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Abstract

Many virtualization solutions have been designed and implemented. They make
use of a diverse set of different methods to achieve the secure multiplexing
of physical hardware among multiple operating systems. Some are tailored
to specific use cases, others aim to provide the widest possible spectrum of
applications. Some solutions require the guest to be modified before or during
the execution.

VMkit is a virtual machine monitor for the x86-64 architecture, integrated
into the Barrelfish operating system. It allows unmodified guest operating sys-
tems to be run. It makes use of the virtualization extensions available in recent
x86-64 implementations. VMkit is designed to be easy to implement and ex-
tend. The different components of the virtual machine are separated to achieve
a high level of security.

An evaluation shows that VMkit’s performance is comparable to existing
solutions of similar architecture, while achieving increased system security and
run Linux as guest operating system. Its implementation does not yet provide
the same features as other publicly-available solutions, but is functional enough
to perform real-world tests.
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Chapter 1

Introduction

1.1 Problem and Motivation

Personal computers available today are powerful enough to run multiple op-
erating systems simultaneously inside virtual machines. Due to this increased
performance there are many virtual machine solutions available today, espe-
cially for the PC platform with x86 CPUs. Industry seeks such solutions to
cope with the cost and energy requirements an increased number of computers
may impose. The use of virtual machines can improve the utilization of such
computers and therefore reduce these costs.

There is a broad field of application for virtual machines. They may be used
to separate a heterogeneous set of different services from each other. Differ-
ent services may have different operating system or configuration requirements.
Such services may be hard or impossible to combine within a single operating
system on the same computer. Using virtual machines, one can use the best
fit for software, configuration and operating system for each different group of
services or tasks.

The PC platform is able to support a very heterogeneous set of different
devices. There is basically no special requirement for a device to run inside of
a PC other than the ability to be attached to one of the platform’s main buses,
such as PCI. Therefore, another use case for virtual machines is driving the
hardware of the underlying system. This can be especially useful in operating
system research and development. One uses a virtual machine capable of run-
ning an operating system which is able to drive the hardware available in many
personal computers. The development team can reduce the effort needed to
write numerous drivers for many different devices available. They merely have
to include such a virtual machine within their operating system in development.

Today individuals also use virtual machines on their desktop computer just
to try new operating systems or use specific applications which are only available
on specific operating systems. It is more convenient to set up a virtual machine
rather than run the operating system exclusively on the computer. A potential
user can stick to the environment he or she prefers and use the virtual machine
in parallel.

The main challenge when building virtual machines is resource separation.
All operating systems want to use the same resources, such as CPUs, memory,
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hard disks and networking cards, and it is the job of the underlying system
to multiplex these resources among all virtual machines in a secure and fair
fashion. This should be accomplished with minimal performance overhead for
resource multiplexing and virtual machine control.

1.2 Aim

The aim of this work is to create a virtual machine monitor. To this end, current
implementations of virtual machine monitors shall be reviewed, and the methods
used analyzed and described. VMkit shall be oriented towards simplicity, ease
of implementation, and security always having performance in mind. It shall be
able to run on top of Barrelfish [6] and be capable of running at least Linux in
its virtual machine.

1.3 Overview

Chapter two introduces the different terms involved when talking about vir-
tual machines and different techniques to build them. It also summarizes some
important hardware aspects. Chapter three analyzes other implementations of
virtual machines done previously. It categorizes them and relates them to the
techniques introduced in chapter two. Chapter four offers some background on
Barrelfish, especially those parts which are important to understand the inter-
faces used within VMkit. In chapter five the global approach and the design is
shown. It describes how the virtual machine is laid out and what the properties
with respect to the background on virtual machines are. Chapter six describes
the implementation of the whole system within Barrelfish. An evaluation of the
implementation is presented in chapter seven and the work concludes in chapter
eight where the implementation is rated according to the evaluation and the
aim.



Chapter 2

Virtual Machines

The term virtual machine is used to describe different concepts. Not all of
them are relevant for this work. It is used by certain platform environments
such as Java or .NET, to describe the piece of software which translates instruc-
tions from special, mostly hardware independent byte code to instructions the
machine, on which the virtual machine is running, can understand.

Another use of the virtual machine term is to describe a software system
to provide an efficient, isolated duplicate of a real machine. A simulation of
all relevant parts necessary to enable software to run within this machine. It
can be either a perfect duplicate of the underlying hardware, or can simulate
another machine. This type of virtual machine will be the focus for the rest of
this work.

One of the first use cases for virtual machines was mainframe multiplexing.
These computers were expensive and an organization was not able to purchase
many of them. Virtual machines were used on top of these mainframes to
improve their utilization.

The field of application for virtual machines is broader today. The aim
moved away from the pure duplication of a certain machine to an abstraction of
physical hardware in general. Virtual machines tend to provide virtual hardware
which is able to run in many different environments and is easy to simulate and
to use for the operating system running within the virtual machine.

2.1 Structure and Terminology

This section introduces key virtual machine structure concepts.
First of all, a virtual machine (VM) describes an entire system enabling the

execution of arbitrary machine code within a confined, protected environment
of a real machine. It consists of at least one monitor and one guest.

The host is the machine on which the virtual machine is running. The host
may be a real machine or another virtual machine.

The guest is the software running within the virtual machine. In the most
general case it may be code of an arbitrary machine, of which only the targeted
real architecture is known to the virtual machine. Generally, this will be a setup
which would without modification also run on a corresponding real machine.
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A virtual machine monitor (VMM), often shortened to monitor, is the con-
trolling part of the virtual machine. It describes the piece of software managing
the virtual machine guest and all the virtual devices the virtual machine of-
fers. It is responsible for the security of the host and the guest, i.e. it has to
ensure no unintended state exchange takes place between them. The virtual
machine monitor is often also called hypervisor. Operating system kernels are
often called supervisor and since the virtual machine monitor resides logically
below the guest operating system the term hypervisor is used to describe it.

Two important operations will come up throughout this work. They are
called VM enter and VM exit. When the monitor decides to run the guest
within a virtual machine it will perform a VM enter. This operation will switch
from host execution to guest execution and is called a world switch. When
the guest is currently running and encounters a situation it cannot or must
not handle, it will stop running and the monitor will be invoked. This is the
opposite operation to VM enter and is called VM exit.

There are more terms which need defining when talking about virtual mem-
ory. When the monitor runs on a machine offering the use of virtual memory
and the virtual machine also provides virtual memory, then there are four levels
of address spaces which must be considered. Starting at the top layer there is
guest-virtual memory, then guest-physical memory. The same is true for the
host, there is host-virtual memory and host-physical memory. The terms for
themselves are self explanatory. One just has to remember, there are in fact
four levels of address spaces when talking about possible solutions to address
memory.

The terms virtualization and to virtualize often describe a fuzzy meaning of
running some virtual machine on top of another. In this work a clean distinc-
tion is drawn between to virtualize and to emulate. To virtualize some piece
of hardware means granting multiple, unrelated clients controlled, direct hard-
ware level access to the device, i.e. multiplexing it over different clients without
them knowing it being multiplexed. To emulate some piece of hardware means
running a piece of software that simulates the hardware to the clients, without
them knowing they are not dealing with the real hardware. Virtual machine
monitors often use both concepts for different virtual devices within the virtual
machine they are providing.

2.2 Techniques

This section introduces key techniques used to build virtual machines.
One does not want to lose a lot of the real machine’s performance through

the virtualization of a new one. But this is not the only concern. A real
machine may not be an ideal basis for constructing a virtual machine. It may
have instructions which prevent the monitor from executing the virtual machine
in a secure way. This and other correctness problems are addressed in several
techniques for building a virtual machine and especially its monitor.

2.2.1 Trap and emulate

Virtual machines should act on their host as normal processes do. They should
be protected from other processes and should protect and hide the entire host
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from the guest. Many hardware architectures achieve this protection through
the introduction of privilege levels. Certain software, usually the operating
system kernel, runs on a higher privilege level than the rest of the software. The
architecture will trap from unprivileged into privileged software under certain
well-defined conditions and to well-defined entry points within that privileged
software. It is important that guests are executed in unprivileged mode, such
that they will trap into system software once such conditions occur.

Trap and emulate describes a general technique used in virtual machines.
It is, in one way or another, part of any virtual machine implementation. If
the architecture running a guest experiences a condition which will leak or alter
global CPU state or risk system security in any other way, then the execution
of the guest will be stopped (VM exit) and its monitor invoked, hence a trap.
The monitor will examine the exit reason and emulate the state changes to the
guest without altering the host counterparts. The same technique is often used
to simulate virtual hardware to the guest. The virtual machine performs a VM
exit every time some virtual device register is accessed and the monitor will
perform the simulation of the device and enter the virtual machine again.

On hardware architectures where all necessary instructions, i.e. instructions
relevant to viewing and altering global system state and execution context, trap
into system software, trap and emulate can be used as the technique to build
virtual machines. If an architecture fails to trap in all necessary situations it
may enable the guest to compromise the host security and the overall correctness
of the system, therefore additional means, described in the next sections, must
be employed to circumvent that problem.

2.2.2 Dynamic translation

Dynamic translation [2] is a technique where the guest code is altered dynam-
ically, i.e. during run time, to bring it into a form suitable for running on the
virtual machine. The guest should not notice these changes, therefore the se-
mantics of the guest code must not be altered in a way it cannot function the
same way it would without the changes. To perform the dynamic translation
the guest code is analyzed on a basic block level, i.e. chunks of code which do
not alter control flow. These blocks are then translated to code conforming with
the rules the virtual machine enforces on guests.

There are different reasons for applying this method. When a hardware ar-
chitecture does not allow pure trap-and-emulate virtualization, the guest needs
to be modified to simulate a trap in all necessary situations not covered by
hardware. This explicit VM exit is then handled by the monitor like a normal
trap. It may also be used to improve the execution performance of the guest by
replacing some low-level hardware access instructions by calls to the monitor to
reduce the latency a full trap would incur.

A further use of dynamic translation is machine emulation. During machine
emulation, all instructions are translated from the virtual machine architecture
to the host architecture, i.e. compiling from one instruction set into another
instruction set. This can be done on a basic block level to minimize the transla-
tion effort. Once a basic block is translated, it may be run many times without
further modification. Using this method, the performance is increased over sys-
tems using guest code interpretation. During interpretation the guest code,
when executed, is not read by the hardware but by the interpreter which is a
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Figure 2.1: The structure of a virtual machine using dynamic translation. The
guest is not aware of the the monitor’s presence. There is no explicit commu-
nication between those entities. The monitor modifies the guest’s memory such
that it can safely execute instructions directly on the underlying hardware.

piece of software taking each guest instruction and performing the requested
guest action on its behalf on the physical hardware.

2.2.3 Static translation

The same way a guest can be modified during run time to conform to the rules
of the virtual machine, it can be modified during compile time. A guest can be
written in such a way that it will run correctly on a certain virtual machine.
This technique is often also called paravirtualization [5]; it refers to the fact
that the guest, knowing it is executed on a certain virtual machine, may take
advantage of the special circumstances a virtual machine offers. The same way
user space applications can be written to conform to operating system inter-
faces, operating systems can be written to conform to certain virtual machine
types. These virtual machines provide their guests a interface, usually called
hypercalls, to access the virtual hardware resources offered by the virtual ma-
chine. This interface usually is considerably simpler and higher level compared
to the complex interface physical computer hardware offers. If the underlying
hardware does not allow complete trap and emulation, the virtual machine has
to provide a set of hypercalls the guest can execute instead of using the unsafe
instruction.

These types of virtual machines often achieve improved I/O performance
because they know that virtual hardware is used and may optimize for that
fact. However, if some guest is not available in source code form, it might
pose a serious problem to port that particular guest to a virtual machine using
paravirtualization.

2.2.4 Guest memory management

The virtual machine must simulate the same memory environment to the guest
as it could expect running on real hardware. This includes at least a region
of real memory which may be used freely and perhaps some memory-mapped
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Figure 2.2: The structure of a virtual machine using static translation. Guests
use explicit communication with the monitor through a special parvirtualization
interface.

device registers. The guest operating system will manage this memory by gen-
erating specific page tables translating guest-virtual addresses to guest-physical
addresses within these regions. It is up to the virtual machine monitor to en-
sure that the guest issues only proper memory accesses and to trigger hardware
emulation code if some virtual device register is accessed. The overall perfor-
mance of the virtual machine depends on the CPU and the memory system
being virtualized to the greatest extend, i.e. memory accesses should trigger as
few VM exits as possible. To make this happen, the monitor must know about
the implications of all possible guest-memory accesses in advance, or needs a
security mechanism which triggers only on relevant memory accesses. There are
two major techniques dealing with this issue: shadow paging and nested paging.

Shadow paging

Shadow paging is a technique used by many virtual machine monitor imple-
mentations. It does not need any additional hardware support beyond normal
paging. For every page table the guest operating system creates, the monitor
maintains a corresponding shadow page table. The guest must be modified or
the hardware configured, to perform a VM exit, every time the guest performs
a page table switch. The monitor will then walk the entire guest page table
and check whether it violates host system security. Mappings pointing to guest-
physical memory will be copied to the shadow page table, and their physical
destination address will be modified to the corresponding address within host-
physical address space. Mappings pointing to virtual hardware registers will be
flagged to trap the CPU on access. The region where the original page table is
located will also be flagged to trigger a page fault on write access to prevent the
guest operating system from changing the seemingly active page table without
the monitor noticing it. Finally, the monitor will instruct the hardware to use
its newly created shadow page table instead of the guest version. The guest will
not notice there there is actually a different page table active. If the guest tries
to read the address of the currently active page table, the virtual machine will
exit and the monitor will emulate the original location to the guest. The guest
will normally create a separate page table for every user-space process it man-
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ages. Therefore, the monitor will end up maintaining at least as many shadow
page tables as the guest runs user-space processes. It will walk the active guest
page table on most guest context switches. This imposes a significant perfor-
mance penalty. There are many optimization techniques such as using special
data structures to store the different page tables, or making the page walker
more intelligent [5], preventing it from walking the whole guest page table every
time.

Figure 2.3: The shadow paging mechanism. The monitor reads the page table
the guest has written and translates all the entries into a shadow page table.
The hardware will then use this shadow page table to perform the actual address
translation.

Nested paging

The other major method is nested paging [3, 29]. It requires specific hardware
support. The hardware page table walker will translate the guest-virtual ad-
dress via the guest page table to a guest-physical address. This address will
then be further translated by the hardware walker via the nested page table
to get the host-physical address. Using this method, the guest memory man-
agement and the protection of the monitor are two different separated tasks.
Page faults within the guest page table can be forwarded to the guest directly.
They are no different from page faults on real hardware. Nested page faults are
handled by the monitor. It must check whether there was an access to illegal
guest-physical memory or to a virtual device register. Guests never know about
nested page faults and assume there was a normal memory access. Through
this separation, the monitor needs never to walk the entire guest page table and
check its correctness.
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However, nested paging may have a negative influence on virtual-address
translation. In the worst case, the number of memory accesses needed to re-
solve a particular guest-virtual address is squared compared to normal paging,
because every access to the guests page table will result in a host-virtual ad-
dress which may need to be resolved through the nested page table prior to use.
However, the use of nested paging allows significant simplification inside the
monitor, because the hardware takes responsibility for many of the additional
memory operations.

Figure 2.4: The nested paging mechanism. The hardware translates guest-
virtual addresses first using the the guest page table and the resulting guest-
physical address using the nested page table. The guest page table resides in
guest-physical memory which is virtual to the host and therefore all accesses to
the guest page table need first to be resolved by the nested page table.

2.2.5 Guest and monitor placement

There are several logically different ways an operating system kernel, a virtual
machine monitor and a guest can coexist within the same host. The monitor
can be entirely a part of an operating system kernel, i.e. run in privileged mode,
or run within a user-space process. In the latter case the monitor can only
allow the guest to execute unprivileged instructions. All remaining instructions
have to be emulated to the guest, i.e. guest-kernel code. Also in the latter case,
there is a choice whether the guest is joint or separated from the monitor with
respect to the hardware protection domain. All these choices have influence on
the performance and the security of the virtual machine.

It may improve performance to place the virtual machine monitor within
the operating system kernel. Many kernels map their code to a special memory
region inside the virtual address space which will never be accessible by any
user space process. With this region free in all user-space processes, it can
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be mapped through every page table used within the system, eliminating the
need to switch to and from a kernel address space on every system call. A
monitor within the kernel could use this mechanism to avoid unnecessary context
switching, since it would not be a single process anymore, but rather part of
every process. However, placing the monitor inside the kernel gives it access
to anything on the host machine. Therefore, the whole monitor would be a
part of the trusted computing base (TCB). The TCB is the set of all software,
which when compromised, may jeopardize the entire system. At a minimum,
everything running inside the kernel is part of the TCB. The monitor will control
the execution of a guest, hence a bug within the monitor could make it possible
for the guest to exit its virtual machine and cause damage to the host. If
the monitor is part of a user-space process, the host will be more secure from
monitor malfunction. This extra security comes with the cost of additional
context switches to and from the monitor.

With the monitor running in user space, the question remains whether the
guest shall be joint with the monitor in the same process. When joint, the man-
agement of the guest’s run-time environment, such as memory management, can
be done within the monitor process and does not need further communication
with a guest process. Furthermore, there is no need to switch contexts when
transitioning between guest and monitor execution. Some architectures, such
as the x86, need the TLB to be flushed on every context switch. The moni-
tor needs protection from the guest, i.e. its memory should not be accessible
from within the guest. This protection will be harder to accomplish without
hardware support. Therefore, with joint monitor and guest, there is always the
possibility for the guest to take over its monitor. This is especially critical if
the monitor manages more than one guest.

Moving the monitor and the guest into separate domains has the advantage
that the hardware will take care of protection between guest and monitor. An
additional context switch is then required to enter and exit the guest. Basically,
entering and exiting is the same thing as switching between regular processes
on the host. The question remains whether there are many context switches
between the host and the guest. Running a non-paravirtualized guest may
cause many VM exits. For example, every time the guest accesses some of its
virtual hardware, depending on the device, a considerable number of instruc-
tions accessing IO ports or memory-mapped registers may be expected. The
virtual machine will exit on every such instruction, either through a memory
fault, in the case of a memory mapped register, or through the interception
of instructions such as in and out on the x86 architecture. Issuing such an
instruction from the guest can be compared to executing a system call in a
normal user-space process. However, a system call often encapsulates multiple
such instructions that cause a virtual machine to exit. Therefore, the expected
rate of VM exits differs significantly from the expected rate of system calls by
an ordinary application.

I assume that once the virtual machine has entered guest mode, it runs
at the same speed, i.e. instructions use the same number of cycles to execute,
within the guest and the host. With this in mind, the dominant influence on
performance overhead is the number of exits a virtual machine takes and the
time needed to process them and enter the guest again. Of course, the time an
exit takes depends largely on what the monitor does to process it, however, this
does not change either way the monitor runs within or separated from the guest
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domain. What matters is the additional cost for the exit when changing to the
monitor’s domain. Therefore, the additional context switches needed will affect
performance.

2.3 Hardware

Many of the problems one needs to solve when creating virtual machine can ei-
ther be amplified or simplified by the hardware architecture. Some architectures
are more tuned to virtualization than others. It depends on what the aim of the
architecture designers was. The mainframes of the 70s and 80s were designed
for virtualization. These architectures had a simple instruction set and used
software-loaded TLBs. Every TLB miss is routed through the monitor, which
can decide, through its own data structures, what to do with such a memory
access. There is no need for shadow or nested paging. Trap and emulate works
directly with such an architecture. Their virtual machine monitors were shipped
with the hardware.

2.3.1 The x86 architecture

The x86 architecture started out in the 80s to be used in personal computers
which are small, compared to mainframes. The architecture was not designed
to run virtual machines. The resources such a computer offered were limited
and sufficed to run a single operating system and some applications. Later on,
protected mode and virtual memory was added and personal computers using
the x86 architecture became enough powerful during the 90s such that running
virtual machines seemed possible.

However, the x86 architecture features 17 instructions which are problematic
with respect to virtual machines. These instructions behave differently when
executed in privileged and in unprivileged mode. They are related to change or
exposure of CPU state and memory access. A guest operating system expects
to know the complete state of the CPU but since it is running as unprivileged
code in the virtual machine it will only see the state a user-space process would
see. In order to proper virtualize such an instruction it should cause a trap into
system software when executed in unprivileged mode.

An example for such an instruction is pushf and popf, which let a process
inspect and alter the current CPU flags. The CPU flags of the host most
probably differ from the flags of the guest. Therefore, information can leak
from the host to the guest through these instructions. Furthermore, the guest
can alter the host’s flags without it noticing that change.

The x86 architecture uses a hardware loaded TLB. In the case of a TLB
miss, the CPU walks a predefined page table structure to resolve a particular
virtual address. System software is only invoked if the page table does not map
that particular virtual address. This event is called a page fault. Therefore,
every instruction causing the TLB being consulted is part of the set of these
17 problematic instructions because the monitor can only control the entries
loaded into the TLB by controlling the page table the guest uses. To control
the guest page table shadow paging or nested paging can be used.

To provide a secure virtual machine on top of the x86 architecture one must
at least alter the running guest either through dynamic or static translation
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such that all instructions related to state change or exposure and all instructions
dealing with page tables cause the virtual machine to do a VM exit.

2.3.2 Secure virtual machine (SVM)

The main suppliers for x86 CPUs, AMD and Intel, released special versions of
their CPUs with an extended feature set. The goal of this these features was
to improve the architecture such that implementing virtual machines on x86
CPUs is simplified. The implementation Intel and AMD chose differ and are
not binary compatible. However, the semantics of these two implementations
are similar. Secure Virtual Machine (SVM) is AMD’s implementation.

One of the main features of SVM [3] is the addition of a new CPU mode, the
guest mode. Within guest, mode every CPU state is replicated. Guest mode
by definition always runs in unprivileged mode, but the current protection level
indicator may show the CPU being in privileged mode. It therefore can simulate
privileged mode to a possible guest without its awareness. SVM offers atomic
CPU state handling. It enables the monitor to capture and store all important
CPU state to a designated area with one instruction. Another instruction is
provided to load the same CPU state from a designated area into the CPU.
When the CPU enters guest mode, it will save the host state to some memory
location, and load the guest state from the area specified by the monitor. On
a VM exit, the CPU will do the same operation in reverse. Therefore, no guest
CPU state may be leaked into of from the host. The CPU supports a control
area for each virtual machine defining its settings. This area includes flags to
tell the CPU the conditions to exit from guest mode. At least all the unsafe
operations, including the 17 un-virtualizable instructions, can be intercepted
through these flags. These features provide the basic support to make the x86
architecture suitable for virtualization without having to modify the guest. The
CPU will never run in privileged mode and guest mode simultaneously, and
guarantees the separation of CPU states between guest and host.

AMD supports the use of a tagged TLB in their CPUs including the virtu-
alization extensions. In a tagged TLB every entry is marked by an additional
tag. In addition, every protection domain is associated with a tag. It is the re-
sponsibility the operating system to assign tags to different protection domains.
If a virtual address is be translated into a physical address, the CPU will only
consider those TLB lines which are marked by the same tag assigned to the cur-
rently running protection domain. Switching between domains with different
tags no longer requires a TLB. Switching between domains with the same tag
only flushes identically-tagged TLB lines. The speed of context switches can be
improved using a tagged TLB, if the the two contexts in question do not use
the same tag.

SVM provides nested paging as described above 2.2.4. The guest and the
nested page table can coexist within the same TLB through the use of tags.
However, the host and the guest must not use the same tag, since the architec-
ture cannot distinguish between guest page table and nested page table entries
within the same TLB.
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2.4 Summary

This chapter introduces the virtual machine term and all its relevant compo-
nents. It enumerates and explains different techniques which can be used to
build virtual machines, the problems which need to be solved and how to solve
them. The x86 architecture is introduced and the challenges and solutions using
virtualization technology on x86 are discussed.



Chapter 3

Literature Review

3.1 Requirements for Virtualization

In 1974 Popek and Goldberg specified the requirements [26] hardware and soft-
ware must implement to make trap-and-emulate virtualization possible. Their
requirements to the hardware are that its instruction set shall be divided into
privileged and unprivileged instructions, and the attempt to execute privileged
instructions in unprivileged mode must trap the CPU into the operating system,
running in privileged mode. There shall be no way that CPU state is exposed
to the virtual machine in such a way a potential guest can distinguish between
running on virtual or physical hardware.

They further define the concept of a virtual machine monitor, which is a
piece of software immediately above the hardware and below guest operating
systems. It shall be in control of all hardware resources. It shall be implemented
in such a way that a statistically dominant proportion of the instructions a
guest executes are run on physical hardware. Trap-and-emulate virtualization
does not, except for trivial guests, allow every instruction to be executed on
real hardware. Some instructions, such as those reporting CPU state, must be
emulated by the monitor to separate host from guest.

3.2 Mainframe Virtualization

One of the first use cases for virtual machines was the multiplexing of main-
frames. These machines were designed host virtual machines. The suppliers of
these computers normally also distributed dedicated system software containing
the virtual machine monitor designed for a particular mainframe. Through this
homogenous setup they achieved acceptable performance with limited resources.

An of such a machine is the IBM System/370 [15]. This system was built
with support for running virtual machines and appeared in the early 70s. In
addition to the full trap-and-emulate support, special instructions were added
to the hardware to help the virtual machine monitor simulate privileged in-
structions to the guest operating system. This enabled users of these systems to
run unmodified guest operating systems with similar performance compared to
running directly on the physical hardware. Similar support can today be found
in the hardware virtualization extensions to the x86 architecture [3, 29].
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3.3 Runtime Translation

As described in 2.3.1 the are challenges to solve when constructing a virtual
machine for a machine using the x86 architecture compared to one where trap
and emulate can be used directly [27], i.e. the x86 does not conform to Popek’s
and Goldberg’s requirements [26]. Dynamic translation of guest code can be
used to solve these problems.

Dynamic translation method was invented by VMware [13] in the late 90s.
Their approach is to binary translate the guest code before it is executed on
the physical hardware [2]. They implemented this by scanning the code to be
executed until the next branch or special instruction. During the scanning,
they translate the instructions in such a way that the virtual machine traps
into the monitor if needed. Special instructions are all those which should
behave differently than they actually do on the x86 platform to support proper
virtualization. In the end, this system acts as a just in time compiler. It takes
as input generic x86 instructions and compiles them into instructions suitable
to run safely inside a virtual machine. Every distinct basic block of a guest
must be translated once, if it is reached by the execution stream. VMware also
uses run time translation to implement shadow tables. Every instruction which
changes the guest page table location is replaced by a trap. To prevent the need
for every memory-related instruction to trap into the monitor, they do not allow
the guest to change its page tables in place unnoticed.

When a page fault occurs, VMware distinguishes between real page faults
and hidden page faults. Real page faults are those which are raised like they
would be if the guest ran on real hardware. They are propagated to the guest
operating system which should handle these types of faults. Hidden page faults
are those which are raised due to the fact the shadow page table is not syn-
chronized to the guest page table. These faults are silently handled without
the guest noticing. There are more page faults when executing the guest in a
virtual machine compared to real hardware, but for every guest page table a
distinct hidden page fault only occurs once, as long as the guest does not alter
that particular part of the page table.

The QEMU project [7] uses a similar approach to achieve a different goal.
QEMU supports a complete emulation of different virtual machines on top of
a non-binary-compatible host machine. There exists a subset of all possible
instructions which can be found on most CPU architectures. QEMU defined
such a subset. For every supported host architecture QEMU knows the imple-
mentation of all instructions in that subset. Given a guest QEMU translates
at run time, on a basic block level, the code into that generic instruction set
for the host the virtual machine is running on. Since CPU architectures can
be very different, QEMU needs to emulate more code than a virtual machine
which is only capable of running binary-compatible code. QEMU tries to run
as much code as possible directly on physical hardware, but experiences many
more VM exits compared to, for example VMware. The overall virtual machine
performance is reduced compared to directly running the guest on the physical
hardware. The guest runs around 4-10 times slower than on physical hardware.
The developers of QEMU introduced a set of optimizations, for example when
the host and guest architecture are the same, the translation becomes much
simpler and faster because the guest instructions do not have to be translated
to that generic instruction set.



3.4 Static Translation 21

3.4 Static Translation

As described in section 2.2.3 it is possible to alter a guest at compile time to
conform to the rules the virtual machine requires their guests to obey. Xen [5]
is an implementation of such a virtual machine monitor. The developers of Xen
created an interface for the operating system of the guest to communicate with
the host on a higher level than privileged x86 instructions. Their interface is
comparable to system calls an operating system offers to user-space processes,
but is much simpler. As an analogy to the system call term they gave these
monitor invocations the name hypercalls. A version of the Linux kernel was
modified initially, which is able to run on top of Xen, called XenLinux. The
developers of Xen claims [5] to have a copy of Windows XP capable of running
on their virtual machine. Xen drives the major part of the physical hardware
through a special version of a guest, called domain0 (dom0) [17] . Dom0 has
elevated privileges within the entire system, like accessing physical hardware
directly. The rest of the guests have access to a set of generic devices which are
driven through channels and events, i.e. an upcall interface, and are securely
multiplexed among multiple guests and dom0. The structure of Xen is summa-
rized in figure 3.1. Through this high level interface provided to guests, Xen
guests achieve almost similar performance using general virtual hardware, such
as disks and network controllers, compared to using physical devices. However,
the guest is of course aware that it is run within Xen. This contradicts tra-
ditional virtual machine requirements, but can be used to take advantage out
of the tight coupling of monitor and guest. Xen uses ring buffers for a lot of
the communication between guest operating system and virtual hardware. This
enables implicit batching of requests. It can only be done because the guest is
aware of these buffers and therefore their location in memory. Xen guests col-
laborate with their virtual machine monitor and therefore the Xen developers
invented the term paravirtualization for this approach.

Another project using paravirtualization is Denali [30]. Denali’s approach is
to offer virtual machines for services rather than full fledged guests. Denali does
not only provide a virtual machine monitor but also the guest operating system
which should be used within the virtual machines. The guest operating system
does not offer address space protection and should be used to run a single service,
such as a web server. It uses the hypercall interface offered by the Denali virtual
machine. The developers of Denali did these simplifications because they want
to be able to run a large number of these stripped down virtual machines on
one host machine. The virtual machines can talk to each other through sockets
like different hosts do. Therefore, the security implications of running multiple
services on one host are reduced to the same level as if those services were run
on different physical machines, which is an improvement over running the same
set of services within one operating system environment.

3.5 No Translation

In the background on hardware assistance for virtualization, in section 2.3.2,
the extensions by AMD [3] and Intel [19,29] were introduced. These extensions
were already used to create virtual machines.

An example of a virtual machine running on x86 is the kernel-based virtual



22 Literature Review

Figure 3.1: The Xen virtual machine. The guests are modified to use the
hypercall interface provided by the monitor. There is a special guest, domain0,
which has direct access to the system’s hardware. It also has access to the
control interface of the monitor to perform actions like starting or terminating
a guest. The guests communicate with domain0 to gain high-level access to its
generic hardware devices.

machine (KVM). The Linux KVM [20] is a small piece of code inside the Linux
kernel which exposes a virtual machine interface to user space. It uses the
hardware extensions, such as SVM, to run unmodified guests. KVM is tightly
coupled to Linux. A Linux process can be in two modes, kernel and user mode.
KVM adds an additional guest mode to each user-space proccess. When a
certain Linux process is used as a part of a virtual machine, then the guest
mode is used to execute the guest within that process. The monitor of that
virtual machine is executed within user mode of the same process. The kernel
mode is used to perform the privileged operations needed to execute the guest
on the hardware. The code used for kernel mode is loaded into the Linux kernel.
The virtual machine is exposed to user space via a traditional UNIX interface
using a device node and designated ioctl() calls. Any capable user space
application can act as a monitor to run guests via KVM. The KVM developers
took a version of QEMU [7] and altered it to run its guest via KVM instead of
its own virtual machine. They were able reuse much of the hardware emulation
code of QEMU, which was already able to simulate PC hardware as a Linux
process.

VMware also tried to take advantage of the newly-available hardware ex-
tensions, and created a modified version of their virtual machine monitor [2].
It turned out that their original virtual machine outperformed the new one
in most evaluations. With unmodified guests every single instruction which is
intercepted will result in a VM exit. A VM exit takes some time to happen
because the CPU has to perform a world switch which is harder then a con-
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text switch. VMware implemented many optimizations which are specifically
tailored to certain types of guest operating systems. Through their translation
process they reduced the amount of VM exits needed. VMware further replaced
some calls which would normally trap the CPU by calls into the monitor which
is significantly faster than trapping. It turned theses optimizations improved
performance more the loss they take when performing the translation on the
guest.

3.6 Hybrid Approaches

An advantage of paravirtualization over dynamic translation is the increased
performance the guest experiences due to the use of the high level interfaces
to the virtual machine monitor. XenLinux running on Xen experiences similar
performance to Linux running directly on the physical machine. However, the
drawback of this approach is the tight coupling of monitor and guest. The
guest needs knowledge about its monitor. Virtual machines using dynamic
translation however, do not assume anything about the guest operating system
but the ability to run directly on the physical machine. Hybrid approaches try
to combine these two techniques. The intention is to achieve the same guest
execution performance as Xen while staying compatible with as many guests as
VMware or KVM.

One method to achieve this goal is pre-virtualization [22]. The argument of
LeVasseur et al. against pure paravirtualization is an operating system built to
run on Xen is not able to run on a virtual machine using dynamic translation
nor real hardware. They built a system which enables a guest operating system
to run on physical hardware and on different paravirtualization systems. They
introduce a layer between the monitor and the guest. This layer is able to
use the virtual machine’s services. Pre-virtualization add annotations to the
guest which do not alter the way the guest would run on real hardware but are
recognized by this layer in between. Doing so, the guest may use the interface of,
for example, Xen to improve performance. Guests without those modifications
will still run at the same speed as they would on virtual machines offering full
virtualization or dynamic translation.

Using static translation may pose problems because one might be unable to
obtain a modified version of the guest operating system one wants to run. That
is the main argument of another approach to this problem, called optimized
paravirtualization [24]. In this approach the virtual machine monitor is capable
of both performing full virtualization and offering a hypercall interface at the
same time to the same guest. The guests are able to run on real machines, as
opposed to Xen guests, and therefore may detect the availability of the hypercall
interface of the virtual machine monitor and decide which of these calls it want
to use. The guest can then trade-off between performance increase in certain
subsystems and implementation effort to make these increases happen.

3.7 User-Mode Virtualization

User-mode virtualization is a special kind of static translation. Systems like Xen
take a CPU interface, such as x86, and construct a hypercall interface around it.
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In user-mode virtualization, guest operating systems are ported to the system
call interface of another operating system. This interface is normally higher-level
than a hypercall interface and is not specially adapted to a particular hardware
architecture. Therefore, the potential guest operating system normally needs to
be ported to a completely different architecture, which happens to be a system
call interface.

An example of such an port is User-Mode Linux (UML) [16,18]. It is a port
of the Linux kernel to its own system call interface. The UML kernel is then run
as a normal user process. UML make use of Linux’s ptrace() interface which
was designed to debug user space applications. With ptrace() UML is able to
catch every system call issued by a user process inside the guest. Once such a
call is caught, UML forwards it to the guest kernel and change the original into a
getpid() system call. From Linux’s perspective, UML is a separate architecture
like any other. It provides its own implementation of interrupts, virtual memory
and other hardware services. Virtual memory is implemented through mmap().
A guest its monitor is represented through a Linux process. No action is taken
to do additional protection. Everything running together with the operating
system in the guest is able to compromise the whole guest. Interrupts and
exceptions are implemented through UNIX signals. If an application inside the
guests touches an unmapped region of memory, i.e. causing a page fault, the
host kernel will emit a SIGSEGV to the process running the guest. The virtual
machine monitor running within that process will identify this signal as a page
fault and propagate it to the kernel inside the guest. It is then up to the
kernel to decide whether this was a legitimate page fault, and allocate memory
through mmap(), or generate a new SIGSEGV to the currently running user-space
application. The primary use case of UML was architecture-independent Linux
kernel development.

3.8 IO Performance

With the techniques available today, it is possible to multiplex the CPU to dif-
ferent guests with little performance loss. During non-privileged code execution,
there are not many VM exits performed compared to the amount of instructions
executed. However, when a virtual machine provides virtual hardware, every
guest access will cause a VM exit. These exits have to be done because virtual
hardware needs to be simulated by the monitor the lack of safety for the monitor
if the guest accesses as physical device directly. One of the main reasons for this
lack of safety is the use of direct memory access (DMA). DMA is a method which
enables a device outside the CPU access to the main memory of the computer
without the CPU overseeing or performing the operation. Therefore, it can be
done concurrently to different code execution within the CPU. Many devices
which involve much data being transferred between CPU and device, such as
disk controllers and network controllers use this technique to chunk big portions
of data into blocks exchanged asynchronously from the CPU and the device to
main memory and back. The driver of such a device tells it where to read and
write data from in physical address space. These accesses are not checked by
the MMU. If a virtual machine guest would be led to drive a certain device
with DMA support it would be able to alter any memory location within the
whole system. Furthermore, a guest can in general not know the host-physical



3.9 Virtualization on NUMA Hardware 25

address-space locations of its guest-physical memory and physical devices are
not aware of the guest-physical address space. Therefore, DMA cannot be used
inside virtual machines.

Hardware designers came up with a new memory translation system, called
IOMMU [4]. The IOMMU, initially designed to overcome the 32-bit address
limitation for DMA in 64-bit systems, enables remapping of bus addresses to
host addresses at page granularity. This mechanism can also be used to map
the host-physical address space to the guest-physical address space to make
the use of DMA from virtual machine guests more simple and secure [1]. The
current IOMMU implementations only allow one page table to be active at all
time. Therefore, the monitor will create one IOMMU page table to map the
device registers of all devices directly used by the guests into the corresponding
guest-physical address space. If a virtualization solution uses more than one
monitor, then all monitors need to agree on a common IOMMU page table.
Using this protection mechanism, one may allow a guest to program a device to
write directly to physical memory. If the device touches memory which it must
not, a hardware page fault will be raised before the memory access is performed,
preventing the system of taking damage. This technology has been added to
recent versions of the x86-64 architecture and was used to evaluate the impact
to current virtualization implementations, such as to Xen [8].

VMware experienced the same problem before x86 provided any hardware
acceleration for virtual machines. The performance losses using virtual devices
were significant compared to real devices [28]. If a guest operating system is not
changed, the only way a guest can use a device is by emulating that device within
the virtual machine. However, the guest will access that device like a normal
one which will cause a many VM exits, i.e. on every privileged instruction, such
as in and out. VMware tries to reduce the amount of VM exits by providing
a special driver to the guest operating system. This driver will not access
the virtual hardware like a normal driver, but will use a higher level interface
provided by the underlying virtual machine. Operations normally performed
with several privileged instructions are batched in one call to the monitor. This
method is comparable to a hypercall interface used in paravirtualization, but
without the knowledge of the guest operating. The method has therefore also
the same downsides. The supplier of the virtual machine must provide such
drivers for all possible guest operating systems, to make them use these special
interfaces.

3.9 Virtualization on NUMA Hardware

Computers can be built by assembling many CPUs and memory banks together
and connect them via a set of buses. These computers behave much like a
distributed system. Communication between nodes must be managed explic-
itly and the latencies and bandwidth can differ between different nodes. The
memory-related symptoms are called non-uniform memory access (NUMA).
System software running on such machines must be aware of the performance
implications when accessing memory from one CPU which is not local to that
CPU. The locality of memory to a CPU is defined in the latency the CPU ex-
periences when accessing a certain memory location. Data used by a CPU core
has to be kept local to that core to get the maximum performance out of the
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system.
Disco [12] is an implementation of a virtual machine on top of a NUMA

architecture. It predates work on x86 virtualization, such as VMware. The
motivation for Disco is similar to the virtual machines built for mainframes.
Disco’s goal is to virtualize operating systems made for commodity hardware
on NUMA machines. Commodity operating systems were not built to run di-
rectly on NUMA hardware. The goal of Disco was to run the guest operating
systems faster on NUMA hardware by exploiting its special properties than on
commodity hardware. Disco reached that goal by replicating the virtual ma-
chine monitor to each core of the machine and by implementing a clever page
moving and coping system such that virtual machines have their memory close
to them with respect to speed. The guest experiences uniform memory accesses.
It does not need to be NUMA aware. Disco was implemented on the FLASH
multiprocessor [21], a cache coherent NUMA architecture designed in 1994. The
processor simulated inside the virtual machines was a MIPS R10000.

Another noteworthy project in this context is vNUMA [14]. It is in some
sense the opposite to Disco [12]. While Disco simulates a machine providing
uniform memory access on top of a NUMA machine, vNUMA simulates a NUMA
machine on top of several machines with uniform memory access. vNUMA uses
Itaniums (IA-64) connected by gigabit Ethernet links to establish a NUMA-like
distributed system. It can be used to run NUMA-aware guests inside the virtual
machine and simulate a big computer through the use of several relatively small
computers.

3.10 Guest as Driver Provider

Virtualization techniques may be used to extend a host operating system in
a special way. If one manages to virtualize an operating system with support
for different types of hardware, one may use this guest as a driver provider
and export the hardware it supports back to the host. As described earlier,
Xen [17] uses a special guest, the dom0, for this purpose. This guest is given
elevated privileges to operate hardware. Xen trusts this domain to perform
correct and secure DMA accesses. The availability and use of an IOMMU would
improve overall security. Without it, dom0 is part of the TCB. Dom0 exports
its hardware through generic data and event channels to any permitted other
guest.

A similar approach is taken by LeVasseur et al. [23]. This paper describes
a project where virtual machines are entirely used to encapsulate unmodified
drivers. Their motivation is to reduce workload from operating system develop-
ers to implement the same drivers again and again. The virtual machine monitor
is implemented within a library which they claim is easy to include in any given
operating system. Extra care is taken about the security and separation of the
different drivers. Every driver is executed in a separate virtual machine which
provides separation of the drivers from each other. Drivers may be restarted
individually. The monitor also allows the guests to use DMA which, without
the use of an IOMMU, moves all the guests using it into the TCB of the host
system.
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Barrelfish

Barrelfish [6] is a research operating system developed by the Systems Group at
ETH Zurich. It was designed to meet the requirements of today’s and in par-
ticular future hardware designs. It is based on the assumption that tomorrows
architectures will be more heterogeneous than they are today. Chips contain
multiple cores where not all of them may support the same instruction set.
Memory access latency is not uniformly distributed among the different cores.
Caches do not have to be coherent and are not accessible by all cores. To some
extent this is already case in recent mainstream architectures.

4.1 Structure

To cope with this situation Baumann et al. created the multikernel operating
system architecture. Barrelfish is an instance of a multikernel operating system.
In such an OS, every core hosts one kernel, called the CPU driver in Barrelfish.
All kernels are essentially independent. State is not shared but replicated as
needed among the different cores.

The CPU driver runs in privileged mode and is responsible for multiplexing
the underlying hardware resources in a safe way to all user-space processes
running on the same core as the CPU driver. Furthermore, it is responsible for
scheduling and dispatch of these user-space processes. Since a CPU driver does
not share any data structures with other cores, it does not need to lock its data
structures to protect them from access. It is single threaded, completely event
driven and nonpreemptable.

User-space processes are called domains in Barrelfish. A domain consists
of a protection domain, a virtual address space, and a set of dispatchers. A
domain which wants to execute code on a given core needs to set up a dispatcher
registered to the CPU driver on that core. It will then, once the dispatcher is
made runnable, enter the scheduling queue of that CPU driver.

On every core runs one special domain, called monitor. It is the user-space
counterpart of the CPU driver. It encapsulates a lot of the functionality that
would be found in the kernel of a traditional operating system. The monitor
is responsible for the coordination of the system-wide state of the operating
system. To that end some data structures need to be replicated over different
cores. The different monitors employ an agreement protocol to keep all repli-
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cated data structures globally consistent. The monitor is further responsible
for setting up inter-process communication channels and waking up processes
waiting for a response from another core.

Barrelfish is vertically structured, much like an Exokernel []. The CPU
driver is highly architecture dependent and exports means to interface with the
bare hardware features of the x86-64 architecture in a safe multiplexed way.
Drivers are implemented in their own domain like in a microkernel approach.
Barrelfish’s CPU driver is small, with less than 10kLOC.

Figure 4.1: Barrelfish structure. Source: [6]

4.2 Dispatch

Every executable domain within Barrelfish features one or more dispatcher ob-
jects. A dispatcher object is a shared data structure between the CPU driver
and the corresponding domain. It is local to the core on which the CPU driver
runs and represents the required interface to execute a domain on that core. The
dispatcher encapsulates an upcall interface which is called by the CPU driver
every time the domain should run on that particular core. It is up to the dis-
patcher to decide what should be done with the available time slice on that core.
This is different to traditional operating systems, which just continue a process
once it is scheduled rather than calling it at a defined entry point. Threading
within domains is entirely implemented by the dispatchers. They maintain all
relevant data structures to make threading possible. The CPU driver has no
knowledge about the concept of threads.

4.3 Capabilities and Memory Management

Barrelfish manages all its crucial resources with capabilities. A capability is an
object with certain properties assigned to that object. It may represent some
right or resource within the system. Capabilities may only be manipulated by
privileged code. A process may own a reference representing such a capability.
This reference can be used to invoke several operations on capabilities to modify
them. The CPU driver is able, for each such reference, to find out whether it
is valid and to which particular capability it points. Capabilities can be viewed
as the opposite to access control lists (ACLs) which are used as a security
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primitive in many traditional operating systems. An ACL on an object defines
who has which right over that object. In contrast a capability is a object which
encapsulates rights over a set of objects.

Domains need to manage their memory for themselves to the extent of man-
aging its page tables. Also, the CPU driver does not allocate memory, and,
when a domain wants, for example, to create a data structure shared with the
CPU driver, such as a dispatcher, it has to allocate that memory and tell the
CPU driver about that memory region. Everything is implemented through ca-
pabilities. The complete memory region is represented by capabilities. It may
be split into several sub regions, it may be mapped into a virtual address space.
It can be used to store protected data structures, also by retyping memory
capabilities.

A domain will normally request some memory capabilities from the memory
server and use it to do everything needed for software to run within a virtual ad-
dress space. It will map some parts of this memory into the heap and other parts
to the stack of its threads. Domains have to handle page faults for themselves
and may therefore implement a dynamic stack size for each thread.

4.4 Communication

Barrelfish employs explicit rather than implicit sharing of data structures. Im-
plicit sharing denotes the access of the same memory region from different pro-
cesses which usually needs to be protected through locks. Explicit sharing de-
notes several copies of the same data structures, one located at each process.
Messages are exchanged with updates done to these data structures to keep
them synchronized among all participating processes.

Messages can be passed through different channels depending whether the
communication is intra- or inter-core. For communication on the same core,
IDC or LRPC messages can be used. IDC is a CPU-driver-mediated message
transport. It enables domains and the CPU driver to send messages of fixed
sizes to each other. The message can optionally also unblock the receiver which
will then take over the remaining time of the caller’s time slice to process the
request. LPRC [9] is offered as an optimization of synchronous communication
for latency-sensitive operations.

Inter-core communication is done using URPC [10] in the current imple-
mentation. It exploits the cache-coherent memory of the x86-64 architecture.
Messages are exchanged via shared memory. They are cache line sized. The
implementation is optimized to reduce the communication needed on a possible
interconnect between cores. Different hardware architectures may need different
ways to implement the inter-core communication, especially if there is no cache-
coherent memory available.

Barrelfish offers some abstractions to simplify the use of those communica-
tion primitives. A library, called chips, is offered which is based on services,
clients and servers, and is built over those communication primitives. It hides
the complexity whether the receiver is located on the same or another core.
Furthermore, there is an IDL generator, called flounder, which can be used to
define the interfaces between communication entities. The code generated will
make use of chips.
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Approach

The background on virtualization and the literature review showed there are
many different applications for virtual machines and many ways to construct
them. Some of them are more bound to a specific purpose, like running drivers
in a secure way, others are more general in their nature. VMkit shall provide a
virtual machine solution which is general in the sense that there is no inherent
predefined use but to gain advantage from running guests within Barrelfish.

VMkit shall be able to run unmodified guests. Moreover, guests should not
need to know that they are running on a virtual machine.

5.1 Targeted Architecture

It is the aim of this work to build a virtual machine monitor for the x86-64
architecture. A lot of recent research on virtualization is based on this architec-
ture, which makes comparison between different virtualization solutions easier.
Also, Barrelfish has an implementation ready for the x86-64.

Section 2.3.2 described that Intel and AMD, the main suppliers of x86-64
CPUs, were not able to produce a standardized interface to their virtualization
extensions. VMkit shall use these extensions, because they simplify the imple-
mentation of the virtual machine monitor. There is no scientific advantage to
creating a monitor using both in the first place, but porting it to the other
architecture should not be hindered. VMkit shall be implemented using SVM,
the AMD version of these two extension types. The main advantage of SVM
was the availability of the technology in the development machines available to
me.

5.2 Structure

This section describes the general structure of VMkit.
First the structure of the guest and the monitor will be described, followed

by the description of certain deviations from basic design principle to include
some optimizations.
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5.2.1 Monitor and guest

The importance of the separation of monitor and guest can be argued. As
long as the monitor is protected by hardware means, i.e. running as a user-
space process, and as long as one monitor only controls one guest, the possible
damage caused by the guest accessing monitor memory can be limited to that
particular guest only. However, the guest may, with appropriate knowledge, act
as a normal user-space process within the host operating system, which may
not be desired.

One of the key requirements of a virtual machine should be its protection for
the host being jeopardized by the guest.Therefore, placing the monitor within
the kernel needs a good argument why in that particular case this would be a
secure solution.

The VMkit monitor is placed into a user-space process. There are also
other reasons, besides the security concerns mentioned above, for the monitor
to be situated within user-space. Barrelfish employs a microkernel structure.
Placing too much functionality within the kernel would not be appreciated by
its developers. The monitor process should encapsulate as much of the logic as
possible to run the virtual machine. As little functionality as possible should go
into the kernel.

The guest is placed into a separate user-space process, protected from the
monitor. The guest process does not execute any code other than guest code.
Any controlling activities are done through the monitor process.

This structure induces many additional context switches compared to the
model where the monitor and the guest are located together within one user-
space process, or when the monitor is part of the operating system kernel.
With the use of a tagged TLB, the guest and monitor process can be assigned
different tags and therefore do not need the TLB flushed when switching between
them. This eases concerns about the security of the monitor without creating
a large performance penalty. As we will see in the implementation, the design
of Barrelfish, i.e. its vertical structure, also supports this decision. The monitor
process can control the guest process in every way necessary. Furthermore, the
monitor process needs not take extra precautions to protect itself from the guest,
which makes it simpler and more understandable.

The monitor makes use of the hardware extensions provided by the CPU to
manage the guests memory and the VM exits. It provides all the virtual hard-
ware available inside the virtual machine, either through complete simulation,
or the use of a driver within Barrelfish.

Figure 5.1 summarizes the global design of the system.

5.2.2 Kernel and fast path

The kernel part of VMkit is very small and consists only of the parts which need
the CPU to be in supervisor mode when executed. It handles the state-related
issues when entering and exiting the virtual machine such that neither the host
nor the guest are compromised.

A monitor and its guest are closely-coupled pieces of software. They never
run in parallel but always run as a result of either an event from the guest
or the continuation of the guest through the monitor. From the CPU driver’s
perspective, these switches are similar to switches between any two user-space
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Figure 5.1: VMkit structure. The monitor and the guest are located in user
space. The CPU driver is extended by means to operate the virtualization
extensions provided by hardware. The arrows indicate means of communication
and memory manipulation.

processes. Therefore, it is not defined which process will run next, which could
impose additional latency when executing the virtual machine because it will
yield its time slice every time it performs a VM exit. To improve performance,
additional logic is placed into the kernel. When a guest takes an exit it would be
favorable if the monitor could run and process the exit as fast as possible. The
remaining unused cycles by the guest within its time slice can be used by the
monitor to process the exit and eventually perform a VM enter again. Therefore,
the kernel needs to know for any given guest, what the corresponding monitor
process is. This fast path will reduce the overall latency between monitor and
guest execution without taking any execution time away from other runnable
user-space processes.

However, not all VM exits shall result in a monitor invocation. There are two
general classes of exits a guests can take during execution: guest external and
guest internal exits. Guest external exits are interrupts and exceptions raised by
the real CPU. Exceptions during guest execution are always caused by the guest.
Other than fatal errors, such as a triple fault which would cause a real machine
to reboot, all these exceptions can be forwarded to the guest. Without the
virtual machine managing real hardware through its guest, external interrupts
will never be designated solely for the virtual machine. Calling the monitor on
such a condition would increase the overall latency of the system in responding
to the interrupt. Moreover, the called monitor would most likely not be able
to handle the VM exit because it is not a driver for that device. The kernel
part of VMkit shall have knowledge about some causes of VM exits, especially
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guest external causes, and execute the corresponding interrupt handler within
the CPU driver directly instead of calling the monitor.

All other VM exits are not events by real hardware, are therefore related to
the executing guest, and must be handled by the controlling monitor.

5.3 Memory Management

The virtual machine has to simulate the same memory environment to the guest
it could expect running on real hardware. This includes at least a region of phys-
ical memory which it may use freely, and possibly some memory-mapped device
registers. The guest operating system will manage this memory by generat-
ing page tables translating guest-virtual addresses to guest-physical addresses
within these regions. The virtual machine monitor has to be able to distinguish
between physical memory and device register accesses. In the latter case it has
to execute device emulation code. As described in section 2.2.4 the performance
of the virtual machine depends to a great extent on the MMU being virtual-
ized. The monitor needs to manage the guest’s physical memory either through
nested or shadow paging, otherwise it would require to exit the guest on every
memory access.

VMkit uses nested paging. Nested paging needs less effort to be implemented
correctly than shadow paging. The monitor will be less coupled to the guest’s
page tables. Moreover, implementing a shadow paging mechanism which will
able to yield the same or better performance as nested paging would require
a lot of optimization and increase code size and implementation effort to an
unacceptable level. I will not be able to test this hypothesis due to the lack of
time to implement a shadow paging mechanism.

Nested paging is straightforward to implement using Barrelfish domains
which manage their memory for themselves. The kernel will use the domain’s
page table as the nested page table when performing the world switch.



Chapter 6

Implementation

6.1 Host and Guest System

The virtual machine was developed and runs on AMD Opetron 8350 and AMD
Opteron 8380 CPUs. The machines featured multiple CPUs and cores but only
one core was used during development.

The emulated machine is either x86 similar to an AMD K6 or a generic x86-
64 CPU. Most of the extra features which can be detected through the cpuid
instruction are shown to the virtual machine as being unavailable, this includes
for example the IOAPIC.

6.2 Structure

As described in the approach (chapter 5) the monitor is separated from the
guest, and most of the parts of the monitor should be located in a user space
process.

The kernel part of VMkit is located inside Barrelfish’s CPU driver. The
rest of the monitor is implemented through a Barrelfish user space domain.
The guest runs in a separate user space domain. Currently a monitor controls
exactly one guest.

6.3 Kernel and Guest Domain

The guest and monitor are are separated through different Barrelfish domains.
The CPU driver knows for each domain whether it is a virtual machine guest
domain or a normal domain. The kernel part and the guest domain are closely
coupled. Most of the code inside the kernel is used to make the guest domain
possible.

A domain hosting the guest does not use any of the Barrelfish features avail-
able for domains. Its sole purpose is to provide the protection desired and
provide the nested page tables. If a common domain is scheduled, its dispatcher
is invoked to process the invocation and decide what to do with the time slice.
The VMkit kernel alters this behavior for all domains it knows to contain guests.
If a the scheduler decides to run such a domain then VMkit code inside the CPU
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driver will be called. This code will, instead of calling the domain’s dispatcher,
save all the necessary host state and perform a world switch into the virtual
machine running the guest, i.e. perform a VM enter. Performing the VM enter
involves loading the guest state from a saved location and reestablishing that
state onto the CPU. This state also contains the last instruction pointer used by
the guest, or some initialization value if the guest never ran before. The CPU
will then run in guest mode until a condition occurs which will force the CPU
to exit the virtual machine, i.e. perform a VM exit. In this event VMkit’s CPU
driver portion will be executed again and perform the world switch back to the
host, saving the guests state. It will then examine the reason why the hardware
wanted to exit the VM and either call the corresponding monitor or, in case of
an interrupt, call the corresponding interrupt handler. If the monitor is called,
the guest domain is removed from the scheduler queue, i.e. made unrunnable,
otherwise it will remain in the runnable state.

The VMkit kernel part has enough knowledge needed to identify and run a
guest domain. No monitor interaction is needed to perform a VM enter. For
example, in the case that the guest is exited because of a timer interrupt on
the CPU, i.e. preemption, the monitor will not be invoked, but the interrupt
handler will be. The handler will call the scheduler to identify the next domain
to run. The guest domain will remain in the runnable state and therefore be
scheduled again later. On this event, the mechanism described above will enter
the guest. All this can be done without the monitor even noticing the guest was
preempted. As long as there is no exit which requires the monitors attention,
it will not be invoked, and the guest domain will be executed like any other
runnable domain within the system.

6.4 Monitor

The monitor is implemented using a normal Barrelfish domain. Its duty is to
create and destroy its guest and handle all possible VM exits originating from
the guest. It is therefore basically an event processing machine.

Once started, the monitor will set up the necessary data structures the
hardware needs to run the virtual machines. These data structures contain
all settings regarding the guest’s memory and intercepts, i.e. VM exit condi-
tions. Furthermore, the initial machine state is established such that the same
environment is simulated as one would encounter when running from a real ma-
chine. The monitor will copy some initial image the machine can execute into
the guest’s memory and mark the domain as runnable. Therefore the domain
will be executed once the Barrelfish scheduler selects it.

The monitor will enter an event processing loop where it will wait for VM
exits or events from other Barrelfish domains. Other Barrelfish domains happen
to be drivers for similar devices the monitor wants to simulate to the guest. For
each exit there is handler code to process the exit. This contributes a major
part of the core monitor logic. If a driver sends a notification or data, then the
corresponding simulator for that specific device is called within the monitor.
This virtual device will most probably alter some of its sate and hardware
registers, and eventually assert a virtual interrupt to the CPU.
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6.5 Memory Management

The monitor is responsible for managing the guest’s memory. With nested
paging, it has to handle all nested page faults and resolve them accordingly by
allocating memory, or call a corresponding virtual device.

Through Barrelfish’s vertical design, each user-space domain has to manage
its own memory including the required page table. Such a page table is repre-
sented by a set of capabilities. These capabilities can be held by any domain.
Therefore it is possible for domain to maintain the virtual memory of another
domain. The VMkit monitor uses this technique to maintain all the guest’s
memory. The page table that normally would be used when switching to the
guest domain is used as a nested page table. The monitor can therefore simulate
any physical memory environment to the guest.

The guest’s memory is also mapped into the monitor domain enabling it to
examine the whole guest-physical memory. The guest on the other hand is not
able to access any monitor memory, which protects the monitor’s memory from
compromise by the guest. Page faults within the guest are not intercepted by
the virtual machine. The guest needs to be able to handle them itself.

Every time a nested page fault occurs, the VMkit kernel will call the monitor.
On a nested page fault there are three basic distinctions. Either the requested
guest-physical address was within the range of the assigned guest-physical ad-
dress range or outside of that range. If outside then it may be an access to
a memory-mapped device register. If the faulty address is within the range of
assigned memory then this memory is allocated through Barrelfish mechanisms
and mapped into the nested page table, i.e. the page table of the guest domain.
If the guest accessed a virtual device register then the code handling memory
access for that device is called. In the third case, where the access is outside
the acceptable range and not a device, a fault will be sent to the guest as if it
had accessed illegal memory on a real machine.

Using the described mechanism, the majority of the available Barrelfish logic
for virtual memory can be reused for the major part of the guest-virtual-memory
handling. It is occasionally necessary to resolve a certain guest-virtual memory
address through the guest’s page table, i.e. every time some guest instruction
is examined further by the monitor. However, general guest page table walks,
as for example with shadow paging, are not required. Since the guest-physical
memory is also mapped into the monitor, the resolution of guest-virtual ad-
dresses need not go through the nested page table. This page table is read
solely by hardware.

6.6 Communication

VMkit uses Barrelfish’s IDC mechanism as method for internal communication,
i.e. communication between CPU driver and monitor. IDC messages can only
be sent between dispatchers of domains running on the same core, or between
the CPU driver and a dispatcher running on the same core. The latter is used
by VMkit to implement events from the kernel side to the monitor.

Every time the kernel encounters a VM exit which needs monitor attention,
it will construct an empty IDC message and send it synchronously to the guest’s
monitor. This message will, through the synchronous IDC mechanism, invoke
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the monitor directly, which then will run on the remaining time of the guest’s
time slice. Virtual machines can contain only one CPU. For a given pair of a
monitor and its guest, only one of the two can run at any given time. There-
fore, executing both on the same core does not degrade performance, and IDC
messages can be used in all cases.

Communication with other domains within Barrelfish, such as drivers, is
done using higher level abstractions of Barrelfish’s communication mechanisms.
This includes the use of chips and flounder. For most cases, the monitor does
not need to take extra steps, but only uses the provided interface within the
client libraries of the devices.

Between the monitor and the guest, communication is done only via virtual
interrupts and VM exits. The monitor can notify the guest by sending it a
virtual interrupt, which will trap the virtual CPU into an interrupt handler.
The guest can, with or without its knowledge, end up in a condition generating
a VM exit. Also, no special communication is done between the monitor and
the guest’s domain. The monitor owns the guest domain to the extent that it
shares all its memory, so there is no explicit communication necessary on the
host side. Explicit synchronization is also not needed, because the monitor and
its guest never run simultaneously.

6.7 Virtual Hardware

The virtual machine provides all essential PC hardware such that a modern
operating system can be executed on top of it. There is video adapter support.
Only simple video BIOS calls are supported such that a boot loader can print
messages before it initializes a serial controller. For some of the hardware, legacy
versions of the device were chosen to simplify their emulation.

6.7.1 Interrupt controller

The interrupt controlling device is provided by a legacy programmable inter-
rupt controller (PIC). This device is present in all available PCs sold today. It
is the predecessor of the advanced programmable interrupt controller (APIC)
which is also available in most PCs today. The PIC is a simple device offering
8 interrupt levels, i.e. different interrupt types. It is directly connected to the
CPU’s external interrupt pin. A PC normally contains two separate PICs of-
fering 16 different interrupt vectors. The second PIC is cascaded through an
interrupt line of the first PIC leaving 15 distinct interrupt vectors available for
the hardware to use. The PIC is responsible for managing all incoming external
interrupts. It will monitor the different sources of interrupts and forward them
in a well defined order to the CPU. It will wait for one interrupt to be acknowl-
edged before asserting a new one. This exact behavior is simulated through
the virtual device. This piece of software is responsible for all interrupts within
the virtual machine and all other virtual devices will call the PIC to assert an
interrupt.

In real hardware, a complete interrupt delivery would start with the PIC
setting the interrupt request pin to high. When the CPU is ready to take
the interrupt it will signal the PIC so, i.e. perform an INTACK cycle. The
PIC will then tell the exact interrupt vector to the calling CPU. One of the
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difficulties is the fact that a certain pending interrupt can be replaced by one
with a higher priority as long as the PIC does not receive the INTACK signal.
Therefore, the exact interrupt number is only defined at the time the CPU
PIC receives the INTACK. The same problem is preset with the virtual PIC.
It could happen that during the time when the virtual CPU is signaled that
there is a virtual interrupt pending a interrupt with higher priority is available.
The difference between physical hardware in this case is that a real PIC will
only raise an interrupt pin on the CPU when necessary but a monitor will pass
all information to the virtual CPU, also the information a physical CPU will
only know after an INTACK cycle, when it wants to signal that there is a
virtual interrupt pending. One could work around this problem by inserting a
VM exit just before the CPU would take a virtual interrupt, which would be
equivalent with performing the INTACK cycle. However, additional VM exits
should be avoided to help overall guest performance, especially if they are not
needed as we will see. One advantage of the virtual machine is the fact that
it knows at any exit whether the CPU will be ready to take an interrupt when
the VM is entered again. Together with the fact that guest and monitor run
mutually exclusive, the virtual PIC can replace the pending interrupt with a
higher-priority interrupt as long as the previously-pending one has not been
taken by the CPU. Therefore, the PIC maintains a queue of pending interrupts,
and examines the current CPU state at well-defined points during simulation
and then asserts a certain interrupt to the virtual CPU.

One of the defined points is when another device asserts an interrupt to the
PIC. The PIC will immediately check whether there is an interrupt pending
and whether it has lower priority than the newly arrived interrupt. In this case
it will assert the interrupt to the virtual CPU. Otherwise it will be added to
the queue of pending interrupts. Another point is when the interrupt handler
within the guest performs an end of interrupt cycle, i.e. signals the PIC that it
is finished with dealing with the current interrupt. The PIC will fetch the next
interrupt with the highest priority from its queue and assert it to the virtual
CPU, or do nothing if there is no interrupt. The same is done when the CPU
performs a hlt instruction. The hlt instruction is used by the operating system
to tell the underlying CPU that there is no work to do at the moment, and that
it should wait for the next event to come from hardware. In virtual machine
terms, this simply means the guest domain shall be taken off the ready list and
not scheduled until a virtual interrupt arrives. Therefore, every time the hlt
instruction is issued on a virtual CPU, the VM exits and the PIC is invoked
to check whether there is an event pending. If not, then nothing needs to be
done, and the systems sleeps until some driver produces a state change within
the monitor.

6.7.2 Timing and counting devices

A modern operating system needs some type of timing device to implement its
process preemption policy. Physical timing hardware usually uses an oscillator
with a predefined frequency. This provides an accurate and contiguous time
experience.

Within a system hosting a virtual machine, the monitor and its guest do not
get all the time of the available CPU. Time will continue to run, if neither of
the two are running currently. Therefore, the guest experiences jumps in time,
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i.e. time will not be contiguous anymore.

Programmable interval timer

The programmable interval timer (PIT) is a legacy device available in every PC.
It offers three counters. The first of these counters can be configured to trigger
a timer interrupt every time it reaches a counter value of zero.

VMkit provides a virtual PIT to the guest. The timer interrupt is imple-
mented using a timer on the host system. Every time the guest reconfigures its
virtual timer, the monitor will adjust the driver within Barrelfish to send it a
message once the time the virtual timer has to wait for has elapsed. Once this
happens, it will assert a timer interrupt to the virtual CPU.

Counters are implemented through a host-wide counter, which simply in-
crements since the system was booted. This value is translated to the guest
counter value each time the guest accesses the virtual counter registers.

Both virtual timer and virtual counter do not take the elapsed time into
account when neither the guest nor the monitor is running, and therefore the
guest’s time experience will be different compared to experience on physical
hardware. System software without real-time constraints should not have a
problem with this.

Real time clock

The real timer clock (RTC) is used to provide a source for wall-clock time within
a computer. It is normally connected to a battery and runs even if the system
is turned off. The RTC version usually built in to PCs also offers some RAM
which can be used freely by the operating system to store persistent data.

VMkit provides a virtual RTC to its guests but because Barrelfish has no
notion of wall-clock time yet it simply starts at some predefined date and up-
dates that date every second. The non volatile RAM (NVRAM) portions of the
RTC are neither forwarded to the real RTC nor stored on another persistent
storage device. Therefore, any data stored in the NVRAM will be lost when the
virtual machine is shut down. The guest can choose to receive an interrupt on
every RTC update or at some predefined alarm time.

6.7.3 Serial controller

The guests running on top of the virtual machines may be controlled through
the use of the virtual serial port. To that end, the virtual machine offers a
standard 16550 UART controller. It follows the specification of the National
Semiconductor PC16550D UART [25]. FIFO support was left out. Transmit-
ting FIFOs do not help to increase performance, since the virtual machine will
experience a VM exit every time a byte is pushed into that FIFO so it can
pass that byte along to the underlying real serial port or whatever device is
virtually connected to the port, like the system console. The underlying device
will take care of eventual real FIFOs. The same argument is true for receiving
FIFOs. Every FIFO read needs a VM exit, and if the guest refuses to read serial
input despite being notified of its availability, the underlying subsystem used
to provide the serial input will take care of the buffering. Another argument
is that, in contrast to real hardware where data can arrive at the serial port
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in parallel to the CPU executing unrelated instructions, it is not possible on
a virtual machine toachieve that parallelism where either the monitor runs to
simulate some hardware actions, or the guest runs.

The virtual machine offers four serial ports, all located at their legacy posi-
tions in IO address space and using their assigned interrupt vectors like in legacy
PC setups. As a special case, the first serial port is hard wired to Barrelfish’s
console and will receive all input the user types into that console. Correspond-
ingly, all output written to that serial port will show up on the user’s console.

6.8 Real Mode and System Boot

VMkit does not boot a BIOS like a real machine would, but provides GRUB [11]
as a entry into the virtual machine. GRUB is a universal boot loader capable
of booting many different kernels. It is generic and provides a human-usable
interface.

Most of GRUB’s code runs in protected mode, but it relies rely on the BIOS
to drive the most essential parts of the system, such as the hard disk controller.
Instead of running a BIOS underneath GRUB, VMkit simulates all BIOS calls
necessary to make GRUB work. The instruction raising a software interrupt
at the CPU (int), is intercepted only if the virtual machine is running in real
mode. The monitor then examines the exact parameters to this BIOS call and
performs the desired action like a normal BIOS would but on a higher level,
i.e. not by talking to low level interfaces of devices but using the high-level API
provided by Barrelfish.

Many of these calls are reused once Linux boots. Linux also boots in real
mode and fetches information from BIOS calls. This includes information about
the memory structure of the system. The virtual machine tells the guest about
the memory boundaries the monitor has chosen for that machine, which will
later also be reflected in the nested page table. Early access to a VGA console
is also provided through those calls to enable operating systems to print text
before they could set up a serial connection.

Although SVM would be able to virtualize the real mode directly on hard-
ware, an emulator is used during real mode execution. This should simplify the
port to the Intel variant of CPUs with virtualization hardware extensions, since
they do not support running the virtual machine in real mode.

6.9 Capabilites

VMkit uses Barrelfish’s capability system to perform privileged operations on
virtual machines.

In the current implementation there is a capability which is given to the
monitor process. This capability enables the process to create virtual machines,
i.e. set up memory regions to store the various control structures needed by the
hardware or shared between kernel and the monitor. The monitor needs to tell
the kernel about these regions which is also done through this capability. After
setup the monitor may make the guest domain runnable and from there on the
kernel will take care that the domain is dispatched correctly.
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This model is simple but unfortunately insecure. The monitor stores the dif-
ferent data structures within different memory locations. These data structures
contain host-physical memory-address references to each other. The monitor
could use any address to reference them which could jeopardize the security of
the system. Therefore, using this model, the whole monitor is part of the trusted
computing base which is undesirable. It is however very convenient because the
monitor can simply map all the locations holding those data structures into its
memory and manipulate them directly.

A more secure approach would be retyping a RAM capability of sufficient
size into a virtual machine capability for each virtual machine. This capability
would hold all data structures which are either shared between kernel and mon-
itor or needed by the hardware and therefore contain privileged information.
An interface between the kernel and the monitor would enable the monitor to
manipulate relevant portions of these structures, with the kernel always check-
ing for their security. Using this technique, the privileged portion of the virtual
machine control is not leaked into the monitor which will not be able to jeopar-
dize the host with ambiguous memory references. However, the kernel portion
VMkit would grow because some methods necessary to manipulate these data
structures would be moved from the monitor to the kernel.
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Evaluation

In this chapter I evaluate how well VMkit meets the aim in section 1.2. VMkit
should be simple and secure while staying competitive with regard to perfor-
mance to other comparable virtualization solutions.

In the following evaluation, VMkit is compared against KVM [20], described
in section 3.5. KVM is based on Linux and, like VMkit, is able to run unmodified
guests using the hardware extensions provided by AMD. It is therefore the
closest available virtualization solution of those enumerated in the literature
review (chapter 3).

First the structure is evaluated for security and simplicity patterns followed
by a analysis of VMkit’s performance.

7.1 Simplicity and Security

VMkit is lightweight. It adds fewer than 500 lines of code to the CPU driver part
of Barrelfish. Most of the code within the CPU driver is used to perform the
privileged portion of the world switch and the monitor notification mechanism.
A minor part implements the fast-path logic used to improve the performance
of VM exits and external interrupt handling.

The user-space part of the monitor is about 6000 lines of code. VMkit
does not yet support more virtual hardware than needed by operating systems
designed to run on the PC platform. Therefore, one can say that the major
part of the code is used to implement the core monitor logic. VMkit also does
not support the Intel virtualization extensions. Adding them would increase the
monitor and the kernel portion considerably.

KVM implements much of its functionality within the Linux kernel. This in-
cludes virtual interrupt handling and performance-critical devices, namely the
interrupt controller, the programmable interval timer, and the memory man-
agement unit. All VM exits caused by accesses to these devices will not be
forwarded to user-space code. The kernel part contains an x86 and x86-64 em-
ulator to emulate instructions which are not virtualized. Summing up, KVM
adds about 10k lines of code to the Linux kernel, which contains about the same
functionality as VMkit provides with the complete implementation, including
kernel and user-space parts.

The user-space part of KVM, QEMU, supports many more features than
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VMkit’s monitor. Its code base is therefore considerably bigger and not directly
comparable to VMkit.

From a security perspective, VMkit’s design is a lean solution where only a
very small portion of the code is run in privileged mode. Guest and monitor are
separated, and therefore the monitor is protected from corruption through the
guest. KVM has, as described above, considerably more code running within
privileged mode and is therefore more prone to software errors within its kernel
part. Its guest is run together with QEMU in the same user-space process.
Therefore, it may be possible for the guest, given a software error in QEMU,
to destroy its monitor. This is however not fatal for the entire host’s system
security.

As described in section 6.9, the current implementation of VMkit’s monitor
moves the whole user-space part of the monitor into the trusted computing base
of the system. The solution to that issue is also described within that section.
But even with the monitor within the TCB, there are still fewer lines of code
within the TCB than in KVM.

7.2 Performance

This section evaluates some of the performance aspects for virtual machines of
VMkit against KVM [20].

First the test environment used to run all the benchmarks is presented. After
that the relation of KVM and VMkit with respect to performance is evaluated
through a microbenchmark measuring the cycles needed to perform a world
switch, and a case study measuring the time needed to compile a Linux kernel.

7.2.1 Test environment

The system used to test VMkit contains 4 quad-core 2.5GHz AMD Opteron
8380 processors where each core has a 512kB L2 cache and each processor has
a 6MB L3 cache shared by all 4 cores. The system has 16GB of main memory.
Since the virtual machines only provide one CPU to their guests, only one of
the cores of the test system is used.

The base system used to run KVM on is Linux kernel version 2.6.30.5 com-
piled to run on x86-64 CPUs. QEMU 0.10.5 is used to control KVM and provide
the virtual hardware.

The virtual machine guest used to run the tests is also based on Linux
2.6.30.5. It is compiled to run on x86 CPUs. The reason why x86 was chosen
over x86-64 is because x86 is easier to virtualize, and because guest operating
systems assume the presence of devices, such as an APIC, which VMkit does
not yet support. The guest is assigned 2GB of real memory.

VMkit does not yet support virtual PCI buses and therefore does not contain
any virtual hard disk controllers. Fortunately, Linux has the ability to load its
entire root file system out of a RAM disk which the boot loader puts into the
guest’s RAM prior to executing the Linux kernel. Using this method, the guest
can run all tests using only the virtual hardware described in section 6.7.

Some results are compared to the performance when the guest is running
on physical hardware. In this case, the operating system will also load its file



44 Evaluation

Figure 7.1: The test environment. The KVM test system uses Linux as host
and QEMU as the controlling software within the guest. VMkit uses Barrelfish
as host and the VMkit monitor as the controller of the VM. Both use the same
virtual machine guest which consists of a Linux kernel and user-space software
intended to run the desired benchmarks.

system into RAM, and will not use more devices than when inside the virtual
machine.

7.2.2 Microbenchmark: World switch

The world switch, i.e. performing either a VM enter or a VM exit, is one of the
operations which will degrade the performance of a virtual machine compared
to a real machine, because a real machine can perform the same actions without
the need of world switches. It is therefore not possible for a virtual machine
running unmodified guests to achieve the same performance as the same guest
would on a real machine. To get as near to that limit as possible, a virtual
machine must reduce the total number of world switches needed and reduce the
cost of each world switch.

To examine the cost of a world switch, one can measure the cycles needed to
perform a VM enter or a VM exit. I measured the cycles needed to perform a
vmmcall instruction within the guest. The vmmcall instruction can be executed
within all SVM guests. It will immediately perform a VM exit and signal the
monitor that vmmcall was executed. Neither KVM nor VMkit do anything else
but perform a world switch back to the guest.

The test application will read the current time stamp counter, issue vmmcall,
and read the current time stamp counter again. It will repeat the process ten
million times and store for each vmmcall the difference between the starting and
ending time stamp counter. The time stamp counter is a 64-bit register in the
x86 architecture which is increased by one on each CPU cycle.

Table 7.1 shows the results of the measurements. The raw data shows a few
large outliers which cause the standard deviation to be high. These outliers show
up with the frequency of the timer interrupt. The host running Barrelfish uses
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vmmcall latency (cycles) Mean Median Standard deviation

VMkit (raw data) 7561 7510 2205
VMkit (cleaned data) 7538 7510 95
KVM (raw data) 2222 2139 1929
KVM (cleaned data) 2165 2139 573

Table 7.1: Latency of a vmmcall instruction. VMkit performs an
IDC into user space on every vmmvall. KVM handles the call within
the kernel. Cleaning the data, i.e. discarding the 1000 smallest and
biggest latencies reduces the standard deviation significantly.

two CPU cores. As soon as there is more than one core running, the Barrelfish
monitor, running on the same core as the VMkit monitor, will poll its URPC
channels on every timer interrupt, causing the additional latency. Therefore,
the raw data is sorted and the first and last 1000 entries are removed. After
this clean up, the standard deviation is small within VMkit. KVM still shows
an increased standard deviation. Most parts of the Linux kernel, including
KVM, are preemptable and therefore the scheduling within the kernel cannot
be predicted and will increase the variance of latency measurements.

VMkit, using its standard procedure for non-interrupt related VM exits,
needs significantly more cycles than KVM to perform the two world switches.
Due to the structure of VMkit, every VM exit which requires the monitor’s
attention will take the guest from the runnable queue and notify the monitor
using an IDC. The monitor will not take a particular action on a vmmcall. It will
make the guest runnable again and yield the remaining cycles from the current
time slice to the guest domain. This adds a context switch from the guest to the
monitor and one back from the monitor to the guest. KVM however handles
the vmmcall instruction within the kernel and does not perform any context
switch. The additional cycles used by VMkit to perform the world-switch are
the cost for the separation of monitor and kernel.

7.2.3 Case study: Linux kernel compilation

Software compilation is a test used in operating system and virtual machine
performance evaluation. It causes significant load on the file system to read
the source files and write the results, the CPU to compute the results and the
optimizations, and the memory to store the various data structures. In our case,
the file system will be located in RAM and therefore cause fewer VM exits than
if it would access some virtual device.

In this evaluation, the compilation time of a Linux kernel 2.6.30.5 is mea-
sured. The kernel configuration used enables nearly all features. This results
in a test which runs for about 30 minutes. The same benchmark is performed
on native Linux, inside a VMkit virtual machine, and inside a KVM virtual
machine.

Since the virtual machines used to perform this test do access little of the
hardware a standard PC offers, the virtual devices used most are the timers,
interrupt controller, and, if the test produces output, serial controller. For per-
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Linux kernel compilation VMkit KVM Linux native

Elapsed time (s) 2022.295 1939.581 1664.627
Relative to native Linux 1.215 1.165 1.0
Number of VM exits caused 34051539

Table 7.2: Time needed to compile a Linux kernel on native Linux, a
guest running on VMkit and a guest running on KVM.

formance reasons, KVM implements the virtual timer and interrupt controller
within the Linux host kernel, and therefore no switches to QEMU are necessary
on access of them. However, for simplicity and security reasons, VMkit only
puts the most relevant parts into the Barrelfish kernel which does not include
any virtual devices. They are all provided through the monitor domain.

Table 7.2 shows the results of the measurements. The time needed to perform
the compilation is smallest on native Linux. This was to be expected because
the whole virtualization overhead, such as world switches and device emulation,
are not necessary. The table shows that, compared to the run time on native
Linux, KVM adds 16.5% and VMkit 21.5% to the total elapsed time to perform
the compilation. VMkit needs roughly 82 seconds more than KVM. The table
also lists the number of VM exits, and therefore monitor invocations, which
occurred during the compilation. This number, multiplied by the difference of
the world-switch latencies shown in table 7.1, will yield the minimum number of
cycles used to perform all calls into the virtual machine monitor. Divided by the
frequency of the CPU core, which is 2511.393MHz, this results in a contribution
of roughly 72 seconds to the overall time. Out of the 82 seconds difference
in elapsed time, 72 seconds are used for the increased world-switch latency.
The remaining 10 seconds correspond to a 0.5% fraction of the total elapsed
time, and are within the boundaries for other minor implementation differences
between KVM and VMkit. Therefore, the additional time used by VMkit can
be reduced to the additional cycles needed to perform a world switch, which is
caused by the separation of kernel and monitor to increase system security.

7.3 Summary

This chapter compares VMkit to KVM [20] with respect to simplicity, security
and performance considerations. It shows that VMkit adds fewer lines of code to
the trusted computing base than KVM. It also shows that VMkit’s performance
is within the range of KVM.
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Conclusion

VMkit provides a virtual machine for Barrelfish. It is capable of running un-
modified guests using the hardware virtualization extensions provided by AMD.

VMkit is designed to maximize the separation between its components, in-
creasing the host system’s security. It is implemented using simple mechanisms.
It uses as much as possible of the available technology from Barrelfish, such as
the protection model for guest domains, memory management, and communi-
cation. It makes use of the capabilities provided by Barrelfish to control virtual
machine execution and all resources. The number of changes to the kernel is
minimized to contain only logic which needs to be executed in privileged mode,
and code which is used to implement the optimization to handle external in-
terrupts and the dispatch of the monitor, which is invoked directly on a VM
exit.

Currently, VMkit supports 32-bit x86 guests using a limited set of virtual
devices. This includes am MMU, interrupt controller, programmable interval
timer, and a real-time clock. It features one virtual CPU. To communicate with
the world outside the virtual machine, a serial controller can be used. Currently,
only Linux has been tested as a guest. The BIOS emulation is tailored to support
GRUB. For this emulation, a simple virtual hard disk is provided.

The evaluation of the performance of these features has shown that VMkit
does not add a considerable overhead to guest execution relative to comparable
virtualization solutions. It was evaluated against KVM, which adds roughly 5%
less overhead, compared to the execution on physical hardware, than VMkit.

8.1 Future Work

VMkit’s usefulness is limited with the current implementation. First of all, it
does not support a virtual PCI bus, which is essential to connect non-legacy
devices, such as network cards, hard disk controllers, and video cards, to the
system. Many of these devices also need a working DMA implementation, which
can be achieved using the IOMMUs available today. The PCI bus is a compli-
cated device, and its implementation would require some work, but it could
easily be integrated into the current monitor and connected to the virtual in-
terrupt controller.

VMkit currently supports the execution of 32-bit guests. The main reason
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for this decision is the fact that Linux allows more legacy hardware to be used
in a 32-bit machine than in 64-bit. This is especially true for the local APIC
and the IOAPIC. Apart from these missing virtual devices, all support needed
to execute 64-bit guests is already included in VMkit.

Intel and AMD provide different virtualization extensions within their ver-
sions of the x86 CPUs. VMkit supports the AMD variant. Adding support
for the Intel variant would require an extension of the interface between the
kernel and user-space part of VMkit. In contrast to AMD, Intel offers special
privileged instructions to manipulate the data structure holding all state and
settings for a particular virtual machine guest. The current implementation of
the monitor has the controlling data structures mapped into its virtual address
space and manipulates them through ordinary memory accesses.

Intel support could be combined with fixing the security leaks present in
the current use of capabilities, described in section 6.9. VMkit does not yet
employ the standard Barrelfish technique to store structures critical to system
security. Using this method, one would retype a capability referring to some
region of RAM into a capability referring to a virtual machine control block,
which must be protected from uncontrolled access by user-space domains. To
enforce such protection, special invocations could be added to this capability
type, which allow all modifications needed by the monitor. This additional
interface between VMit kernel and monitor could be designed in such a way
that the difference between AMD and Intel’s version of the virtual machine
control block is hidden as much as possible.

VMkit currently supports one virtual CPU. However, Barrelfish is designed
to run on heterogeneous multi-core systems. Running only on one core simplifies
memory allocation, since one can allocate the available memory regions with the
best performance properties to the running core. Supporting multiple virtual
CPUs would pose interesting problems. VMkit could try to hide all the effects,
such as non-uniform memory access, and inter-core communication latency and
throughput from the guest operating system, and try to find an optimal core and
memory usage pattern to optimize the virtual machine performance under the
hardware assumptions the guest is optimized for. Another possibility would be
to provide an interface allowing the guest to gain knowledge about the latency
and throughput properties of the physical hardware. Guests would have to be
modified to make use of such an interface.

An important use case for Barrelfish would be using the large number of
drivers available in commodity operating systems to control certain physical
devices and export their features back into the host. It would reduce the effort
needed to use devices which are not critical to performance. To this end, VMkit
could be improved to offer guests special memory regions and communication
channels to transfer data and events on a higher level than virtual hardware.
The guest would need to be modified to export the hardware it manages back
into the host over these channels. The monitor process would act as an ordinary
driver within Barrelfish, offering interfaces to access the different devices. To
gain the maximum performance, the guest would need to be able to access the
physical hardware directly. The monitor could make use of the IOMMU features
available in recent computers.
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T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In SOSP ’09: Proceedings of
the 22nd ACM Symposium on Operating Systems Principles, 2009.

[7] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX
2005 Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[8] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. Van Doorn,
A. Mallick, J. Nakajima, and E. Wahlig. Utilizing IOMMUs for Virtual-
ization in Linux and Xen. In Proceedings of the Linux Symposium Ottawa,
July 2006.

[9] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight Remote Procedure Call. ACM Trans. Comput. Syst., 8(1):37–
55, 1990.

[10] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-
level interprocess communication for shared memory multiprocessors. ACM
Trans. Comput. Syst., 9(2):175–198, 1991.



50 BIBLIOGRAPHY

[11] E. S. Boleyn. GRand Unified Bootloader. http://www.gnu.org/
software/grub/. [Online; accessed 31-August-2009].

[12] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: running
commodity operating systems on scalable multiprocessors. ACM Trans.
Comput. Syst., 15(4):412–447, 1997.

[13] E. Bugnion, S. W. Devine, and M. Rosenblum. System and method for
virtualizing computer systems, 1998. US Patent.

[14] M. Chapman and G. Heiser. Implementing transparent shared memory on
clusters using virtual machines. In USENIX Annual Technical Conference,
pages 383–386, 2005.

[15] R. J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM
Journal of Research and Development, 25(5):483–490, 1981.

[16] J. Dike. A user-mode port of the Linux kernel. In ALS’00: Proceedings of
the 4th annual Linux Showcase & Conference, 2000.

[17] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual machine monitor.
In Proceedings of the 1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS), 2004.
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