
ditionally, the allocation result is stored in the SKB for later use. Whenever a device driver for a specific
device gets started, it needs to know the base addresses assigned to the BARs of this device. This can
easily be queried from the SKB. Hotplugging (see Section 6.3.4) is another reason to store the result for
later use in incremental allocation of new devices.

6.3.2 Formulation in CLP
The description below shows how to turn the configuration algorithm into constraint logic. The rules
describe how to allocate prefetchable and non-prefetchable memory regions. The allocation of I/O space

6.3. PCIE RESOURCE ALLOCATION 79

proceeds the same way. The only difference is the alignment requirement of I/O bridge windows, which
gets passed to the code by a parameter.

Following the description in section 3.8.3, the first step is to convert the facts generated by the PCIe
driver to a suitable data structure, and declare the necessary constraint variables. The data structure used is
a tree mirroring the hardware topology, whose inner nodes correspond to bridges, and leaf nodes to device
BARs or other unpopulated bridges. The constraints are then naturally expressible through recursive tree
traversal. The variables of the CLP program are the base address, limit and size of every bridge and
device BAR, and the relationship between them may be expressed by the constraint Limit $= Base +
Size, which the algorithm later applies. At a high-level, the allocation algorithm performs the following
steps for each PCIe root bridge:

1. Convert bridge and device facts for the given root bridge to a list of buselement terms, while
declaring constraint variables for the base address, limit and size of each element.

2. Construct a tree of buselement terms, mirroring the PCIe tree.

3. Recursively walk the tree, constraining the base, limit and size variables according to the PCIe
configuration rules and quirks.

4. Convert the tree back to a list of elements.

5. Invoke the ECLiPSe constraint solver to compute a solution for all base, limit and size variables
satisfying the constraints.

The core logic of the algorithm resides in step 3 above. The implementation is a direct translation of the
rules described in section 6.2.2 to constraint logic, as described in the following sections.

Bridge windows

Rule 1 states that all bridge windows must include all address regions decoded by devices and bridges
attached to the secondary bus. This means that the bridge’s memory and I/O base addresses must be
smaller or equal to the smallest base of any bridge or device on the secondary bus, and the corresponding
limits must be greater than or equal to the highest address used by any device or bridge on the secondary
bus.

Although at this stage there are not yet concrete values for the relevant base and limit variables, CLP
allows to constrain them using a recursive walk of the tree, implemented as shown below.
Note that a tree is expressed as t(Root,Children), where Root is the root node, and Children is
a (possibly empty) list of child trees – ECLiPSe uses conventional Prolog syntax whereby identifiers
starting with an uppercase character (e.g. Node) denote free variables, and all others denote constants.
Also note the ECLiPSe operations ic global:sumlist, ic:minlist, and ic:maxlist, which operate
on lists of constraint variables that may not have a concrete value assigned, allow complex constraints to
be introduced between them.

setrange(Tree,SubTreeSize,SubTreeMin,SubTreeMax) :-

% match Tree into current node and list of children

t(Node,Children) = Tree,

% match node to get its base, limit and size variables

buselement(_,_,_,Base,Limit,Size,_,_,_,_) = Node,

80 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

% recursively collect lists of sizes, minimum and

% maximum addresses for children of this node

(foreach(El,Children),

foreach(Sz,SizeList),

foreach(Mi,MinList),

foreach(Ma,MaxList)

do

setrange(El,Sz,Mi,Ma)

),

% compute sum of children’s sizes as SizeSum

ic_global:sumlist(SizeList,SizeSum),

% constrain the size of this node >= SizeSum

Size $>= SizeSum,

% if there are any children...

(not Children=[] ->

% determine min base and max limit of children

ic:minlist(MinList,Min),

ic:maxlist(MaxList,Max),

% constrain this node’s base and limit accordingly

Min $>= Base,

Max $=< Limit

; true

),

% constrain this node’s limit

Limit $= Base + Size,

% output values

SubTreeSize $= Size,

SubTreeMin $= Base,

SubTreeMax $= Limit.

setrange([],0,_,_). % base case of recursion

Non-overlap of bridges and devices

Rule 2 states that siblings must not overlap at any level of the tree. In other words, all regions allocated
to bridges and devices at the same level must be disjunctive. The following goal ensures this, by making
use of the disjunctive constraint, originally intended for task scheduling, which ensures that regions
specified as lists of base addresses and sizes do not overlap:

6.3. PCIE RESOURCE ALLOCATION 81

% convenience functions / accessors

root(t(R,_),R).

base(buselement(_,_,_,Base,_,_,_,_,_,_),Base).

size(buselement(_,_,_,_,_,Size,_,_,_,_),Size).

nonoverlap(Tree) :-

% collect direct children of this node in ChildList

t(_ ,Children) = Tree,

maplist(root,Children,ChildList),

% if there are children...

(not ChildList=[] ->

% determine base and size of each child

maplist(base,ChildList,Bases),

maplist(size,ChildList,Sizes),

% constrain the regions they define not to overlap

disjunctive(Bases,Sizes)

; true

),

% recurse on all children

(foreach(El, Children) do nonoverlap(El)).

Non-overlap of prefetchable/non-prefetchable memory

Rule 3 requires that prefetchable and non-prefetchable regions do not overlap. The two regions do not
need to be contiguous. The implementation inserts an artificial level in the top of the tree containing
two separate bridges, one with all prefetchable memory ranges and another with all non-prefetchable
memory ranges of the tree. This gives some freedom to the solver, because the order of the two regions
is not explicitly specified by the allocation code, and allows the previously-described logic to operate
independently of memory prefetchability. Treating the two regions as completely separate trees causes
the prefetchable and non-prefetchable window of every bridge to be at completely different locations,
which is fine. I/O regions do not need to be considered here, because the I/O space is physically different
form the memory space and cannot overlap with it.

Alignment constraints

Rules 4, 5 and 6 require a specific alignment for devices and bridges. the following rule constrains the
alignment of each element, using natural alignment for device BARs, and a fixed alignment for bridge
windows (1MB in the case of memory regions and 4kB in the case of I/O).

82 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

naturally_aligned(Tree, BridgeAlignment, LMem, HMem) :-

t(Node,Children) = Tree,

% determine required alignment for bridge or device BAR

(buselement(device,_,_,Base,_,Size,_,_,_,_) = Node ->

Alignment is Size; % natural alignment

buselement(bridge,_,_,Base,_,_,_,_,_,_) = Node ->

Alignment is BridgeAlignment % from argument

),

% constrain Base mod Alignment = 0
suspend(mod(Base, Alignment, 0), 0, Base->inst),

% recurse on children

(foreach(El, Children),

param(BridgeAlignment), param(LMem), param(HMem)

do naturally_aligned(El, BridgeAlignment, LMem, HMem)

).

Reserved regions

Rule 7 requires that reserved memory regions are not allocated to PCIe devices. In other words, memory
regions allocated to PCIe devices should always be disjunctive with any reserved region. The following
goal ensures this requirement, by recursively processing a list of bus elements against a list of reserved
memory ranges, specified as range(Base,Size) terms:

% recursive stopping case

not_overlap_mem_ranges([], _).

% bridges may overlap: no special treatment

not_overlap_mem_ranges([buselement(bridge,_,_,_,_,_,_,_,_,_)|T], MemRanges) :-

not_overlap_mem_ranges(T, MemRanges).

% device BARs match this pattern

not_overlap_mem_ranges([H|T], MemRanges) :-

% for each reserved memory range...

(foreach(range(RBase,RSize),MemRanges), param(H)

do

% match base and size variable from bus element

buselement(device,_,_,Base,_,Size,_,_,_,_) = H,

% constrain this BAR not to overlap with it

disjunctive([Base,RBase], [Size,RSize])

),

% recurse on list tail

not_overlap_mem_ranges(T, MemRanges).

Fixed-location devices

The allocation algorithm must also avoid moving various initialized boot devices, as in rule 8. The follow-
ing goal shows one such example: given a device class (specified by its class, subclass and programming
interface identifiers) that should not be moved, it constrains the possible choice of the base address to the
one value which is its initial allocation.

6.3. PCIE RESOURCE ALLOCATION 83

keep_orig_addr([], _, _, _).

keep_orig_addr([H|T], Class, SubClass, ProgIf) :-

(% if this is a device BAR...

buselement(device,Addr,BAR,Base,_,_,_,_,_,_) = H,

% and its device is in the required class...

device(_,Addr,_,_,Class, SubClass, ProgIf,_),

% lookup the original base address of the BAR

bar(Addr,BAR,OrigBase,_,_,_,_) ->

% constrain the Base to equal its original value

Base $= OrigBase

; true

),

% recurse on remaining devices

keep_orig_addr(T, Class, SubClass, ProgIf).

6.3.3 Quirks
Declarative logic programming provides an elegant solution to the problem of quirks. Quirks require
the allocation algorithm to correct wrong information as well as apply possible extra constraints to
workaround misbehaving devices. In CLP it is easy to define a database of facts for devices needing
special treatment. Those facts are implicitly matched against the data structure before the configuration
algorithm runs, causing incorrect information to be corrected, and additional constraints on the allocation
to be defined, without changing any of the core logic of the algorithm.

Rule 11 requires that non-PCIe devices appearing as a BAR of a regular PCIe device or bridge are
treated like PCIe devices with fixed a address requirement. As an example, on some machines, an IOAPIC
appears as a BAR of a PCIe device. If this is the case, the IOAPIC decodes the base address assigned to
the BAR rather than directly using one of the valid predefined base addresses for IOAPICs. In this case,
the allocation code cannot move the BAR, even if the IOAPIC is not a PCIe device. This conflicts with
the core logic of the algorithm, which avoids using all regions assigned to IOAPICs. In order to handle
this quirk, a slight modification of the core logic of the algorithm is necessary such that it only avoids
using address regions assigned to IOAPICs, if they do not appear as a BAR. Additionally the algorithm
has to apply the following extra constraint, which ensures that IOAPICs appearing as a BAR keep their
original base address by calling keep orig addr on the specific bus, device and function number of the
device on which the IOAPIC claims to be.

keep_ioapic_bars(_, []).

keep_ioapic_bars(Buselements, [H|IOAPICList]) :-

(% if there is a BAR with the same base as an IOAPIC, then do not move it

range(B, _) = H,

bar(addr(Bus, Dev, Fun), _, OrigBase, _, _, _, _),

OrigBase =:= B ->

keep_orig_addr(Buselements, _, _, _, Bus, Dev, Fun);

true

),

keep_ioapic_bars(Buselements, IOAPICList).

6.3.4 Device hotplug
In principle, the allocation of resources for hotplugged devices can be handled simply by adding facts
for the new device and its BARs, and then re-running the allocation algorithm. However, this may cause
all existing address assignments to change (excluding those whose location is fixed, as in Section 6.3.2),

84 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

and is thus undesirable due to the performance impact of interrupting running device drivers. A more
incremental approach is desirable.

With PCI Express it is possible to query bridges for hotplug capabilities (i.e. whether or not they
have slots to hotplug a device) [25]. To avoid moving as many devices and bridges as possible, the initial
configuration should leave as many gaps as possible under bridges with hotplug capabilities. This could
be implemented as an optimization function that maximizes the free space under hotplug-capable bridges.
However, an optimization function considers all possible solutions and takes the one which maximizes
the free space. This would lead to a complete tree permutation and is therefore too complex and not
feasible in a reasonable time.

A more tractable way of creating gaps under hotplug-capable bridges is adding artificial devices under
those bridges while computing the first allocation. Artificial devices have regular device() and bar()
entries with the vendor identifier set to 0xffff to mark the devices as artificial. There will never be a
device with this vendor identifier, since 0xffff means at the register level that no device exists at this
bus, device and function number. The bus part of the device address is set to the secondary bus number
of the bridge with hotplug capabilities. This ensures that the artificial device belongs to this bridge. The
device number has to be unique under every bus, but can otherwise be an arbitrary number, which does
not yet exist on the bus, for artificial devices. Since it is not known in advance, whether the device will
have BARs in the prefetchable, non-prefetchable or I/O space, it is necessary to create one BAR in each
of the three spaces. The following example shows an artificial device under a hotplug-capable bridge:

% the bridge with a hotplug-capable slot under it

bridge(pcie, addr(3, 0, 0), 0x1033, 0x125, 6, 4, 0, secondary(4)).

% artificial device with vendor set to 0xffff and all other field to 0

device(pcie, addr(4, 3, 0), 0xffff, 0, 0, 0, 0, 0).

% three small BARs, one in each space

bar(addr(4, 3, 0), 0, 0, 8192, mem, prefetchable, 64).

bar(addr(4, 3, 0), 0, 0, 8192, mem, non-prefetchable, 32).

bar(addr(4, 3, 0), 0, 0, 256, io, non-prefetchable, 32).

The space occupied by artificial devices can later be used for real devices hotplugged under a bridge.
When a device is hotplugged it is straightforward to check whether there is enough free space available
under the bridge. If this is the case, resources can directly be allocated. The allocation under this bridge
needs to follow the same rules as the first allocation, for example, the address has to meet the alignment
requirement of the newly hotplugged device. Nevertheless, as long as the gap is large enough a simplified,
incremental algorithm for local resource allocation can apply the constraints to the newly hotplugged
device.

However, since the physical address size requirements of hotplugged devices are not known in ad-
vance, it may still be the case there there is insufficient free address space under a bridge. In this case the
allocation algorithm tries to extend the local search by moving the bridge, and in the worst case, a recom-
putation of the complete allocation is necessary. Similarly, it is not known in advance whether a newly
hotplugged device will have special requirements such as a fixed address assignment or other hardware
quirks. In these cases a complete reallocation may be necessary.

Adding artificial devices to the PCIe tree before computing the first allocation can be handled well by
the allocation algorithm and is less computationally complex than an optimization problem. Figure 6.4
shows that the CLP solution can deal with an almost completely-filled physical address region. This
means that the available space can almost be filled completely with artificial devices to provide space
for later hotplugs. When creating artificial devices, the first step is to compute the sum of the address
size requirements of the real devices and to fill the available address regions for PCIe with small artificial
devices almost completely. With CLP this is particularly easy, because the artificial devices are placed

6.4. INTERRUPT ALLOCATION 85

around the real ones. Moreover, the CLP solution is well-placed to handle complex reconfigurations that
may be required by device hotplug, as it specifies the complete set of feasible configurations which will
be explored by the solver. Section 6.5.5 presents the results of a benchmark showing the theoretical limits
of the CLP approach in handling device hotplug, in comparison to a traditional postorder traversal.

6.4 Interrupt allocation

This section now describes the closely-related problem of interrupt allocation, which is also implemented
in CLP and also evaluated in section 6.5.

6.4.1 Problem overview

Interrupts are another important resource that must to be allocated to devices by the OS. Most PCI devices
can raise one or more interrupts. To avoid shared interrupt handlers, the OS should try to allocate unique
interrupt vectors to every device. Modern systems, and some modern devices, support message signaled
interrupts (MSIs). These map interrupts into the physical address space, and therefore the only require-
ment is choosing a different interrupt address for every device. However many systems and many PCI
devices do not yet support MSIs, and thus correctly and efficiently configuring PCI interrupt allocation
remains a critical OS task.

Each PCI device signals interrupts by asserting one of up to four available interrupt lines (INTA,
INTB, INTC and INTD, represented in the CLP code as the integers 0–3). On PC-based platforms,
these signals are routed via PCI bridges and configurable link devices to global system interrupt numbers
(GSIs). This routing is encoded in and configured via platform firmware, using a set of ACPI tables and
functions [59]. Starting from a given device and interrupt pin, the mapping is determined as follows:

1. Consult the ACPI interrupt routing tables for the current bus, device and pin number. If there is a
mapping for the given pin:

(a) If the entry names a GSI, the interrupt line is fixed.

(b) Otherwise, the entry names a link device, and the interrupt is selectable from set of GSIs.

2. Otherwise, compute the new interrupt pin on the parent bus, using the formula (device number +

pin) mod 4, and repeat.

The goal of the interrupt allocation code is to assign unique interrupt vectors to every device. Interrupt
sharing is to be avoided wherever possible [88]. It can severely impact performance, since the drivers for
devices sharing an interrupt must essentially poll their devices to determine if the interrupt is for them.
Furthermore, many device drivers do not handle shared interrupts correctly at all. As well as avoiding
sharing among PCI devices, specific GSIs are also assigned to legacy (non-PCI) devices and other system
devices, which should also be avoided by the allocation code. The summary of the requirements for the
interrupt configuration problem is as follows:

1. assign and configure a GSI (possible translated by bridges and link devices) for every enabled PCI
device,

2. ensure that all allocated GSIs are unique.

3. avoid reassigning legacy preallocated GSIs.

86 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

This problem is not as complex as PCIe address allocation, and therefore less troublesome to im-
plement in C. However, there are still some benefits from using CLP: storing and querying information
about possible GSIs and prototyping the algorithm in CLP is highly convenient, the resulting algorithm
is portable across different platforms, and the implementation is concise – ensuring that allocated GSIs
are globally unique can easily be done using the built-in ECLiPSe goal alldifferent (see 6.4.2). These
are good reasons to implement interrupt allocation for Barrelfish in the SKB.

6.4.2 Solution in CLP
At start-up, the PCI and ACPI drivers populate the system knowledge base with a fact for every PCI
interrupt routing table entry, mapping a device address and interrupt pin to a source, using the schema:

prt(addr(Bus, Dev, _), Pin, pir(Pir) | gsi(Gsi)).

These facts include addresses of PCI devices without function number, because the same mapping applies
for all functions on a multi-function device. The interrupt source is either a name (ACPI object path)
identifying the interrupt link device or a direct GSI number, indicating that this interrupt’s allocation is
fixed.

For each link device, pir facts are added describing the possible GSIs that may be selected for a given
device:

pir(Pir, GSI).

In this relation, Pir defines the link device name, and GSI one of the selectable GSIs for this device (so
each link device has multiple facts, one for each configuration).

The CLP code operates on these facts, and the PCI device facts described in the previous section.
At the top-level, it determines the interrupt pin used by a specific device, and passes it to assignirq to
allocate a unique GSI:

assigndeviceirq(Addr) :-

device(_, Addr, _, _, _, _, _, Pin),

% require a valid Pin

Pin >= 0 and Pin < 4,

(% check for an exising allocation

assignedGsi(Addr, Pin, Gsi),

usedGsi(Gsi, Pir)

; % otherwise assign a new GSI

assignirq(Pin, Addr, Pir, Gsi),

assert(assignedGsi(Addr, Pin, Gsi))

),

printf("%s %d\n", [Pir, Gsi]).

assignirq takes the PCI address and interrupt pin for the device as inputs, and chooses a possible GSI
for the device. It uses findgsi (described below) to determine the available GSIs for the device, and the
alldifferent goal to avoid overlaps:

6.5. EVALUATION 87

assignirq(Pin, Addr, Pir, Gsi) :-

% determine usable GSIs for this device

findgsi(Pin, Addr, Gsi, Pir),

(% flag value for a fixed GSI (i.e. meaningless Pir)

Pir = fixedGsi

;

% don’t change a previously-configured link device

setPir(Pir, _) -> setPir(Pir, Gsi)

;

true

),

% find all GSIs currently in use

findall(X, usedGsi(X,_), AllGsis),

% constrain GSIs not to overlap

ic:alldifferent([Gsi|AllGsis]),

% allocate one of the possible GSIs

indomain(Gsi),

% store settings for future reference

(Pir = fixedGsi ; assert(setPir(Pir,Gsi))),

assert(usedGsi(Gsi,Pir)).

Finally, the following CLP function matches the device’s address and interrupt pin with the prt and pir
facts to find the possible GSIs (multiple solutions may be found). If no match is found, it recursively
performs bridge swizzling until a routing table entry matches (which is always true at the root bridge).

findgsi(Pin, Addr, Gsi, Pir) :-

(% lookup routing table to see if we have an entry

prt(Addr, Pin, PrtEntry)

;

% if not, compute standard swizzle through bridge

Addr = addr(Bus, Device, _),

NewPin is (Device + Pin) mod 4,

% recurse, looking up mapping for the bridge itself

bridge(_, BridgeAddr, _, _, _, _, _, secondary(Bus)),

findgsi(NewPin, BridgeAddr, Gsi, Pir)

),

(% is this a fixed GSI, or a link device?

PrtEntry = gsi(Gsi),

Pir = fixedGsi

;

PrtEntry = pir(Pir),

pir(Pir, Gsi)

).

6.5 Evaluation
The evaluation of the PCIe allocation algorithm is mainly in terms of code complexity and efficiency
of resultant solutions. Execution time is also an important metric, but not the main point of this ap-
proach. Obviously, some of the evaluation necessarily remains subjective in its comparison with current
approaches, not least because code in this approach is factored rather differently from traditional ap-
proaches and offers different functionality to, for example, PC-based Linux.

88 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

Table 6.2: System complexity and execution times for
the PCI configuration algorithm

Devices BARs Bridges Runtime (ms)

sys1 7 11 12 2.0
sys2 13 20 6 14.7
sys3 13 20 6 14.4
sys4 14 22 6 36.4
sys5 12 18 5 10.0
sys6 7 9 6 19.0
sys7 9 14 6 22.2
sys8 15 25 4 6.7
sys9 15 25 4 31.2

6.5.1 Test platforms
I evaluated the PCIe configuration and interrupt allocation algorithms on nine different x86 PC and server
systems, with a mixture of built-in and expansion devices including network, storage and graphics cards
installed. I refer to these as sys1 through sys9, and show the number of PCIe elements they include in
Table 6.2. All systems have two PCIe root bridges with the exception of sys1, which has one. Here I
show the totals for the whole system, as the algorithm allocates resources to all PCIe trees in a single
invocation.

All of these systems support USB keyboards in the BIOS, and thus the system initializes the USB
controller in firmware at boot time. Consequently, the allocation algorithm ensures this fixed device
requirement using the keep orig addr constraint from section 6.3.2 to prevent the USB controllers
from being reprogrammed, and also avoid any memory regions marked as reserved by ACPI or in use
by IOAPIC devices. The computation does not include handling other quirks, since the test platforms
do not exhibit them and consequently do not exercise that part of the CLP code. The implementation is
successful in configuring all PCI buses and devices on all the test systems.

6.5.2 Performance
I measured the time for PCI configuration on the test platforms, and show the results in Table 6.2. This
time is for the CLP algorithm and does not include the initial bus walk, nor programming of device
registers. As discussed in section 6.3, these remain in C as part of the PCIe driver, and the CLP time
dominates the overall runtime.

Compared to the performance of a hard-coded allocation in C, which in existing OSs typically requires
less than a millisecond, the CLP solution is substantially slower, but the additional overhead of 10–30ms
is only incurred at boot time or after a hotplug event, and so is arguably insignificant to the end user. This
computation can be run in parallel with other tasks, and since the PCIe configuration changes rarely, the
computed configuration can be cached and re-applied during the next boot process. In those cases, no
additional overhead is added to the boot time.

6.5.3 Code size
This section compares the complexity, measured in lines of code (LOC), of the CLP-based approach to
the comparable portions of the Linux x86 PCI driver. Such a comparison can never be precise, and must
be preceded by several qualifications.

6.5. EVALUATION 89

Table 6.3: Lines of code in PCI configu-
ration and interrupt allocation

C LOC CLP LOC

Register access 235
Data structure 817 31
Algorithm 224
ACPI 360
Interrupts 660 28
Miscellaneous 109

Total 2181 283

Table 6.4: Lines of code for equiva-
lent functionality in Linux 3.1.6

C LOC

Register access 842
Data structure 2079
Resource management 1243
ACPI 238
Interrupts 718
Miscellaneous 90

Total 5210

First, in both cases I consider the code related to PCI resource configuration, interrupt allocation,
PCI device discovery, maintenance of the data structures representing the PCI bus hierarchy, and the
corresponding hardware access mechanisms. Second, I exclude from the Linux figures some PCI-related
mechanisms (such as the legacy PCI BIOS interface) that are currently unsupported by the CLP solution.
Third, since the PCIe driver in Barrelfish currently only implements two PCI quirks, the hardware quirk-
handling code is excluded, but handling of other special cases is retained. Fourth, the functionality
offered by this solution and the Linux code is different: Linux implements the solution that attempts to fix
up the initial BIOS configuration, whereas the CLP code does a full allocation of addresses. Finally, to
emphasize it, the goal is to reduce the complexity of the source code and therefore the number of source
lines of code, rather than the number of generated machine statements.

Table 6.3 summarizes the results for the CLP-based solution and table 6.4 summarizes them for Linux.
The relevant Linux code is located in the kernel in drivers/pci. Overall, this approach uses 2464 lines of
code, compared to 5210 for the pure C-based Linux version.

Breaking this down, the PCIe driver in Barrelfish uses much less code for reading and writing reg-
isters, as the hardware access is regular and independent of allocation. Building and manipulating data
structures is also simpler: representing lists and trees is highly concise in ECLiPSe, and allows to build
much simpler structures in the C domain, resulting in about half the code size. The number of lines of
code for ACPI is higher in Barrelfish, since it explicitly handles ACPI reserved regions, whereas Linux
relies on the BIOS initialization for this. Code for interrupt assignment is about the same size. Finally,
the “core” of the configuration code (in as much as it can be isolated in the Linux case) is 224 lines of
Prolog versus 1243 lines of C.

The largest class of code in both implementations is used for maintaining data structures. This is

90 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

Table 6.5: Additional lines of code to handle additional special cases

Special case Goal Part CLP LOC C LOC

No re-assignment keep_orig_addr() impl. - -
call 1 -

IOAPIC as BAR keep_ioapic_bars() impl. 10 -
call 1 -
get IOAPIC list 3 -

Total 15 -

because PCI data must be queried from either ACPI or directly from the hardware, transformed to a
meaningful internal representation, and added to a structure. Finally, configuration proceeds by traversing
this structure, accessing and mutating it. The corresponding data structure in the CLP implementation
consists mostly of ECLiPSe facts which are generated by C but traversed/accessed entirely in CLP, and
thus require fewer lines of code than Linux. Despite being large in size in both systems, such code is not
the most complex in its logic.

The PCI configuration algorithm uses 224 lines of CLP code in Barrelfish’s PCIe driver implemen-
tation. This produces a correct and complete allocation, while correctly handling special constraints
such as avoiding reserved regions and preserving certain device locations. In comparison, the Linux C
implementation uses more lines of code for less functionality (it does not perform full bus configuration).

Besides the usual benefits arising from a smaller, simpler codebase in terms of source lines of code, the
separation of concerns between low-level hardware-specific device access code and a high-level declara-
tive resource configuration algorithm enhances the system’s maintainability and adaptability to changing
hardware requirements. Complex device- and system-specific constraints, such as quirks, can be incor-
porated without changing the device access code or core algorithm, and it can easily be ported to other
PCI-based platforms.

6.5.4 Handling quirks

An important goal of using a declarative algorithm is maintainability of the code as well as simplifying
of adding new special cases or quirks. These properties can best be evaluated by showing the number of
lines of code which must change when adding a new special case.

To take one example, consider a new PCIe device that does not support the re-assignment of a new
address. The implementation already contains the goal keep orig addr(), which ensures that the device
retains its original address and therefore no re-assignment will happen. It is sufficient to call this goal on
the newly-found device, and this requires one additional line of CLP code to specify the case.

A second example was encountered in the course of writing the PCIe driver, and has already been
mentioned in section 6.3.3. One system has a special IOAPIC that appears as a BAR, even though it is
not a PCI device. In this case, the address in the BAR must not change during the configuration process.
The implementation did not contain any goal to handle this special case, and so I had to implement it
from scratch. The small goal keep ioapic bars() shown in section 6.3.3 completely handles this case,
making use of the already available keep orig addr(). The implementation only adds ten lines of CLP
code. Another line is necessary to call the goal and another three lines are necessary to prepare the list of
IOAPICs.

Table 6.5 summarizes the additional lines of code necessary to handle these two additional special
cases. In CLP handling them is straightforward, because the base variables can be constrained before
having actual addresses assigned. As the table shows, the C code did not need to change at all.

6.6. SUMMARY 91

6.5.5 Postorder traversal comparison
To evaluate the quality of the solutions found, I investigated how they compare to the style of simple
postorder traversal used in current operating systems. When allocating resources to a device tree where
the size of each device is known in advance, one might expect this approach to be sufficient. I first describe
why that is not the case, and then show experimentally the advantage of a declarative CLP solution against
such a traversal.

Starting with the base address given by the root bridge, such an algorithm traverses down the left-
most branch of the tree first, assigning the current base address to each bridge and finally the left-most
leaf device, while satisfying alignment constraints. For each device allocation, the device size is added
to the base value, plus any padding required for alignment. The algorithm next traverses all child devices
of the bridge, before moving up the tree to the next-upper parent bridge, and updating the bridge’s limit
register in the process, before continuing with the remaining devices and bridges.

Such an algorithm can be simply described and implemented. It ensures that all bridges are allocated
a window including their children and that alignment constraints are satisfied. However, the algorithm is
insufficient for PCIe configuration for two reasons:

1. It fails to include constraints that require keeping devices at a fixed address. This requires all
parent bridges to decode the fixed device window. Because all parent bridges have to decode a
fixed address, all children of every bridge decoding a fixed address have to be placed close to
a predetermined address region. This cannot be easily expressed in a postorder traversal of the
device tree.

2. Satisfying alignment constraints leads to potentially large amounts of address space wasted in
padding, preventing successful configuration when not all devices fit into the root bridge’s address
range.

To learn how the CLP-based algorithm behaves in the limit as resources are consumed by additional
devices, I stressed the configuration algorithm in an offline experiment by adding progressively more
devices and bridges to a simulated PCIe system. Starting with zero devices and bridges, I added either a
device or a bridge on every round and measured the consumed resources by the configuration derived by
the algorithm. This scenario is not purely artificial, because it simulates what can happen when devices are
hotplugged. I compared the CLP-based algorithm with an improved postorder traversal algorithm, which
sorts devices according to their requested size in ascending order. The results are shown in figure 6.4.

The horizontal line Root size (max) indicates the given root bridge window size, which must not be
exceeded for a successful configuration. The vertical lines in the figure indicate where a bridge has been
added to the PCIe tree. The DeviceSum line indicates the sum of the requested size of all installed devices
without padding or alignment constraints; this is the absolute lower bound of address space utilization.
The data points indicate the address space consumption after having added the next device.

The figure shows that the CLP-based allocation algorithm exactly follows the device sum. Its con-
straints give it the freedom to reorder bridges and devices, so that no address space is wasted for alignment
constraints and a solution can always be found. The best postorder traversal algorithm, which does not
respect fixed device requirements, nevertheless cannot fit the devices into the given root bridge window
beyond 80% utilization, indicating that such a simple approach has limitations in general.

6.6 Summary
The case study presented in this chapter proves that applying a high-level declarative language to a hard-
ware configuration problem leads to much simple and cleaner code. Furthermore, it can easily adapt to
differences and special cases found in different platforms. By picking PCIe configuration as a case study

92 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 20 40 60 80 100

P
h
y
s
ic

a
l
a
d
d
re

s
s
 s

iz
e
 r

e
q
u
ir
e
d
 [
b
y
te

s
]

Fill rate (device sum / max available size) [%]

Root size (max)
Device sum

CLP
Postorder sorted ascending

Figure 6.4: Address space utilization of CLP algorithm vs. simple postorder traversal as devices and
bridges are added to a simulated system. The CLP algorithm reorders devices as needed, exactly follow-
ing the DeviceSum line, which shows the lower bound. The postorder traversal, which sorts the devices
according to size, cannot fit the PCI tree into the given root bridge window. Vertical lines indicate when
a new bridge is added; the horizontal line indicates the maximum size of the root bridge window.

and by proving the feasibility of modeling this problem in CLP, I believe that many other hardware-related
problems can be solved likewise.

PCI address allocation is one of the most complex hardware resource allocation problems currently
found in PCs, because multiple devices are configured in a single step, and there are many dependencies
between devices and bridges, and constraints on the assignment of addresses to groups of devices under
a bridge. One might see it as something of a special case. Historically, however, hardware complexity
has tended only to increase, with a concomitant increase in software’s responsibility to configure it:
PCI arose as a solution to the increasing complexity of device configuration in earlier simpler ISA and
ISA-PnP systems, which it resolved by placing a greater configuration burden on platform firmware and
system software.

A similar emerging trend can be observed in the configuration of the interconnect between cores,
caches, memory and devices as it gains increasing complexity. Previous systems, such as the older Intel
frontside bus architecture, had static interconnects whose architecture was fixed in hardware. However,
current interconnects such as QPI and HyperTransport [31] are configurable multi-hop point-to-point net-
works. Present systems rely on platform firmware to configure these networks statically at boot time, but
one can easily imagine a future where system software may be able to dynamically reconfigure the inter-
connect according to workload requirements, for which a declarative solution in CLP may be appropriate.

The experience in building a high-level declarative configuration algorithm for the complex PCIe
resource allocation problem in the SKB has been positive and it is a promising approach for other hard-
ware configuration tasks. The SKB as a reasoning facility, which is already there, greatly simplifies the
decision of implementing configuration an allocation algorithms in CLP.

Chapter 7

Efficient Multicast Messaging

In the introduction (section 1.1.2) I argued that the interconnect, which is increasingly resembling a net-
work, has to be treated as such, to provide optimal performance. In this chapter I show how a few lines of
CLP code derive a hardware-aware multicast tree along which the messaging mechanism forwards mes-
sages with low latency and good scalability. I show, that the forwarding tree, which is used to configure
the messaging mechanism, adapts to the interconnect topology by only considering high-level knowledge
about the interconnect. The knowledge is derived from information gathered at bootup of the operating
system. The code does not assume any information and therefore adapts to any kind of hardware, even if it
is not known in advance. The mechanism of sending messages is simple, because the policy code, which
derives hardware-aware forwarding tables, is completely taken out of the actual messaging code. Further,
the CLP code allows to concisely express an optimal hardware-aware forwarding algorithm. The evalu-
ation in this chapter shows first, that the code complexity is low, and second, that the result – the actual
multicast messaging forwarding – has low latency and good scalability, compared to non-hardware-aware
versions.

7.1 Introduction
Manycore operating systems perform operations which need fast global coordination among cores to
ensure consistency. Global coordination involves notifying all participants and waiting for their acknowl-
edgement. In fact, at a high-level, it is the concept of multicast communication. Multicast communication
notifies all participating nodes and waits for their reply. An example, which needs global coordination, is
keeping page table mappings and their access rights consistent among cores. This needs coordination be-
tween all cores, because they map a page individually (this is explained in more detail in the background
section 7.2) and they have to agree on the access rights of every page.

To ensure that the globally coordinated operations are not limited by the operating system’s low-level
coordination implementation 1, the operating system needs a fast mechanism to inform every participant
and to get their acknowledgements.

Current x86 hardware provides the illusion of shared memory between all cores. Every core can
access every memory address and the interconnect hardware takes care of sending memory reads or
memory writes to the right place. In fact, as explained in section 1.1.2, the interconnect is a network.
It translates memory reads and memory writes on remote NUMA nodes to messages conveying the read
or write operation. It sends the message to the remote memory controller on which it gets applied.

1Here it is low-level coordination on the system’s fast-path. It is different from Octopus, which coordinates processes at a
high-level.

93

94 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

Additionally, the cache-coherence protocol ensures that the cache contents of all cores is consistent. If
one core writes to a memory address, which is in the cache of several other cores, they all get invalidation
messages for this address. This causes all other cores to load the data from memory again, if they access
the same address again.

A naive way of notifying every core about an operation can cause the interconnect hardware to send
many messages over the interconnect, while a hardware-aware way can minimize the number of messages
being sent. As I show in the evaluation in section 7.5.4, this directly translates to overall latency and
scalability. It is therefore crucial that the operating system reasons about the interconnect topology and
that it adapts its global coordination mechanism to it.

The two extreme, but simple, ways of sending a request to several cores are the following: either use
one known memory address to write the request to or use a different memory address for all participating
cores and write the same requests to each of those. In the first case, all participating cores poll the
same memory address. Whenever the requesting core writes to the memory address, all cores get an
invalidation message from the cache-coherency protocol and then read the data item again. For N cores,
the data traverses the interconnect N times, scaling linearly with the number of cores. The result is similar
to sequential processing. In the second case, the requesting core sequentially writes the same request to
N different memory addresses. Again it scales linearly with the number of cores.

In this thesis I argue that a certain degree of parallelism hides the overall latency and leads to faster
and more scalable distributed operations. Hiding latency behind parallelism is a common technique used
in CPUs and GPUs by pipelining and hardware level threading [43, 42, 19]. In the context of notifying
other cores it means that, after the initiating core has sent the request, other cores process and possibly
forward the message in parallel. This leads to some sort of message forwarding tree.

The operating system needs to decide how the forwarding tree should look like. Ideally, it reduces
the number of messages being sent over the interconnect. The operating system therefore needs to reason
about the interconnect and needs to derive a hardware-aware forwarding tree. In this chapter I show that
few lines of CLP derive a hardware-aware forwarding tree which leads to low overall multicast latency
and good scalability.

7.2 Background

This section gives the necessary background about multicast messaging and explains, why directly ap-
plying algorithms from the distributed field does not work within a shared-memory machine. To measure
the performance of the derived multicast tree, the TLB shootdown operation is being used as an example
of a real operating system operation, which needs multicast communication. This section explains what
the thesis means by the TLB shootdown operation.

7.2.1 Multicast messaging

Traditionally, multicast communication is used in networks. Multicast trees forward messages along the
tree and allow parallel processing and forwarding towards the multicast group. Multicast trees are well
studied in different scenarios in the distributed field [136, 137, 66, 140]. A multicast tree uses point-to-
point links between nodes. Nodes work in parallel which reduces the overall latency. The same technique
seems appealing in an operating system, because it allows cores to work in parallel. As stated in the
introduction above (section 7.1), the two extremes (one memory address for all the cores or a separate
memory address per core) lead to sequential processing, which is not desirable. Instead, I argue in this
thesis, that a multicast tree with some degree of parallelism in between the two extremes leads to low
overall latency and good scalability.

7.2. BACKGROUND 95

Barrelfish has the right structure to explore multicast messaging techniques (see section 2.2) for two
reasons. First, it uses explicit messaging, instead of shared memory, to communicate between cores. It
knows exactly, when and from which source to which destination messages traverse the interconnect.
By explicitly knowing that, the problem of sending data N times over the interconnect for N cores can
be avoided. Second, Barrelfish provides messaging mechanisms which allow to setup message channels
between any two cores. Policy code just needs to decide from where to where to create message channels
to forward the multicast message. According to the result of the policy code, message channels are created
and multicast messages are sent along them. The challenge is to derive a suitable multicast tree.

Within a shared-memory system, the multicast tree might be a regular n-ary tree or an irregular tree
of some form. Unlike in distributed systems, the interconnect between cores does not restrict the tree
construction, because of the shared memory between all cores. There is a lot of freedom to chose multicast
messaging trees, all having a different overall latencies. A suitable multicast tree therefore depends
on knowledge about single-link latencies, but, as the next paragraphs explain, also on further hardware
knowledge.

Dijkstra’s algorithm, for example, constructs a minimal spanning tree according to single-link la-
tencies. Within the machine, the operating system has a global view over the interconnect network, a
requirement for Dijkstra’s algorithm. Dijkstra’s algorithm optimizes for the shortest paths from a root
node to all other nodes. The fact that the shared memory architecture basically provides a full mesh
network, means that using the direct link is always shorter than going over another node and adding the
two latencies 2. This means that Dijkstra’s algorithm would create a link from the root node to all other
nodes, leading to one of the two extreme cases, depending on the implementation of the mechanism. Two
options are possible: the root node uses one channel to send a broadcast message to every other core or
the root node uses a separate channel to every other core and sends individual messages. As explained in
the introduction section 7.1, both versions lead basically to sequential processing.

To avoid this problem, another approach is necessary to construct a multicast tree. Additionally to
considering only network characteristics like single-link latencies, the multicast tree construction has to
exploit hardware topology knowledge as well. To increase parallelism, while keeping interconnect traffic
low, the policy code has to chose inner nodes through which messages have to go, such that forwarding
messages from inner nodes to children reduces interconnect traffic.

The optimization algorithm depends therefore on two types of knowledge, both of which are discov-
ered at boot time and stored as platform-independent high-level facts in the SKB. First, it needs knowledge
about single-link latencies. These depend on the hardware, but can be measured easily at startup of the
operating system. Second, it needs hardware topology information to decide on inner nodes. This infor-
mation can be discovered at bootup as well. The actual algorithm depends on the high-level latency and
topology facts and remains portable and – implementation-wise – machine-independent. Section 7.3.2
describes the implementation of the multicast tree construction in detail.

7.2.2 TLB shootdown
Page table mappings are cached in the translation lookaside buffer (TLB). Every core has a separate TLB.
The TLB is therefore a distributed data structure, even if the operating system’s kernel is monolithic. On
every memory access, the core considers the page table mapping stored in its TLB to translate the virtual
address to a physical one. Additionally, it checks the page’s permissions to decide, whether the memory
access instruction is allowed to proceed. If one core changes the page mapping or the page’s access rights,
it needs to notify all other cores first. These remove the cached entry from their TLB and acknowledge the
request. The initiating core needs to wait for their replies. If one of the other cores access the same page
again, it is not in its TLB and therefore it loads the page table entry with the new rights from memory into

2This is because the latencies on all single links are similar and adding two links is always longer than the longest single-link
latency.

96 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

its TLB. This way consistency among cores is ensured. For this thesis I refer to the process of notifying
other cores about changed page table mapping by the term TLB shootdown.

The TLB shootdown operation is one of the simplest, but important operations of the operating sys-
tem. Invalidating a single TLB is a fast operation, taking about 95 to 320 cycles on current x86 64
machines. The complete TLB shootdown operation is a latency-critical operation, because the initiator
needs to wait for all other cores before it can complete the operation locally.

Every multicore operating system needs a TLB shootdown operation. Windows and Linux use a
known location to store the page manipulation operation and inter-processor interrupts (IPIs) to notify all
other cores about the newly arrived operation. A core which changes the mapping of a page writes the
operation to the known location and sends an interrupt to every core which might have a mapping in its
TLB. Every core takes the interrupt. It invalidates its TLB and acknowledges the interrupt by writing to a
shared variable. Finally, the core resumes to user space. While this has low latency, it can be disruptive.
The cost of taking an interrupt is about 800 cycles.

The TLB shootdown operation is an example which shows the necessity for efficient multicast com-
munication. Therefore, the thesis uses this example to evaluate the efficiency derived multicast commu-
nication trees at runtime, such that it scales well on a various range of hardware, which is not known in
advance. The TLB shootdown provides a baseline protocol. It is simple in the sense that participating
CPU drivers always acknowledge it. More involved protocols are general two-phase commit protocols.
They also need multicast messaging, but participating cores might “abort” an operation. The focus of
this thesis is building hardware-aware multicast trees and therefore does not evaluate different protocols
which build on the basic multicast mechanism.

7.2.3 Summary
This section pointed out the most important reasons for multicast messaging within an operating system.
By now it should be clear, that a suitable multicast tree needs latency measurements, but also hardware
topology knowledge and therefore regular tree construction algorithms from the distributed field cannot
be applied directly.

The chapter uses the TLB shootdown operation as an example, because it needs global coordination,
which can be achieved by multicast communication. Furthermore, it is a common operation in multicore
operating systems.

The next section describes how to build a hardware-topology-aware multicast messaging tree in an
operating system, such that it adapts to the current underlying hardware and such that it leads to optimal
performance when sending multicast messages.

7.3 Design
This section describes the design of the multicast tree construction algorithm used to achieve a hardware-
topology-aware tree. Before explaining the actual algorithm in section 7.3.2, I explain the most important
design principles in the next section 7.3.1.

7.3.1 Design principles
I derived a number of properties which should be met by the multicast tree on every possible underlying
hardware and summarizes them in the paragraphs below.

Policy/mechanism separation is one main goal followed by this thesis. This is especially important for
multicast messaging, because the mechanism of sending multicast messages is on the system’s critical

7.3. DESIGN 97

fast-path. The multicast mechanism code uses a forwarding table which it just looks up to send the
next message. The entries in the forwarding tables define the next core ID a message should be sent
to. The policy code in the SKB derives the values to be inserted in the routing tables of all cores. If
the configuration changes (changes in the environment for some reasons, CPU hotplug, CPU power-safe
mode), and the multicast tree needs to be recomputed, the policy code can be invoked again and the results
can be applied to the forwarding tables. While the SKB derives the new tree, the current entries in the
forwarding table remain valid.

Adaptability to hardware is ensured by looking at hardware discovery data in the SKB and by deriving
the forwarding table entries at runtime. As long as correct hardware information is available, a multicast
tree can be derived. The tree construction code is independent of the number of CPU packages, number
of cores per package or interconnect topology. It is purely based on facts describing CPU packages and
cores and online measured message latencies.

Portability and maintainability are further goals of this thesis. As long as the CPU package descrip-
tion facts can be generated and message latencies can be measured, the multicast algorithm does not
need to change at all. The mechanism of sending multicast messages is based on forwarding tables and
the underlying message channels. The forwarding tables are independent of the underlying architecture
and porting the code does not involve changing the mechanism. The only two parts of he code which
potentially need to change are the datagathering mechanism to query CPU packages and the underlying
message transportation implementation.

Keeping the code simple improves maintainability and understandability. Still, the multicast policy
code should derive a reasonably good multicast tree to allow for fast multicast messaging. By using
hardware knowledge and by exploiting hardware characteristics gained from the knowledge, the code
produces good multicast trees at a low code complexity in terms of lines of code needed to implement the
policy.

7.3.2 Hardware-aware multicast tree
The goal of the multicast tree is to maximize parallelism and minimize interconnect usage. It is the task of
the policy code to find the optimal point. This is reached, when more parallelism would increase latency
due to congestion on the cache-coherency protocol and more point-to-point messaging would lead to too
much sequential processing, such that latency is increased again.

The cache-coherency protocol on x86 machines is often a broadcast protocol. Invalidations of cache
lines are typically sent to all cores. However many modern CPU packages have a shared cache (typically
a shared L3 cache) and appear as a single node regarding the cache-coherency protocol. The message
passing between cores on the same CPU socket remains local in the shared L3 cache and does not involve
interconnect transactions. It is preferable, that one core of the package forwards a multicast message
to all other cores on the same package. Only one message should be sent through the interconnect to
notify a remote package. This reduces the interconnect transactions and therefore the number of effective
broadcast messages imposed by the hardware.

In general, the overall latency cannot be computed statically. To find the optimal multicast tree, all
variants would need to be measured (including a varying number of children for each node). This is
however not practical at every startup of the OS. Instead, the policy code exploits the fact, that message
passing within the same CPU packages relies on a shared L3 cache or otherwise fast local communication
between cores. It choses one core per CPU package as the multicast aggregation node. This core is
responsible to forward the message to all cores on the same CPU package and also to forward the message

98 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

to the next CPU packages, if it is not a leaf of the tree. Forwarding to the next CPU packages happens
along dedicated point-to-point message channels. The order of packages, to which the core forwards the
message, is defined by the policy code. The policy code sorts the next level CPU packages by point-to-
point latency between each package and the sending core in decreasing order. This ensures, that the core
forwards the message first to the remote package with the highest latency. This technique hides the latency
and improves parallelism. While the message with the highest latency is still in transit, the core spends
time to send the message to the next package. The cost of sending the message plus the smaller latency
overlap with the first message with higher latency. After sending the message to all remote packages, the
core forwards it also to all other cores on the same package.

Similarly within a package, the message is sent to all other cores. Again the latency can be hidden.
Local cores start processing the message in parallel while the messages to the remote CPU packages are
in transit. Because the locally shared cache lines between the aggregation core and all cores on the same
node do not cause invalidation messages on the interconnect, the second message, within the package,
is much cheaper. As a further optimization, the algorithm takes the NUMA knowledge into account. It
allocates message buffers in the NUMA node of the multicast aggregation core. The evaluation section 7.5
in this chapter shows that this algorithm performs best on big NUMA architectures. The optimal tree
constructed this way is different for every initiating node. Every root node needs to compute its own
multicast tree. At startup time, it invokes the policy code in the SKB and passes itself as root of the tree.
The SKB then returns the multicast tree it should use. As long as the hardware does not change (due to
hotplug for example), the tree can remain as initially derived. The algorithm can be summarized into the
following steps:

1. Choose root node according to argument passed to policy code

2. Choose one core per CPU package as multicast aggregation core

3. Sort multicast aggregation cores by latency to root core in decreasing order

4. Send message to remote cores

5. Send message to local cores

6. All remote cores send message to local cores

7. Process message

8. Send replies to aggregation node

9. Aggregation node waits for replies and sends itself a reply to root node

10. Once all replies are received at the root node, it knows that it has been processed by every core

Figure 7.1 shows a simple four packages quadcore machine on which a multicast tree over all cores
(in fact a broadcast tree) was constructed. The root node first sends to the furthest core (1) and then to
one core of the other CPU packages (2 and 3). Only after sending the messages to the remote cores, it
forwards the message also to all local cores, first to the one with highest latency (4) and finally to the one
with second highest latency (5) and to the closest one (6). In parallel, all other inner nodes (on the other
CPU packages) forward the message to the local cores, again first to the one with highest latency (4) and
finally to the other ones (5 and 6).

Cores send acknowledgements back along the same tree. Inner nodes aggregate all acknowledge-
ments. As soon as all acknowledgements arrive, inner nodes send an acknowledgement back to the root
node. The multicast operation is done, as soon as the root node received the acknowledgements of all
inner nodes.

7.4. IMPLEMENTATION 99

Core

Core Core

Core

Core

Core

Core

Core

Core Core

Core

Core

Core Core

Core

1

2

3

4

44

4 5

5

5

5

6

6

6

6

CPU package

CPU packageCPU package

CPU package

Core
Root

Figure 7.1: Multicast tree on a four CPU packages, quadcore machine.

This algorithm can be translated directly to CLP code based solely on CPU package knowledge and
online latency measurements between the cores. The next section explains how the algorithm is expressed
in ECLiPSe.

7.4 Implementation
Following the design presented in the previous section, I implemented the policy code to generate the
multicast message tree construction completely in ECLiPSe CLP in the SKB. Below I explain each rule
in detail.

Main goal

Each core calls the main goal and passes its own core id as parameter StartCore which will be the root
node of the multicast tree for this core. SendList outputs the list of links to be used to forward the
multicast messages initiated at the root node. The list contains tuples of the form sendto(SrcCore,
DstCore, LinkLatency).

The main goal choses the tree with the lowest cost. It considers different trees and uses the built-in
minimize/2 goal to chose the tree with the lowest cost.

% goal to be called.

% Construct a list of sendto/3 goals, sort them by latency in decreasing order and

% minimize the value of the longest latency

multicast_tree(StartCore,SendList) :-

minimize(multicast_tree_cost(StartCore, SendList, Cost), Cost).

Tree construction

The following rule creates a list of sendto/3 tuples and associates costs with each link. The costs are
computed as RTT values per link. After sanity checking, the rule creates a list of all available CPU
packages. The first step is creating sendto/3 tuples to all other packages. After that it creates sendto
/3 tuples between the root node of the start package and all cores which are within the same package.
Finally, the sendto/3 tuples get sorted in decreasing order by RTT.

100 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

% constructs the send list starting at StartCore

multicast_tree_cost(StartCore,[SendH|SendList], Cost) :-

multicast_sanity_check,

% determine package of start core

cpu_thread(StartCore, StartPackage, _, _),

% construct list of other packages

findall(X, (cpu_thread(_,X,_,_), X =\= StartPackage), L),

filter(L,PackageList),

% compute possible links to those packages as SendList1

sends(StartCore, PackageList, SendList1),

% compute links from start core to its neighbors

sendNeighbors(StartCore, Neighbors),

append(SendList1, Neighbors, SendList2),

% annotate with RTT of each link

annotate_rtt(SendList2, SendList3),

% sort by decreasing RTT

sort(3, >=, SendList3, [SendH|SendList]),

% determine cost as maximum single-link RTT

sendto(_,_,Cost) = SendH.

Links to other packages

This rule creates a sendto/3 tuple from the start core to one core of every available package (except the
package of the start core). Starting from the chosen core per package, the rule creates sendto/3 tuples to
all the cores within the same package as the chosen core by applying the rule sendNeighbors/2.

% creates a list with sendto(SrcCore, DstCore) to define which core should send

% to which other core

% sends(+StartCore, +PackageList, -SendsList)

sends(_, [],[]).

sends(StartAPIC_ID, [H|T],[HS|Sends]) :-

% find the lowest APIC ID on the package as APIC ID

findall(X, cpu_thread(X, H, _, _), APICIDs),

sort(APICIDs, [APIC_ID|_]),

% construct a link to it from the start ID

HS = sendto(StartAPIC_ID, APIC_ID),

% recurse on other packages

sends(StartAPIC_ID, T, Sends2),

% find all the cores on the same package as APIC ID, and add pairs for them

sendNeighbors(APIC_ID, M),

append(Sends2,M,Sends).

Links to neighbor cores

This rule constructs links between cores on the same package. It retrieves all APIC_IDs of the same
package and creates a sendto/2 tuple for all of them.

% construct links to all the neighbors of APIC ID on the same package as it

sendNeighbors(APIC_ID, Sends) :-

% find package containing APIC ID

cpu_thread(APIC_ID, Package, _, _),

7.5. EVALUATION 101

% construct links to all my neighbors

findall(sendto(APIC_ID,X),(cpu_thread(X,Package,_,_),X =\= APIC_ID),Sends).

Compute RTT

This helper function computes the round-trip time (RTT) for each link by adding the measured one-way
latencies of both directions. Measurements showed that the latencies for both directions on a specific link
do not necessarily need to be the same.

% add the rtt number to every sendto tuple

annotate_rtt([],[]).

annotate_rtt([sendto(Src,Dst)|T1],[sendto(Src,Dst,Lat)|T2]) :-

message_rtt(Src,Dst,Lat1,_,_,_),

message_rtt(Dst,Src,Lat2,_,_,_),

Lat is Lat1 + Lat2,

annotate_rtt(T1,T2).

Sanity checks

It is important that all necessary information is available in the SKB before starting to construct the
multicast tree. Therefore, this helper function checks whether all information is available. If this is not
the case, it returns No. causing the main goal to return this answer to the calling C function.

% sanity check: Check first that we have all the necessary information

multicast_sanity_check :-

is_predicate(nr_running_cores/1),

is_predicate(cpu_thread/4),

is_predicate(message_rtt/6),

nr_running_cores(NrRunningCores),

findall(X,cpu_thread(X,_,_,_),L),

length(L,NrRunningCores),

ExpectedNrRTTMeasurements is NrRunningCores * (NrRunningCores - 1),

findall(X, message_rtt(X,_,_,_,_,_), L2),

length(L2, ExpectedNrRTTMeasurements).

7.5 Evaluation

While the final result should lead to higher performance of sending multicast messages, it is equally im-
portant for this thesis to prove that few lines of high-level declarative CLP code derives suitable, adaptable
policies for forwarding multicast messages. Furthermore, the thesis shows, that the code complexity in
terms of lines of ECLiPSe code is low. In order to cover all the mentioned evaluation goals, the evaluation
in this section focuses on three different dimensions:

1. Adaptability to current underlying hardware

2. Code complexity of the ECLiPSe code

3. Performance of sending multicast messages along the constructed tree

102 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

Function class LOCs
Tree construction 40
Helper functions 8
Total 48

Table 7.1: Lines of code to construct multicast tree

Reducing the code complexity while being automatically adaptive to the underlying hardware without
prior knowledge is one of the most important goals of this thesis. Obviously, the result of the policy code
(the multicast tree construction) should allow the mechanism of sending multicast messages to be as
performant as possible. In the following subsections I show the evaluations of these three dimensions.

7.5.1 Adaptability
As stated in section 1.1.1 every machine looks different nowadays. This also means that the multicast tree
needs to look different on every machine. The code must not assume any knowledge about the hardware
topology, but instead, it should use the detailed discovered hardware information stored in the SKB.

As we can see from the rules in section 7.4, the rules use the cpu_thread/4 to learn about cores and
packages as well as the message_rtt/6 which is measured at runtime and provides latency knowledge of
the current machine. None of the rules assume any knowledge in the code. As long as these two facts are
available, the policy code derives a valid multicast tree which fits on the current underlying hardware.

7.5.2 Code complexity
It is important, that the code complexity is reduced for programmers. Code complexity is a qualitative
metric, expressed by counting the number of lines of code of the shown rules above, without counting
comment lines or white lines. With a small number of only 48 LOCs I could implement a completely
adaptive code which constructs a correct multicast tree on all of our test machines. Maintaining this code
if necessary is simple as well.

7.5.3 Execution time
The most important metric resource-wise is execution time to construct the multicast tree per core. The
measurement shows that the execution time is less than 3ms on our test machines. This tree is constructed
once when the system starts up and can be reused for every multicast message sent afterwards. The big
gain of adaptability and reduced code complexity compared to the execution time forms a good tradeoff.

7.5.4 Effective multicast performance
The ultimate goal of the multicast tree is reaching high performance of sending multicast messages in
the system. To evaluate the performance, four different variants of TLB shootdown implementations are
compared in terms of latency. The measurements in figure 7.2 show the multicast messaging latencies,
without actually performing the TLB shootdown locally, on a 8x4 core AMD Barcelona system 3.

The Broadcast protocol uses one single message channel to send TLB shootdown requests to all CPU
cores. Each core polls the same cache line and waits for changes by the requesting core. On a TLB
shootdown request, each core performs the TLB shootdown and then sends an acknowledgement on a

3The experiment has been conducted together with Andrew Baumann, Simon Peter and Akhilesh Singhania.

7.6. SUMMARY 103

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

nc
y

(c
yc

le
s

×
 1

00
0)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

Figure 7.2: TLB shootdown latencies of four different implementations.

individual message channel back to the requester. When the requesting core updates the shared cache
line, it is invalidated in all other core’s caches [4, section 7.3]. When N cores are polling the single
cache line and and update of it by the requesting core invalidates it in all N cores, the data transfers the
interconnect N times. The latency therefore grows linearly with the number of cores.

The Unicast protocol uses a separate message channel between the requesting core and every other
core. A cache line is therefore only shared between two cores. The requesting core sends individual
TLB shootdown requests to every single core leading tosequential processing. As the figure shows, this
protocol is better than the broadcast protocol, but still scales linearly with the number of cores.

The Multicast tree based approach performs much better compared to the first two approaches. The
AMD Barcelona CPU packages have a shared L3 cache which allows to have fast local messaging based
on cache lines solely shared by cores on the same package. If only cores on the same package poll a
shared cache line, an update sends invalidation messages only within the CPU packages and not over
the complete interconnect. This makes local broadcast much cheaper and furthermore it allows CPU
packages to work in parallel without sending messages over the interconnect.

Finally, the NUMA-Aware Multicast protocol allocates message buffers on the aggregation node’s
local memory. This protocol performs best as shown in the figure. Because the SKB easily provides
NUMA information, the message buffers can be placed easily on the NUMA nodes belonging to the
aggregation nodes chosen by the multicast tree algorithm.

This experiment shows that with a small effort it is possible to adapt mechanisms to the current
underlying hardware to improve performance drastically.

7.6 Summary

Efficient multicast messaging is an important mechanism used to perform distributed operations within
the operating system. The goal is to minimize the waiting time of receiving the acknowledgements of
all participating cores. The multicast forwarding tree should be optimal on every machine, even if the
topology is not known in advance.

With this example I could show that a general algorithm can be implemented with a few lines of code
and only based on high-level facts discovered and stored in the SKB at runtime. The algorithm has low
code complexity in terms of lines of code and is well maintainable. It does not assume a priori knowledge,
but only uses knowledge gathered at runtime.

104 CHAPTER 7. EFFICIENT MULTICAST MESSAGING

The outcome of this algorithms leads to much higher performance of the mechanism using the algo-
rithm’s values. Because the configuration of the CPU packages changes rarely, the algorithm itself has to
be invoked rarely as well. The mechanisms rely on a fast lookup in a low-level table data structure and
to not need to wait for a slow policy algorithm. The clear policy/mechanism separation allows even the
system’s fast path to use a high-level model of the policies in the SKB to derive an optimal configuration.

Chapter 8

Global Resource Management

Managing hardware resources in modern machines is increasingly complex. The examples in the previous
two chapters show how complex hardware can be configured and used efficiently by means of a high-level
declarative language. However hardware resource management has further dimensions, on of which is
allocating compute resources to applications.

This chapter shows how to allocate CPU cores to applications, such that their requirements on the
resources on the current hardware are satisfied. The allocation code creates a global view and matches
application requirements with actual hardware topology knowledge to derive a global allocation which
satisfies all application requirements. A high-level model of the hardware in CLP reduces the complexity
of incorporating detailed hardware knowledge significantly.

Further, the chapter presents a simple library, which, linked to the application, takes care of interacting
with the SKB. Through few function calls, the application register hardware requirements. The library
takes care of creating and destroying application threads. A simple example in this chapter shows how
easily the application uses the library.

8.1 Introduction

Modern, heterogeneous, many-core architectures require smart management of their resources to yield
optimal performance. The smart management of the resources of such systems is important to fully uti-
lize their potential and yield the best throughput of individual applications as well as optimal overall
system performance and utilization. Nowadays, applications are programmed against popular interfaces
like POSIX, the Portable Operating System Interface for Unix [132], or Windows but of late also against
the paravirtualized interface (PV). These interfaces are highly abstract models and hide underlying hard-
ware differences such as for example memory hierarchy, interconnect between cores or the total number
of hardware execution contexts. Additionally to hiding hardware differences, these interfaces also com-
pletely hide internal allocation policies used by the operating system

Due of this abstract interface, the operating system allocates hardware resources, such as memory or
CPU time, to applications in a best-effort way. Traditionally, an application requests only a certain amount
of resources from the operating system, without specifying any desired resource properties in detail. The
operating system keeps track of free and allocated resources, such that on new resource requests it can
allocate a portion from the free resources. It is however not specified by the application, which of the
free portion would be best for the application. In this chapter, I argue that applications should in fact not
specify themselves, which part of the free resources they need, but they should specify what properties
the resources should have, such that the operating system knows which part would be best to allocate. In

105

106 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

section 8.3 I show how applications can specify properties and how they are taken into account by the
allocation code.

For certain applications (e.g. short running applications) it is fine to get the right amount of resources,
even if the location of the resource might not be optimal. However there are applications which not only
know the necessary amount of resources they need, but also what properties they would like to have.
As an example, many applications perform better, if memory is allocated in a NUMA-aware manner
(an example in this thesis, which clearly performs better, if the memory is allocated in a NUMA-aware
manner, is the message buffer of the NUMA-aware multicast tree presented in section 7.5.4).

In general, topology-aware resource management becomes increasingly important to yield the best
performance on modern hardware. NUMA-aware placement of threads and the memory they access is
an important example. Basic properties, like NUMA-awareness, are derived implicitly by the operating
system. Linux derives the application’s needs based on limited monitoring [21]. The default policy
is to allocate memory from the NUMA node, which is local to the CPU core on which the process is
executing. The scheduling domains in Linux allow processes to have affinities with sets of CPU cores
and their caches and associated memory. In this case, the application relies on the scheduler to consider
NUMA-affinity. It is however not always desired, that the NUMA region of the allocating core is being
used. This core might only serve as a coordinating core of the application, while the memory region might
be accessed heavily by a working core on a different NUMA region. To account for these cases, memory
allocation policies [21] can be created in the kernel through additional interfaces such as libNUMA in
Linux or lgroup in Solaris to explicitly instruct the kernel about affinities. These interfaces provide a basic
mechanism to let an application chose a certain NUMA region for future memory allocations.

However, it is difficult for a single application and in particular for a developer to explicitly manage
hardware resources for several reasons. First, the abstracting interfaces of today’s OSs make it difficult
to smartly manage resources at the application level. It quickly becomes difficult for programmers to
decide on a good NUMA region. This property changes from machine to machine and would therefore
need a deep hardware knowledge gathered somehow by the application. As the thesis already mentioned
in section 1.1, no two machines look the same. They might come with a different amount of NUMA
regions and with a different scheme of which cores belong to which NUMA regions. Second, interfaces
like libNUMA do not provide any means of incorporating the complete memory hierarchy including
caches. An application can therefore not use these interfaces to allocate two collaborating threads on
the same cache and likewise it cannot directly avoid false sharing by means of these interfaces. Third,
these interfaces imperatively set affinity of threads to absolute processor IDs and memory allocation to
an absolute NUMA domain. They are thus only a local optimization – based on a purely local view
– that might even conflict with other processes running on the same machine. Several concurrently
running applications might decide to allocate memory on the same NUMA regions while another NUMA
region might be completely empty. As a consequence, these applications most probably pin threads on
a small number of cores rather than distributing them over several ones. Applications sharing a machine
would need to coordinate their NUMA-affinity but there are no standardized interfaces. Finally, if every
applications decides on its own, the same complexity of trying to make sense of hardware information
and taking decisions is found in every application.

The lack of information flow between the application and the operating system causes this problem
of applications trying to optimize on a given system by their own and with a purely local view. However,
if there would be a wider interface between the operating system and the applicaiton, a global view of
resource preferences could be created in the operating system. It is already now the case, the applications
would know what they need in terms of resources. Likewise, the operating system already has a deep
hardware knowledge. It learns about hardware through resource discovery at startup. The knowledge not
only includes the amount of resources, but also topology knowledge. In the case of Barrelfish, the SKB
contains a detailed description of available hardware such as RAM or CPU cores. The only missing part
is an extended interface, which allows to combine the two rich pieces of information.

8.2. BACKGROUND AND RELATED WORK 107

Many proposals exist to improve the information flow between the OS and the applications running
on top but they are seldom used in practice because they push a great deal of complexity towards the
developer. So far, the effort of implementing and using them did not pay off because systems were ho-
mogeneous and only had few cores. As hardware is getting more complex and heterogeneous nowadays,
it is worth rethinking the OS–application interface. The SKB facilitates matching resource property re-
quirements with actual hardware knowledge. In this thesis I am showing how an extended interface can
be built such that resource needs by applications can be communicated to the OS. This extended interface
provides a global view over different needs of all applications and allows matching individual needs with
available hardware resources in a coordinated way. This declarative interface is a radical new approach
of unifying resource needs and available resources.

8.2 Background and related work

This section gives an overview of the most popular application programming interfaces and of existing
approaches to overcome the missing information flow of current operating system interfaces.

POSIX, the Portable Operating System Interface for Unix [132], is a highly abstract model and hides
underlying hardware differences (e.g., memory hierarchy, interconnect between cores, total number of
hardware execution contexts) as well as how the operating system works (e.g., resource allocation poli-
cies) from the application. It provides the illusion of a complete, homogeneous machine for one appli-
cation. Consequently, POSIX only presents few opportunities to provide information to the OS (e.g.,
madvise, which is rarely used). This lack of information flow can lead to a suboptimal utilization of
hardware resources and to lower application throughput.

Windows’ API provides applications a wealth of functionality to choose from [91], including hinting
for resource allocation (e.g., NUMA-aware memory allocation) or scheduler activations [7] like thread-
ing [93]. Despite the broad API there are only few possibilities for applications to provide feedback to
the OS to improve global knowledge and global optimization.

An emerging interface is the paravirtualized interface provided by virtual machine monitors (VMMs).
Applications can run directly as domains on a VMM (e.g., Maxine Virtual Edition [103]) Despite leaving
the domains a lot of freedom (e.g., own scheduler, memory management), the VMM provides a homo-
geneous abstraction of the underlying, heterogeneous hardware. It can not globally optimize resource
utilization as there is no information flow between domains and the VMM. The shortcomings of homo-
geneous abstraction and lack of information flow in virtualized environments is, for example, tackled by
the symbiotic interface [78]. It widens the interface between the VMM and the guests to exchange more
information.

To overcome the limitations of these interfaces, many ad-hoc fixes have been implemented. Some
problems are worked-around in user-space in every single application. Examples are own memory man-
agement in managed language runtimes such as Java, Haskell, or Prolog and in libraries (e.g. OpenSSL),
own buffer caches in DBMSs, or thread pinning for better cache utilization [44, 70, 73, 74, 135]. There
are also feedback-oriented improvements in existing systems. Solaris’ preemption control [126] allows
a process to indicate that it is currently holding a lock and making good progress and thus should not
be descheduled. Apple’s iOS sends “Memory Warnings” to applications asking them to free up mem-
ory [8]. Daemons like VeryNice [60] and the auto nice daemon (AND) [124] renice processes according
to configuration files to ensure that they get the necessary amount of CPU time but not more than they
need. Some optimizations are potentially dangerous and require emergency functions to keep the system
running. With memory overcommitment, for example, the OS assumes that not all processes will con-
currently access the complete allocated virtual memory and it grants more memory than it actually has.
If processes actually use all available memory, the OS resorts to the out-of-memory (OOM) killer, which
kills a random process. Similarly, the VeryNice [60] daemon and the auto nice daemon (AND) [124] can

108 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

renice processes to a much lower priority or even kill processes if they use too many CPU cycles.
The actors project [1] combines resource reservation with feedback control. The difference between

desired resource reservations and actual used resources guides the resource allocator to decide how re-
sources should be allocated to other tasks. The feedback control also allows to decide whether desired
resources should fully be granted or whether it is too much of overprovisioning.

Many of these solutions are ad-hoc fixes which try to open existing interfaces to some extend. In the
next section I am going to present a more general approach which derives allocation policies globally.
The policies can be used by the actual allocation mechanisms.

8.3 Model hardware and global allocation
This section explains how policies for global allocation can be derived such that hardware knowledge is
taken into account and application requirements are satisfied. The section explains, how the complexity
can be handled by modeling the global allocation in a CLP program.

The first step to create a global view is a creating high-level model of the available hardware. This
model includes available resources as well as the topology of those. Because the SKB already has a deep
knowledge of hardware and its topology, these facts can be used to create the hardware model. The second
step is allowing the model to represent applications which are using the available hardware. Applications
should have a way to register themselves with the SKB. They should be able to upload requirements on
the hardware resources. Based on this information, the application part of the model can be constructed.
The final step is running a high-level allocation algorithm such that application requirements are met as
much as they can. The algorithm uses decision variables within the model which finally show the concrete
hardware resource allocation to applications. These steps are explained in more detail in the following
subsections.

8.3.1 Hardware model

The hardware model needs to include as many details as possible. The topology model in this thesis
includes HyperThreads, cores, shared caches as well as NUMA nodes. The hardware-to-application
allocation is modeled as a matrix, where columns are hardware properties and rows represent tasks. A
single column represents a single HyperThread. Additional facts in the SKB provide the knowledge of
which HyperThreads (i.e. which columns) belong to the same core. Similarly, additional facts about the
cache hierarchy provide knowledge of which cores share a cache and therefore which columns or groups
of columns belong together in the matrix model. Finally, a group of cores share one NUMA node and
therefore an even larger group of columns belong together in terms of NUMA sharing.

8.3.2 Application model

An application is modeled as a set of threads or tasks, each of which is executing on a specific hardware
execution context. Every application is represented as a complete row in the matrix. Every field contains
a decision variable. Initially, these variables do not have a concrete value assigned. It is a nice feature of
ECLiPSe CLP, that it allows constructing data structures with variables without concrete values, as already
mentioned in section 2.1.4. Later on, an allocation algorithm assigns concrete values to all decision
variables. The concrete value defines, whether a hardware execution context is assigned to a task or not.
Whenever a variable holds the value “1”, the task having this value is allowed to execute on that specific
hardware execution context, otherwise it is not.

The example in figure 8.1 shows a 8-core machine where a pair of cores shares a cache and 4 cores
share one NUMA node. In this example, every core is explicitly allocated to one task. Task 1 has core 0

8.3. MODEL HARDWARE AND GLOBAL ALLOCATION 109

X=1 X=0 X=0 X=0 X=0 X=0 X=0 X=0

X=0

X=0

X=0

X=1

X=0

X=0

X=0

X=1

X=0

X=0

X=1

X=0

X=0

X=0

X=1

X=0

X=0

X=1

X=0

X=0

X=1

X=0

X=0

X=1

Task 1

Task 2

Task 3

Task 4

0 1 2 3 4 5Core

Shared L3

NUMA

Cache 0 Cache 1 Cache 3Cache 2

Node 1Node 0

76

Figure 8.1: Matrix used for global allocation

allocated, task 1 gets core 1, task 3’s allocation includes cores 3 and 4 and finally, cores 4, 5, 6 and 7 are
allocated to task 4.

8.3.3 Application requirements

So far, the matrix is able to represent core-to-application allocations. It does however not take application
requirements into account. There needs to be a way of attaching application requirement to the model.
The first step is identifying the most important basic requirements. In a second step, these requirements
have to be attached to the model in a reasonable way. For this thesis, I identified the following basic
application properties.

Exclusive core allocation might be a requirement of an application. An exclusive allocation of cores
to an application provides at least two benefits. First, all threads run at the exact same speed. This
is a property important to applications which synchronize threads at the end of each round. Second, the
execution is highly predictable. There is no time multiplexing with other tasks, no scheduling is necessary
for exclusively allocated cores and there are no cache effects caused by running other tasks in between.

Compute bound applications are limited by the execution of instructions on the CPU core, rather than
by memory latencies or I/O. If this is the case, the same task should not run two of its threads on the same
core. It therefore ensures that all decision variables belonging to this task are at most ’1’. Additionally,
explicit allocations of cores to the application would be beneficial, but is another property (see above)
not enforced by the “compute bound” property. If the application does not restrict the maximum number
of cores it can use, the allocation assumes, that a higher number of cores is beneficial to parallelize and
finish the compute-bound task as fast as possible. The concrete location of the allocated cores is not
highly important, as a compute-bound task mostly operates on a small amount of data in the cache or
even in registers.

Memory bound is an application property saying that the application is limited by memory latency
times rather than by the instructions executed on the CPU core. This is mostly the case for applications,
which scan big amounts of memory. These applications might benefit from parallelizing memory ac-
cesses. If an application is memory bound, the policy code tries to allocate cores from several NUMA
nodes. If it is the only application running at a moment, the code still allocates all cores, unless the
application explicitly restricts the maximum amount of cores to use.

110 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

Working set size defines, how much data will be accessed by one worker thread of the application. The
data needs to be loaded into RAM, possibly into several NUMA nodes. It needs to be ensured, that at
most as many threads are placed on a NUMA node, that the sum of their working set sizes fits onto the
NUMA node. Otherwise, the data needs to be placed on other NUMA nodes as well. To ensure, that
cores still perform local memory access, it is necessary to allocate cores also from those other NUMA
nodes, even if this would not be necessary by other requirements. As an example, if 4 cores should be
allocated to a compute-bound application on the machine of figure 8.1 and the data size is 10GB, but the
NUMA node size is only 8GB, it would be best to allocate 2 cores of NUMA node 0 and 2 other cores of
NUMA node 1 and distribute the data to both NUMA nodes.

Maximum number of cores restricts how many cores will be allocated to the application at most. Due
to internal data structure restrictions, certain applications do not get faster, if more cores are allocated.
Collaboratively telling the global allocation code that it is not worth allocating more cores to this applica-
tion, allows to allocate the remaining cores to another application, which might well benefit from having
more cores allocated to it.

Minimal number of cores defines, how many cores an application needs at least. An application might
want to define this to meet certain service level agreements, which it cannot, if it has a lower number of
cores. This is not always feasible, for example, if the sum of all requested minimal number of cores is
greater than the available number of cores. Also it is problematic, because an application might request
exactly the number of installed cores, leaving no free core for other applications. This would work from a
global point of view, if no other application defines a minimum number of cores to allocate. If the request
cannot be fulfilled, the application gets a smaller number of cores. It always knows how many it finally
got.

Cache sharing can be exploited by two cores, if they operate on the same data structure. If an appli-
cation already knows, that one thread preloads data items and a second threads performs operations on
the same data items, the two threads should be allocated on two cores sharing a cache. Alternatively,
two HyperThreads on the same core might be used. Experiments have shown, that in some cases it is
even worth to run a helper thread which preloads data according to a work-ahead set constructed by the
main thread [145]. On the other hand, an application might want to avoid cache sharing or using two
HyperThreads on the same core, if it knows that they are accessing completely different data items. This
way it can avoid trashing of the cache contents.

8.3.4 Translating requirements to constraints

Now, as some possible properties are defined, they need to be expressed as constraints on the decision
variables of the matrix. These constraints are applied even before a concrete instantiation of values is
done by the ECLiPSe CLP solver. Attaching constraints of several applications at the same time creates
a global view of requirements on the allocation. If conflicting constraints are applied, it is unfeasible to
find a valid solution meeting all the constraints. Therefore, the policy code performs sanity checks on
the constraints, before applying them. In case that the code finds conflicting constraints, it weakens some
of them in a predefined way and applies the modified versions of them. Modifying constraints is much
easier than actually finding a complete solution. Therefore, the allocation code only modifies them, but
still relies on the ECLiPSe CLP solver to find a valid solution. In the following paragraphs I show how
some of the simpler requirements translate to ECLiPSe CLP constraints at a high-level.

8.4. RESOURCE MANAGER 111

Exclusive core allocation translates to the sum of all decision variables belonging to the same core (i.e.
column) is at most “1”. This means, at most one task runs on this core. It is however not necessary, that
the core is being allocated at all.

Maximum number of cores translates to the sum of all decision variables belonging to the same task
(i.e. row) has to be less or equal to the given value.

Compute bound constrains all decision variables of a task to at most ’‘1”. It does however not need to
define which cores are suitable, because compute-bound tasks are assumed to work on local cache, not on
memory. Therefore NUMA-topology-aware allocation of cores is not necessary. The default allocation
tries to allocate as many cores as possible to each task in a fair way. That means that all tasks will get the
same amount of cores, if no further restrictions are applied. This property does not prevent the allocation
from placing tasks of other applications on the same cores. To guarantee that, the exclusive core allocation
property needs to be used (which in many cases makes sense).

Memory bound tries to allocate cores from every NUMA domain in a balanced way. This property
translates to the constraint that the sums of all decision variables per NUMA domain should not differ by
more than “1”. This means that either the same number of cores is allocated on every NUMA domain
or that some NUMA domains contain at most one additional core or at most one core less than the other
NUMA domains. It might still be that cores from all NUMA-domains are being allocated, for example
if this task is the only one or if a second task only needs one core or if there is a second memory-bound
task which gets one core per NUMA domain.

8.3.5 Decision variables and concrete topology-aware allocation

The final step is instantiating all decision variables with concrete values. ECLiPSe CLP provides a built-
in predicate labeling/1 to trigger the solver to assign concrete values to all passed variables. After that,
the final result contains the values plus additional topology information. Along the core numbers to be
used by the different tasks, NUMA node information is passed back to the application as well. This
avoids, that the application needs to do a second query of NUMA node affinities to cores. Similarly, the
result passed back to applications contains the knowledge of which cores share a cache and which ones
are HyperThreads on the same core. According to this information, the application creates or destroys
threads and assigns data items in a NUMA-aware manner according to the information returned to it.
This ensures, that each core accesses local memory.

The result is effectively passed to applications by means of upcalls. Upcalls arrive asynchronously
to the application, potentially at any time. As section 8.4 explains, the resource manager takes care of
parsing the result from the SKB and generating upcalls. To remove complexity from the application and
to avoid code duplication, a small framework takes care of interacting with the resource manager and of
creating and destroying threads for the application. This framework is explained in section 8.5.

8.4 Resource manager
The SKB is purely reactive (see section 3.4) and therefore does not recompute the global allocation
by itself, if the set of tasks or properties of them change. It is therefore necessary to have an external
component trigger the recomputation in changes of task properties or the number of tasks.

The global allocation framework not only provides the allocation logic in the SKB, but also a resource
manager, which is a user-space service interacting with the SKB. The resource manager is the mediator

112 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

between applications and the SKB. Applications register their tasks together with properties with the re-
source manager. The resource manager adds, modifies or deletes facts in the SKB and calls the allocation
algorithm, whenever it modified something. The re-evaluation potentially affects all applications, even if
only one application changes its requirements. The new allocation plan contains the difference between
the old allocation and the new one. This means, that only affected tasks are contained in the result returned
to the resource manager. The resource manager reads the new allocation, parses it and sends upcalls to
every application contained in the result. From the upcalls, the applications learn whether they got more
cores or whether they lost cores.

The resource manager does not decide anything by itself. The complete knowledge comes from the
algorithm in the SKB. Also the knowledge to identify applications and to know, where upcalls should be
sent, comes from the SKB. The resource manager therefore only serves as an intermediate point which is
able to trigger a re-computation of the allocation and which is able to send upcalls to applications.

8.5 Framework to register parallel functions

This section explains how to easily make use of the global allocation facility in an application, because
only a few steps are necessary and suddenly the whole system benefits from this.

To facilitate the programming of parallel applications using the global allocation matrix in the SKB,
I implemented a simple framework which allows applications to register parallel functions with the SKB.
The framework provides functions to register properties together with the functions. Many application
contain several tasks which can be executed in parallel. These tasks can all be registered as parallel
functions with the SKB. They might even have different properties.

A parallel function refers to a C function which can be executed by one or several threads. These
functions should have the property that more threads can be created at runtime by the framework, such
that several of them execute at the same time. This has especially implications in the data structures used
as input and output of a single function, as potentially many function try to read input and try to generate
output, if the function gets parallelized by the framework.

The framework can be linked as a library to the application. It provides functionality to register and
deregister functions as parallel functions. It also allows to register properties with the functions, like
compute-bound or the maximal number of cores to be used, for example. The framework takes care of
creating and destroying threads for every parallel function without interaction with the application. To
synchronize between several threads running the same function, the framework provides some mecha-
nisms explained further in section 8.5.1. Because the applications does not need to know how many
threads are executing the same function, it also cannot synchronize them by means of the thread-based
synchronization primitives. This is the main reason why the framework provides the necessary mecha-
nisms.

The framework interacts with the resource manager. It is responsible to forward information about
the functions and its properties to the resource manager, whenever an application registers or deregisters
parallel functions with the framework. The resource manager will then take care of the facts and will
call the allocation algorithm, as described in section 8.4. The framework also registers with the resource
manager to get upcalls for the application. The callback function reads the upcalls information and based
on that creates or destroys threads. It keeps track of the allocated cores and the current NUMA nodes
in use. The application can register “constructors” and “destructors” for input and output data structure,
such that the framework can call these, whenever a new NUMA domain is assigned to the application or
whenever the application lost a NUMA domain. The framework will pass the per NUMA-domain data
structure to every new thread it created. This ensures that every thread accesses local memory.

The application can decide to only use one global input and one global output data structure, in which
case the framework always passes the same instance as a parameter to every thread.

8.5. FRAMEWORK TO REGISTER PARALLEL FUNCTIONS 113

Because the framework comes as a library which can be linked to the application, it is not a require-
ment, that the application uses the library. It can directly interact with the resource manager and therefore
has full control over upcalls and what it wants to do on every upcall. This gives a completely direct
control of thread creation and deletion on upcalls and also on which data structures should be processed
by which thread. The framework should only serve as a tool to facilitate the interaction with the resource
manager and dealing with threads for applications which do not wish to do that by themselves.

8.5.1 Using the framework
The framework provides a simple interface to register parallel functions. It keeps some internal state and
takes care of creating and destroying threads. It also interacts with the resource manager. The example
below shows pseudo code of an application which uses worker threads registered as parallel functions
with the framework.

The pseudo code below shows a skeleton of a worker thread used in the application, for which the frame-
work dynamically creates and destroys threads:

parallel_worker(void *arg) {

//Optional, if tracing used: Initial datapoint

tracing_add_bucket_entry_per_thread(0);

while(!parallel_should_terminate()) {

do work, use data structure passed in arg

//Optional, if tracing used: How much work done so far?

tracing_add_bucket_entry_per_thread(some value);

if (produces done && data structure empty) {

break;

}

}

}

The worker thread gets the data structure associated with it passed as argument. The actual work is
performed in the while loop. As long as the framework does not ask the thread to terminate, the while
loop continues. The worker thread reads data items from the data structure, does some work on them
and produces output, which it puts back to the output part of the data structure. For performance tracing,
each worker thread may optionally indicate how much work it processed so far by adding an entry in
every loop. The tracing framework stores the amount together with a time stamp, such that later the main
function can output the work amount/timestamp pairs to a file. If it is used at all, an initial timestamp
should be created by the thread.

There are two reasons why a thread should terminate. First, if the application loses a core, the
framework gets notified by the resource manager and asks the thread to terminate by means of the
parallel should terminate() function (see section 8.5.2 for a discussion). Second, if the input data
structure is empty and if it is known, that the data producer is done, the worker thread can terminate, as
no more data needs to be processed.

The main function is also given as pseudo code below.

main() {

// Initialize the framework

parallel_init(...);

// Optional: use tracing

114 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

tracing_init_buckets("somename");

// Register parallel_worker() as a function,

// which can be run by a varying number of

// threads

parallelfunction(parallel_worker,

global data structure

or function to create and destroy

NUMA-aware data structures, ...);

while (more data to be produced) {

if (one global datastructure) {

add item to data structure;

} else {

chose next NUMA domain;

// libnuma call

numa_set_preferred(numa_domain);

// Get data structure on this NUMA domain

parallel_get_datastr_numa(parallel_worker,

numadomain);

add item to this data stucture;

}

}

signal producer done;

// Wait for all threads of this function

// to terminate

parallelfunction_wait_terminated(parallel_worker);

// Optional, if tracing used

tracing_write_buckets();

tracing_close();

}

The main function of the application initializes the simple framework. Optionally, the application
might use the tracing framework to produce performance graphs. The name passed as argument to the
tracing init function is part of the output file name.

Next, the main function registers the worker thread function as a parallel function. From this point
on, the framework starts creating threads executing this function. During runtime, the framework may
create more threads or destroy threads resp. indicate, that a thread should terminate by means of the
parallel should terminate() function. Section 8.5.2 discusses destroying threads in more detail.

The main function produces data items to be processed by the worker threads. Depending on the
application’s architecture, it might use a single global data structure for input and output for all worker
threads or it might want to use a per NUMA-domain data structure. If it uses one global data structure, it
adds every data item to be processed to it. Otherwise, it selects one NUMA-domain, gets the input/output
data structure associates with it and adds the data item to this data structure. The worker threads to not
need to know explicitly, whether one data structure or a data structure per NUMA node is being used.
They get the “right” data structure passed as an argument in any case.

After the main function produced all data item, it signals that it is done, for example by setting a flag.
This is, of course, application specific and may be implemented differently.

Finally, the main function waits for all worker threads to terminate. The function
parallelfunction wait terminated() is similar to the pthread join() function. It waits for all
threads to terminate, but the application does not need to know how many there are right at the moment.
If tracing was used, the results can be written to a file at the end.

8.5. FRAMEWORK TO REGISTER PARALLEL FUNCTIONS 115

8.5.2 Terminating threads
The goal of the global resource allocation code is to ensure that resources are allocated such that the
requirements of the applications can be satisfied as much as possible. The global allocation code in
the SKB is pure policy code and as such cannot enforce anything. This is especially “problematic” for
removing resources or at the first place for avoiding that an application creates threads, even if the cores
is not assigned to it.

The current implementation relies on the application, to destroy threads by using the
parallel should terminate() function in the thread’s while loop.

To actually ensure, that an application destroys threads, the operating system could kill it. This is
however problematic as well. The thread might just have acquired a lock on the output data structure
when it gets killed.

At least three solutions or a combination of those could solve the problem in a less “destructive” way.
The solutions are listed below:

1. Notify the application that it should destroy a thread. Give it some time. If it does not terminate the
thread, kill it.

2. Notify the application that it should destroy a thread. Let the OS move the thread to another core,
which still belongs to the application. Possibly reduce the priority of this thread.

3. Notify the application that it should destroy a thread. Move threads, which should have been
terminated, to a dedicated core, which runs all threads of all applications, which did not terminate
threads by themselves.

The current implementation does not perform any of those solutions. At the moment, Barrelfish does
not have any access control to cores, which means, that every application can create threads on every
core at any time. The research in this thesis is about feasibility of a declarative global allocation and a
framework, which handles thread creation and deletion. It is not about security and enforcing the policies.
It would however be interesting future work to experiment with those three solutions and see, how well
applications resources, especially cores, can be managed this way.

Even though the thesis is not about enforcing policies, I have some thoughts about how security could
be enforced. A “CPU core” capability (or some other mechanism) could be used to control on which
cores an application can create threads. There are a number of interesting questions, which arise. First,
how should the operating system ensure that an application cannot use the core anymore, if it just lost it?
Second, how should the protocol look like, when applications loose a core? Threads need to be terminated
by the application or moved by the OS, before the capability gets deleted. The exact way of the “remove
core” operation needs to be determined.

8.5.3 Overall architecture
The overall global allocation framework consists of three interacting parts, shown in figure 8.2. First,
there is the policy code in the SKB, which decides on the number of cores and concrete IDs for each
task. Second, there is the resource manager, which interacts with the SKB by adding, modifying and
deleting facts and by calling the allocation algorithm. it also interacts with the framework linked to each
application. Finally, a simple framework handles thread creation and deletion within the application and
interacts with the resource manager.

8.5.4 Use-cases
To validate the framework and the declarative global allocation, I used two real applications as use-
cases. Both applications were existing, but needed small modifications in order to make use of the simple

116 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

Application
Global allocation

policy code

SKB

Framework
Resource

Manager

Create/

Destroy

Threads

Register

Parallel

Function Result

Register tasks

Upcalls

Facts/

Algorithm

Figure 8.2: Interactions between the application, the framework, the resource manager and the SKB.

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

decompress

compress/

OutputInput

threads

Figure 8.3: pbzip2’s architecture

framework to register parallel functions. These two use-cases are presented in section 8.6 and section 8.7
respectively.

8.6 Use case 1: pbzip2
The first use-case is pbzip2, a compression tool which compresses or decompresses data in parallel. It is
compute bound and has a simple structure, the the next section will show.

8.6.1 Architecture
pbzip2 [50] is a parallel version of the bzip2 [119] compression tool. pbzip2 has two parallel phases:
compressing data or decompressing data. Several threads running on different cores can therefore exe-
cute either the compression or the decompression function in parallel. Each thread compresses or de-
compresses a different data block. The input data file gets partitioned into several data blocks. pbzip2
enqueues each input block into a common input queue. each instance of the compression or decompres-
sion function reads one input data block at a time, processes it and writes the result data block into a
common output queue. The file writer thread writes the result data blocks in the same order as the input
blocks to the specified output file. The ordering of the blocks is ensured by block sequence numbers.
Figure 8.3 shows the architecture of pbzip2.

The compression and decompression functions are compute-bound and operate on a block size of

8.6. USE CASE 1: PBZIP2 117

900kB. This working set size still fits into L2 cache. Most of the memory accesses can therefore be
handled at least by the L2 cache. The property “compute-bound” rather than “memory-bound” is the
appropriate one.

Internal data structure limitations allow for a maximum of 4096 threads. Because the execution of the
compression or decompression function is completely on a per block basis, pbzip2 benefits from a high
number of cores, ideally all available cores, if it is the only running application.

Deciding on the number of cores

When the user starts the original pbzip2 implementation, it reads the load average queue and applies
some heuristics. The output is the number of pthreads to create. This number remains the same during
the complete execution of pbzip2. pbzip2 decides on the number of threads based on a purely local view.
It does not know, if one application is about to terminate or if another application is starting at the same
time. In both cases, pbzip2 will create a suboptimal number of threads. In the first case, it creates only
a few threads and compresses or decompresses a potentially large file with the threads created once at
startup time, even if most of the machine becomes idle. In the latter case, pbzip2 creates one thread per
available core. Because another application is about to start as well, the cores will be time-multiplexed
between the two applications, which again, is suboptimal.

For this thesis, I modified pbzip2 such that it uses the simple framework to register the compression or
decompression function as a parallel function with the SKB. It attaches the properties “compute-bound”
and “maximum of 4096 threads” to the parallel function. The SKB runs the global allocation code and
sends an upcall to pbzip2 containing the information of how many and which cores it can use to run
the function. The decision taken in the SKB is based on global knowledge. Therefore, the decision is
much more informed. Further more, the number of allocated cores can change during runtime. Whenever
the allocation changes, the simple framework sends an upcall to pbzip2 again. Based on the new plan,
pbzip2 either creates more threads executing the compression or decompression function or it terminates
the threads which were running on cores which it just lost.

8.6.2 Evaluation

The evaluation in this section is specific to pbzip2 to demonstrate that only few changes are necessary to
benefit from the global allocation facility.

First, I evaluate, how many lines of code need to be changed to make an existing application SKB-
aware. The goal is to show, whether it is feasible at all to push the responsibility of allocating threads into
a framework and finally into the SKB. This is a qualitative metric and depends heavily on the exact appli-
cation. Second, I evaluate the performance benefit, if the application uses the framework and especially
the global knowledge by the SKB to decide on the core allocation.

LOCs changed

pbzip2 has a specific place where compression or decompression threads are explicitly created. Also,
there are specific places where all threads terminate and where the main thread waits for all worker threads
to terminate. This structure allowed me to modify pbzip2 at these places in a way, that the functions get
registered as parallel functions, instead of explicitly creating threads. Modifying only 25 lines of code
made the pbzip2 implementation SKB-aware. The simple framework provides therefore a rich enough
interface, such that applications which explicitly create a number of threads can be modified in only a few
lines of code. They immediately benefit from the global allocation.

118 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

C
o
re

 n
u
m

b
e
r

Timestamp [s]

2GB File
4GB File

Figure 8.4: Changing number of allocated core per instance

Dynamic number of threads

One goal of having a global allocation is adaptability to a changing set of running applications. This
means, that pbzip2 should react in terms of number of threads according to new allocations received
through upcalls.

In an experiment, I started a pbzip2 instance on a 24 core machine. The instance compresses a 4GB
input file. After 60s I started a second pbzip2 instance on the same machine. This instance compresses a
2GB input file. Because it is twice the exact same program, both instances have the same properties. The
expected behavior is that the first instance gets all the 24 cores at the beginning. As soon as the second
instance starts, the first instance should give up half of the cores (due to the same properties they are
handled the same). These should be allocated to the second instance.

Figure 8.4 shows the core allocation of both instances. The x-axis shows the elapsed time. The y-axis
shows the core number allocated to one of the two instances. The diagram shows that after 60s the first
instance gives up half of the cores. The second instance gets these cores and compresses the input file for
about 90s. After a second short parallel phase, the second instance terminates and releases all cores. The
first instance runs again on all 24 cores.

Performance

The performance evaluation shows to what extent performance can be improved or overall system through-
put can be kept at the same level, when the global allocation code allocates resources in a conflict-free
manner.

Figure 8.5 compares the original implementation with the modified one, both on Linux. Both in-
stances compress the same input files. The x-axis shows the input file size and the y-axis the execution
time. The modified version performs slightly better. The reason is that the modified version creates
threads exactly on the allocated cores and therefore pins the threads explicitly to one core. The original
implementation on Linux does not do thread pinning. The threads actually move which causes some
performance drop. Figure 8.6 shows a similar behavior, but for decompression.

More interesting is the total throughput of the system. In this experiment, one pbzip2 instance exe-
cutes in the system for 60s. After 60s, a second instance starts and runs concurrently. As already figure 8.4
shows, both instances run on distinct cores. The sum of the throughputs of both instances is about the
same as the throughput of one single application, as figure 8.7 show. This means, the throughput between
second 0 and second 60 is the same as between second 60 and second 140. At the right side of the graph,

8.6. USE CASE 1: PBZIP2 119

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

file size [Bytes]

pbzip2 compress
pbzip2 SKB compress

Figure 8.5: Compressing input file: Original vs. SKB-aware version

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

file size [Bytes]

pbzip2 decompress
pbzip2 SKB decompress

Figure 8.6: Decompressing input file: Original vs. SKB-aware version

120 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 0 20 40 60 80 100 120 140 160 180

T
h

ro
u

g
h

p
u

t
[B

y
te

s
/s

]

Timestamp [s]

2GB File
4GB File

Total Throughput

Figure 8.7: Total throughput, if two instances are running

there is some cleanup noise.

8.6.3 Summary
The framework provides enough to easily modify an application like pbzip2, which already uses worker
threads to process data items. Few lines of code needed to be changed to make it SKB-aware. The
global allocation code handles core allocation well, such that overall system performance can be increased
slightly. An important benefit is that the modified pbzip2 version can adapt to a changing number of
allocated cores at runtime, with only few lines of code changed.

The use-case in the next section, a column store, show that even a more complex and more performance-
critical application benefits from the global allocation code.

8.7 Use case 2: Column store
The second application is a modified version of a column store developed in our group [3]. The column
store engine executes one scanning thread per core which constantly scans a part of the data in a column
oriented way. The column store partitions the data such that all scanning threads scan the same amount.
Because the data set is large, NUMA-awareness is important. Still, executing queries on single data items
is compute-bound. Due to the synchronization point after one scan, it is important, that the scanning
threads run at the same speed. The total latency is determined by the slowest scanning thread.

The column store was modified to become SKB-aware. It uses the framework to register scanning
threads with the resource manager and finally with the SKB. Based on upcalls, it creates and destroys
scanning threads, as explained further in this section. The work presented in this section has been pub-
lished recently [48].

8.7.1 Problem
Similarly to pbzip2, the column store needs to decide how many threads it needs to create. Additionally,
it needs to decide how it should partition and distribute the data.

Typically, a data base engine (a classical one or a column store engine) has a deep knowledge about
its data organizations and its algorithms to process the data. Therefore, it also has a clear knowledge of
its requirements from the operating system and especially from the hardware resources. Traditionally,

8.7. USE CASE 2: COLUMN STORE 121

database systems tried to incorporate all system-level information and derive policies by themselves.
To do so, database systems tried to circumvent operating system’s policies. Typically the assumption
is, that the database system is the only running application and that there is no interference with other
applications. This, together with the assumption that the machine configuration does not change, is also
one reason, why a purely local policy decision typically worked well.

Nowadays, as machines are getting bigger and bigger in terms of resources (e.g. number of cores,
main memory), the machine can be shared by a database system and some other applications. However
in this case, a purely local decision of how resources should be used is not the right way anymore.
Instead, the global allocation should be performed. A rich interface should however incorporate as many
requirements of the database system as possible to guarantee nice behavior, even if the machine is shared.

Of course, an administrator could statically partition big machines to a fixed number of applications.
But this would mean, that the set of applications should not change and also, that a big enough portion of
the machine gets allocated to each application to handle peaks well. This would lead to overprovisioning
which, in most cases, is a waste of resources. A more dynamic allocation of resources based on the current
workload and application properties, which should be met, is advantageous. First, the database does not
need to be overprovisioned. It can be run together with another application. Still, both applications
perform well, if the right set of resources is allocated to them. Second, the database does not need to
deal with low-level system resource knowledge, if the system allocates the right set of resources based on
property specifications.

8.7.2 Internal knowledge
The column store has two sets of properties. First, there are the generic properties described in sec-
tion 8.3.3. These are system properties taken into account during the global allocation. Second, the
column store has application specific properties. The user or database administrator can specify a time,
within which queries have to be answered. The column store therefore has to meet a service-level agree-
ment (SLA). Based on the SLA value, the column store decides how many cores are necessary to fulfill
the maximum response time. The time depends on the current underlying hardware. The column store
uploads an application-specific function to the SKB to compute the minimal number of cores to be used,
based on the SLA value and either the available hardware knowledge in the SKB or online measurements
performed by the column store. The function decides the minimal number of cores necessary to fulfill
the SLA agreement. This value needs to be taken into account by the global allocation code. The column
store adds the requirement minimal number of cores to the SKB, such that it can be taken into account.

The data size is another important property. The goal is to not overload a NUMA node with data. Or
more correctly, it is not possible to overload a NUMA node, however non-careful allocation would assign
data to another NUMA node. However it is better to explicitly know and control which NUMA nodes
contain data and on which NUMA nodes there should be threads processing the data.

The actual minimal number of cores is therefore determined by two metrics. The first one determines
how many cores are necessary to fulfill the SLA agreement, i.e. the maximal response time. The second
one determines how many NUMA nodes are necessary such that data can be distributed in chunks of at
most NUMA node sizes. Each NUMA node should contain at least one core allocated to the column
store. This is the minimum number of cores to allocate based on data size and NUMA node sizes. The
greater value determines the actual minimal number of cores to be used. The column store passes this
value to the global allocation framework.

8.7.3 Registering scanning function
The column store uses the simple framework presented in section 8.5 to register scanning threads as
flexible parallel functions. The properties, which it registers along with the function, are first, that it is

122 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

Hardware SLA #Cores #Cores Final Size of Actual mean
characteristics req. by SLA by NUMA #cores partition response time

32 cores 2s 8 1 8 1GB 1.66s
128GB RAM 4s 4 1 4 2GB 3.27s
32GB/node 8s 2 1 2 4GB 6.54s

32 cores 2s 8 5 8 1GB 2.18s
16GB RAM 4s 4 5 5 1.6GB 3.55s
2GB/node 8s 2 5 5 1.6GB 3.55s
16 cores 2s 8 3 8 1GB 1.68s

16GB RAM 4s 4 3 4 2GB 3.25s
4GB/node 8s 2 3 3 2.67GB 4.33s
48 cores 2s 8 1 8 1GB 1.87s

128GB RAM 4s 4 1 4 2GB 3.71s
16GB/node 8s 2 1 2 4GB 7.37s

Table 8.1: Deployment of the SKB-aware column store on different machines.

compute-bound, second, that it needs an exclusive core allocation and third, that a minimal number of
cores is requested. As more cores are not necessary, the column store will not use additional ones, even
if it would get more. Therefore it restricts the maximum number of cores to be allocated to the same
number as the minimal cores to be allocated.

Like every application, the resource manager upcalls the column store and provides the concrete
allocated cores together with NUMA domain information. The column store uses the result to create
threads on the respective cores and starts distributing data. Finally, it starts the scanning threads on these
cores and processes the queries.

8.7.4 Evaluation

Deployment on different systems

As mentioned in section 1.1, no two machines look the same. Each machine has a different amount of
CPU cores and a different amount of NUMA nodes. Also, NUMA nodes are of different sizes. Still, the
column store has to fulfill the SLA agreement on every machine and the data should be partitioned such
that no NUMA node gets overloaded.

In this experiment we run the modified column store on four different machines 1. The user data size
is 8GB. An additional 1GB of metadata has to be added. This leads to a total data size of 9GB. Table 8.1
shows the number of allocated cores on every system as well as the actual execution time. The column
store violates the SLA agreement once. This is due to the fact that the application-specific function
computing the minimal number of cores is derived from an average measurement and not yet updated on
this concrete machine.

For the second machine it is necessary to use 5 NUMA nodes to distribute the data size of 9GB to
different NUMA nodes. Even though 4 or 2 core would be sufficient to meet the SLA requirement of 4s
and 8s respectively, at least 5 cores will be allocated. This is because data should be processed by a local
core on every NUMA node. 5 NUMA nodes are allocated to the column store, therefore at least 5 cores
(at least one per NUMA node) have to be allocated to the column store.

1The experiment has been conducted together with Tudor Salomie and Jana Giceva.

8.7. USE CASE 2: COLUMN STORE 123

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h

ro
u

g
h

p
u

t
(R

eq
u

es
ts

/s
ec

o
n

d
)

Number of Requests in a batch

Deployment in a noisy system

isolated 48 cores
noisy 48 cores

cod 47 cored

Figure 8.8: CSCS performance when deployed in a noisy system

Running the column store and another application concurrently

The column store is a latency critical application. After every round of scanning data, all threads syn-
chronize. The overall latency is therefore determined by the slowest scanning thread. Ideally, each thread
executes at the same speed. This means, that there should be no interference between the column store’s
threads and other applications.

By registering the scanning threads with the SKB, the global allocation code ensures exclusive allo-
cation of cores to scanning threads. Figure 8.8 shows the performance implications of the column store
running concurrently with another compute-bound application. The baseline shows the column store run-
ning as the only application. The second experiments shows the performance when an application runs
on one of the cores allocated to the column store. The third scenario uses the SKB. the global allocation
code removes the core, on which the other application runs, from the column store. Therefore the column
store runs on one core less, but does not interfere with the other application.

Figure 8.8 shows that the SKB-aware version of the column store running with only 47 cores instead
of 48 core, but without interfering with the other application, performs better than the 48 core version
whih interferes with the ohter application. It is therefore important that a global view decides on which
cores should be assigned to which application.

This information cannot easily be derived by the column store. It depends on scheduling state of the
OS and on the knowledge of the other applications. It does not make much sense, if the column store
would try to take decisions based on local knowledge.

Still, the column store specific information is taken into account by the operating system, because the
column store pushed its resource requirements to the SKB. This creates a global view of system state and
application specific requirements in the SKB and both of them can be taken into account.

In a second experiment 2, the column store is the only running task initially. After every 5 minutes, a
new compute-bound application starts. In a naive setting, every application decides on its own on which
core it wants to run, based on pure local knowledge. The experiment shows the performance drop which
happens, if all naive applications decide to start on core 0. Figure 8.9 shows the results.

The naive column store engine has a dramatically higher response time. Already after the first new
application enters the system, the column store cannot meet the SLA agreement anymore, because its
scanning thread on core 0 runs at half of the speed of the other scanning threads. The SKB-aware column
store gets upcalled and informed, that it lost a core. The column store engine redistributes the data to
other cores and continues executing queries using the remaining threads, which, however, run all at the

2The experiment has been conducted together with Tudor Salomie and Jana Giceva.

124 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16 18

R
es

p
o

n
se

 T
im

e
[s

ec
]

Time [min]

Adaptability to changes

COD
CSCS engine naive

SLA agreement

Figure 8.9: Adaptability to changes in the system

same speed.
In the naive scenario, the next application starting on core 0 causes the next performance drop, while

the SKB-aware version gets another upcall telling the column store that it lost a second core. Even though
the column store lost two cores now, it can still meet the SLA agreement, because all remaining threads
run at the same speed.

8.7.5 Summary
The modified version of the column store could use the same framework as pbzip2. This shows, that the
framework is general enough to handle even more complex applications like the column store.

The column store registers the scan function as parallel function with the resource manager and finally
the SKB and gets upcalls telling it, which cores it can use now or which ones it just lost. This makes the
column store adaptive to a changed environment, especially when new applications enter or leave the
system. Also, the high-level requirements on hardware resources facilitate the column store, because
it does not need to learn about specific hardware knowledge by itself. The allocation algorithm in the
SKB incorporates the column store’s properties and returns hardware resources suitable according to the
properties.

8.8 Evaluation of the allocation policy code in the SKB
The previous sections showed that the global allocation is easy to use in applications. They also evaluated
the benefits of the specific applications. This section evaluates the global allocation code itself. The focus
is on code complexity and maintainability of the policy code.

The section also summarizes the execution time of the algorithm. While again, it is not the main
focus to produce the most performant allocation code itself, at least reasonable performance is necessary
to claim that it is a useful framework.

8.8.1 Code complexity
Table 8.2 lists the lines of code needed to implement the global allocation in the SKB. This code consists
of several parts. First, the construction of the decision matrix based on hardware information is a core
piece of code. Second, interface functions prepare and store the passed facts. The resource manager calls
these interface functions and passes application properties as input parameters to the interface functions

8.8. EVALUATION OF THE ALLOCATION POLICY CODE IN THE SKB 125

Class LOCs
Matrix 39
Algorithm 23
Knowledge access and constraints 153
Interface 77
Output 52
Sanity-checking 20
Misc 20
Total 384

Table 8.2: LOCs to implement global allocation in the SKB.

written in ECLiPSe. Third, sanity-checking functions ensure that there are no conflicting properties. This
is important, otherwise ECLiPSe would not be able to find a solution and would simply output “No.”.
Finally, there are helper functions enabling all the main functions to access the necessary knowledge in
an easy way.

As table 8.2 shows, the core functionality is implemented in few lines of code. 20 lines of CLP code
are used to construct the decision matrix and 23 lines of CLP code are used to call the various func-
tions which attach constraints to the matrix. The “knowledge access and constraints” functions interpret
application properties and hardware knowledge and derive and attach constraints such that application
requirements are handled the correct way. This category needs a relatively large amount of code. The
interface consists of several high-level functions which create the right facts or, in the case of removing
a task, ensure that all associated facts are deleted and the task’s state in the SKB is cleaned-up. The
“output” category includes goals to compute the difference between the new and the old allocation (see
section 8.4) and to transform the algorithm’s result into a suitable output list. Finally, there is a small
amount of sanity-checking code and various small helper functions, with each category accounting for 20
lines of CLP code.

The total amount of 384 lines of code is well maintainable. Furthermore, it is easily extensible. If new
requirements have to be modeled, it is sufficient to add a new small goal which transforms the requirement
based on the necessary hardware knowledge and/or application properties into an additional constraint on
the matrix.

The model follows a clear policy/mechanism separation as all other parts relying on the SKB. For this
part of the codes, it means that the allocation policies are completely separate from the resource manager
and from the framework which creates and destroys threads. As long as the interface does not change,
the policy code can be changed without needing to change any line of the framework or the resource
manager. This gives a lot of freedom to experiment with new policies. Applications immediately follow
the new policies.

8.8.2 Execution time

It is difficult to measure execution time in the general case. The execution time heavily depends on the
number of concurrently registered applications and on the amount and type of their resource requirements.
The more and more detailed the requirements are, the more complex constraints have to be applied to the
matrix, resulting in a higher execution time in the ECLiPSe solver. The thesis does therefore not provide
a graph of the execution time, but instead a table for selected configurations with actual execution time
measurements. The goal is to show that the execution time for re-evaluating the global allocation is
reasonable. The results are shown in table 8.3.

126 CHAPTER 8. GLOBAL RESOURCE MANAGEMENT

Applications Execution time
Column store 5ms
Column store + compute-bound application 13ms
1 pbzip2 instance 5ms
2 pbzip2 instances 13ms

Table 8.3: Execution time for different configurations

8.9 Summary and future work
Global resource allocation is getting increasingly important on modern machines. Modern machines
can be spatially shared among many applications. Even data base engines can run concurrently to other
applications and still perform well. To ensure good performance, a global view over all running applica-
tions and their requirements in terms of hardware resources is critical in order to derive smart resource
allocation policies.

Using a model which unifies hardware knowledge with application requirements provides a global
view and allows to derive allocation policies which improve overall system performance. The high-level
declarative nature of the implementation reduces the code complexity. Only few simple functions written
in ECLiPSe achieve a good result. The simple functions are well maintainable and easy to change and
adapt to future needs, if necessary.

The clear policy/mechanism separation allows to evolve the policy code without changing the applica-
tions, the framework or the resource manager. Changing the policy code immediately impacts application
behavior. It can be validated immediately, whether new policy code actually leads to desired behavior.

The global allocation framework can be easily extended to managed language runtimes. At the lower
end of the software stack, the managed language runtime could interact with the framework and register
parallel functions and properties and receive callbacks with allocation plans. In this scenario. it might
even make sense, if the managed language runtime directly interacts with the resource manager. The
managed language runtime would get callbacks directly and could explicitly manage its threads. At the
upper half of the software stack there are the applications written in the managed language runtime.
The runtime has deep knowledge of the application code. Not only it sees the code, but there is still
semantic information available which might help the runtime to derive the right application properties in
an adaptive way at runtime.

A high-level functional language has the freedom to parallelize certain operations, like for example
a map function which applies an operation to a list. It is not important for the programmer to known
the number of actual threads assigned to the program, because the final result is the same, independently
whether one or several threads worked in parallel on portions of the list. Combining a high-level language
with this framework is an interesting future work.

Chapter 9

Conclusion

9.1 Summary
The hypothesis of this thesis was that if the operating system had a facility to reason about the underlying
hardware, it can better adapt to it and make use of the available hardware. Further, code complexity can
be taken out of the operating system’s mechanisms, making them much simpler.

In this thesis I could show that applying high-level declarative language techniques allows to deal with
the increased hardware complexity found in current machines. Adaptability to the underlying hardware
can easily be expressed by means of declarative algorithms, which describe what goal to achieved, but not
how to get there. Because there algorithms are based on high-level knowledge, which is abstracted from
the hardware, they work on new machines, even if they are not known at the design time of the algorithm.
The high-level reasoning enables the system to derive new knowledge in the future by combining facts in
an unforeseen way at the time of designing the algorithm.

By using high-level language techniques for reasoning about the system, the complexity typically
involved in mechanism code can be taken out. This greatly simplifies mechanism code, because it only
needs to apply the policy parameter derived outside. The mechanism code does not need to decide
anything itself and especially, it does not need to handle special cases, independent of the underlying
hardware.

The use-cases presented in this thesis prove that the operating system indeed adapts to the underlying
hardware using high-level descriptions of the goal to be reached, based on high-level knowledge of the
current underlying hardware. The algorithms used are implemented in relatively few lines of code. This
makes them well understandable and easy to maintain. More concretely, the use-cases show how simple
algorithms can lead to much better performance on the one hand (for example in the multicast messaging
case) and how difficult hardware configuration problems can be solved (for example in the PCIe case)
with few natural hardware configuration rules.

Obviously, more case studies in the context of operating systems designs could be done to prove
the usefulness of applying high-level declarative languages to reason about hardware. The next section
sketches ideas for future work.

9.2 Directions for future work
Having the SKB as a basis to implement reasoning algorithms, there are many extensions and further
use-cases possible. There are different levels at which it would be interesting to explore to what extent
high-level languages can help to reduce complexity.

127

128 CHAPTER 9. CONCLUSION

At the hardware configuration level, algorithms in the SKB can help to deal with more classes of hard-
ware, not presented in this thesis. Examples include USB which needs configuration on hotplug events,
even if it is not at the same complexity of PCIe configuration. New hardware, which is constantly arising,
is likely to complicate hardware management, rather than facilitating it, as history shows. Furthermore
there is a clear trend towards hotlpugging almost everything. While today it is already normal, that USB
devices can be hotlpugged on commodity machines, there is a trend towards PCIe hotplugging (today only
in bigger server machines), hotplugging of cores and memory (again, supported by big server machines,
not yet by commodity desktop machines) and hotplugging of new external devices, such as Thunderbold,
for example. The operating system has to deal with hotplug and hot-unplug events at a low-level, but
also it has to decide about resource allocations in a much more dynamic way, compared to the almost
static hardware configurations found in past and today’s commodity systems. Dependencies have to be
resolved and ensured and decisions on which resources and how they should be allocated have to be
taken. As machines are getting bigger, power-safe modes of single pieces of hardware is becoming more
important. Deciding which devices to turn off or turn on again and at which time and ho long becomes
more complex. Turning-off times, re-activating times, the amount of energy which can be saved and the
cost of potentially moving running tasks have to be considered to derive reasonable power-management
policies.

Deciding on computation placement is getting more important, as machines are getting bigger. These
decisions become even more complex, once machines are more heterogeneous than today. The global
allocation framework presented in this thesis is a first step towards deciding on core-to-task allocations
based on high-level requirements descriptions of the applications. A deeper research in this direction
provides more insight, how application requirements can be matched with heterogeneous hardware. More
fine-grained hardware properties have to be taken into account, for example whether a core is able to run
all the instructions an application wants to execute. If an application needs precise floating point, it
needs to run on a core which supports that. If an application makes use of a cryptographic instruction set
extension, it needs such a core. In both cases, it may be the case in the future, that not all cores support the
complete instruction set. Cache-coherency (or the lack of it) may constrain the application on a certain
group of cores, if the application needs cache-coherency and the hardware provides islands of coherent
cores. While it is not yet a 100% clear, how exactly future hardware will look like, it is likely that the
complexity grows and that operating systems have to deal with cases mentioned here.

With bigger and more complex machines it might be worth implementing applications in high-level
managed languages. These languages can derive concurrency and create threads in cases where data can
be processed in parallel, without changing the semantics of the program and without the programmer
having created threads explicitly. Managed language runtimes have a rich interface to the applications
running on top of them. The can monitor the application and derive resource requirements which suit the
application best. Additionally, managed language runtimes still have access to semantic information. It
is not just machine code, which executes on top of the runtime and accesses some memory addresses.
Instead, the runtime knows what functions access what type of objects. It also knows, which threads
communicate over which objects with each other. This information provides more insight and allows
the runtime to derive better and more detailed requirements, which it can register with the operating
system. By extending a managed language runtime and by extending the global allocation code, it is
possible to let them collaborate better and use the available heterogeneous hardware much better. When
a managed language runtime gets extended such that it collaborates with the operating system in terms of
resource management, suddenly all applications benefit from the global allocation framework. The effort
of modifying a managed language runtime has to be take only once. Unmodified legacy applications
benefit immediately from global resource allocation decisions. This is much better than modifying many
legacy applications written in a language like C.

Finally, it would be worth to explore other constraint logic programming engines. ECLiPSe is ex-
tremely expressive and allows to experiment almost with no limitations. On the other hand, it is not the

9.2. DIRECTIONS FOR FUTURE WORK 129

fastest language. As mentioned in section 3.8.2, more modern solvers might improve performance.

130 CHAPTER 9. CONCLUSION

Bibliography

[1] The ACTORS project. http://www.actors-project.eu/.

[2] Aı̈t-Kaci, H. Warren’s abstract machine: a tutorial reconstruction. MIT Press, Cambridge, MA,
USA, 1991.

[3] Alonso, G., Kossmann, D., Salomie, T.-I., and Schmidt, A. Shared Scans on Main Memory Column
Stores. Tech. Rep. 769, ETH Zürich, Systems Group, Department of Computer Science, Zürich,
Switzerland, July 2012.

[4] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System Programming, Sept. 2007.
Publication number 24593.

[5] AMD. CPUID Specification, September 2010.

[6] Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., and Veitch, A. Hippodrome: Run-
ning Circles Around Storage Administration. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (2002), FAST ’02.

[7] Anderson, T. E., Bershad, B. N., Lazoswka, E. D., and Levy, H. M. Scheduler Activations: Effec-
tive Kernel Support for the User-Level Management of Threads. ACM Transactions on Computer
Systems 10 (1992), 53–79.

[8] Apple. iOS Application Programming Guide. http://developer.apple.com/library/ios/
DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/Performance/
Performance.html.

[9] Apple. Apple Support. http://kbase.info.apple.com/, Oktober 2012.

[10] Apt, K. R., and Wallace, M. G. Constraint Logic Programming using ECLiPSe. Cambridge
University Press, 2007.

[11] Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., Burnett, N. C., Denehy, T. E., Engle, T. J., Gunawi,
H. S., Nugent, J. A., and Popovici, F. I. Transforming policies into mechanisms with Infokernel.
In Proceedings of the 19th ACM Symposium on Operating System Principles (2003), SOSP ’03,
pp. 90–105.

[12] Baldwin, J. H. Multiple passes of the FreeBSD device tree. In BSDCan Conference (May 2009).
http://www.bsdcan.org/2009/schedule/attachments/83 article.pdf.

[13] Baldwin, J. H. About hot-plugging support in FreeBSD. http://www.mavetju.org/mail/view
message.php?list=freebsd-arch&id=3106757, Feb. 2010.

131

http://www.actors-project.eu/
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/Performance/Performance.html
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/Performance/Performance.html
http://developer.apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/iPhoneOSProgrammingGuide/Performance/Performance.html
http://kbase.info.apple.com/
http://www.bsdcan.org/2009/schedule/attachments/83_article.pdf
http://www.mavetju.org/mail/view_message.php?list=freebsd-arch&id=3106757
http://www.mavetju.org/mail/view_message.php?list=freebsd-arch&id=3106757

132 BIBLIOGRAPHY

[14] Barker, V. E., O’Connor, D. E., Bachant, J., and Soloway, E. Expert systems for configuration at
Digital: XCON and beyond. Commun. ACM 32 (March 1989), 298–318.

[15] Barrelfish Project. The Barrelfish Research Operating System. http://www.barrelfish.org/, May
2012.

[16] Barrelfish Project. The Barrelfish Wiki. http://wiki.barrelfish.org/, May 2012.

[17] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe, T., Schüpbach,
A., and Singhania, A. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the 22nd ACM Symposium on Operating System Principles (Oct. 2009), SOSP’09.

[18] Baumann, A., Peter, S., Schüpbach, A., Singhania, A., Roscoe, T., Barham, P., and Isaacs, R. Your
computer is already a distributed system. why isn’t your OS? In Proceedings of the 12th Workshop
on Hot Topics in Operating Systems (2009), HotOS’09, pp. 12–12.

[19] Baxter, S. GPU Performance. http://www.moderngpu.com/intro/performance.html, 2011.

[20] Bison: GNU parser generator. http://www.gnu.org/software/bison/.

[21] Bligh, M. J., Dobson, M., Hart, D., and Huizenga, G. Linux on NUMA Systems. In Proceedings
of the 2004 Ottawa Linux Symposium (July 2004), pp. 89–101.

[22] Borkar, S. Thousand core chips: a technology perspective. In Proceedings of the 44th Annual
Design Automation Conference (2007), pp. 746–749.

[23] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, F., Morris, R., Pesterev, A., Stein,
L., Wu, M., Dai, Y., Zhang, Y., and Zhang, Z. Corey: An Operating System for Many Cores.
In Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation
(Dec. 2008), OSDI’08, pp. 43–57.

[24] Bratko, I. Prolog programming for artificial intelligence. Adison-Wesley, Harlow, England, 2001.

[25] Budruk, R., Anderson, D., and Shanley, T. PCI Express System Architecture. Addison Wesley,
2004.

[26] Burrows, M. The Chubby lock service for loosely-coupled distributed systems. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation (2006), OSDI’06.

[27] Carlsson, M., Ottosson, G., and Carlson, B. An open-ended finite domain constraint solver. In
Proceedings of the 9th International Symposium on Programming Languages: Implementations,
Logics, and Programs: Including a Special Track on Declarative Programming Languages in
Education (1997), PLILP ’97, pp. 191–206.

[28] Ceri, S., Gottlob, G., and Tanca, L. What You Always Wanted to Know About Datalog (And
Never Dared to Ask). IEEE Trans. on Knowl. and Data Eng. 1, 1 (Mar. 1989), 146–166.

[29] Chen, X., Mao, Y., Mao, Z. M., and Van der Merwe, J. Declarative configuration management for
complex and dynamic networks. In Proceedings of the 6th International Conference on emerging
Networking EXperiments and Technologies (2010), Co-NEXT ’10, pp. 6:1–6:12.

[30] Cisco. ECLiPSe. http://www.eclipse-clp.org.

[31] Conway, P., and Hughes, B. The AMD Opteron northbridge architecture. IEEE Micro 27, 2 (2007),
10–21.

http://www.barrelfish.org/
http://wiki.barrelfish.org/
http://www.moderngpu.com/intro/performance.html
http://www.gnu.org/software/bison/
http://www.eclipse-clp.org

BIBLIOGRAPHY 133

[32] Dagand, P.-E., Baumann, A., and Roscoe, T. Filet-o-Fish: practical and dependable domain-specific
languages for OS development. In Proceedings of the Fifth Workshop on Programming Languages
and Operating Systems (2009), PLOS ’09, pp. 5:1–5:5.

[33] Dagand, P.-E., Baumann, A., and Roscoe, T. Filet-o-fish: practical and dependable domain-specific
languages for os development. SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010), 35–39.

[34] de Moura, L., and Bjrner, N. Z3: An Efficient SMT Solver. In Proceedings of the Conference on
Tools and Algorithms for the Construction and Analysis of Systems (2008), TACAS’08.

[35] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P., and Vogels, W. Dynamo: Amazon’s highly available key-value store.
In Proceedings of the 21st ACM Symposium on Operating System Principles (2007), SOSP ’07,
pp. 205–220.

[36] Diaz, D. GNU Prolog. http://www.gprolog.org/, 2011.

[37] Distributed Management Task Force, Inc. Common Information Model (CIM) Standards. Port-
land, OR, USA, April 2008. http://www.dmtf.org/standards/cim/.

[38] Dunham, S. N. Method for allocating system resources in a hierarchical bus structure, July 1998.
US patent 5,778,197.

[39] Elkaduwe, D., Derrin, P., and Elphinstone, K. Kernel design for isolation and assurance of
physical memory. In Proceedings of the 1st workshop on isolation and integration in embedded
systems (IIES ’08) (2008), pp. 35–40.

[40] Engler, D. R., Kaashoek, M. F., and O’Toole, Jr., J. Exokernel: An Operating System Architec-
ture for Application-Level Resource Management. In Proceedings of the 15th ACM Symposium on
Operating System Principles (Dec. 1995), SOSP’95, pp. 251–266.

[41] Eugster, P. T., and Guerraoui, R. Content-based publish/subscribe with structural reflection.
In Proceedings of the 6th USENIX Conference on Object-Oriented Technologies and Systems -
Volume 6 (2001), COOTS’01, pp. 10–10.

[42] Fatahalian, K., and Houston, M. A closer look at GPUs. Commun. ACM 51, 10 (Oct. 2008),
50–57.

[43] Fatahalian, K., and Houston, M. GPUs: A Closer Look. Queue 6, 2 (Mar. 2008), 18–28.

[44] Fedorova, A., Seltzer, M., Small, C., and Nussbaum, D. Performance of multithreaded chip
multiprocessors and implications for operating system design. In Proceedings of the 2005 USENIX
Annual Technical Conference (2005), ATC ’05, pp. 26–26.

[45] Flex: The Fast Lexical Analyzer. http://flex.sourceforge.net/.

[46] Freedesktop.org. D-Bus. http://dbus.freedesktop.org/, March 2012.

[47] Geambasu, R., Levy, A. A., Kohno, T., Krishnamurthy, A., and Levy, H. M. Comet: an active
distributed key-value store. In Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (2010), OSDI’10, pp. 1–13.

[48] Giceva, J., Salomie, T.-I., Schüpbach, A., Alonso, G., and Roscoe, T. Cod: Database / operating
system co-design. In Proceedings of the 6th Biennial Conference on Innovative Data Systems
Research (January 2013), CIDR’13.

http://www.gprolog.org/
http://www.dmtf.org/standards/cim/
http://flex.sourceforge.net/
http://dbus.freedesktop.org/

134 BIBLIOGRAPHY

[49] Giceva, J., Schüpbach, A., Alonso, G., and Roscoe, T. Towards database / operating system co-
design. In Proceedings of the 2nd workshop on Systems for Future Multi-core Architectures (April
2012), SFMA’12.

[50] Gilchrist, J. Parallel Compression with BZIP2. In Proceedings of the 16th IASTED International
Conference on Parallel and Distributed Computing and Systems (November 2004), PDCS’04,
pp. 559–564.

[51] gpgpu.org. Gpgpu. http://gpgpu.org/.

[52] Greenhalgh, P. Big.LITTLE Processing with ARM CortexTM-A15 & Cortex-A7, September
2011.

[53] Gschwind, M. The Cell Broadband Engine: exploiting multiple levels of parallelism in a chip
multiprocessor. International Journal of Parallel Programming 35, 3 (2007), 233–262.

[54] Hanus, M. Multi-paradigm declarative languages. In Proceedings of the 23rd international con-
ference on Logic programming (Berlin, Heidelberg, 2007), ICLP’07, Springer-Verlag, pp. 45–75.

[55] Harris, T., Abadi, M., Isaacs, R., and McIlroy, R. AC: composable asynchronous IO for native
languages. In Proceedings of the 2011 ACM international conference on Object oriented program-
ming systems languages and applications (2011), OOPSLA ’11, pp. 903–920.

[56] Harris, T., Abadi, M., Isaacs, R., and McIlroy, R. AC: composable asynchronous IO for native
languages. SIGPLAN Not. 46, 10 (Oct. 2011), 903–920.

[57] Haskell. http://www.haskell.org/haskellwiki/Haskell, 2012.

[58] Held, J., Bautista, J., and Koehl, S. From a few cores to many: A tera-scale computing research
overview. White paper, Intel, Sept. 2006. ftp://download.intel.com/research/platform/terascale/
terascale overview paper.pdf.

[59] Hewlett-Packard, Intel, Microsoft, Phoenix, Toshiba. Advanced Configuration and Power Inter-
face Specification, Rev. 4.0a, Apr. 2010. http://www.acpi.info/.

[60] Holland, S. VeryNice. http://thermal.cnde.iastate.edu/∼sdh4/verynice/.

[61] Hovel, D. Using Prolog in Windows NT network configuration. In Proceedings of the Third
Annual Conference on the Practical Applications of Prolog (1995).

[62] Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D., Wilson, H.,
Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella, S., Salihundam, P.,
Erraguntla, V., Konow, M., Riepen, M., Droege, G., Lindemann, J., Gries, M., Apel, T., Henriss,
K., Lund-Larsen, T., Steibl, S., Borkar, S., De, V., Van Der Wijngaart, R., and Mattson, T. A
48-core IA-32 message-passing processor with DVFS in 45nm CMOS. In International Solid-State
Circuits Conference (Feb. 2010), pp. 108–109.

[63] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. ZooKeeper: wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX conference on USENIX annual technical con-
ference (2010), USENIX ATC’10.

[64] HyperTransport Consortium. HyperTransport. http://www.hypertransport.org/.

[65] Intel. Intel Processor Identification and the CPUID Instruction, May 2012.

http://gpgpu.org/
http://www.haskell.org/haskellwiki/Haskell
ftp://download.intel.com/research/platform/terascale/ terascale_overview_paper.pdf
ftp://download.intel.com/research/platform/terascale/ terascale_overview_paper.pdf
http://www.acpi.info/
http://thermal.cnde.iastate.edu/~sdh4/verynice/
http://www.hypertransport.org/

BIBLIOGRAPHY 135

[66] Janic, M., and Van Mieghem, P. On properties of multicast routing trees: Research Articles. Int. J.
Commun. Syst. 19, 1 (Feb. 2006), 95–114.

[67] JSON: JavaScript Object Notation. http://www.json.org/.

[68] Kamp, P.-H. Rethinking/dev and devices in the UNIX kernel. In Proceedings of the BSD Conference
2002 on BSD Conference (2002), BSDC’02, pp. 9–9.

[69] Kauer, B. ATARE: ACPI tables and regular expressions. Tech. Rep. TUD-FI09-09, TU Dresden,
Faculty of Computer Science, Dresden, Germany, Aug. 2009.

[70] Kazempour, V., Fedorova, A., and Alagheband, P. Performance implications of cache affinity on
multicore processors. In Proceedings of the 14th international Euro-Par conference on Parallel
Processing (2008), Euro-Par ’08.

[71] Khronos OpenCL Working Group. The OpenCL Specification. Version 1.2., November 2011.

[72] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., En-
gelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating System
Principles (Oct. 2009), SOSP’09.

[73] Klug, T., Ott, M., Weidendorfer, J., and Trinitis, C. autopin – Automated Optimization of
Thread-to-Core Pinning on Multicore Systems. In Proceedings of the 1st Workshop on Pro-
grammability Issues for Multi-Core Computers (2008), MULTIPROG ’08.

[74] Krieger, C. D., and Strout, M. M. Performance Evaluation of an Irregular Application Paral-
lelized in Java. In Proceedings of the 2010 39th International Conference on Parallel Processing
Workshops (2010), ICPPW ’10, pp. 227–235.

[75] Kroah-Hartman, G. udev – A Userspace Implementation of devfs. In Proceedings of the 2003
Ottawa Linux Symposium (July 2003).

[76] Lamport, L. The part-time parliament. ACM Trans. Comput. Syst. 16, 2 (1998), 133–169.

[77] The Linux Assigned Names and Numbers Authority. http://www.lanana.org/.

[78] Lange, J. R., Pedretti, K., Dinda, P., Bridges, P. G., Bae, C., Soltero, P., and Merritt, A.
Minimal-overhead virtualization of a large scale supercomputer. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments (2011), VEE ’11,
pp. 169–180.

[79] Levin, R., Cohen, E., Corwin, W., Pollack, F., and Wulf, W. Policy/Mechanism separation in
Hydra. In Proceedings of the 5th ACM Symposium on Operating System Principles (Nov. 1975),
SOSP’75, pp. 132–140.

[80] Livny, M., Basney, J., Raman, R., and Tannenbaum, T. Mechanisms for high throughput computing.
SPEEDUP Journal 11, 1 (June 1997).

[81] Lloyd, J. W. Practical Advantages of Declarative Programming. In Joint Conference on Declara-
tive Programming (1994).

[82] Loo, B. T., Hellerstein, J. M., Stoica, I., and Ramakrishnan, R. Declarative routing: exten-
sible routing with declarative queries. In Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications (2005), SIGCOMM ’05,
pp. 289–300.

http://www.json.org/
http://www.lanana.org/

136 BIBLIOGRAPHY

[83] Losh, M. W. devd: a device configuration daemon. In Proceedings of the BSD Conference 2003
on BSD Conference (2003), BSDC’03, pp. 2–2.

[84] Marsh, B. D., Scott, M. L., LeBlanc, T. J., and Markatos, E. P. First-class user-level threads. In
Proceedings of the 13th ACM Symposium on Operating System Principles (Oct. 1991), SOSP’91,
pp. 110–121.

[85] McIlroy, R., and Sventek, J. Hera-jvm: a runtime system for heterogeneous multi-core archi-
tectures. In Proceedings of the ACM international conference on Object oriented programming
systems languages and applications (2010), OOPSLA ’10, pp. 205–222.

[86] Menzi, D. Support for heterogeneous cores for Barrelfish. Master’s thesis, ETH Zürich, Zürich,
Switzerland, April 2011.

[87] Mérillon, F., Réveillère, L., Consel, C., Marlet, R., and Muller, G. Devil: an IDL for hardware
programming. In Proceedings of the 4th USENIX Symposium on Operating Systems Design and
Implementation (2000), OSDI’09, pp. 17–30.

[88] Microsoft. The Importance of Implementing APIC-Based Interrupt Subsystems on Uniprocessor
PCs. http://www.microsoft.com/whdc/archive/apic.mspx, January 2003.

[89] Microsoft. PCI multi-level rebalance in Windows Vista. http://www.microsoft.com/whdc/archive/
multilevel-rebal.mspx, Nov. 2003.

[90] Microsoft. Firmware allocation of PCI device resources in Windows. http://www.microsoft.com/
whdc/connect/PCI/pci-rsc.mspx, Oct. 2006.

[91] Microsoft. Windows API Reference. http://msdn.microsoft.com/en-us/library/aa383749%28v=
vs.85%29.aspx, 2010.

[92] Microsoft. Microsoft Support. http://support.microsoft.com/, Oktober 2012.

[93] Microsoft. User-mode scheduling. http://msdn.microsoft.com/en-us/library/windows/desktop/
dd627187%28v=vs.85%29.aspx, October 2012.

[94] Mochel, P. The sysfs filesystem. In Proceedings of the 2005 Ottawa Linux Symposium (2005).

[95] Mozilla. Mozilla Support. http://support.mozilla.org/, Oktober 2012.

[96] Netronome Systems, Inc. Netronome Flow Engine, Model i-8000, Reference Guide., 2007.

[97] Niederliński, A. A Quick and Gentle Guide to Constraint Logic Programming via ECLiPSe. Jacek
Skalmierski Computer Studio, 2011.

[98] Nightingale, E. B., Hodson, O., McIlroy, R., Hawblitzel, C., and Hunt, G. Helios: heterogeneous
multiprocessing with satellite kernels. In Proceedings of the 22nd ACM Symposium on Operating
System Principles (2009), SOSP’09, pp. 221–234.

[99] Noll, A., Gal, A., and Franz, M. CellVM: A Homogeneous Virtual Machine Runtime System
for a Heterogeneous Single-Chip Multiprocessor. Tech. Rep. 06-17, School of Information and
Computer Science, University of California, Irvine, Nov. 2006.

[100] NVIDIA. CUDA toolkit Documentation. http://docs.nvidia.com/cuda/index.html, Nov. 2012.

[101] Object Management Group, Inc. CORBA 3.1 Specification, Jan. 2008.

http://www.microsoft.com/whdc/archive/apic.mspx
http://www.microsoft.com/whdc/archive/multilevel-rebal.mspx
http://www.microsoft.com/whdc/archive/multilevel-rebal.mspx
http://www.microsoft.com/whdc/connect/PCI/pci-rsc.mspx
http://www.microsoft.com/whdc/connect/PCI/pci-rsc.mspx
http://msdn.microsoft.com/en-us/library/aa383749%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa383749%28v=vs.85%29.aspx
http://support.microsoft.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/dd627187%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd627187%28v=vs.85%29.aspx
http://support.mozilla.org/
http://docs.nvidia.com/cuda/index.html

BIBLIOGRAPHY 137

[102] Oikawa, S., and Rajkumar, R. Portable RK: A Portable Resource Kernel for Guaranteed and En-
forced Timing Behavior. In Proceedings of the Fifth IEEE Real-Time Technology and Applications
Symposium (1999), RTAS ’99.

[103] Oracle Labs. The Maxine Virtual Machine Project. http://labs.oracle.com/projects/maxine/.

[104] PCI-SIG. PCI Express Base 2.1 Specification, Mar. 2009. http://www.pcisig.com/.

[105] Peter, S. Resource Management in a Multicore Operating System. PhD thesis, Systems Group,
Department of Computer Science, ETH Zürich, Sept. 2012.

[106] Peter, S., Schüpbach, A., Barham, P., Baumann, A., Isaacs, R., Harris, T., and Roscoe, T. Design
principles for end-to-end multicore schedulers. In Proceedings of the 2nd USENIX conference on
Hot topics in parallelism (Berkeley, CA, USA, 2010), HotPar’10, USENIX Association, pp. 10–
10.

[107] Peter, S., Schüpbach, A., Menzi, D., and Roscoe, T. Early experience with the Barrelfish OS and
the Single-Chip Cloud Computer. In 3rd Many-core Applications Research Community Symposium
(2011), MARC’11, pp. 35–39.

[108] Pugh, W. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33 (June 1990),
668–676.

[109] Rajkumar, R., Lee, C., Lehoczky, J., and Siewiorek, D. A resource allocation model for QoS man-
agement. In Proceedings of the 18th IEEE Real-Time Systems Symposium (Dec. 1997), RTSS’97,
pp. 298–307.

[110] Rajkumar, R., Lee, C., Lehoczky, J. P., and Siewiorek, D. P. Practical solutions for QoS-based
resource allocation problems. In Proceedings of the 19th IEEE Real-Time Systems Symposium
(Dec. 1998), RTSS’98, pp. 296–306.

[111] Redis: An Open Source, Advanced Key-Value Store. http://redis.io/.

[112] Reed, D. P., and Kanodia, R. K. Synchronization with eventcounts and sequencers. Commun. ACM
22, 2 (Feb. 1979), 115–123.

[113] Roscoe, T. Hake. http://www.barrelfish.org/TN-003-Hake.pdf, April 2010.

[114] Roscoe, T. Mackerel. http://www.barrelfish.org/TN-002-Mackerel.pdf, December 2011.

[115] Rusling, D. A. The Linux kernel. http://tldp.org/LDP/tlk/tlk.html, 1999.

[116] Schüpbach, A., Baumann, A., Roscoe, T., and Peter, S. A declarative language approach to device
configuration. In Proceedings of the sixteenth international conference on Architectural support
for programming languages and operating systems (2011), ASPLOS ’11.

[117] Schüpbach, A., Baumann, A., Roscoe, T., and Peter, S. A declarative language approach to device
configuration. ACM Trans. Comput. Syst. 30, 1 (Feb. 2012), 5:1–5:35.

[118] Schüpbach, A., Peter, S., Baumann, A., Roscoe, T., Barham, P., Harris, T., and Isaacs, R. Em-
bracing diversity in the Barrelfish manycore operating system. In Proceedings of the 1st Workshop
on Managed Multi-Core Systems (June 2008), MMCS’08.

[119] Seward, J. bzip2 and libbzip2, version 1.0.5, A program and library for data compression, 2007.

[120] SICStus Prolog. http://www.sics.se/isl/sicstuswww/site/index.html, 2012.

http://labs.oracle.com/projects/maxine/
http://www.pcisig.com/
http://redis.io/
http://www.barrelfish.org/TN-003-Hake.pdf
http://www.barrelfish.org/TN-002-Mackerel.pdf
http://tldp.org/LDP/tlk/tlk.html
http://www.sics.se/isl/sicstuswww/site/index.html

138 BIBLIOGRAPHY

[121] Simonis, H. Developing applications with eclipse. http://eclipseclp.org/doc/applications.pdf,
2012.

[122] Solomon, D. A., Russinovich, M. E., and Ionescu, A. Windows Internals: Including Windows
Server 2008 and Windows Vista, 5th ed. Microsoft Press, 2009, ch. 4.

[123] Spear, M. F., Roeder, T., Hodson, O., Hunt, G. C., and Levi, S. Solving the starting problem:
device drivers as self-describing artifacts. In Proceedings of the EuroSys Conference (2006), Eu-
roSys’06, pp. 45–57.

[124] Stanitzki, C. AND: auto nice daemon. http://and.sourceforge.net/.

[125] Sun, E., Schaa, D., Bagley, R., Rubin, N., and Kaeli, D. Enabling task-level scheduling on hetero-
geneous platforms. In Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units (2012), GPGPU-5, pp. 84–93.

[126] Sun Microsystems. Multithreading in the Solaris Operating Environment. White paper, http:
//www.sun.com/software/whitepapers/solaris9/multithread.pdf, 2002.

[127] Sun Microsystems. SunPCi TM III 3.1 Users Guide, July 2003.

[128] Sutter, H. The Free Lunch Is Over – A Fundamental Turn Toward Concurrency in Software. Dr.
Dobb’s 30, 3 (Mar. 2005).

[129] Sutter, H., and Larus, J. Software and the concurrency revolution. Queue 3, 7 (Sept. 2005),
54–62.

[130] SWI-Prolog. http://www.swi-prolog.org/, 2012.

[131] Thain, D., Tannenbaum, T., and Livny, M. Distributed computing in practice: the Condor experi-
ence. Concurrency: Practice and Experience 17, 2–4 (2005), 323–356.

[132] The OpenGroup. POSIX Specification. http://pubs.opengroup.org/onlinepubs/9699919799/,
2008.

[133] Thurlow, R. RPC: Remote procedure call protocol specification version 2. RFC 5531, Sun Mi-
crosystems, May 2009.

[134] TJworld. PCI dynamic resource allocation management. http://tjworld.net/wiki/Linux/
PCIDynamicResourceAllocationManagement, June 2008.

[135] Torrellas, J., Tucker, A., and Gupta, A. Evaluating the performance of cache-affinity scheduling
in shared-memory multiprocessors. J. Parallel Distrib. Comput. 24 (1995).

[136] Tzeng, N.-F., and Alla, P. Guided shared trees for efficient multicast in large networks. In Com-
munications, 2003. ICC ’03. IEEE International Conference on (may 2003), vol. 1, pp. 87 – 92
vol.1.

[137] Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. On the efficiency of multicast.
IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 719–732.

[138] W3C. Resource description framework, Feb. 2004. http://www.w3.org/RDF.

[139] Weinsberg, Y., Dolev, D., Anker, T., Ben-Yehuda, M., and Wyckoff, P. Tapping into the fountain
of CPUs: on operating system support for programmable devices. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and Operating
Systems (2008), pp. 179–188.

http://eclipseclp.org/doc/applications.pdf
http://and.sourceforge.net/
http://www.sun.com/software/whitepapers/solaris9/multithread.pdf
http://www.sun.com/software/whitepapers/solaris9/multithread.pdf
http://www.swi-prolog.org/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://tjworld.net/wiki/Linux/PCIDynamicResourceAllocationManagement
http://tjworld.net/wiki/Linux/PCIDynamicResourceAllocationManagement
http://www.w3.org/RDF

BIBLIOGRAPHY 139

[140] Williamson, B. Developing IP Multicast Networks. Cisco Press, 1999.

[141] Yin, Q., Cappos, J., Baumann, A., and Roscoe, T. Dependable self-hosting distributed systems
using constraints. In Proceedings of the 4th Workshop on Hot Topics in System Dependability
(2008), HotDep’08.

[142] Yin, Q., Schüpbach, A., Cappos, J., Baumann, A., and Roscoe, T. Rhizoma: a runtime for self-
deploying, self-managing overlays. In Proceedings of the 10th ACM/IFIP/USENIX International
Conference on Middleware (2009), Middleware’09, pp. 184–204.

[143] Zellweger, G. Unifying Synchronization and Events in a Multicore Operating System. Master’s
thesis, ETH Zürich, Zürich, Switzerland, March 2012.

[144] Zellweger, G., Schüpbach, A., and Roscoe, T. Unifying Synchronization and Events in a Multicore
OS. In Proceedings of the 3rd AsiaPacific Workshop on Systems (July 2012), ApSys’12, pp. 16:1–
16:6.

[145] Zhou, J., Cieslewicz, J., Ross, K. A., and Shah, M. Improving database performance on simultane-
ous multithreading processors. In Proceedings of the 31st international conference on Very large
data bases (2005), VLDB ’05, VLDB Endowment, pp. 49–60.

[146] Ziakas, D., Baum, A., Maddox, R. A., and Safranek, R. J. Intel QuickPath Interconnect Architec-
tural Features Supporting Scalable System Architectures. In Proceedings of the 2010 18th IEEE
Symposium on High Performance Interconnects (Washington, DC, USA, 2010), HOTI ’10, IEEE
Computer Society, pp. 1–6.

140 BIBLIOGRAPHY

Curriculum vitae

Education
2007 - 2012 Doctoral studies

Systems Group
Department of Computer Science
ETH Zurich

2001 - 2007 Diploma studies in Computer Science
Department of Computer Science
ETH Zurich

1994 - 2001 High school
Gymnasium Typus C
Bündner Kantonsschule Chur

Work experience
2007 - 2012 Research assistant

Systems Group
Department of Computer Science
ETH Zurich

2004 - 2012 Community service in computer science
Various projects
Spital Davos

2006 - 2007 Internship
Assentis Technologies AG

Teaching experience
2005 - 2012 Teaching at ETH Zurich

Computer Architecture
Computer Networks
Computer Architecture and Systems Programming
Advanced Operating Systems

141

	Introduction
	Motivation
	Diversity
	The interconnect network
	Managing Hardware
	Managing Applications

	Problem Statement and Hypothesis
	Goals
	Contributions
	Structure

	Background
	Declarative Techniques
	What is declarative programming?
	Declarative languages
	Constraint logic programming
	CLP programming in ECLiPSe

	Barrelfish
	The Multikernel
	A Barrelfish ``node''
	Explicit access to physical resources
	Messaging
	Drivers and services

	Reasoning in operating systems
	Hardware representation
	Declarative hardware access and configuration
	Resource allocation

	Declarative reasoning in networks
	Summary

	The system knowledge base
	Introduction
	Background
	Knowledge
	Knowledge bases

	How does the SKB help the operating system?
	Purpose
	Examples
	Common patterns of resource allocation descriptions
	When to use the SKB

	Design
	Design principles
	Overall architecture
	Core
	Interface
	Facts, schema and queries
	Data gathering
	Algorithms
	A note on security

	Implementation
	Implementation of the SKB server
	Facts and schema
	Datagatherer
	Common queries
	Startup

	Client library
	Using and initializing the library
	Interacting with the SKB

	Evaluation
	Code complexity
	Memory overhead
	Performance

	Discussion
	Advantages
	Disadvantages
	Approaching a configuration problem in CLP

	Summary

	Coordination
	Introduction
	Background
	Approach
	Design principles
	Octopus
	Records and Record Queries
	Record Store
	Publish-subscribe
	Implementation

	Use-cases
	Synchronization primitives
	Name service
	Application coordination
	Device management and system bootstrap

	Evaluation
	Code complexity
	Performance

	Summary

	Hardware discovery and device management
	Kaluga
	Architecture
	Driver mapping files
	Hardware records

	Hardware discovery
	Hardware discovery life-cycle in Barrelfish
	View hotplugging as the default case
	Minimize basic architecture and platform information
	Device information

	System Bootstrap
	Evaluation
	Correctness
	Code complexity

	Related work
	Summary

	Declarative PCI configuration
	Introduction
	Background: PCI allocation
	PCI background
	Basic PCI configuration requirements
	Non-PCIe devices
	Fixed-location PCIe devices
	Quirks
	Device hotplug
	Discussion

	PCIe resource allocation
	Approach
	Formulation in CLP
	Quirks
	Device hotplug

	Interrupt allocation
	Problem overview
	Solution in CLP

	Evaluation
	Test platforms
	Performance
	Code size
	Handling quirks
	Postorder traversal comparison

	Summary

	Efficient Multicast Messaging
	Introduction
	Background
	Multicast messaging
	TLB shootdown
	Summary

	Design
	Design principles
	Hardware-aware multicast tree

	Implementation
	Evaluation
	Adaptability
	Code complexity
	Execution time
	Effective multicast performance

	Summary

	Global Resource Management
	Introduction
	Background and related work
	Model hardware and global allocation
	Hardware model
	Application model
	Application requirements
	Translating requirements to constraints
	Decision variables and concrete topology-aware allocation

	Resource manager
	Framework to register parallel functions
	Using the framework
	Terminating threads
	Overall architecture
	Use-cases

	Use case 1: pbzip2
	Architecture
	Evaluation
	Summary

	Use case 2: Column store
	Problem
	Internal knowledge
	Registering scanning function
	Evaluation
	Summary

	Evaluation of the allocation policy code in the SKB
	Code complexity
	Execution time

	Summary and future work

	Conclusion
	Summary
	Directions for future work

	Bibliography

