
Barrel�sh on Netronome

by

Bram Scheidegger

Advisors

Simon Peter, Andrew Baumann

and Timothy Roscoe

due date

February 28, 2011

ETH Zurich, Systems Group
Department of Computer Science

8092 Zurich, Switzerland

Abstract

Commodity computer systems contain more and more specialized hard-
ware tailored to perform certain operations e�ciently in speed and power
consumption. ARM became one major player in the market of embedded
devices, and now even more commodity computers contain ARM based
CPUs.

In current operating systems the power of such devices can only be
used by accessing the components through the operating system kernel
using a device driver. Barrel�sh suggests a multikernel architecture that
treats such a system containing heterogeneous hardware as a network.
In a multikernel architecture, each component hosts its own kernel and
together they form the operating system. This makes the system easier
to understand and could even enhance performance.

In this thesis we describe the port of the Barrel�sh kernel from an
emulator to a powerful network card called the Netronome. This ARM
based network card has an Intel XScale IXP2850 network processor and
memory on board.

Contents

1 Introduction and motivation 5

1.1 Introduction to Barrel�sh . 5
1.1.1 Multikernel . 5
1.1.2 Message passing system 6
1.1.3 Other OS components . 6

1.2 Netronome platform . 7
1.3 Aim . 7
1.4 Document structure . 8

2 Related work and building blocks 8

2.1 Porting on ARM . 8
2.2 QEMU ARM port . 8

2.2.1 Launch simulation . 8
2.3 Simple serial console driver . 9
2.4 Mackerel shift driver . 9

3 Porting to the IXP2800 hardware platform 9

3.1 Big Endian compilation system 9
3.2 Virtual memory . 10

3.2.1 Memory split . 10
3.2.2 Barrel�sh memory layout 11
3.2.3 ARM memory management unit 12
3.2.4 Access permissions . 13
3.2.5 Context switch . 13
3.2.6 Allocating pages . 14
3.2.7 MMU setup . 15

3.3 Caching . 16
3.3.1 IXP2800 platform . 16
3.3.2 Clean and �ush . 16

3.4 Processing modes . 17
3.4.1 Shadow registers . 17
3.4.2 Change processing mode 17
3.4.3 Return from interrupt . 18
3.4.4 System mode . 18

4 Barrel�sh implementation 18

4.1 Boot loader . 18
4.1.1 Launching Barrel�sh . 18
4.1.2 RedBoot features . 18
4.1.3 Ramdisk . 19

4.2 Kernel bootstrap . 20
4.2.1 File formats . 20
4.2.2 Base setup . 21
4.2.3 Physical memory layout 21

4.2.4 Physical memory setup 22
4.2.5 On to the C code . 23

4.3 Prepare for user space . 23
4.3.1 Virtual memory in C . 23
4.3.2 ATAG header information 24
4.3.3 UART setup . 24
4.3.4 Programmable interrupt controller setup 24
4.3.5 Programmable interval timer setup 25
4.3.6 Load user space application 25
4.3.7 Launch init.c . 25

4.4 User space . 26
4.4.1 Processing mode . 26
4.4.2 Caches and system calls 26
4.4.3 Stack alignment . 27

5 Future work 27

6 Conclusions 27

1 Introduction and motivation

In the early days of personal computers the central processing unit (CPU) was
responsible for handling all computational work. Little by little, the devices sur-
rounding the CPU became increasingly sophisticated and more powerful. Well-
known representatives of this trend are disk controllers (e.g. SCSI, SATA) or the
Graphics Processing Unit (GPU). Looking closer into the history of GPUs, we
can point out two major steps in their evolution. At �rst, the highly specialized
GPU supported the CPU by taking over the 3D rendering of objects on screen.
Nowadays the graphics adapters have evolved one step further by o�ering their
processing power to all applications. Today's mainstream trend goes towards
even more specialized hardware. This has advantages like increasing the overall
system performance by reducing their power consumption.

Building systems with low power consumption is currently a major ambition
as the number of computer systems around the world grows fast. Because of
this trend, ARM became increasingly popular, as their RISC (Reduced Instruc-
tion Set Computer) processors allow building power e�cient systems. ARM
based CPUs were mainly used to construct mobile and embedded devices, and
they currently tend to move into the server market. There are di�erent ARM
implementations available, as ARM only sells the CPU design. Manufacturers
like Intel can buy a license and start producing their own ARM based CPUs -
so, the Intel XScale processor was born.

Computer networks became more and more important in the last ten years,
so the Internet and intranet bandwidth progressed rapidly. With a growing
bandwidth demand and an increasing number of clients, the server load also
escalates. Therefore it makes sense to have specialized hardware for network
processing which can advance to taking over other tasks like encryption. As a
consequence, a server has more capacity to host its services. The Netronome
network card is one step in the same direction as the GPU since this high
performance network card is also fully programmable.

1.1 Introduction to Barrel�sh

Barrel�sh [1] is a multikernel OS developed by the systems group at ETH
Zuerich in collaboration with Microsoft research. It is an approach to deal with
the heterogeneity of modern computer systems in a new way. Apart from em-
bedded devices even a modern processor like an Intel Core i7 processor with its
QuickPath Interconnect [2] introduces heterogeneity into the system. Barrel�sh
is built upon several principles which we introduce in this section.

1.1.1 Multikernel

In a multikernel OS, each core has its own instance of a so called CPU driver.
The CPU driver runs in privileged mode and its task is to mediate access to
the associated hardware (for example the memory management unit). Device
drivers and system services are not part of the CPU driver as they run in user

5

space. For instance, the interrupt handler of the CPU driver is very simple: it
acknowledges the interrupt and delivers it to user space. This design increases
the overall stability of the system since a crashed driver in user space cannot
tear down the whole system.

The CPU driver is a very system dependent part of the Barrel�sh OS in-
tended to be highly optimized for the underlying architecture. On the other
hand, the system services running in user mode can be built on top of the CPU
driver and are therefore mostly system independent.

As we can see from the Barrel�sh architecture, the core focus of this thesis
lies in porting the CPU driver.

1.1.2 Message passing system

The data structures of di�erent CPU drivers are purely local, there is no shared
state between them. To keep the nodes synchronous, Barrel�sh provides a
message passing system. Traditional systems use a shared memory approach
where di�erent CPU cores are accessing the same memory region. Such an
approach raises well known concurrency and cache coherency problems. Today's
systems deal with this problem using locks and a cache coherence protocol. This
is getting increasingly di�cult, especially in a heterogeneous system with other
components than processor cores attached to it.

Barrel�sh distinguishes between two types of messages to increase the e�-
ciency of the message passing system:

• Intra-core communication (messages on the same core): the CPU driver
implements a lightweight inter-process communication system built over
shared memory.

• Inter-core communication (messages between di�erent cores): this type
of communication takes place in user space and is performed by an OS
process called the monitor, which is fully privileged.

1.1.3 Other OS components

Dispatcher Each process has its corresponding set of dispatcher objects (one
on each core the process is intended to run on). The CPU driver schedules the
di�erent dispatcher objects and not the process itself. When a process has mul-
tiple threads, the dispatcher is responsible for thread scheduling. Inter-process
communication evolves between dispatchers as well, it can use the underlying
message passing facility for communication.

Capabilities Capabilities are used for right management. If a user space
application requests device access, it has to request the capability for this access.
The same holds for memory requests: the memory server mem_serv manages
capabilities for memory. If a user space application requests memory, mem_serv
checks if it can ful�ll the request and then answers with a capability for the

6

requested piece of memory. From this moment on, the application can map the
memory into its virtual address space and start using it.

System knowledge base The system knowledge base (SKB) provides in-
formation about the underlying hardware. The information for the SKB comes
from many di�erent sources like hardware discovery and static knowledge about
the system. Example use cases of such a repository is e�cient message routing
or choosing a core near the device we want to access.

1.2 Netronome platform

Our hardware platform is a network card, shipped with a version of Monta
Vista Linux as operating system (OS). It has an Intel XScale IXP2850 network
processor and four 1000BaseT network interfaces on board. Such design allows
performing complex network operations already on the network card. The pre-
installed boot loader (RedBoot) is used to launch Barrel�sh instead of Linux.
The card itself is connected to its host PC over a PCIe connection.

In general, ARM processors support both Little and Big Endian. On the
Netronome, the boot loader brings up the system in Big Endian mode and the
preinstalled version of Linux runs in Big Endian mode as well.

Having a computer system contain a lot of di�erent, optimized hardware
components raises the question of how the interaction with such a system should
be implemented. Currently, a software component has to communicate with
such hardware by using a driver running on top of one OS kernel.

1.3 Aim

The aim of this thesis is to port the Barrel�sh ARM version for QEMU to the
Netronome platform, including the CPU driver and the user space applications
shipped with Barrel�sh. It is the �rst time Barrel�sh runs on a hardware ARM
based CPU and the �rst time it runs on a Big Endian platform.

Among other things, insight into the following questions is provided:

• How does an OS initially written for Little Endian need to be adapted to
run in a Big Endian environment?

• Are di�erent ARM implementations compatible to each other? What is
the exact di�erence between an emulated ARM CPU (for example QEMU)
and a hardware based implementation?

• How does Barrel�sh behave on an embedded device?

Having Barrel�sh run on a network card enables us to investigate further ques-
tions concerning the heterogeneity of a computer system, such as:

• How does the message passing system behave using the very fast PCIe
bus?

7

• Can a system use the resources provided by the specialized networking
hardware e�ciently?

1.4 Document structure

Chapter two provides an overview over related work. We present the already
available components and give a brief overview over the tools we used for our
work. Chapter three explains some system components in detail, focusing on
the ARM platform. One major topic is virtual memory, as this was one key
component to get the kernel running. Chapter four describes the boot process
and points out the major challenges we encountered. It builds upon the knowl-
edge from the previous chapter. In chapter �ve, we discuss future work and in
chapter six, we conclude.

2 Related work and building blocks

2.1 Porting on ARM

As already mentioned in chapter 1, the ARM platform becomes increasingly
popular. As a consequence, there are already many ARM ports for di�erent
operating systems available, for example Linux (e.g. Debian [3]), FreeBSD [4]
or the L4 microkernel [5].

NetBSD has been ported by Antti Kantee [6] to a single-board computer
equipped with an XScale PXA255 and RedBoot as boot loader. He described
the port process as easy. He encountered no problems setting up the cross
compilation tool chain and furthermore pointed out the usefulness of a GDB
connection for low level debugging.

Ming Chen [7] described the porting of the Jikes Research Virtual Machine
(RVM), a research Java Virtual Machine, to XScale. His progress was relatively
slow and he was unable to reach his goal to run a �Hello world� program in the
end.

Porting to a Big Endian platform does not seem to be very common. The
main reason for this is the support for both Little and Big Endian by ARM and
the dominance of Little Endian systems.

2.2 QEMU ARM port

An ARM port of Barrel�sh for QEMU was already available. In the current
version, the CPU driver, the user space process �init� and the memory server
are functional. However, the shell ��sh� has not been ported to ARM yet.

2.2.1 Launch simulation

To compile Barrel�sh for ARM, we set ARM as a target in our build system and
as compiler we con�gure a Little Endian ARM compiler (freely available from

8

CodeSourcery [8]). After the compilation process is �nished, we can launch the
simulation by typing: "make sim ARCH=arm".

2.3 Simple serial console driver

There was already a very basic serial console driver available for the Netronome,
which just prints out a string. The driver was useful to learn about the boot
process on the Netronome and to study how to write a serial console driver for
Barrel�sh. However, we reimplemented the console driver with the help of a
Mackerel speci�cation �le (subsection 2.4) for the usage in Barrel�sh.

2.4 Mackerel shift driver

Mackerel is an interface de�nition language for device drivers. It allows spec-
ifying registers and o�sets for device access and abstracts away the normally
required bit manipulation. Mackerel hooks into the compilation system and
generates a C header �le out of the device speci�cation. In order to access
the �elds the programmer has to include this header �le and can now use the
Mackerel naming schema to set the bits appropriately.

Behind the scenes, Mackerel 1 uses bit �elds to generate a device access of
word size (in our case 32 bit). Since bit �elds are Endian dependent, it turned
out to be a bad choice for our platform. However, there is a trick to use Mackerel
1 also for a Big Endian system: in the device speci�cation �le, one has to declare
the order in which a register is speci�ed. Normally, we take the bit order which
is used in the documentation. In our case, we could just pass the �wrong� bit
order to compensate for using Big Endian instead of Little Endian.

In Mackerel 2 this problem is corrected. It uses shifts instead of bit �elds,
which makes the access Endian independent. We therefore use Mackerel 2 in
our port.

3 Porting to the IXP2800 hardware platform

In this chapter, we �rst describe how we managed to build a Big Endian compiler
as this posed one major problem. Then, we have a look at di�erent aspects of the
underlying hardware platform. Whenever we were stuck, we had to understand
the hardware platform in depth and therefore this knowledge is required to
comprehend the crucial points in the port process.

3.1 Big Endian compilation system

Getting a Big Endian tool chain for ARM was much more di�cult than initially
expected. The compiler used for the simple serial console driver was GCC 3.4.5,
which is too old to build Barrel�sh.

We tried to build our own tool chain consisting of a Big Endian GCC and
libgcc, whereas the most di�cult part was building the libgcc for Big Endian.
We tried a lot of di�erent approaches, for example:

9

• A build script. There are several scripts available, we focused on crosstools
[9] as the most promising solution.

• A manual compilation from the sources of GCC and libgcc.

• Combine a newer Big Endian compiler and the libgcc from the GCC 3.4.5
tool chain.

These approaches failed because we were unable to build libgcc. A free Big
Endian compiler is o�ered from CodeSourcery [8] but without the libgcc for Big
Endian. However, they o�ered a script to build the compiler. Using a try and
error approach, we managed to build a libgcc before the script crashed. We
then took our new libgcc and the free compiler from CodeSourcery to get our
tool chain.

As an alternative, we considered introducing another stage after the boot
loader to switch from Big to Little Endian mode before booting Barrel�sh.
However, after we managed to build the Big Endian compiler and because the
preinstalled version of Linux also runs in Big Endian, we decided against switch-
ing to Little Endian. At that time, we did not suspect major drawbacks from
this decision.

3.2 Virtual memory

The memory management of an operating system can be designed in several
ways. One way is to physically address memory. Barrel�sh uses physical ad-
dressing only during the early boot process to prepare for virtual memory mode.

Modern operating systems like Windows, Linux or BSD make use of virtual
memory [10] [11] (pages 123 - 126). This allows user space programs to run in
virtual memory as well. There are several advantages of using a virtual memory
system [12] (pages 701 - 704): This simpli�es linking and memory allocation for
both the kernel and for user space.

In this chapter, we begin by explaining the motivation of using a memory
split. Afterwards, the memory layout used in Barrel�sh is explained in depth.
We further have a close look at the implementation of virtual memory on ARM
based processors. Finally, we learn how to perform the setup of a page table
and how to activate the memory management unit (MMU). We focus on the
implementation in Barrel�sh.

3.2.1 Memory split

In virtual memory every process gets its own address space. The process itself
runs in user mode, whereas the kernel runs in privileged mode. User space
programs are not allowed to run privileged commands, like accessing a device
or halting the machine. These restrictions are imposed by the operating system
and enforced by the CPU [12] (pages 596 - 597). If a user space program needs
to execute a privileged instruction (for example accessing a device), it has to
make a system call.

10

The key point of a system call is to end up in privileged mode executing
the kernel. This is usually implemented by traps, a software interrupt initiated
by a user space program. When a software interrupt occurs, the CPU sets its
mode bit to privileged mode and the execution jumps into the kernel using the
interrupt vector associated with this interrupt. This makes it necessary to have
the kernel mapped into the virtual memory space of each program. If the kernel
did not reside in the same virtual address space as the user space application, it
is impossible to jump to the kernel without switching to another virtual address
space.

The motivation just explained reasons for the widely used memory split
where the kernel resides in a dedicated region of each virtual memory space.
Barrel�sh and other operating systems like Linux or BSD make use of this
technique.

The kernel is invisible from the viewpoint of a user space application and
user space programs are prohibited from accessing the kernel data structures.
Trying to access this region will lead to a protection fault. The memory access
from the program will not succeed and the protection fault interrupt will hand
over the control to the kernel. This mechanism protects the kernel and forces
applications to use the system call interface.

Physical memory usage is not a�ected by mapping the kernel into each vir-
tual memory space, because we can map the same physical memory region
multiple times. This saves space and makes data sharing easier. If each process
had a physical copy of the kernel, a change in the kernel's data structure would
require an update of each copy.

3.2.2 Barrel�sh memory layout

Figure 1 provides an overview of the memory mappings used in the ARM port of
Barrel�sh. We have a memory split at 2 GB. From 2 GB upwards, the memory
is only accessible in privileged mode. The remaining lower 2 GB are available
for user space programs.

There are three di�erent mappings (marked with numbers) shown in Figure
1 which we will now discuss in detail. Please note that for the sake of readability,
the proportions of the di�erent sections are not correct.

1. Mapping the kernel and the kernel stack to virtual memory. The physical
memory block referred to as �Expanded elf �le� is the actual kernel code
(see 4.2.3). The usual size of the kernel stack is around 64 KB. This is
su�cient, since Barrel�sh is a micro-kernel.

2. Mapping the page table. The initial setup takes place just before turning
on the MMU. This page table will be used and enhanced while the kernel
is booting. Once we go on to user space, this page table serves as a
master copy for each new virtual address space. It contains the necessary
mappings for the kernel but no mappings from user space programs.

3. To access memory mapped devices, we need to map them into virtual
memory. Barrel�sh maps them as sections (see 3.2.3).

11

The box �All memory� maps all available physical memory continuously into
the kernel's virtual address space.

Figure 1: Barrel�sh memory layout

3.2.3 ARM memory management unit

As on most x86 systems [13], [12] (pages 715 - 720), the ARM virtual memory
system has a MMU with associated Translation Lookaside Bu�er (TLB). The
MMU translates virtual into physical addresses and since this is implemented in
hardware, the translation is fast and there is no need for any software routine.
The TLB caches a few frequently used entries to avoid a slow look-up in main
memory.

Virtual memory is divided into pages. The mapping between a page in
virtual memory and its associated page frame in physical memory is stored in
a page table. On ARM, there are di�erent types of pages and page tables [14]
[15] (pages 491 - 546).

Level 1 page table The level 1 (L1) page table always translates sections of
1 MB size. This divides the 4 GB virtual memory space into 4096 pages and
each page table entry has a size of 4 Byte. A complete L1 page table for one
virtual address space therefore consumes 16 KB of memory.

The Barrel�sh CPU driver uses the L1 page table to translate sections be-
tween virtual memory and physical memory. L1 page table entries can also serve

12

as pointers to a level 2 (L2) page table, allowing a more �ne grained control over
physical memory. It can be especially useful on embedded systems with limited
physical memory available.

Level 2 page table On ARM we have �coarse� and ��ne� L2 page tables. A
�coarse� L2 page table divides a section in virtual memory in either small (4
KB) or large (64 KB) pages, holds 256 entries and consumes 1 KB of memory.
The ��ne� L2 page table supports tiny (1 KB), small and large pages, holds
1024 entries and consumes 4 KB of memory.

For both small and large pages, the access permissions (see subsection 3.2.4)
can be con�gured more �ne grained on the granularity of a quarter of a page.
In Barrel�sh, we use a page size of 4 KB.

3.2.4 Access permissions

The associated access permissions, which can be con�gured per page, control
the access to a page depending on the system mode. For example, this helps us
to protect the kernel from user space programs. As mentioned in chapter 3.2.1,
a user space program generates a protection fault when accessing a kernel page.
In this case, the page has been con�gured to allow full access from privileged
mode and no access from user space.

3.2.5 Context switch

Figure 2 shows the three steps involved in a context switch.

Figure 2: Switching between two user space applications

13

1. Process A makes a system call or gets preempted.

2. The kernel saves the process control block (PCB) of process A and restores
the PCB of process B. In Barrel�sh we use a dispatcher object instead of
a PCB.

3. The kernel hands over control to process B

Our focus is on the role of virtual memory and the MMU during a context
switch.

In step two, we have to switch from the virtual memory space of process A
to the one of process B. Therefore we have to change the page table mapping
to point to the page table of process B. To get rid of cached values from the old
mapping, the TLB gets �ushed. Furthermore, we have to �ush the instruction
and data caches to invalidate old entries (see section 3.3).

After changing the memory mapping, the kernel executes the next instruc-
tion as if nothing happened. At the �rst glance, this is somewhat surprising
because the program counter (PC) contains the address of the next instruction
but in the context of the memory mapping of process A. It is not required to
adopt the PC because the kernel is mapped to the same location of each new page
table. For this purpose, Barrel�sh provides a function �paging_make_good�.

3.2.6 Allocating pages

A page table is nothing more than an array. In order to insert a mapping in the
page table, we need to know three things: physical address, virtual address and
the start location of the page table.

First, we set up the page table entry. The page table entry contains the
page con�guration and the aligned physical address. This is the address of the
beginning of the page frame we want to map. As Barrel�sh uses a single level
L1 page table, the page frame is aligned to one MB and one MB in size. The
physical address to be mapped is located somewhere within this page frame.
We can obtain the aligned physical address by a logical right shift of 20 (listing
1, line 2). There is no need to store the complete physical address into the page
table entry because of the alignment.

The second step is to insert the page table entry into the page table (listing
1, line 3). We use the corresponding aligned virtual address as a position in the
page table array. We can immediately see that the look up time for a translation
from virtual to physical memory is O(1).

Listing 1: Insert page table entry into page table

1 // Some more c on f i gu r a t i on o f l 1
2 l 1 . s e c t i o n . base_address = pa >> 20u ; // I n s e r t phy s i c a l address
3 l1_table [va >> 20u] = l 1 ; // Write page tab l e entry in to page tab l e

14

3.2.7 MMU setup

Before turning on the MMU, we need to setup our �rst page table. We have to
consider two things:

1. Make sure that the code is mapped into our virtual address space.

2. After turning on the MMU, the PC should point to the next valid instruc-
tion. There are two ways to achieve this:

(a) We perform a one-to-one mapping. In this case, there is no need to
change the PC.

(b) We can calculate the new value for the PC and store it in a register.
After turning on the MMU, we can just update the PC.

In Barrel�sh, we use approach (b) because we have an ELF �le which has already
been linked to an address in virtual memory. If we map our code to this location
in virtual memory, we can now use (e.g. in assembly) a label to calculate the
new address.

Finally, we can turn on the MMU as shown in listing 2. On ARM, we have
coprocessors in the range p0 to p15. The instruction �move to ARM register from
coprocessor� (mrc) is used to read out the current con�guration, whereas �move
from ARM register to coprocessor� (mcr) is used to write to the coprocessor.
The arguments for mcr are:

1. The coprocessor to access.

2. Opcode 1: First coprocessor instruction (ignored by CPU).

3. Source register: The value to transfer into the ARM coprocessor

4. First coprocessor register (ignored by CPU)

5. Second coprocessor register (ignored by CPU)

6. Opcode 2: Second coprocessor instruction (ignored by CPU), optional to
the mcr instruction.

Listing 2: Activate the MMU

1 l d r r1 , =0x1007 // Enable : D−Cache , I−Cache , Alignment , MMU
2 mrc p15 , 0 , r0 , c1 , c0 , 0 // Read out cur rent s e t t i n g
3 or r r0 , r0 , r1
4 mcr p15 , 0 , r0 , c1 , c0 , 0 // Write back new con f i gu r a t i on

The CP15:c1c0 register is utilized to activate the MMU. The various steps
are shown in listing 2:

1. Load r1 with the bit pattern to enable caching, alignment checking and
the MMU.

15

2. Load the current con�guration from the control register cp15:c1 into r1.

3. Set the bits to activate caching, alignment checking and the MMU and
store the result in r0.

4. Write r0 back to cp15:c1.

More information and con�guration options are available in the ARM or XScale
architecture reference manuals as well as in the ARM System Developer's Guide
[14, 16] [15] (pages 513 - 515).

3.3 Caching

3.3.1 IXP2800 platform

On the IXP2800 platform, we have a separate data cache (d-cache) and instruc-
tion cache (i-cache). This is called a Harvard cache architecture. Apart from
that, the XScale core has also a mini d-cache. According to Intel, this should
avoid �thrashing of the d-cache for frequently changing data streams� [17, 18].
The i-cache and d-cache can hold 32 KB whereas the mini d-cache holds only 2
KB [16].

The write behavior (�write-through� and �write-back�) of the cache can be
con�gured per page. In case of a write-through policy, a write to data stored in
d-cache will immediately be forwarded to main memory. If we have a write-back
policy, the written data will be marked as dirty in the cache. The dirty cache
line will be written to main memory as soon as it gets evicted from cache.

3.3.2 Clean and �ush

On ARM, there is a di�erence between cleaning and �ushing the cache.
If we �ush a cache, all cache entries will be invalidated. This can be useful

in case the data in main memory has changed. However, if we use a write-back
policy and some data has been marked as dirty but has not yet been written
back to main memory, these updates will be lost.

Using a write-back caching policy, we therefore need to clean the cache before
�ushing it. When cleaning the cache, we force it to write back dirty cache lines.
Now, we can safely �ush it.

Sloss at al. [15] (pages 423 - 443) describe three methods to clean the cache.
Only one of them is applicable to the Intel XScale core. Cleaning and �ushing
the d-cache and �ushing the i-cache involves four steps [16]:

1. Clean the d-cache

2. Clean the mini d-cache

3. Invalidate the d-cache and mini d-cache

4. Invalidate the i-cache

16

To clean the d-cache, we iterate through all cache lines and use a special line-
allocation command on a dedicated, cached line of memory. This cached line of
memory needs to exist in virtual memory but the line-allocation command will
never overwrite the corresponding address in physical memory. While cycling
through all cache lines, dirty data will be written back to main memory.

Cleaning the mini d-cache is similar to cleaning the d-cache. For the mini
d-cache, there is no line-allocation command available. We therefore write 2 KB
of unused data to all cache lines of the mini d-cache.

The invalidation process is much simpler as we can instruct the coprocessor
to invalidate all cache lines. We need one command for the d-cache and mini
d-cache and one more for the i-cache.

3.4 Processing modes

On ARM, the Current Program Status Register (CPSR) [15] (pages 22 - 29)
stores information like condition �ags, interrupt masks and the processor mode.
There are several processor modes available, like interrupt request, system, su-
pervisor or user mode. For the moment we ignore the system mode and come
back to it later, as it is only a privileged version of the user mode. Please note
that the discussion about shadow registers does not hold for system mode.

3.4.1 Shadow registers

In case of a change from user mode to any other mode, some registers are au-
tomatically saved (also referred to as banked). In the event of a fast interrupt
request (FIQ), r8 to r12 are banked, otherwise only r13 (stack pointer, abbre-
viated by SP) and r14 (link register, abbreviated by LR). For instance when
switching from user mode to supervisor mode, register r13 is automatically re-
placed by r13_svc by the processor.

In Barrel�sh, each mode has its own SP. It raises no problem on ARM, since
the SP is a banked register in all modes. To initialize the SP, we switch to each
mode, set the stack pointer and switch back.

The CPSR register is special. When coming from user mode, the users CPSR
will be stored in SPSR (Saved Program Status Register) and replaced with a
version for the new mode. In Barrel�sh we use the SPSR register to determine
whether the interrupt came from user space or from the kernel.

3.4.2 Change processing mode

There are two ways to change the processing mode. In case of an interrupt, the
mode will be changed by the processor. In privileged mode, we can write to
CPSR to change our mode.

When entering the interrupt we need to save all registers which will be used
by the interrupt handler and that are not banked.

17

3.4.3 Return from interrupt

To return from an interrupt, we restore the saved registers. To restore the CPSR
from SPSR , there is a special instruction denoted by �^� . Listing 3 provides
an example on how to restore r0 to r15 and the CPSR. In that example, �regs�
stands for the location of the struct holding the register values to restore.

Listing 3: Restore registers and CPSR

1 ldmia %[r eg s] , { r0−r15}^

3.4.4 System mode

In system mode, there are no banked registers. Even this mode is fully privileged
and can set its own CPSR to any value, we cannot restore CPSR from SPSR in
case an interrupt sets system mode. The �^� instruction has no e�ect.

4 Barrel�sh implementation

4.1 Boot loader

4.1.1 Launching Barrel�sh

The Netronome card runs by default Monta Vista Linux. We cancel the start
up of Linux and get the boot loader shell.

Listing 4: Boot loader launch instructions

1 ip −b
2 load −r −b 0x20000000 brams/ romfs . cp io
3 load −r −b 0x10000000 brams/cpu . bin
4 exec −r 0x800000 −s 0 xd061 f f 0x10000000

Listing 1 shows how we can use RedBoots Trivial File Transfer Protocol
(TFTP) support to run the Barrel�sh kernel. The �rst line is necessary to fetch
an IP address from DHCP. In line 2 and 3, we load romfs.cpio and cpu.bin from
the TFTP server into the memory address speci�ed by �-b�. These �les are
loaded as raw images using the parameter �-r�. In the last line the kernel gets
executed as Linux image. The �rst parameter speci�es the ramdisk location
(our case is di�erent, see subsection 4.1.3), whereas the second parameter is the
size of the ramdisk. The memory address at the end is the entry point of our
executable code (in our case cpu.bin).

4.1.2 RedBoot features

RedBoot is a rich boot loader with many features [19]. This includes:

18

GDB connection Running GDB on our local machine, we can use "target

remote |ssh emmentaler console −f nos2−nfe" to connect to the boot loader. Note
that in our case we have to redirect the connection through an SSH server be-
cause the Netronome card (nos2-nfe) has no public IP address.
It seems that the part of the boot loader which allows a GDB connection re-
sides somewhere lower than approximately 0x40000 in memory. As soon as the
kernel starts writing on these addresses, we cannot establish a GDB connection
anymore.

Endian switch The exec command o�ers a parameter to switch to a di�erent
endian mode. Unfortunately, this option is not supported on the Netronome,
although our CPU can run in both Little Endian and Big Endian mode.

Hex dump RedBoot has some basic hex dump functionality. This turned out
to be useful for verifying the memory content just before starting the kernel.

Auto start We can even con�gure RedBoot to automatically launch Bar-
rel�sh. This can be done directly using the boot loader prompt.

In a �rst step, we set up an alias, giving our boot script a name. In listing 5
line 1, we can see the launch script from subsection 4.1.1 as alias. Please note
that the length of an alias is bounded. However, it is possible to link multiple
boot scripts together.

Now we can specify the default boot script, timeout, GDB connection port
and much more by calling fcon�g (listing 5, line 2). One has to work through
several questions and in the end we can either write the changes into �ash disk
or discard them.

Listing 5: Con�gure boot loader for auto start

1 a l i a s b a r r e l f i s h ' ip −b ; load −r −b 0x20000000 brams/ romfs . cp io ;
load −r −b 0x10000000 brams/cpu . bin ; exec −r 0x800000 −s 0
xd061 f f 0x10000000 '

2 f c o n f i g

4.1.3 Ramdisk

All user space programs (for example the shell ��sh�) are currently stored in
a ramdisk called �romfs.cpio�. The kernel is separate �le called �cpu.bin�. As
shown in subsection 4.1.1, we can load the kernel and ramdisk into main memory
using RedBoot.

Normally, the boot loader would pass the location of the ramdisk to the
kernel. On our Netronome with RedBoot version 1.31.1 at hand, we experienced
the problem that the ramdisk gets altered when passing the correct location to
the execute command. As a workaround, we have hard-coded the location of
the ramdisk and gave RedBoot the wrong location. Not passing a ramdisk
to the exec command is not an option in our case, since this leads to missing

19

ATAG headers. We decided against changing the code due to the boot loader
misbehaving.

The second problem is the size of the ramdisk. As we have seen, it has to
be passed as a parameter. It poses no problem for a static system, but for a
continually changing research operating system, this gets cumbersome. As a
workaround, we wrote a script which hooks into the compilation system. It �rst
compiles the system, then writes the new ramdisk size into a header �le and
�nally compiles the kernel again to include the changes to the updated header
�le.

4.2 Kernel bootstrap

This section describes the initial boot process until we can jump into init.c.
The code for booting is written in assembly and is located in boot.s. The initial
boot process relocates the kernel, sets up the page table and activates caches
and MMU.

4.2.1 File formats

The boot loader expects a Linux image. This is a binary �le which contains no
header information, just machine instructions. The boot loader loads this �le
into memory and starts executing it.

When compiling the Barrel�sh kernel, we get an ELF image. As an ELF
image contains header information (e.g. ELF header and program header), we
cannot pass this directly to the boot loader.

Figure 3: Boot image layout

To overcome this issue, the �rst word of the ELF image is overwritten with
a jump instruction (Figure 3). This jump instruction points to the text section
of the ELF image which contains executable code. As the jump instruction sets
the link register (LR) to the instruction after the jump, we still know where
cpu.bin, the modi�ed version of the generated ELF �le, starts. Later on, we
need this to access the section header table which contains information about
the location and size of the di�erent sections (e.g. .text or .data) [12] (pages
544 - 548). This information is necessary to setup the page table later on.

A shell script inserts the jump instruction after the compilation system has
created the ELF �le. This script was initially written for Little Endian ARM
systems. As we are in a Big Endian environment and the encoding of the jump

20

instruction is endian dependent, that script had to be adapted. Listing 6 shows
how we can use OBJDUMP (line 1) to obtain information about the endianess
of the kernel. Depending on the outcome, the byte order gets reversed. As a
result we obtain an endian independent version of the script.

Listing 6: tools/arm-mkbootelf.sh

1 ${OBJDUMP} −f ${KERNEL} | grep −q bigarm
2 i f [$? −eq 0] ; then
3 # Big Endian − r e v e r s e byte order
4 BL=${BL: 6 : 2 } ${BL: 4 : 2 } ${BL: 2 : 2 } ${BL: 0 : 2 }
5 f i

4.2.2 Base setup

After the jump, the program executes the program code located in the middle
of the ELF �le. First of all, we have to set up the stack and learn some basic
parameters.

To set up the stack, the stack pointer has to point to a memory address
known to be unused and in memory. This parameter is located in the �le
"o�sets.h".

Next, we test the ELF header for validity. We know that the �rst word,
being the previously inserted jump instruction, is invalid, so we can safely omit
it. Apart from this missing �rst byte, the subsequent three bytes should be a
valid ELF magic number [20]. In case of an invalid ELF header, the execution
of the code is halted.

After successfully reading the ELF header, we obtain the �le size of the ELF
image and expanded elf �le.

4.2.3 Physical memory layout

The boot loader can put the kernel anywhere in memory. Therefore, the kernel
can make no assumptions about its location in memory. This raises two main
problems: The �rst one, address dependency, can be solved by writing address
independent code for all parts running in physical memory. The second problem
is the possibility of overwriting our own code, which could happen for example
while extracting the kernel. This can be solved by copying the kernel to a known
and therefore safe location.

Figure 4 gives an overview over the steps involved. The whole process of
preparing the image to run in virtual memory is performed in the lower address
range. In the end, the �nal, expanded version of the kernel should reside within
the �rst 1 MB section. This is due to the con�gured kernel o�set of 0x�f00000.
The numbers in Figure 4 will give a rough idea about the size and the location
of the di�erent memory blocks. Please not that these numbers are not hard
coded. The memory settings and therefore the addresses can be con�gured in a
�le called �o�sets.h�.

21

Figure 4: Prepare kernel for virtual memory

4.2.4 Physical memory setup

First we check where the boot loader has loaded the kernel into memory. If the
image lies below the 512 MB memory barrier, we perform a �rst copy operation.
The target address is chosen in such a way that there is enough room for the
expanded �le later on. In the other case where the image is loaded to an address
higher than 512 MB, there is nothing to do. One may ask why this �rst copy
operation is necessary. In Figure 4, we come across an ideal situation where the
copy process is indeed not required. Yet imagine that the boot loader loads the
kernel on 0x11000. In this case, the copy is necessary.

As shown in Figure 4, we unpack the kernel just before the previously copied
packed ELF �le. Although �expanding� suggests otherwise, the resulting un-
packed memory block is much smaller than the original �le. The packed ELF
�le contains a lot of debugging and header information which is not essential
after switching to virtual memory.

An interesting question still remains: where does the kernel get all this
information from? To answer this question, we again take the example from
Figure 4 and have a look at all addresses involved:

• Stack: the start of the stack is located at 0x10000. This is precon�gured
and can be read from �o�sets.h�

• Expanded_elf: although the start location for the expanded ELF �le is
con�gured in �o�sets.h� (here: 0x11000), boot.S takes a di�erent approach
to calculate the start location for the expanded ELF �le. We know two
things:

22

1. kernel_v_addr: from reading the ELF header

2. kernel_v_o�set: the kernel's virtual base address, obtained from
�o�sets.h�

By using a bitwise AND (denoted by &), we get:
Expanded_elf = kernel_v_addr & kerne_v_offset

• Elf_size: we can calculate the size of the expanded ELF image using the
ELF header information. This gets aligned to four KB, therefore we need
some extra space here.

• Finally, we can obtain the start location for the �rst copy operation:
Elf_copy = Expanded_elf + Elf_size

4.2.5 On to the C code

After the whole copy and expanding process has been �nished, we can allocate
our page table as shown in Figure 4 and insert the following three mappings:

• The expanded elf �le gets mapped to the virtual address used by the linker
to create the ELF �le.

• We use a one-to-one mapping for the program counter so as to have the
page table in virtual memory. There is no need for the mapped code
associated with the program counter because after turning on the MMU
we will continue execution from the expanded elf �le.

• The ATAG headers are also mapped one-to-one into virtual memory. This
was not necessary for the QEMU ARM port because the ATAG headers
were located within an already mapped region.

After preparing the program counter and stack pointer for relocation, we can
turn on the caches, alignment checking and the MMU.

Before calling the �rst C function, we unmap memory address zero and
prepare the arguments for the C function. Now we can �nally branch to C
code.

4.3 Prepare for user space

The boot process continues in a �le called �init.c�. It is responsible for device
and memory setup. The remaining part of the start up process until user space
is located in the �le �startup_arch.c�.

4.3.1 Virtual memory in C

The memory mapping functions in C (located in �paging.c�) were incompatible
with our Big Endian system. As soon as we tried to map memory and devices
to virtual memory, the kernel crashed as soon as we attempted to access the

23

newly mapped region. It was di�cult to locate the problem, as the mapping
of the serial console to virtual memory is necessary to produce output, and
without output, it was unidenti�ed if the assembly mappings worked. It was
even unknown how far the kernel progressed.

As we inserted a one-to-one mapping for the serial console into the assembly
�le, we were able to generate output. After analyzing the problem for quite
some time, we noticed that the bit �elds used to setup the page table entries
are Endian dependent. After changing the order of the bit �elds, the virtual
memory system worked.

4.3.2 ATAG header information

In the �rst part of the C code, we process the ATAG headers to �nd all available
memory and the ramdisk romfs.cpio. Furthermore, we check for certain devices
like the command line. If they are available, they will be initialized. Now that
we know where the memory is located, we can map all available physical memory
to virtual memory.

4.3.3 UART setup

To get some output on the serial console (UART), we need to initialize it and
provide a simple driver.

In the con�guration step, we enable the UART device and disable parameters
like a �non return to zero encoding�. During the start phase, we furthermore
disable all interrupts.

The serial output driver is very simple. As soon as the driver function gets
called, we spin until the UART is ready to receive a character. We transmit
one character when ready. To send strings, we can simply loop over this simple
send function.

4.3.4 Programmable interrupt controller setup

The programmable interrupt controller (PIC) is responsible for managing the
interrupts originated from di�erent devices. Apart from masking interrupts per
device, we can also mask them in the PIC. Some devices (like the timer) do not
support masking their interrupt at device level.

Although the PIC manages the interrupts, we do not have to acknowledge
them here. On the ARM platform, it is su�cient to clear the interrupt at device
level. For example if we have a timer interrupt, we can clear it on the timer
device. The interrupt on the PIC will be cleared automatically.

During initialization, we de�ne which interrupts we are going to use. In our
case, we use the UART, timer and the error sum. The error sum is the logical
OR of all error status registers. If any other operating system component tries
to turn on an interrupt de�ned not to use, a kernel panic will occur.

Next, we disable all interrupts. They will be activated one by one as we need
them.

24

4.3.5 Programmable interval timer setup

We need a programmable interval timer (PIT) to implement preemptive schedul-
ing and other system services [11] (pages 57 - 60).

The operation principle of the PIT is pretty simple: it counts down from a
previously con�gured value. If it reaches zero, it will set the timer interrupt.
The timer itself will wrap around and restart its count-down.

On the IXP2800 platform, the timer is attached to the Advanced Peripher-
al/Bus Clock (APB-CLK). It has an operation frequency of 50 MHz [16].

During initialization, we �rst map the timer device to virtual memory. Af-
terwards, we load the timer with an initial value and set the divisor. The divisor
is applied to the APB-CLK to reduce the number of ticks. We activate the timer
interrupts on the PIC, but we do not yet start the timer.

4.3.6 Load user space application

The location of the ramdisk is hard-coded. We �rst check the validity of the
archive as a whole. Because of this checking, we found out that the boot loader
changed our image (see chapter 4.1.3).

A bit later, when unpacking the archive, we get all user space programs.
They are checked again for validity. At �rst, these checks failed as well on
our platform. The reason was an endianess check which veri�ed that the user
space programs are compiled for Little Endian. We replaced this by a function
which determines the endianess of our platform and veri�es that the user space
programs are compiled using the same endian as the kernel.

4.3.7 Launch init.c

Before we can launch the �rst user space program called �init�, we need to
perform some more preparatory work. Amongst others, this involves:

• Creating a multilevel page table and mapping the kernel into the new page
table.

• Setting up a struct called �BOOTINFO� which contains a lot of informa-
tion (e.g. memory location). The struct needs to be mapped to virtual
memory so that it becomes accessible by init.

• Preparing command line arguments, which also contain the location of
BOOTINFO.

• Creating a DCB (Dispatcher Control Block), precon�guring and mapping
it to init.

• Context switching to init and �ushing caches.

• Con�guring capabilities, for example for physical memory and the page
table of init.

25

The QEMU implementation behaved strangely just after the context switch.
The execution jumped back to an earlier stage followed by the kernel crashing
a bit later. This anomaly turned out to be a caching problem. The original
QEMU implementation merely invalidates the cache without cleaning it �rst.

4.4 User space

Init is fully privileged and responsible for bringing up the other user space
programs (e.g. monitor or mem_serv). In this chapter we describe the problems
encountered during startup of the user space processes.

4.4.1 Processing mode

The Barrel�sh interrupt handler checks whether the software interrupt came
from user space or from privileged mode. A software interrupt originated from
privileged mode does not make sense since there is no need to use the system
call interface if we are executing the kernel. Although the system call came from
init, the kernel detected privileged mode which led to a kernel panic.

We found out that init was running in system mode instead of user mode.
However, the resume process was correct and should have set user mode instead
of system mode. However, checking the current execution mode revealed that
the kernel was running in system mode as well. As described in subsection 3.4.4,
we cannot restore the SPSR in this mode.

To correct the problem, we con�gured privileged mode in the very beginning
of the kernel boot process. We furthermore had to move the stack for privileged
mode just above the IRQ save area to make things work.

4.4.2 Caches and system calls

We inserted multiple system calls called �sys_print� to track program execution
for debugging purposes. Yet inserting and removing these print instructions
as well as allocating memory on the stack altered the execution. Sometimes
the kernel crashed later when inserting a print statement as without the print
statement.

In this situation we encountered a caching problem once more. Turning o�
all caches resulted in a more predictable system behavior. What caused trouble
here is the virtually addressed cache. If we map a memory region twice, once
from the kernel and once from user space, they have a di�erent virtual memory
address. If init and the kernel access the same memory region, it is cached twice.
Hence, a write from init may be cached and is invisible for the kernel, as the
kernel accesses its own cached value.

As a temporary solution, we turned o� the d-cache just before switching to
user space. This allows a fast system startup and corrects the problem in user
space. However, this needs to be changed in future versions.

26

4.4.3 Stack alignment

Calling a certain function named �memobj_create_pinned� resulted in a page
fault. Although this region should have been in virtual memory and was sup-
posed to be accessible (tested using a memory sweep), the function call resulted
in a page fault.

After commenting the function out, we received a page fault a bit later
on. However, it was always the STRD instruction (load a 64 bit value from
memory) which led to a crash. A function call to �memobj_create_pinned�
without function body also resulted in a page fault. Therefore, the function call
itself had to be the problem.

The ARM platform requires an 8 byte stack alignment [21]. After aligning
the stack pointer of init, the problem was gone.

5 Future work

As a �rst step to make Barrel�sh operational, the remaining user space ap-
plications should be ported as well. This includes �init�, the memory server,
�monitor�, �spawnd�, �ramfsd� and the shell, ��sh�.

Because of the virtually addressed cache, the exact places to �ush and clean
the cache will have to be determined so that the d-cache can be activated again.
To increase performance further, the cache should be cleaned only partially.
This optimization may be tricky as one has to know exactly which addresses in
virtual memory need to be cleaned, for example in case of a system call.

Running a micro-benchmark to measure the context switch time on the
Netronome platform would provide insight into the performance of the Barrel�sh
ARM port compared to Barrel�sh running on other platforms. To get a reference
value on the same platform, one could run a Benchmark on Barrel�sh and on
the preinstalled Monta Vista Linux.

In a next step, a network driver for the Netronome could be written. This
allows testing the network stack and the overall IO-performance of Barrel�sh
under heavy load.

The ultimate goal is to run one instance of Barrel�sh on a host computer
and on the Netronome simultaneously. To enable communication between them,
both kernel instances need a PCIe driver.

6 Conclusions

The boot process and the CPU driver are working on the Netronome. Drivers
for the UART and PIT are available and written using Mackerel 2, which ensures
that the drivers are Endian independent. The virtual memory system functions
properly, thus making the CPU driver complete. Furthermore, for developers
working on the ARM port of Barrel�sh, this thesis can serve as a documentation
for the boot process.

27

Due to the obstacles encountered and the time limitation we were unable to
reach our initial goal to see the shell, ��sh�, running on the Netronome. However,
as many problems have already been identi�ed and corrected, the current status
of the port sets a solid foundation to achieve this goal in a later step.

Some answers to the initially posed questions from subsection 1.3 have been
found. First, a port from Little Endian to a Big Endian system is tricky as
C code is not completely Endian independent and the problems are hard to
locate. It is furthermore di�cult to get a Big Endian tool chain and we therefore
recommend to avoid Big Endian whenever possible.

Referring to the second question, di�erent ARM hardware platforms are
compatible to some degree. Most of the problems we encountered were caused
by the porting from a simulator to real ARM hardware. When there is only
a simulator port available, we strongly recommend to �rst port the OS to a
platform as similar as possible to the simulator. This narrows down the source
of error and makes debugging easier. During our work we have encountered
problems like caching and alignment, which did not show up on the simulator.

Due to the fact that user space is currently not fully implemented and we
have no long running programs, we cannot make a clear statement about the
overall stability of Barrel�sh on the Netronome. As far as we can tell both the
boot process and to some point init are running smoothly after our adaptions.

28

References

[1] P.-E. Dagand T. Harris R. Isaacs S. Peter T. Roscoe A. Schuepbach A. Bau-
mann, P. Barham and A. Singhania. The multikernel: A new os architecture
for scalable multicore systems. In 22nd ACM Symposium on OS Principles,
Big Sky, MT, USA, October 2009.

[2] Intel quickpath architecture. http://www.intel.com/pressroom/

archive/reference/whitepaper_QuickPath.pdf. White Paper.

[3] Debian gnu/linux on arm. http://www.debian.org/ports/arm/index.

en.html.

[4] Freebsd on arm. http://www.freebsd.org/platforms/arm.html.

[5] Arm port of the l4 microkernel. http://www.l4hq.org/arch/arm/. L4
community.

[6] Antti Kantee. Porting netbsd/evbarm to the arcom viper. Technical report,
Helsinki University of Technology.

[7] Ming Chen. A java virtual machine for the arm processor. Master's thesis,
University of Manchester.

[8] Code sourcery. http://www.codesourcery.com/.

[9] Building and testing gcc/glibc cross toolchains. http://www.kegel.com/

crosstool/.

[10] Gaurang Khetan. Comparison of memory management systems of bsd,
windows, and linux. Technical report, Department of Computer Science,
University of Southern California, Los Angeles, CA., December 16, 2002.

[11] Michael J. Karels John S. Quarterman Marshall Kirk McKusick,
Keith Bostic. The Desing and Implementation of the 4.4 BSD Operating
System. ADDISON WESLEY, 2006.

[12] Randal E. Bryand and David R. O'Hallaron. Computer Systems A PRO-
GRAMMER'S PERSPECTIVE. Pearson Education, 2003.

[13] Intel 64 and IA-32 Architectures Software Developers Manual System Pro-
gramming Guide, Part 1, 3a edition, January 2011.

[14] ARM Architecture Reference Manual, 2005.

[15] Chris Wright Andrew N. Sloss, Dominic Symes. ARM System Developers
Guide, Designing and Optimizing System Software. Morgan Kaufmann
publications, 2004.

[16] Intel IXP2800 Network Processor Hardware Reference Manual, November
2003.

29

http://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf
http://www.debian.org/ports/arm/index.en.html
http://www.debian.org/ports/arm/index.en.html
http://www.freebsd.org/platforms/arm.html
http://www.l4hq.org/arch/arm/
http://www.codesourcery.com/
http://www.kegel.com/crosstool/
http://www.kegel.com/crosstool/

[17] Intel xscale microarchitecture. ftp://download.intel.com/design/

intelxscale/XScaleDatasheet4.pdf. Technical Summary.

[18] Intel i/o processors based on intel xscale technology: Single chip proces-
sor, validated chipset and standalone core. ftp://download.intel.com/

design/network/papers/25286901.pdf. White Paper.

[19] Redboot user's guide. http://ecos.sourceware.org/docs-latest/

redboot/redboot-guide.html.

[20] TIS Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Speci�cation, May 1995.

[21] ARM. ABI for the ARM Architecture Advisory Note - SP must be 8-byte
aligned on entry to AAPCS-conforming functions, October 2009.

30

ftp://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf
ftp://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf
ftp://download.intel.com/design/network/papers/25286901.pdf
ftp://download.intel.com/design/network/papers/25286901.pdf
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html
http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html

	Introduction and motivation
	Introduction to Barrelfish
	Multikernel
	Message passing system
	Other OS components

	Netronome platform
	Aim
	Document structure

	Related work and building blocks
	Porting on ARM
	QEMU ARM port
	Launch simulation

	Simple serial console driver
	Mackerel shift driver

	Porting to the IXP2800 hardware platform
	Big Endian compilation system
	Virtual memory
	Memory split
	Barrelfish memory layout
	ARM memory management unit
	Access permissions
	Context switch
	Allocating pages
	MMU setup

	Caching
	IXP2800 platform
	Clean and flush

	Processing modes
	Shadow registers
	Change processing mode
	Return from interrupt
	System mode

	Barrelfish implementation
	Boot loader
	Launching Barrelfish
	RedBoot features
	Ramdisk

	Kernel bootstrap
	File formats
	Base setup
	Physical memory layout
	Physical memory setup
	On to the C code

	Prepare for user space
	Virtual memory in C
	ATAG header information
	UART setup
	Programmable interrupt controller setup
	Programmable interval timer setup
	Load user space application
	Launch init.c

	User space
	Processing mode
	Caches and system calls
	Stack alignment

	Future work
	Conclusions

