
Master’s Thesis Nr. 10

Systems Group, Department of Computer Science, ETH Zurich

Performance isolation on multicore hardware

by

Kaveh Razavi

Supervised by

Akhilesh Singhania and Timothy Roscoe

November 2010 - May 2011

Abstract

Modern multicore systems differ from commodity systems in the way system re-

sources are shared. Inter-processor main memory bandwidth, different levels of caches

and the system interconnect among other resources are now shared across different cores

in the system. Allocation of these shared resources is not always in the direct control

of the operating system. As a result, applications are allocated certain resources by the

operating system, but they implicitly share other resources with other applications in

the system. The lack of operating system control over this implicit resource sharing re-

sults in undesired performance degradation of performance critical applications. In this

thesis, we investigate the feasibility of running applications under performance isolation

in modern multicore systems. We show one of the possible ways for providing perfor-

mance isolation in such systems by 1) controlled placement of applications on cores and

memory locations and 2) avoiding contention on the memory subsystem. We then de-

sign a resource management subsystem with mechanisms for performance isolation and

performance-aware resource allocation on top of a multicore operating system. At the

end, we show the benefits of having such a subsystem in multicore operating systems.

Acknowledgements

I would like to thank my advisor Prof. Timothy Roscoe who made it possible for me to

come to ETH Zürich. I always had his support from the beginning of my master studies

and I certainly learned a great deal from him.

I would like to thank my mentor Akhilesh Singhania for helping me understand the

Barrelfish’s internals. Without his dedication and continuous feedback, this thesis was

not possible.

I would also like to mention Adrian Schüpbach and Simon Peter for answering my many

questions on Barrelfish during the course of this thesis and my lab project.

Last but not least, I would like to thank Hanieh, for her support during the course of

my stay in Switzerland and also proofreading this thesis.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background work 3

2.1 Literature review . 3

2.1.1 Operating systems that aim at performance isolation 4

2.1.2 Providing mechanisms for performance isolation 4

2.1.3 Reducing contention over shared resources 5

2.1.3.1 Reducing the contention over shared cache 6

2.1.3.2 Multicore scheduling to reduce contention over memory
subsystem . 7

2.1.4 Multicore benchmarks . 8

2.2 Barrelfish . 9

2.2.1 System Knowledge Base . 10

2.3 Linux and performance isolation . 10

2.3.1 System topology on sysfs . 10

2.3.2 NUMA memory allocation through libnuma 10

2.3.3 User mode process placement and priority enforcement 11

2.4 Summary . 12

3 A review of current multicore processors 13

3.1 Current multicore architectures . 14

3.1.1 AMD Magny-Cours . 15

3.1.2 Intel Nehalem-EX . 17

3.2 Cache coherency and cache directory . 18

3.3 STREAM on modern multicore systems 19

3.4 Summary . 20

iii

Contents iv

4 Resource sharing and performance in multicore systems 22

4.1 A synthetic microbenchmark . 22

4.1.1 Processing the results . 25

4.1.2 Experiment environment . 25

4.1.3 Reading experiment setup diagrams 26

4.2 Cores sharing a memory controller . 26

4.3 Effects of the shared interconnect . 28

4.3.1 Performance degradation caused by coherency messages 28

4.3.2 Performance degradation caused by routing data 33

4.3.3 Performance degradation caused by sharing a link 35

4.4 Hardware threads sharing a core . 37

4.5 Summary . 39

5 Performance isolation support in a multicore operating system 40

5.1 Enforcing performance isolation . 40

5.2 Enforcing memory isolation . 42

5.2.1 Memory bandwidth isolation and process migration 43

5.3 Performance degradation caused by sharing L3 44

5.4 Summary . 48

6 A resource management subsystem for Barrelfish 49

6.1 Representation of memory subsystem in Barrelfish 49

6.2 A resource management subsystem for Barrelfish 51

6.2.1 Microbenchmarks to detect memory performance properties 51

6.2.2 Monitoring memory bandwidth consumption 52

6.2.3 System topology using the information stored in SKB 53

6.2.4 An algorithm to create the interconnect topology 54

6.2.5 Resource management using Barrelfish capability system 55

6.2.6 An API for multicore resource management 56

6.2.7 A library for interacting with RCM 57

6.2.8 Limitations of RCM . 58

6.3 Summary . 59

7 Evaluation 61

7.1 PARSEC benchmark suite . 61

7.2 Benchmarking performance properties . 63

7.3 Benchmarking isolation properties . 65

7.4 Summary . 69

8 Conclusion 70

8.1 Future work . 71

A Terminology 73

B RCM’s API 75

Contents v

C Using RCM within fish 79

Bibliography 80

List of Figures

2.1 The multikernel model. 9

3.1 One of Magny-Cours’ dies. 14

3.2 Magny-Cours processor architecture. 14

3.3 Interconnect topology of a machine with four Magny-Cours processors. . . 15

3.4 Magny-Cours crossbar switch architecture. 16

3.5 Intel Nehalem-EX processor die. 17

3.6 Interconnect topology of a machine with eight Nehalem-EX processors. . . 18

4.1 The experiment setup for the memory controller experiment. 26

4.2 Memory controller experiment results. 27

4.3 The experiment setup when routing coherency messages. 28

4.4 The experiment setup when not routing coherency messages. 29

4.5 Performance degradation caused by coherency traffic. 30

4.6 Performance degradation caused by coherency traffic. 30

4.7 The experiment setup for coherency traffic of all cores. 32

4.8 Performance degradation caused by coherency traffic of all cores. 32

4.9 Experiment setup when routing data of load threads. 33

4.10 Experiment setup when data is routed through load threads’ node. 34

4.11 Performance degradation of different data routing scenarios. 35

4.12 Experiment setup of sharing interconnect link bandwidth. 36

4.13 Sharing interconnect link bandwidth experiment result 36

4.14 The SMT experiments’ design sketches. 37

4.15 Performance comparison of various SMT setups. 38

5.1 Experiment setup for shared cache performance degradation. (cache and
DRAM) . 45

5.2 Experiment setup for shared cache performance degradation. (cache) . . . 46

5.3 L3 cache miss rate comparison of local and remote stramclusters 46

5.4 Runtime degradation of the benchmark in two scenarios 47

5.5 Decomposition of runtime degradation by memory subsystems 47

6.1 Topology representation in RCM . 53

6.2 Execution steps with RCM . 56

7.1 The memory bandwidth usage of PARSEC benchmarks 62

7.2 The L3 cache miss rate of PARSEC benchmarks 63

7.3 Runtime comparison of the PARSEC benchmarks 64

7.4 Performance isolation experiment with PARSEC 67

vi

List of Figures vii

7.5 Performance isolation experiment with multiple isolated instances 69

List of Tables

3.1 STREAM benchmark rating . 20

3.2 STREAM benchmark rating without cache directory 20

viii

Listings

4.1 Core of the measuring thread . 23

5.1 Estimation of availability of memory bandwidth for a new core 44

6.1 Interconnect path discovery algorithm . 54

B.1 RCM Interface file . 75

C.1 Invocation of rcm in Fish . 79

ix

To my family

x

Chapter 1

Introduction

One of the primary tasks of an operating system is resource allocation; that is, allocating

the resources of a system (such as CPU time, memory, disk storage or bandwidth, etc.)

to competing applications 1. In modern multicore systems, some of these resources are

implicitly shared and their allocation is not directly under the control of the operating

system. For example, cores may share some levels of cache and in most of the current

systems such as the ones with AMD and Intel processors, it is not possible for the

operating system to allocate these caches to cores. Another example is when cores access

different locations in memory through the system interconnect; allocation of different

units of the interconnect to cores is also not explicitly under the control of the operating

system. As a result of this complex hierarchy of resources which may or may not be

shared, it is not clear to what extent the operating system can provide true resource

allocation. The lack of operating systems’ control over shared resources can affect the

performance of an application that is explicitly allocated some resources and implicitly

shares other resources with other applications.

In this thesis, we investigate to what extent performance isolation is possible in

modern multicore systems and possible ways for a multicore operating system to provide

performance isolation. Performance isolation is providing guaranteed resource allocation

to an application so that it is not affected (or minimally affected) when it shares the

internal system resources with other applications. Performance isolation is possible if

1) true resource allocation can be provided and 2) the applications are given unlimited

access to all of their isolated resources during the course of their execution.

The contributions of this thesis are the following items:

1In this thesis, by application we mean a set of processes executing together to perform a certain
task. Thus, a process is part of an application.

1

Chapter 1. Introduction 2

• We identify different levels of resource sharing by looking at two modern multicore

processors. Then, by running different microbenchmarks, we look at the effects of

this sharing on performance.

• Based on these results, we come up with concrete conditions under which perfor-

mance isolation can be provided in a multicore system.

• We discuss possible designs of a resource management subsystem which provides

performance isolation support for multicore operating systems and we describe an

implementation of such a subsystem for a multocore operating system.

• We investigate the benefits of our implemented resource management subsystem

by using a mix of macrobenchmarks.

In chapter 2, we look at background work on performance isolation. We also explore

Barrelfish [1], the operating system which this work implements upon and performance

isolation support in Linux. In chapter 3, we study two modern multicore processors and

then, we identify the resources that are being shared, explicitly or implicitly. Chapter 4

then carefully investigates the effect of this sharing on performance and its indications for

performance isolation and we come up with concrete conditions required for performance

isolation. In chapter 5, we discuss how a multicore operating system should provide

support for performance isolation. Chapter 6 describes the design and implementation of

a resource management subsystem for Barrelfish. Chapter 7 evaluates the implemented

functionality for performance isolation in Barrelfish and chapter 8 concludes.

Chapter 2

Background work

Performance isolation has been the topic of research since mid 90s and nowadays, it is

even more in the center of attention because of increased resource sharing as a result of

increased parallelism offered by modern multicore hardware. The research topics range

from providing some form of quality of service (QoS) for network traffic to reducing

crosstalk on processor caches. In this section, we briefly go through the background

work on performance isolation and then we describe Barrelfish, a multicore operating

system and its components related to this thesis in more detail. We also take a closer

look at Linux, a popular open source operating system in research community and its

mechanisms for providing performance isolation.

2.1 Literature review

We distinguish different research work related to performance isolation in four cate-

gories. The work in this thesis is built upon the ideas presented here and this rough

categorization helps putting it in context:

1. Operating systems that aim at performance isolation

2. Operating systems that provide mechanisms for performance isolation

3. Reducing contention over shared resources in the system

4. Benchmarks which can highlight performance isolation properties of multicore op-

erating systems

3

Chapter 2. Background work 4

2.1.1 Operating systems that aim at performance isolation

We describe the operating systems with performance isolation as a design principle.

Some of the operating systems with real-time support are examples of such designs.

The main requirement of real-time applications is to meet some form of deadline. To do

so, they need to have uninterrupted access to their allocated resources. Therefore, they

need to have some degree of performance isolation. Providing resource QoS guarantees

for soft real-time applications like continuous media (audio/video streams) applications

is one of the early attempts to provide performance isolation. Rialto OS [2] tries to

provide modular and distributed real-time resource management to allow for multiple

real-time applications to co-exist in system with shared resources. This is made pos-

sible by 1) adding appropriate real-time programming abstractions (like resource type

and resource amount), which allow for applications to reason about their resource re-

quirements and 2) a system resource planner to control the shared resources between

competing applications.

Applications usually know more about their resource requirements than the operating

system. As a result, application-level resource management is beneficial for applications

since they can use specific policies for resource management according to their needs.

It is also beneficial for the operating system since resource management policies are in

the applications themselves instead of one centralized operating system service. Exoker-

nel [6] is an operating system architecture for application-level resource management. In

Exokernel, an application is given unlimited access to the system resources with minimal

kernel intervention and there is no policy in the kernel regarding the way an applica-

tion uses system resources. This interesting design allows for implementing performance

isolation policies in the application rather than worrying about them in the kernel.

Tessellation [10] is a multicore operating system which argues for space-time parti-

tioning of resources in the system. In Tessellation, each application is given unlimited

access to space partitions which are isolated set of hardware resources. Each application

within its partition can enforce resource isolation policies. What is not clear yet is how

the operating system should enforce isolation in space partition granularity since as we

will discuss in chapter 3, in a multicore processor, some of the resources in the system

can inherently be shared across partitions.

2.1.2 Providing mechanisms for performance isolation

A different approach is by using mechanisms the operating system provides for perfor-

mance isolation. Applications can use these mechanisms to control the resource usage

Chapter 2. Background work 5

of their different building blocks.

Banga et al. [11] argue that mis-accounting of resource consumption leads to incorrect

scheduling based on their observation of different webserver architectures. To solve this

problem, they propose a novel approach for resource management on a commodity UNIX

operating system which distinguishes between process abstraction and resource usage.

Resource containers are proposed as a new abstraction for resource management with

which they enforce per process resource allocation policies. These mechanisms can enable

applications to implement policies for providing different resource QoS guarantees among

other desirable properties.

Our resource management subsystem described in chapter 6, makes resource alloca-

tion explicit in a similar way and provides similar benefits as resource containers. For

example, an application can request different resources with different performance iso-

lation guarantees (like isolated cores or isolated caches) and use them at the time of its

choosing to provide different QoS guarantees or minimize contention over the resources

that it holds.

There are other mechanisms for providing performance isolation by controlling the

contention over the shared resources discussed in the next section.

2.1.3 Reducing contention over shared resources

Reducing the contention over shared resources is one of the requirements for providing

performance isolation. This can either be automatically supported by the operating

system, or it can be a mechanism that applications can use. We discuss these cases here.

Bellosa [3] observed that the quality of video conferencing which is measured in

frames per second, occasionally degrades as other processes in the system use the mem-

ory bandwidth. He explored possible ways for controlling process memory access rate

in UNIX System V. He argued for preemption based on memory bandwidth usage in

shared memory bandwidth multiprocessors as a mechanism to provide memory band-

width QoS for soft real-time streaming applications like video conferencing. His method

was effective to provide memory bandwidth QoS for streaming media applications.

Marchand et al. [4] designed a method to provide memory QoS guarantees for real-

time applications. They implemented a dynamic memory allocator which interacts with

the memory controller. If the memory controller cannot meet the deadline of real-time

applications, then some of the memory allocations will have to wait and will go to a

failed request queue. This decision is based on a model which is proven to perform well

in overloaded systems [5]. The scheduling algorithm uses the failed queue statistics to

Chapter 2. Background work 6

make scheduling decisions. This method was developed for uniprocessor systems and

memory controllers in the current multicore systems which we explored, do not provide

such facilities.

Nemesis OS [7] is an exokernel designed with multimedia applications in mind. Op-

erating systems usually provide low level memory management (paging) in one of their

components to fulfill applications requests for virtual to physical mappings. However,

Nemesis takes a different approach to this problem. By handling page faults at appli-

cation level [8], Nemesis OS can control the QoS crosstalk over the operating system

pager. Barham et al. [9] take the idea further to virtualization technology by suggesting

that each guest operating system should perform its own paging using its own guaran-

teed memory reservation and disk allocation. These are other examples of benefits of

application-level resource management.

Our implementation of the resource management subsystem described in chapter 6,

allows for application-level management of the system resources, but it also makes sure

that performance isolation guarantees are not violated. The distributed shared nothing

approach of Barrelfish, along with its similarities with the Exokernel architecture, voids

centralized contention of low level system resource management like paging. We will

talk more about Barrelfish in section 2.2. Moreover, in section 5.2.1, we will describe

our method of controlling the shared memory bandwidth usage.

2.1.3.1 Reducing the contention over shared cache

Different levels of cache hide the latency of main memory. In many modern multicore

systems, some of these caches (usually the last level cache) are shared between some

cores. As a result, the applications running on different cores with a shared cache can

have performance impact on each other. Polluting the shared cache of other cores (or

other processes) is a common phenomenon observed when the cache is shared and it

results in considerable performance degradation. The research efforts discussed here try

to address this problem.

On the processor on-chip cache, cache partitioning [12] was proposed to provide

isolation on the shared cache between competing processes in the system. However,

this method needs to be implemented in hardware and common multicore processors do

not provide such facilities. With increased sharing of cache between cores in modern

multicore processors, providing such facilities is becoming even more important.

Ahsan et al. [13] pointed out that in modern multicore processors, cores share off-chip

bandwidth and this bandwidth is becoming a more severe performance bottleneck when

Chapter 2. Background work 7

many cores share it. Thus, they argue for a bandwidth-friendly replacement policy for

shared caches instead of traditional LRU replacement policy.

Lee et al. [14] proposed cache coloring for minimizing cache conflicts in multicore

processors for databases. This method tries to provide a similar facility as that of cache

partitioning, but in software.

Non-Uniform Cache Architecture (NUCA) proposed by J. Lira et al. [15] is another

method proposed and implemented in hardware to isolate the effect of delay when fetch-

ing memory from remote processors. NUCA works by partitioning the cache into banks

with different speeds and using the faster ones for local memory.

As discussed in this section and in other relevant publications (e.g. [16–18]), shared

caches are the source of some performance problems and there have been many attempts

to reduce cache contention, both in software and hardware. What is missing in commonly

used multicore hardware, is support for controlling the shared cache in software.

We study the degradation caused by shared cache in section 5.3 and in section 6.2.6

we provide a primitive to isolate the shared cache in our proposed resource management

subsystem by not allocating any other process on the cores which share cache. While this

primitive can result in serious under-utilization of the processor, it provides a mechanism

for applications that suffer the most by cache pollution to run in an isolated cache. In

section 7.3, we evaluate the benefits and shortcomings of isolating the shared cache.

2.1.3.2 Multicore scheduling to reduce contention over memory subsystem

As discussed in chapter 4, current multicore systems implicitly share internal resources

to access memory. This can result in contention over these resources. One important

question is how to reduce this contention as much as possible. Here, we discuss proposed

answers to this question, which are specific to modern multicore systems.

J. Lira et al. [19] studied the effect of memory sharing in multicore processors. They

showed that in a system which needs Front System Bus (FSB) to access an off-chip

memory controller, performance degradation should be expected when accessing mem-

ory from different cores. In the best case scenario, when the FSB, bus controller and

the cache are not shared between two cores, the STREAM benchmark [20] still shows

the degradation of 10%. They do not discuss the reasons for this degradation but we

speculate this is mostly because of coherency messages. When the FSB is shared, the

performance drops by around 50%. Based on these results, to improve performance,

they have created a user-mode scheduler which dynamically places processes on differ-

ent cores to reduce the memory path sharing of memory intensive processes. In most

Chapter 2. Background work 8

modern multicore processors, the memory controller is usually on-chip and the FSB is

no longer the bottleneck.

S. Blagodurov et al. [21] investigated the benefits of contention-aware scheduling for

multicore systems. They showed that the performance degradation caused by pollution

over the shared cache in multicore systems is only a fraction of the total performance

degradation. Most of the degradation is caused by contention over the memory con-

troller, the prefetcher, the interconnect and the FSB if present. They suggested that

reducing the cache miss rate of last level shared cache would reduce most of the con-

tention over the memory subsystem. Based on their findings, they designed different

contention-aware scheduling algorithms to improve performance or to reduce the power

usage of the system. Their main algorithm tries to equalize the cache miss rate of the last

level cache of all processors in the system by changing the location of processes on dif-

ferent processors. However, their algorithm does not guarantee any form of performance

isolation, just the best possible way to reduce contention for improved performance.

It is clear by these recent research work that lack of control over shared memory

bandwidth can result in an unfair performance degradation of some memory sensitive

applications. Since the last level cache miss rate correlates with the amount of shared

memory bandwidth, both of these proposed solutions use scheduling based on the shared

bandwidth consumption to minimize the contention over the memory subsystem.

We take away some important novelties from this part as well. We monitor the shared

memory bandwidth in order to make sure that performance isolation guarantees are not

violated (in section 5.2.1). To do so, we provide (in section 6.2.1) small microbenchmarks

which measure the actual shared bandwidth provided to each core by each memory

controller in the system.

2.1.4 Multicore benchmarks

With the invention of multicore processors, multicore operating systems started appear-

ing as means for researchers to implement their design ideas on these new systems.

Benchmarking has long been a method of showing different characteristics of special or

general-purpose operating systems. It is a question that whether current benchmarks

are adequate enough to show different properties of multicore operating systems.

Kuz et al. [23] argue that the current benchmarks that are used by the multicore

operating system research community do not really highlight the interesting properties

of such operating systems. They suggest that a multicore benchmark should consist of

a mix of workloads, which all together exercise all resources of the system and thus,

Chapter 2. Background work 9

can highlight important properties of a multicore operating system like performance

isolation.

D. Hackenberg et al. [22] suggest that simple benchmarks like STREAM can no

longer be used to compare new complex multicore processor architectures and therefore,

they suggest a new benchmark to capture performance properties of such processors.

In section 4.1, we will describe a microbenchmark to show different performance

properties of multicore systems. In chapter 7, we come up with a method of measuring

the effectiveness of our performance isolation support using the ideas presented in these

publications.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 2.1: The multikernel model.

2.2 Barrelfish

Barrelfish is a multicore OS which is currently being developed as a joint project in ETH

Zurich and Microsoft Research. Barrelfish is built upon the multikernel model [1]. The

multikernel model takes a shared nothing approach in structuring the operating system.

Each operating system node runs on an execution unit and communicates with other

operating system nodes via asynchronous messages to maintain the replicated state of

the system. Figure 2.1 shows the multikernel model in greater detail.

Barrelfish’s architecture is interesting for studying performance isolation because

most of the operating system’s tasks are distributed between all the cores in the system

(i.e. each core runs a different kernel). Barrelfish also tries to avoid centralized services

that are prominent sources of contentions. Moreover, Barrelfish follows similar ideas of

Exokernel architecture which minimize resource management policies in the kernel.

Chapter 2. Background work 10

2.2.1 System Knowledge Base

System Knowledge Base (SKB) is a service within Barrelfish which provides a rich rep-

resentation of the diverse and complex set of hardware[24]. To do so, it uses a prolog

engine with a constraint solver [25] and stores the facts given to it in a database. This

provides a unified database for storing information that the operating system, system

servers and user applications can use to reason about the hardware. The SKB service

also provides some logic to simplify querying common information (e.g. available mem-

ory addresses ranges). The facts are stored using different schemas for different types of

information.

We will later use SKB to store some facts about the system which are important for

providing performance isolation and better resource allocation according to application

needs.

2.3 Linux and performance isolation

Linux is a popular operating system for researchers to present a work built on top of it

or compare their developed prototypes with it. It is thus important to take a look at

Linux and its support for performance isolation.

2.3.1 System topology on sysfs

Linux provides the system topology to user-mode applications through sysfs [26]. The

NUMA information as well as shared cache information can be easily accessed through it.

The kernel backend uses CPUID [28, 29] and ACPI tables [30] plus some hardcoded archi-

tectural facts to provide this information. For example, cache shared cpu map setup

function in Linux kernel 2.6.37 always assumes that L3 caches are shared between all

cores of the same node. If one of such facts does not hold in the diverse set of available

hardware, it can lead to invalid entries in sysfs resulting in sub-optimal performance

when an application uses this information.

Interconnect topology information is also missing in sysfs, which makes it impossible

for applications to do interconnect-aware memory allocation.

2.3.2 NUMA memory allocation through libnuma

As we will discuss in the following chapter, both AMD and Intel, the giants of processor

architectures, have moved the memory controller to the processor chip. This is to void

Chapter 2. Background work 11

the FSB which rapidly becomes the bottleneck as the number of cores in the system

increases. One direct result of this, is different memory latency and bandwidth when

accessing memory through different memory controllers existing on different processors.

This Non-Uniform Memory Access (NUMA) calls for careful memory allocation for dif-

ferent processes running on different processors for the sake of increased performance.

Accessing local memory usually has lower latency and higher bandwidth. Accessing re-

mote memory on the other hand, usually has higher latency, lower bandwidth and will

utilize the shared interconnect.

Linux provides NUMA memory allocation support through a library called lib-

numa [31]. libnuma is a wrapper for a number of system calls to control the location of

memory allocation for different processes. Linux kernel itself also supports NUMA for

its own memory allocation to increase the performance of the kernel itself.

libnuma provides a number of functions in the form of numa alloc XXX, where XXX

defines where the memory should be allocated from. For example, numa alloc local al-

locates memory on the NUMA node where the process has made the call and numa alloc

onnode allocates memory on a specified NUMA node.

2.3.3 User mode process placement and priority enforcement

User-mode applications in Linux can use either taskset as an external application to

control where they want to be placed, or they can internally use the scheduling routine

sched setaffinity to define it [33]. To use taskset, a process needs to provide a mask of

the processors1 where it is interested to execute on or alternatively, it can provide a

list of the processors. For example, taskset -c 0,1,2 program restricts program to

processors IDs zero, one and two.

It is also possible to change the scheduling priority using a functionality provided by

the nice application. nice -n value program will change the niceness of program by

value, which can either be positive or negative. Having a small “niceness” makes sure

that the process is running with high priority, which results in minimized noise caused

by other processes running in the system. Internally applications can use either the nice

or setpriority (for a more fine grained scheduling requests) functions to do so [33].

1Linux treats each core as a different processor in this manner.

Chapter 2. Background work 12

2.4 Summary

In this chapter, we looked at the background work in performance isolation. We describe

different categories of research which are related to performance isolation:

• Operating systems that treat performance isolation as a requirement

• Operating systems that provide performance isolation mechanism for applications

• Reducing contention over shared resources in the system

• Benchmarks which can highlight performance isolation properties of multicore op-

erating systems

We then looked at Barrelfish, the multicore operating system which we work with in

this thesis. At the end, we looked at the mechanisms that Linux provides for performance

isolation.

Chapter 3

A review of current multicore

processors

Depending on the purpose of an application in the system, it uses different resources

provided to it by the system. The sharing of resources like CPU, memory, disk, network

and other devices is obvious. On systems with such resources, the operating system time

multiplexes these resources to different applications based on their requests. Due to the

increasing amount of parallelism in modern multicore processors, there could be more

applications executing in the system at the same time. This means that more resources

are shared in the system.

In multicore processors, the memory subsystem is generally where the sharing in-

creases the most since each core accesses memory through this subsystem. As a result,

this subsystem has become more and more complex and sharing happens at different

levels for different cores. For example, cores share different levels of cache or they might

access different memory locations through different memory controllers using different

interconnect links. NUMA as mentioned before is a result of memory access through

different possible paths to memory. To understand how the memory subsystem of mul-

ticore systems looks like and what units share which parts of it, we need to take a look

at current multicore architectures.

Throughout this chapter, by node we mean a NUMA node and each NUMA node by

definition has a separate memory controller. In section 3.1, we first look at two modern

multicore processors. In section 3.2, we discuss the mechanisms for providing memory

consistency model across multicore processors and their possible effects on performance

isolation. We also look at how STREAM benchmark performs on the multicore proces-

sors of section 3.1 at the end of this chapter.

13

Chapter 3. A review of current multicore processors 14

Figure 3.1: One of Magny-Cours’ dies.

Figure 3.2: Magny-Cours processor architecture. The blue lines are hypertransport
links. This figure shows how the hypertransport links are used to connect two dies of a

processor together.

3.1 Current multicore architectures

We take a look at two modern multicore architectures, one by AMD and one by Intel.

The important aspects for sharing which we take a closer look at are:

Chapter 3. A review of current multicore processors 15

• Cores sharing caches

• Hardware threading

• Memory controllers

• Crossbar switch which routes interprocessor data.

• Interconnect topology

N0 N2

N3

N4

N5

N6

N7

N1

I/O

I/O I/O

I/O

Figure 3.3: Interconnect topology of a machine with four Magny-Cours processors.
Ni is referred to node i. Each two dies form a processor and since each has a memory
controller, each processor has two NUMA nodes. N0 and N1 are nodes of the first

processor, N2 and N3 are nodes of the second processor and so on.

3.1.1 AMD Magny-Cours

Introduced in 2009, AMD Magny-Cours is a multi-chip module (MCM) with twelve

cores. This processor has two dies, each with six cores. Each core has a separate unified

512 KB L2 and all the cores in the same die share 1) 6 MB of L3 cache and 2) a memory

controller with two channels. Thus, the first level of sharing happens at the L3 cache

and then the memory controller. Figure 3.1 shows the architecture of each die. With

this architecture, the cores of each die become a NUMA group since they all have the

same access latency to the memory attached to their memory controller. One other

Chapter 3. A review of current multicore processors 16

SRIC

C

C

C

C

C

XBAR

Memory Controller

Coherent HT

Non-coherent HT Coherent HT

Coherent HT

IO HUB

System Request Interface

Core

Crossbar Switch

HyperTransport Link

Figure 3.4: Magny-Cours crossbar switch which routes data between different die’s
components.

observation is that each die has four hypertransport links. As shown in figure 3.2, two

of these links are used within the processor: one reads from the other die’s memory and

second one reads from the other die’s L3 cache. With this architecture, each die will

have two free hypertransport link and thus the total number of free links in the processor

package is four. Each of these hypertrasnport links are divided into to two sublinks which

can operate separately and provide eight connections to outside processors or I/O hubs.

For more information on the architecture of Magny-Cours, one can refer to [34].

One possible multiprocessor topology with Magny-Cours processors is 4P which is

shown in figure 3.3. In this topology, nodes are connected with maximum link distance

of two and nodes and I/O hubs with maximum link distance of three. As a result,

hypertransport links are shared when accessing remote memory or when I/O devices

transfer DMA memory to/from remote nodes.

Inside each die of Magny-Cours, the coherency messages and data, are routed be-

tween the system request interface (SRI), memory controller and hypertransport links

via a crossbar switch. The architecture of crossbar switch is shown in figure 3.4. If

the requested memory is not cached, then a request is sent from SRI to the crossbar

switch which in turn is forwarded to the local memory controller or one of coherent

hypertransport links depending on the location of memory. Depending on the architec-

ture, sometimes it is required to also send coherency messages on the interconnect when

accessing uncached memory. We will talk more about coherency messages in section 3.2

of this chapter.

Chapter 3. A review of current multicore processors 17

QPI2

L2

DDR

QPI1QPI0 QPI3

L2

L2

Core 1 L2

L2Core 2

Core 3

Core 1

Core 0 Core 4

Core 5L2

L2 Core 6

Core 7L2

L3

System Interface

Figure 3.5: Intel Nehalem-EX processor die.

In chapter 4, we will examine under which conditions, if any, the memory controller,

the hypertransport links and the crossbar switch become the performance bottleneck.

3.1.2 Intel Nehalem-EX

Intel Nehalem-EX is a processor released in 2010 with eight cores in a single die (fig-

ure 3.5). Each core has 256 KB of L2 cache and cores of each processor share a 24

MB L3 cache. Nehalem-EX supports Simultaneous MultiThreading (SMT) and for each

of those cores, two hardware threads exist. As a result, there are sixteen hardware

threads available per processor. Each of these hardware threads share a core’s different

units. Whenever one of the core’s thread is blocking for memory or any other event,

the other thread can use the core’s units and thus the total utilization of the core is

increased. There is a hardware scheduler which schedules the hardware threads of a

core. Obviously, hardware threads share many resources of a core including all levels of

cache.

The onchip memory controller of Nehalem-EX, supports four memory channels shared

between all of its eight cores. Intel uses QuickPath Interconnect (QPI), a similar tech-

nology to hypertransport, to enable inter-communication channels between processors.

One possible 8P topology with Nehalem-EX processors is in figure 3.6. In this topol-

ogy, processors may share QPI links to access remote memory or when interacting with

I/O devices. The maximum interconnect link distance is two, both for accessing remote

memory or interaction with I/O devices.

Chapter 3. A review of current multicore processors 18

N0 N2

N3

N4

N5

N6

N7

N1

I/O I/O

I/OI/O

Figure 3.6: Interconnect topology of a machine with eight Nehalem-EX processors.

There is not much detail available on the crossbar switch architecture of Nehalem-

EX. We assume that it is similar to that of Magny-Cours.

3.2 Cache coherency and cache directory

“A memory consistency model for a shared-memory multiprocessor [or multicore] speci-

fies how memory behaves with respect to read and write operations from multiple pro-

cessors” [35]. A cache coherency protocol implements the memory consistency model

of a multicore system. Cache coherency protocol implements the consistency model

by sending coherency messages on the interconnect when necessary. There are many

cache coherency protocols for different consistency models provided by different proces-

sors. They are usually thoroughly explored in the manual of every modern multicore

processor and studying these protocols is out of the scope of this thesis. Other than

added latency when operating on local memory, these messages consume interconnect

bandwidth.

Cache directory is a mechanism developed to reduce the amount of traffic caused by

cache-coherency protocol on interconnect links. Depending on the architecture, some-

times each processor (or die) has a cache directory in which it tracks whether a cacheline

from local memory is cached in any of the other processors in the system. This greatly

Chapter 3. A review of current multicore processors 19

reduces the traffic on the interconnect because when a processor accesses its local mem-

ory since it does not need to check with all the processors in the system to see whether

they hold a copy of that memory; It simply checks its local cache directory. We expect

that a cache directory improves the latency of accessing local memory and also improves

the whole system performance by reducing the traffic on the interconnect. Since not

all modern multicore processors have such a mechanism, it is important to know the

differences it might make on performance isolation. Thus, in the following chapters we

keep this factor in mind when we suspect it might make a difference in our benchmarks.

It is also interesting to note the travel path for coherency messages between processors

or dies. In Magny-Cours (look at figure 3.4), coherency messages are generated from

the system request interface if necessary, then they are forwarded to the crossbar switch

which decides where the messages need to go. Based on this decision, one of the coherent

hypertransport links is utilized to transfer the message to the remote node. In the remote

node, upon receiving the message from one of the hypertransport links, it is forwarded

to the crossbar switch. Crossbar switch decides whether it should route the message to

another node or it is meant for this node. If the message should be routed, it forwards

the message to one of the other hypertransport links and if it is local, it is routed to the

system request interface.

3.3 STREAM on modern multicore systems

STREAM [20] is a famous benchmark used in the processor market to advertise the

amount of memory bandwidth of a new processor. This benchmark computes the pro-

vided memory bandwidth by running a set of simple operations like copying a large

number of array elements. Although it can run on multiple cores at once and measure

the total system memory bandwidth, we run it in single threaded mode to measure the

memory bandwidth of one of the memory controllers in the system.

We use two testing machines throughout this thesis. One consists of four Magny-

Cours processors running at 2.2 GHz with topology shown in figure 3.3 and the other

consists of eight Nehalem-EX processors running at 1.8 GHz with topology shown in

figure 3.6. The STREAM results for these machines running Linux kernel 2.6.32 are in

table 3.1.

Chapter 3. A review of current multicore processors 20

Testing Machine Copy (MB/s) Scale (MB/s) Add (MB/s) Triad (MB/s)

4P Magny-Cours 5949.1037 5834.0315 5789.5724 6086.6037

8P Nehalem-EX 5344.7646 5007.7505 5795.0719 5583.2550

Table 3.1: STREAM benchmark rating for a 4P Magny-Cours machine and an 8P
Nehalem-EX machine.

It is possible to turn off Magny-Cours’ cache directory. As discussed in the previous

section, we expect to see a lower performance without cache directory in a multiproces-

sor system. Table 3.2, which shows the STREAM ratings with disabled cache directory

verifies this.

Testing Machine Copy (MB/s) Scale (MB/s) Add (MB/s) Triad (MB/s)

4P Magny-Cours 3122.2138 3125.3400 2957.8578 3115.8837

Table 3.2: STREAM benchmark rating for a 4P Magny-Cours machine when cache
directory is disabled.

In section 4.2, we show that our synthetic microbenchmark (described in section 4.1)

is compatible with STREAM.

3.4 Summary

In this chapter, we discussed the architecture of two modern systems to discover potential

sharing which can result in reduced performance isolation. The following resources are

shared in modern multicore systems:

• hardware threads share core’s cycles and all memory resources.

• Memory controller is shared between cores accessing memory through it.

• Cores depending on the architecture share cache. In most of the current modern

processors L3 is usually shared.

• Cores of the same die or processor share their crossbar switch which routes data

or coherency messages interdie or interprocessor.

• Interconnect links between processors are sometimes shared depending on the ar-

chitecture.

• Accessing memory of remote nodes will increase interconnect traffic. If a cache

directory is not present, accessing local memory also generates interconnect traffic.

Chapter 3. A review of current multicore processors 21

We also looked at the ratings of the STREAM benchmark running on the multicore

processors we described in this chapter.

Chapter 4

Resource sharing and

performance in multicore systems

To assess the amount of influence on performance when using shared resources in a

multicore system, we use a synthetic microbenchmark. For each of the shared resources

in the system, we run this benchmark in different scenarios to show the effect of sharing.

In section 4.1, we describe our synthetic microbenchmark and in section 4.1.2, our

testing environment. Section 4.1.3 explains how to read various experiment setup dia-

grams. We look at the effects on performance when sharing the main memory bandwidth

in section 4.2, sharing the crossbar switch in section 4.3.1 and 4.3.2, sharing the intercon-

nect links in section 4.3.3 and hardware threads sharing a core’s resources in section 4.4.

Based on these observations, in section 4.5, we summarize the concrete conditions under

which performance isolation can be provided by the system.

We do not analyze the pollution over shared caches in this chapter. This effect in

multicore processors was recently analyzed by Lee et al. [14] in the context of database

systems. They show different performance degradations based on the memory access

patterns of the cores with a shared cache. In section 5.3 of this thesis, we compare the

relative amount of performance degradation caused by shared cache and other memory

subsystems versus performance degradation caused by sharing the memory bandwidth.

4.1 A synthetic microbenchmark

We describe a simple synthetic microbenchmark to measure the amount of memory band-

width observed by cores when putting load on different parts of the memory subsystem.

It consists of different parts to provide flexibility for running it in different scenarios.

22

Chapter 4. Resource sharing and performance in multicore systems 23

Measuring thread This thread which is usually placed only on one execution context

(core or hardware thread) measures the amount of time it takes to read certain amount

of memory.

Here is the source of the main part of the measuring thread:

1 for(int i = 0; i < iterations; i++) {

2

3 start = read_timestamp ();

4 for(int j = 0; j < size; j += stride) {

5 final += ((char*)data)[j];

6 }

7 stop = read_timestamp ();

8

9 results[i] = (stop - start) - cost_of_reading_timestamp;

10 }

Listing 4.1: Core of the measuring thread

size in line four can be varied so that it is bigger than the L3 cache size1, insuring

that the data array does not fit in the cache. If we make sure that the array does not fit

into the cache, then each memory access will result into a cache miss and data is fetched

from memory. This way, we avoid the performance effects of shared caches.

stride in line four is varied to change the number of requests sent to the memory

controller per unit time. We always set it to cachline2 size, to make sure that each

access creates a cache miss. This results into the maximum memory load that this

microbenchmark can provide. We verified that each memory access results into a cache

miss when stride is set to cacheline size using the L1 data cache miss ratio of a core

which is running the measuring thread. The L1 data cache (L1D) miss ratio is calculated

using formula 4.1 on Magny-Cours [27]. The measured Refills from L2 is always zero

for this microbenchmark since the size of the array is larger than L2. Refills from

northbridge can either come from L3, another processor cache or DRAM [32]. For this

microbenchmark refills can only come from DRAM since memory is allocated locally

and the measured L3 hitratio is near zero, meaning L1 misses are not refilled from L3.

L1D missratio =
Refills from northbridge + Refills from L2

L1D requests
(4.1)

1L3 is the last level cache in our testing machines.
2Cacheline is the smallest unit of memory where system maintains coherency and is usually 32 or 64

bytes.

Chapter 4. Resource sharing and performance in multicore systems 24

The formula above gives a value close to one, which means that each access by the

microbenchmark results into a cache miss and will result in a cacheline transfer from

main memory.

We store the execution time of the for loop over the array for a number of itera-

tions. We explain how we use this information to calculate the memory bandwidth in

section 4.1.1. Whenever relevant, we also report the bandwidth reported by STREAM

to compare the compatibility of our microbenchmark with it.

Load generating threads We use these threads to increase the consumption of the

shared memory bandwidth.

These threads run a similar for loop with two differences compared with the mea-

suring thread:

1. They do not measure the time it takes for the for loop to execute, reducing the

time window given by the slow instruction which reads the timestamp register and

also they do not write the results to memory for the same purpose.

2. The for loop is repeated indefinitely instead of a limited number of iterations to

avoid cool down phase when the measuring thread is running.

We run the load generating threads on different cores than the core which is running

the measuring thread. Depending on the purpose of the experiment they might be placed

on different cores and access memory of different memory controllers. We explain in each

experiment where they are placed and which memory they access.

Management thread This thread is in control of the following:

• Experiment setup: It instructs which execution context should run the measure-

ment thread, which ones should run the load generating threads and which threads

should access which memory locations.

• Synchronization: It makes sure that the measuring thread starts measurement

only after all load generating threads are running.

• Results: It stores the execution times reported by the measuring thread into a file.

Chapter 4. Resource sharing and performance in multicore systems 25

4.1.1 Processing the results

As described, the measuring thread measures the execution time of the for loop over the

array for a number of iterations. The way the load generating threads work avoids cool

down phase. If we discard the first warm up iterations then we are always measuring the

execution time in the steady state. In this benchmark running on Barrelfish, only the

first iteration is in warm up phase which brings in the page table entries for the array

into the TLB cache.

With the execution times in the steady state, we extract the median, minimum and

maximum of the execution time of the for loop over the array. The execution times as

mentioned are in cycles. The bandwidth is then calculated using formula 4.2:

Memory bandwidth (MB/s) =
size in MB

cycle to second(execution time)
(4.2)

Note that cycle to second is processor specific and depends on the clock speed of

the processor. In Barrelfish, there is no functionality to change the default clock speed

and thus we do not need to worry about varying core clocks.

Whenever the difference between minimum and maximum in the observed bandwidth

is significant, we elaborate more.

4.1.2 Experiment environment

Most of the experiments run on a 48-core machine consisted of Magny-Cours processors

in 4P topology as discussed in the previous chapter. Memory modules are installed for

each processor with 1333 MHz DDR3. The other testing machine is a Nehalem-EX based

system containing 32 physical cores and 64 hardware threads in 8P topology shown in

figure 3.6. Both machines have cacheline size of 64 bytes.

For each experiment, we mention which testing machine we use. For most of the

experiments, we use the 48-core machine because it lets us turn off dies’ cache directories

in its BIOS.

As mentioned in the previous chapter, we use node interchangeably with NUMA

node. Since Magny-Cours has two dies with two different memory controller, each pro-

cessor has two nodes whereas Nehalem-EX is a single die with a single memory controller

and as a result, it is a single node processor.

Chapter 4. Resource sharing and performance in multicore systems 26

4.1.3 Reading experiment setup diagrams

We explain how to interpret the experiment setup diagrams throughout this chapter.

One such a diagram is in figure 4.1. In such diagrams, M stands for the measuring

thread and L for the load generating threads. The core which is running the measuring

thread is blue, the cores which are running the load generating threads are red and the

idle cores are yellow. The gray zone shows the processor package and the lighter gray

shows the die(s).

4.2 Cores sharing a memory controller

We know that cores can share the memory bandwidth of a memory controller. In this

experiment, we are trying to understand to what extent it is possible to share the memory

controller provided bandwidth without performance degradation.

Testing machine: Magny-Cours. Since we know that each die in a processor has a

dedicated memory controller, we vary the number of cores accessing local memory in

the same die. The memory controller has two DDR3 channels running at 1333 MHz.

Magny-Cours can use 1 MB of each of its nodes’ 6 MB L3 cache for cache directory.

Memory Controller 2 Memory Controller 3

N
o

d
e

 3

N
o

d
e

 2

L2

L2

M2

L2

L2

L2

Figure 4.1: The experiment setup for the memory controller experiment.

Experiment setup: The measuring thread runs on one core and we iteratively in-

crease the number of load generating threads running on different cores of the same

die. All the threads access local memory. The experiment is repeated once with cache

Chapter 4. Resource sharing and performance in multicore systems 27

directory and once without cache directory by disabling it. The setup sketch of this

experiment is in figure 4.1.

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5

O
b
se

rv
e
d

 m
e
m

o
ry

 b
a
n
d

w
id

th
 (

M
B

/s
)

Other cores running load generating threads

W/o cache directory
W/ cache directory

STREAM Copy w/ cache directory
STREAM Copy w/o cache directory

Figure 4.2: Performance degradation caused by sharing the main memory bandwidth.

Discussion: Figure 4.2 shows the result. With cache directory, just by adding one load

generating thread the observed memory bandwidth by the measuring thread drops by

11%. When all 5 load generating threads are enabled, the observed bandwidth drops by

61%. Similar effect happens when we disable the cache directory. This experiment shows

that we need to control the consumption of the shared bandwidth to provide performance

isolation.

It is interesting to see that in Magny-Cours only two cores can see the effect on

performance when using the shared bandwidth. As mentioned before in section 2.1.3,

current memory controllers do not provide a facility to control the consumption of the

shared bandwidth and as a result, we need a fully software-based approach to do this.

We explain a mechanism that we use to control the shared memory bandwidth in sec-

tion 5.2.1.

Figure 4.2 also includes the Copy bandwidth from STREAM and we can see that our

microbenchmark reaches almost the same memory bandwidth. One of our observations

in section 6.2.1 was that different NUMA groups see different memory bandwidth or

latency. Thus, sometimes the measured bandwidth of our microbenchmark is closer to

STREAM as we place our measuring thread on different NUMA nodes. We include

STREAM ratings whenever they are relevant to provide a basis for comparison.

Chapter 4. Resource sharing and performance in multicore systems 28

4.3 Effects of the shared interconnect

One important question for performance isolation is the performance effects of traffic

on the shared interconnect. There are different scenarios where processor units like the

crossbar switch or the interconnect links are shared between cores. In this section, we

experiment with these scenarios to see in what situations they become the performance

bottleneck.

Testing machine: Magny-Cours. This machine has four processors, each having two

dies with different memory controllers resulting in eight NUMA groups. Magny-Cours

uses 1 MB of each of its nodes’ 6 MB L3 cache for cache directory. As shown in figure 3.3,

nodes are connected with each other via either one hyper transport link or two. A middle

node is also active in the transmission of data between the two nodes when their hyper

transport link distance is two.

4.3.1 Performance degradation caused by coherency messages

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

L7 M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

L7L7

L7L7L7

Node 6 Node 4

M
4

Node 5

Co
he

re
nc

y
M

es
sa

ge
s

C
o

h
e

re
n

cy

M
e

ss
ag

e
s

Figure 4.3: Experiment setup 1 diagram. The gray arrows represent hyper transport
links. The coherency broadcasts of node seven is routed by node four to node five.

From the architectural description of Magny-Cours, we know that when two nodes

are located within a single processor, one of their connecting hyper transport links is used

just for transferring caches. In our experiment threads do not share any memory. Thus,

if the nodes are directly connected, there is no difference between two nodes located in

a single processor or different processors.

Chapter 4. Resource sharing and performance in multicore systems 29

As mentioned, in our testing machine it is possible that one node routes memory or

coherency messages between two nodes. We experiment with performance indications

of routing memory or coherency messages on the performance of local memory of the

node which does the routing for another node.

The information regarding routing of the data or coherency messages can be obtained

by reading the PCI configuration space. For more information one can consult with

Magny-Cours’ manual [32].

Experiment setup 1: First, we experiment with indications of routing coherency

messages. We run one measuring thread on a node and we start running the load

generating threads on another node. The measuring thread’s node has to route the

coherency messages of load generating threads’ node. We expect to see a difference with

cache directory since it greatly reduces the coherency messages that the dies need to send

on the interconnect. Thus we experiment once with and once without cache directory.

The setup sketch of this experiment is in figure 4.3.

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 1

L1 L1 L1

L1 L1 L1

Node 0

M
e

m
o

ry
 C

o
n

tr
o

lle
r

0
M

e
m

o
ry

 C
o

n
tr

o
lle

r
1

Coherency Messages

Coher
en

cy
 M

es
sa

ge
s

Node 4

M
4

Node 5Node 1

L1L1L1

L1L1L1

Node 0

Figure 4.4: Experiment setup 2 diagram. Coherency broadcasts of node one is trans-
ferred directly to both nodes four and five and no routing is necessary by node four.

Experiment setup 2: Same as setup 1, except that the node which is running the

measuring threads does not have to route the coherency messages of the node which is

running the load generating threads. The setup sketch of this experiment is in figure 4.4.

Chapter 4. Resource sharing and performance in multicore systems 30

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6

O
b
se

rv
e
d

 m
e
m

o
ry

 b
a
n
d
w

id
th

 (
M

B
/s

)

Other cores running load generating threads

W/o cache directory, routing
W/ cache directory, routing

W/o cache directory, not routing
W/ cache directory, not routing

STREAM Copy w/ cache directory
STREAM Copy w/o cache directory

Figure 4.5: Performance degradation caused by coherency traffic.

Discussion: Figure 4.5 shows the result. With cache directory, the system shows no

performance degradation. This is expected since accessing local memory should not re-

sult in coherency messages and as a result load generating threads do not generate any

(or minimal) coherency messages. However, when cache directory is disabled load gen-

erating threads do generate a lot of coherency messages. When the measuring thread’s

node does not have to route the coherency messages, the observed memory bandwidth

drops by 7% and when it also needs to route the coherency messages by 68%. Accord-

ing to these experiments, whenever there is no cache directory in the system, it is not

possible to provide complete memory isolation unless some methods are provided to limit

the possible number of coherency messages on the interconnect.

 0

 5000

 10000

 15000

 20000

 0 1 2 3 4 5

D
R

A
M

 b
a
n
d

w
id

th
 (

M
B

/s
)

Other cores running load generating threads

W/ cache directory
W/o cache directory

Figure 4.6: Performance degradation caused by coherency traffic.

Chapter 4. Resource sharing and performance in multicore systems 31

Magny-Cours’ memory architecture [36] routes remote coherency messages or data

through the crossbar switch. As shown in figure 3.4, cores which access local memory

share the crossbar switch with interconnect links. These experiments show that crossbar

switch is a potential performance bottleneck when routing coherency messages.

The result of this experiment is very interesting for the case with disabled cache

directory. As we there more than two load generating threads, the coherency traf-

fic caused by their memory bandwidth consumption, becomes a bottleneck for a remote

node. Figure 4.6 shows the consumed DRAM bandwidth of our microbenchmark. When

the consumed local memory bandwidth goes above 6.3 GB/s, the coherency traffic cre-

ates a bottleneck on the remote processors. The DRAM bandwidth is calculated using

formula 4.3 [27].

DRAM bandwidth (MB/s) =
(DRAM0 events + DRAM1 events)× 64

Time in second× (1024× 1024)
(4.3)

It is also interesting to note that with cache directory, we see a considerable decrease

in performance when adding the last load generating thread. We speculate that it

has something to do with the number of cores that are sending requests to the system

request interface (see diagram 3.4) since with five cores we already see a higher DRAM

bandwidth and the crossbar switch is not concerned with the cores.

Now the question is to what extent it is possible to increase the load on the memory

subsystem without observing performance degradation caused by coherency messages

with cache directory.

Experiment setup 3: We run our measuring thread on one of the nodes and start

running the load generating threads on cores of the other nodes in the system. We have

eight nodes (each with separate memory controller) in the system each with six cores.

We thus have the maximum of 42 cores running the load generating threads. Figure 4.7

shows the experiment setup’s sketch.

Discussion: As we can see in figure 4.8, with cache directory there is no performance

degradation in the system. This interesting results suggest that firewalling from other

processors in the system is not necessary when a processor is running in isolation with

a cache directory mechanism in place. This is due to minimized cache coherency traffic

on the interconnect.

Chapter 4. Resource sharing and performance in multicore systems 32

Memory Controller 0 Memory Controller 1

Memory Controller 7Memory Controller 6Memory Controller 5Memory Controller 4

Memory Controller 3Memory Controller 2

N
o

d
e

 1

M1

N
o

d
e

 0

L1

L1

L1

L1

L1

L1L0

L0

L0

L0

L0

L0

N
o

d
e

 3

N
o

d
e

 2

L1

L1

L1

L1

L1L2

L2

L2

L2

L2

L2

L3

L3

L3

L3

L3

L3

N
o

d
e

 7

L7

L7

L7

L7

L7

L7

N
o

d
e

 6

L6

L6

L6

L6

L6

L6

N
o

d
e

 5
L5

L5

L5

L5

L5

L5

N
o

d
e

 4

L4

L4

L4

L4

L4

L4

Figure 4.7: Experiment setup 3 diagram.

 0

 2000

 4000

 6000

 8000

 10000

 0 6 12 18 24 30 36 42

O
b
se

rv
e
d
 m

e
m

o
ry

 b
a
n
d
w

id
th

 (
M

B
/s

)

Other cores running load generating threads

W/ cache directory
STREAM Copy w/ cache directory

Figure 4.8: Performance degradation caused by running load generating threads on
all cores.

This suggests that as coherency messages become scalable with cache directory, the

memory subsystem does not become the performance bottleneck if all the cores in the

system allocate memory locally.

Note that cache directory does not change the fact that accessing remote memory

Chapter 4. Resource sharing and performance in multicore systems 33

results in producing coherency messages, but not as much as a system without it. With

cache directory, the information on who holds the most recent data is stored in the

cache directory and instead of broadcasting coherency messages for the fresh data, the

owner of the cached memory can directly send a coherency message to the node which

holds the most recent version in its cache. P. Conway et al [34] describe more details on

Magny-Cours’ coherency messages with cache directory.

4.3.2 Performance degradation caused by routing data

In this set of experiments, we investigate whether routing data affects the performance

in possible scenarios.

There are two possible scenarios where routing data by a middle node can have some

effects on the observed performance:

Node 4

M
4

Node 5

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

L5 L5 L5

L5 L5 L5

Node 6

M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

D
at
a

D
at
a

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

L5 M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

L5L5

L5L5L5

Node 6 Node 4

M
4

Node 5

D
at

a

D
at

a

Figure 4.9: Experiment setup 4 diagram. Measuring thread is accessing local memory
and its node routes the data of load generating threads which are running on a different

route. The arrows show how the data is actually routed.

1. Excessive load on the local memory controller of the node which routes the data

can affect the performance observed by a remote node.

2. Excessive load sent by remote node on the link can affect the performance of the

local memory of a node which routes the data.

Chapter 4. Resource sharing and performance in multicore systems 34

Experiment setup 4: This experiment is designed to address the first scenario. We

run the load generating threads accessing local memory on a node. Then we run our

measuring thread, running alone on a different node, accessing remote memory which

is routed through the node which is running the load generating threads. We run this

experiment with and without cache directory. The sketch of this experiment setup is in

figure 4.9.

Experiment setup 5: This experiment is designed to address the second scenario.

We run the load generating threads in a node and they access remote memory of a node

which is routed by another node. Then we run our measuring threads on the routing

node accessing local memory. We run this experiment with and without cache directory.

The sketch of this experiment setup is in figure 4.10.

L 4L 4L 4

L 4L 4L 4

Node 5

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

M
5

Node 6

M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

D
at
a

D
at
a

M
4

Node 5

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

L5 L5 L5

L5 L5 L5

Node 6

M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

D
at
a

D
at
a

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 7

M
e

m
o

ry
 C

o
n

tr
o

lle
r

7
M

e
m

o
ry

 C
o

n
tr

o
lle

r
6

M
5

Node 6 Node 4

L4L4L4

L4L4L4

Node 5

D
at

a

D
at

a

Figure 4.10: Experiment setup 5 diagram. Measuring thread is accessing remote
memory which is routed by the node which is running load generating threads accessing

local memory.

Discussion: The results of both experiments are in figure 4.11. These experiments

show that crossbar switch is not a performance bottleneck with cache directory even

under the load of routing the data of another node. However, again without cache

directory, it rapidly becomes a performance bottleneck because of coherency messages

observed on the interconnect.

Chapter 4. Resource sharing and performance in multicore systems 35

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6

O
b
se

rv
e
d

 m
e
m

o
ry

 b
a
n
d
w

id
th

 (
M

B
/s

)

Other cores running load generating threads

W/o cache directory, exp. 4
W/ cache directory, exp. 4

W/o cache directory, exp. 5
W/ cache directory, exp. 5

STREAM Copy w/ cache directory
STREAM Copy w/o cache directory

Figure 4.11: Performance degradation of different data routing scenarios.

The result of this experiment has an interesting indication on performance isolation:

in a cache directory enabled system, we do not need to control the memory bandwidth

consumption of a node which routes data.

We can design a more aggressive experiment for cache directory enabled systems

which puts more load for data routing where a node routes more than one node’s data.

However it is quite unlikely that such a scenario happens where nodes are at most two

hops away and we move on and focus on more interesting cases.

4.3.3 Performance degradation caused by sharing a link

Another interesting case is investigating when the shared interconnect links can poten-

tially become a performance bottleneck. This is important because cores can share them

to access the memory of remote nodes. This situation can happen for example when an

I/O device is attached to a remote node or when the memory requirement of a process

cannot be provided by local memory resources.

Experiment setup 6: We run our measuring thread on one of the nodes and start

reading remote memory. Then, we iteratively add load generating threads on the cores

of the same node reading the memory of the same node as the measuring thread. The

remote memory is chosen at a place with only one interconnect link away. The experi-

ment setup’s sketch is in figure 4.12. The experiment is repeated by disabling the cache

directory.

Chapter 4. Resource sharing and performance in multicore systems 36

M
e

m
o

ry C
o

n
tro

lle
r 4

M
e

m
o

ry C
o

n
tro

lle
r 5

Node 2

M
e

m
o

ry
 C

o
n

tr
o

lle
r

3
M

e
m

o
ry

 C
o

n
tr

o
lle

r
2

D
at

a

Node 2 Node 2Node 4

Node 2Node 5Node 2Node 3

L4L4M
4

L4L4L4

Figure 4.12: Experiment setup 6 diagram. Measuring thread and load generating
threads run on the same node and access remote memory through the same hyper

transport link.

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5

O
b

se
rv

e
d
 m

e
m

o
ry

 b
a
n
d
w

id
th

 (
M

B
/s

)

Other cores accessing memory

W/o cache directory
W/ cache directory

Figure 4.13: Performance degradation of sharing an interconnect link.

Discussion: Figure 4.13 shows the result of this experiment. Having cache directory

does not help to improve performance when accessing remote memory since the cost

is dominated by the bulk transfer over the interconnect link. Cache directory cannot

improve latency as it does in the local memory controller experiment (figure 4.2) since

here we need to wait for the result of cache coherency broadcasts (see page ten of [34]).

The memory bandwidth provided by interconnect links of Magny-Cours is slightly over

2 GB/s and it drops to half as soon as another core starts using it. This experiment

Chapter 4. Resource sharing and performance in multicore systems 37

shows that since one core can easily saturate the memory bandwidth of an interconnect

link, we need to provide a mechanism to isolate these links if a core running in isolation

is accessing remote memory through that link.

In section 6.2.4, we describe an algorithm to automatically extract the interconnect

topology and then by using it, we provide a mechanism to isolate core to memory path.

4.4 Hardware threads sharing a core

In this experiment, we want to investigate the effects of simultaneous multi threading

(SMT) on memory performance.

Testing machine: Nehalem-EX. It is chosen because it is the one with SMT support.

1 SMT

M0

2 SMT (1 core)

M0
M0

2 SMT (2 cores)

M0 M0

1 core

M0

Figure 4.14: The SMT experiments. The dashed circles indicate cores with SMT
enabled. All setups access local memory of processor 0.

Experiment setup: We once execute the measuring thread on one hardware thread.

Then on two hardware threads which belong to the same core and then two hardware

threads which belong to two different cores. We also turn off SMT and run the same

experiment to see the effect of it on performance. All the experiments were executed in

one processor and the experiments’ setup sketches are in figure 4.14.

Chapter 4. Resource sharing and performance in multicore systems 38

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 HT
1 core

2 HT (1 core)

2 HT (2 core)

O
b
se

rv
e
d

 m
e
m

o
ry

 b
a
n
d
w

id
th

 (
M

B
/s

) execution context 1
execution context 2

STREAM in Linux

Figure 4.15: Performance comparison of various SMT setups.

Discussion: Figure 4.15 shows the result. This experiment shows that running two

memory intensive processes on the hardware threads of the same core results in perfor-

mance degradation. Even when we try to run two measuring threads on the hardware

threads of different cores, we observe a degradation in each compared to the case where

we turn off SMT completely. The reason for this is that the idle hardware thread of the

core is running the monitor process (A Barrelfish privileged user process) and the spawn

process (a process which is responsible for executing a new process).

The result of this experiment is not very exciting since hardware threads do share a

lot of resources of a core including the core’s cycles. SMT performs relatively good in

this experiment because most of the times hardware threads are blocking for memory

and they do not share much of the core’s cycles.

However, there are two interesting things which we notice by looking at figure 4.15:

1. STREAM seems not to degrade much when running on a hardware thread in Linux

compared to a core. This suggests that Barrelfish uses slightly more resources of

the core than Linux due to its distributed nature.

2. One hardware thread (or core) does not affect the observed bandwidth of another

hardware thread (or core), because the total consumed memory bandwidth doubles

when we use two cores of the same processor. This is not the case for Magny-Cours

as shown in figure 4.2.

The measured rather low minimum bandwidth in all the cases, is caused by infrequent

peaks which we could not identify due to lack of performance monitoring support in

Chapter 4. Resource sharing and performance in multicore systems 39

Barrelfish for this processor. This experiment shows that if a process with performance

isolation guarantees is running on a hardware thread of a core, another process should

not be placed on other free hardware threads of this core or SMT should be turned off

preferably to remove the noise of other hardware threads which might run other processes

or operating system’s components.

4.5 Summary

In this chapter we measured different aspects in sharing the memory subsystem in mod-

ern multicore systems. We found the following conditions to be necessary for providing

performance isolation:

With SMT Process allocation on hardware threads should consider isolation aspects.

This is due to the fact that most of the resources of a core are shared by its threads. A

more aggressive approach for performance isolation would be disabling SMT to minimize

the noise caused by other hardware threads of the core.

With cache directory The consumption of the provided memory bandwidth by the

local memory controller should be controlled if one of the local cores is running in

isolation. If a core is accessing remote memory, the interconnect path to that memory

should be isolated. Since cores usually share the last level cache, to provide perfect

performance isolation, when one of the cores is running in performance isolation, no

process should run on the cores with the same shared cache.

Without cache directory All of the facts for a system with cache directory system

also holds here. However, as we saw in figure 4.5, if a node needs to route coherency

messages of other cores, the performance of its local memory will degrade. This makes

it difficult for a system without cache directory to provide performance isolation since

even remote nodes may need to be isolated. This can result in a very low total system

utilization.

Chapter 5

Performance isolation support in

a multicore operating system

In this chapter, we discuss the requirements of supporting performance isolation in a

multicore operating system based on the results we obtained in the previous chapter.

If a process1 wants to run in performance isolation, it needs to provide some infor-

mation to the operating system regarding its resource requirements. The more detailed

information enables the operating system to provide more fine grained performance iso-

lation. The minimal information which operating system might need to know to provide

isolation guarantees is the following:

1. The desired location of the isolated core

2. The size of memory

3. The location of memory

4. Required performance properties of the memory

5.1 Enforcing performance isolation

We assume that processors provide cache directory or a similar architecture to minimize

the interconnect traffic. This is important because as we showed in the previous chap-

ter, performance isolation without cache directory is not feasible in modern multicore

systems. Fortunately, most of the recent widely used multicore processors from AMD

1A process in Barrelfish context is called a dispatcher.

40

Chapter 5. Performance isolation support in a multicore operating system 41

and Intel provide such a facility. To enforce performance isolation, the operating system

needs to ensure the following using the provided information:

1. If there is no SMT support, no other process should run on any of the cores which

are running in isolation of a process. With SMT, it is typically not possible to

filter out the noise of other hardware threads. Thus, it is better to turn them off

to provide performance isolation.

2. If an isolated core is using the shared memory bandwidth of a memory controller,

then it should be possible to control consumption of the shared bandwidth of that

memory controller in order to avoid performance degradation. For example, each

of the memory controllers on the dies of a Magny-Cours provides roughly 6 GB/s

of copy bandwidth. We should avoid overcommitting this shared bandwidth by

monitoring the amount of memory bandwidth consumption.

3. If an isolated core wishes to access remote memory for any reason, the intercon-

nect path to that memory should be isolated. In our machine with Magny-Cours

processors, we measured 2 GB/s of bandwidth (4 GB/s in both directions) in

section 4.3.3. This bandwidth is completely saturated by a single core.

4. If an isolated core wishes not to share cache with any other core, it should be able

to do so.

By providing more information, an operating system with performance isolation

support can perform more fine grained isolation and better resource allocation:

• The isolated amount of bandwidth to memory. We showed in section 4.2 that cores

which are sharing the main memory bandwidth can have performance impact

on each other. Even running two processes on two different cores which share

the memory bandwidth can result in performance degradation of the processes

depending on their memory bandwidth requirements. If a process could provide the

required amount of bandwidth to memory, then allocating the whole bandwidth of

the memory controller to a single core is not necessary. Alternatively, the operating

system can monitor the shared memory bandwidth consumption and make sure

that the provided memory bandwidth is not overcommitted.

• Information regarding cache sharing. Always isolating L3 cache as we will show in

section 7.3, can result in low processor utilization since other cores in the processor

which are not isolated are not allowed access to memory and thus cannot run any

other process. We will measure the expected amount of degradation when we allow

cache sharing in the section 5.3 in this chapter.

Chapter 5. Performance isolation support in a multicore operating system 42

• Performance properties of the memory that the process is going to access. For

example, asking for a core with lowest latency or highest bandwidth to its NUMA

memory. We elaborate more on this point in section 6.2.1.

• A scheduling time slice. If a process provides a time slice in that it needs per-

formance isolation, then it is not necessary to completely allocate the resources

to that process. The processes could time multiplex resources. As mentioned be-

fore, this idea is currently under research in a multicore operating system called

Tessellation which provides time-space partitioning of system resources [10]. The

scheduling part of performance isolation is out of the scope of this thesis and we

do not discuss it any further.

Except providing memory bandwidth isolation, the other items are directly under

control of the operating system and enforcing them is trivial since operating system

decides which process runs on which core or which core can access which location in

the memory. By controlling these parameters, operating system can easily enforce core

isolation, cache isolation and path way to memory isolation (i.e. interconnect links). We

discuss possible methods to enforce memory isolation in the next section.

5.2 Enforcing memory isolation

According to what we have discussed so far, if it was possible to somehow control the

consumption of the shared bandwidth, then it was possible to have higher processor

utilization in an operating system with performance isolation support. We can achieve

this in two ways:

Hardware Using hardware support for dynamically controlling the memory operation

rate for a set of cores. Unfortunately, current x86 multicore processors which we looked at

do not provide such mechanisms. Thus, we are interested in a software based technique.

Software Simulating the required mechanism in software. There are several methods

discussed in [3] to do so, but for current multicore processors the only possible way with-

out changing the software binary is by exploiting the performance monitoring counter

registers. For this we need to:

1. Measure the actual memory bandwidth provided by the memory controller and

shared between different cores. We can do this with a microbenchmark during

system start-up. We discuss a simple microbenchmark to do so in section 6.2.1.

Chapter 5. Performance isolation support in a multicore operating system 43

2. Dynamically observe the amount of memory bandwidth consumed by cores using

the performance counters. If the memory bandwidth is isolated, then overcommit-

ting the bandwidth is not allowed.

Using such a method, we can detect whether the shared bandwidth is overcommited

and can hurt the performance of an isolated process. Then, we can either move processes

around to different NUMA memory or we can stop allocating memory from that NUMA

node with overcommited memory bandwidth. We elaborate more on this in the next

section.

5.2.1 Memory bandwidth isolation and process migration

After the information regarding current memory bandwidth consumption is available,

there are two possible approaches to ensure memory bandwidth isolation:

1. After we detect that the memory bandwidth with isolation guarantees is over-

committed, we should move the processes which are running without isolation to

another node so that there is no violation of isolation guarantees. We call the act

of moving a process with all of its memory resources to a different node process

migration.

2. It is possible to take a preventive step and not allocate memory from the memory

controller which its bandwidth is nearly overcommited and is isolated.

There are advantages and disadvantages with each approach. The first approach

allows for the best possible utilization of memory resources, but process migration is

usually costly and not all operating systems provide support for it. The second approach

is simpler and there is no need for costly process migration. However, it can lead

to under-utilization of memory resources. With the second approach we also need an

estimation to decide whether we can consume more memory bandwidth.

Since Barrelfish does not support process migration yet, we decided to go with the

second approach. We estimate whether the shared bandwidth will be overcommited

after a new allocation using the following algorithm:

Chapter 5. Performance isolation support in a multicore operating system 44

1 bool is_bandwidth_available(numa_id numa)

2 {

3 // Current NUMA node bandwidth consumption

4 bandwidth_consumption = get_bandwidth_consumption(numa);

5 // Maximum available bandwidth

6 maximum_bandwidth = get_maximum_bandwidth(numa);

7 // Maximum bandwidth consumed by a single core

8 core_max_bw = core_max_consumption(numa);

9

10 estimate = bandwidth_consumption + core_max_bw;

11

12 if(estimate > maximum_bandwidth) {

13 return true;

14 }

15 else {

16 return false;

17 }

18 }

Listing 5.1: Estimation of availability of memory bandwidth for a new core

This algorithm finds the core which is using more memory bandwidth from this

NUMA node than the other cores. Then, it checks whether allocation of a new core

with the same bandwidth as the most memory bandwidth consuming core will result in

overcommitting the bandwidth. We need to do this once for the read bandwidth and once

for the write bandwidth since memory controllers usually provide different bandwidth for

read and write and applications also have different read or write bandwidth requirement

depending on their functionality.

While this (over-)estimation is not the best possible estimation, it is a simple, efficient

and sensible one. We leave finding the best possible estimation as an open problem for

future work.

5.3 Performance degradation caused by sharing L3

In this section, we try to understand the amount of degradation caused by sharing the

last level cache. Both of the modern processors which we looked at in chapter 4 have

the same property; cores of the same processor (or die) share the last level cache (L3)

and as a result, it is of interest for this thesis to measure the amount of performance

degradation caused by sharing the last level cache.

Chapter 5. Performance isolation support in a multicore operating system 45

Memory Controller 2 Memory Controller 3

L3 L3

N
o

d
e

 3

N
o

d
e

 2

S2

S2

S2

S2

S2

S2

Figure 5.1: Experiment setup for shared cache performance degradation when L3
cache and DRAM are shared between benchmark instances. The notation is similar
to last chapter. S stands for streamcluster instance. S2 means that this instance is

accessing the memory of node two.

It is not trivial to measure the amount of performance degradation caused by shar-

ing L3 and sharing other memory subsystems. This is because L3 and other memory

subsystems are connected to each other and the events concerning L3 will affect other

subsystems. For example, an L3 cache miss will result in traffic on the memory controller

and the processor will also instruct the prefetcher based on this miss. Keeping this in

mind, we designed an experiment to roughly estimate the amount of degradation caused

by sharing L3 and the other memory subsystems versus the amount of degradation

caused by sharing the memory bandwidth.

The key idea in designing this experiment is the fact that accessing remote memory

does not cause traffic on the local memory controller.

Testing machine 4P Magny-Cours. We take two nodes with distance one for this

experiment. Minimal distance is desirable since it results in lowest latency possible

when accessing remote memory.

Experiment setup We take streamcluster from the PARSEC benchmark suite [37].

More information regarding this benchmark is in section 7.1. We take one of the nodes

and add single threaded and synchronized streamcluster instances to its cores accessing

local memory. We measure the amount of L3 misses as we add more streamclusters and

the time it takes for instances to finish. Only one streamcluster instance reports the

statistics. We repeat the benchmark, but this time one instance accesses local memory

Chapter 5. Performance isolation support in a multicore operating system 46

Memory Controller 2 Memory Controller 3

L3 L3

N
o

d
e

 3

N
o

d
e

 2

S3

S3

S2

S3

S3

S3

Figure 5.2: Experiment setup for shared cache performance degradation when only
L3 cache is shared between benchmark instances.

and all the other instances access another node’s memory. Only the streamcluster in-

stance which accesses local memory reports the statistics; we call other instances load

generating streamcluster instances. In both setups benchmark instances share L3, but

in the second experiment the instances which access remote memory do not consume

local memory bandwidth. Figure 5.1 shows the first experiment setup and figure 5.2

shows the second experiment setup.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5

L3
 c

a
ch

e
 m

is
se

s
(x

1
0

0
0

0
0

0
)

Other cores running streamcluster instances

L3 missrate local
L3 missrate remote

Figure 5.3: The comparison of cache miss rate when load generating streamcluster
instances access local memory and when they access remote memory.

Discussion: Figure 5.3 compares the amount of L3 cache misses (computed with for-

mula 5.1) when load generating streamcluster instances access remote memory instead

Chapter 5. Performance isolation support in a multicore operating system 47

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e

Other cores running streamcluster instances

Sharing nothing (imaginary perfect system)
Sharing memory bandwidth, L3 and other subsystems

Sharing L3 and other subsystems

Figure 5.4: The comparison of runtime degradation in two different scenarios when
the shared memory bandwidth is shared and when it is not.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

R
u
n
ti

m
e
 d

e
g
ra

d
a
ti

o
n
 d

e
co

m
p

o
se

d
 (

p
e
rc

e
n
t)

Other cores running streamcluster instances

Degradation by shared memory bandwidth
 Degradation by L3 and other units

Figure 5.5: Decomposition of runtime degradation by shared memory bandwidth
versus L3 and other memory subsystems.

of local memory. This figure shows that the latency that is caused by accessing remote

memory does not affect the L3 cache miss rate significantly. Thus, by comparing the

slowdown in both scenarios, we can have a rough estimate of what percent of perfor-

mance degradation is caused by using the memory bandwidth or by the other memory

subsystems (most notably L3 and prefetcher). Figure 5.4 shows the runtime degrada-

tion comparison of the two experiment setups. Using this information, we can roughly

estimate how much runtime degradation is caused by sharing the memory bandwidth.

Chapter 5. Performance isolation support in a multicore operating system 48

Figure 5.5 shows the amount of runtime slowdown as we add load generating stream-

cluster instances and its decomposition into memory bandwidth and other memory sub-

systems. This experiment shows that although there is performance degradation when

streamcluster instances share the L3 cache and other memory subsystems of their die, it

is not significant compared to the performance degradation when the memory bandwidth

is shared between all of them.

L3 miss rate =
L3 cache miss event

Retired instructions
(5.1)

Ultimately, the performance degradation caused by sharing L3 depends on the mem-

ory access pattern and locality of an application. As a result, we cannot conclude that

since streamcluster shows this behavior, all the other applications would show a similar

behavior. However, S. Blagodurov et al. [21] performed a similar study and discovered

that in most of the current benchmarks, sharing L3 is not the dominant factor in per-

formance degradation. Our evaluation of performance isolation with the shared cache

in section 7.3 confirms these findings.

5.4 Summary

In this chapter, we discussed the requirements for a multicore operating system to provide

performance isolation support. Most of these requirements are easy to provide just by

careful placement of processes on cores or memory locations. We studied the case of

providing memory bandwidth isolation without hardware support and we came up with a

simple estimation to prevent overcommitting the shared bandwidth. We also elaborated

on the argument that the degradation caused by sharing the L3 cache is not the most

significant factor in total performance degradation of an application.

Chapter 6

A resource management

subsystem for Barrelfish

In this chapter, we discuss the design and implementation of a resource management

subsystem for Barrelfish. We first discuss how we represent the memory subsystem in

Barrelfish. Using this representation, we design a resource manager which exports an

API which allows resource allocation by taking into account both performance properties

and/or performance isolation.

6.1 Representation of memory subsystem in Barrelfish

The information regarding the structure of the memory subsystem needs to be repre-

sented in a detailed manner for providing a better performance and isolation support.

As mentioned before, Barrelfish’s approach for representing the diverse set of available

hardware is through SKB. We now go over the related schemas for this thesis and how

they are populated with facts.

cpu thread(APICID, Package ID, Core ID, Thread ID).

This schema describes the mapping between an execution context APICID to its phys-

ical location in the system. The physical location is expressed in the form of Package ID

(the processor ID), Core ID (the core ID) and Thread ID (the hardware thread ID).

Thread ID is relevant when cores have hardware threading support. This schema is

populated using the cpuid instruction on x86 [28, 29].

49

Chapter 6. A resource management subsystem for Barrelfish 50

cpu affinity(APICID, , ProximityDomain).1

This schema describes the mapping between execution context APICIDs to their

ProximityDomain. ProximityDomain is a unique ID for different NUMA nodes. This

information means which core is attached to which memory controller. This schema is

populated using the information stored in ACPI tables [30].

memory affinity(Base, Limit, ProximityDomain).

This schema describes the mapping between physical memory locations to Proximi-

tyDomains. Physical memory locations are expressed in ranges in the form of (Base,

Limit). This information means which physical address ranges belong to which NUMA

node. This schema is also populated using the information stored in ACPI tables.

cache share(CoreID1, CoreID2, Level).

If two cores share a level of cache, the information stored here. Unfortunately, there

is no unified way of retrieving it. For example, in AMD, if some cores have the same

proximity, it is always assumed that the L3 of those cores is shared. Thus, it is difficult

not to use some hardcoded facts to get this information. There is a lot of research work

on developing methods for automatically calibrating this information (for example, J.

Dongarra et al. [38] or K. Yotov et al. [39]). These methods however are out of the scope

of this thesis and we will rely on information out of the CPUID instruction and some

hardcoded facts. In the current implementation, we do not rely on the information in

this schema.

node distance(ProximityDomain1, ProximityDomain2, Distance).∗2

This schema describes the NUMA link distance between two NUMA domains. This

information can be found in the SLIT ACPI table. The schema is populated during

system startup.

hypertransport link(From, To, LinkID).∗

This schema contains the interconnect routing table for AMD systems. This infor-

mation is in the PCI configuration space. Using the routing table and the distance

1Underline () indicates that the argument is not relevant for this thesis.
2Schemas which end with ∗ are created by the author for the purpose of this thesis.

Chapter 6. A resource management subsystem for Barrelfish 51

information, it is possible to figure out the interconnect topology. An algorithm is pro-

vided later in this section for this exact purpose.

mem latency(CoreID, ProximityDomain, Latency).∗

The memory access latency for each core to each NUMA node is stored in this schema.

The information in this schema and the next one is gathered using microbenchmarks

which we will describe later in section 6.2.1.

mem bandwidth read(CoreID, ProximityDomain, Bandwidth).∗

mem bandwidth write(CoreID, ProximityDomain, Bandwidth).∗

The maximum available read or write memory bandwidth of each NUMA node to

each core is stored in this schema. The schema is populated using a microbenchmark

during system startup.

6.2 A resource management subsystem for Barrelfish

We describe the building blocks of our resource management subsystem (which we call

RCM) and the design decisions we make in this section.

6.2.1 Microbenchmarks to detect memory performance properties

To provide resource allocation with desired performance properties, we need to use

small microbenchmarks to detect these properties. These microbenchmarks populate

mem latency, mem bandwidth read and mem bandwidth write SKB schemas. The

bandwidth properties are also used to implement get maximum bandwidth routine used

in the estimation we described in section 5.2.1.

We use the ideas from the Corey OS Linux benchmark [40] to measure memory

latency and bandwidth. To measure the read bandwidth, we use a sequence of load

instructions each of which accessing a cacheline of a page 3 in increasing order. We

measure the time to read a certain number of pages using this sequence of instructions.

The read bandwidth equals:

3Page is the smallest granularity in which operating system manages memory. In Barrelfish and on
the x86 machines, it is 4KB.

Chapter 6. A resource management subsystem for Barrelfish 52

Read bandwidth (MB/s) =
Number of pages× Page size

Time in second× (1024× 1024)
(6.1)

By changing the core which executes these instructions and the location where the

pages are allocated from, we measure the read bandwidth of each core to each NUMA

domain. For write bandwidth, we use the store instructions instead of load instructions.

Measuring memory latency is a bit tricky. We need to make sure that each instruction

pulls in a cacheline. For this to happen, the cache should not contain the data we are

accessing and the prefetcher should not prefetch any data that we are going to access.

To make this possible, we first read certain number of bytes from memory to make sure

that the cache does not contain the data of the experiment, and then we access a set of

cachelines in a random order. Since a prefetcher might prefetch the next and previous

cacheline, we always make sure that the next cacheline that we are going to access is

not an immediate neighboring cacheline. Similar to the bandwidth microbenchmark,

we repeat the microbenchmark for each core and NUMA memory combination. The

memory latency is:

Memory latency (cycles) =
Cycles to access all cachelines

Number of cachelines accessed
(6.2)

The interested reader can read the source code of the Corey Linux benchmark for

more detailed information.

One interesting observation with the Corey Linux benchmark on our Magny-Cours

machine when running Linux was the asymmetry we observed in local memory latency

of different NUMA nodes. We measured the latency difference of 21% between the node

with the best latency and the node with the worst latency. This is most likely because

of the physical locations of processor packages with respect to the physical locations of

memory banks in the system.

Runtime duration of these microbenchmarks depends on the number of cores and

NUMA nodes on the system. On our 4P Magny-Cours machine the microbenchmarks

take more than ten minutes to finish. As a result, it is not feasible to run them each

time the operating system boots. Instead, after running them once, their results are

stored and reused each time the system boots.

6.2.2 Monitoring memory bandwidth consumption

We need to monitor the memory bandwidth consumption of each core to make sure

that the shared memory bandwidth is not overcommited. These statistics are helpful

Chapter 6. A resource management subsystem for Barrelfish 53

for implementing get current bandwidth and core max consumption routines used

in the estimation in section 5.2.1 to decide whether another process can use this memory

bandwidth.

To do this, RCM creates a thread on each core in the system. These threads update

the current memory bandwidth consumption by using the performance monitoring coun-

ters. To make minimal interference, after reading the counters and updating memory

bandwidth consumption, the threads keep dispatching the next process until the next

update time. Currently, RCM threads update the memory bandwidth consumption ev-

ery second. We calculate the read and write bandwidth consumption using the following

formulas [27]:

Read bandwidth (MB/s) =
System read events× 64

Time in seconds× (1024× 1024)
(6.3)

Write bandwidth (MB/s) =
System write events× 16

Time in seconds× (1024× 1024)
(6.4)

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2

Core 4

L1

L2

Core 5

L1

L2

L3

Memory controller (NUMA node)

Figure 6.1: The topology representation of one the of Magny-Cours dies in RCM.

6.2.3 System topology using the information stored in SKB

To provide support for resource allocation and performance isolation, RCM needs to

know the exact representation of the system topology. By system topology we mean the

mappings of hardware threads to cores, cores to caches and caches to memory controllers.

Figure 6.1 shows an example of a system topology. To create the system topology, RCM

uses cpu affinity, memory affinity. Currently, we assume that each NUMA node

has a shared L3. Extending the system to detect cache sharing at other cache levels

Chapter 6. A resource management subsystem for Barrelfish 54

based on the information in SKB is left for future work. We also suppose that SMT is

turned off.

RCM stores the performance information for each core using the mem latency and

mem bandwidth SKB schemas.

6.2.4 An algorithm to create the interconnect topology

To support interconnect-aware performance isolation, RCM needs to know the inter-

connect topology. The interconnect routing table is available in hypertransport link

SKB schema. However, this information is not enough for the purpose of performance

isolation. when NUMA nodes are connected using more than one interconnect link, one

intermediate node is used to route the data. The routing table reports that a certain

link is used to transfer data or coherency message to two or more different nodes and

it is not clear which node will do the routing. Using NUMA distance table stored in

numa distance SKB schema, we can learn about the routing nodes; the node with dis-

tance one will be the immediate routing node when a node uses the same link to connect

to different nodes.

We designed the following algorithm to calculate the interconnect path between two

NUMA nodes in RCM:

1 Interconnect_path(NUMA src , NUMA dst)

2

3 List links = empty_list;

4

5 Distance D = get_numa_distance(src , dst);

6 while D != 0

7 for all links L in src:

8 if L connects src to dst

9 add L to links

10 for all numa nodes n:

11 if L connect src to n

12 if get_numa_distance(src , n) == 1

13 src = n

14 D--

Listing 6.1: Interconnect path discovery algorithm

The algorithm relies on the fact that if an interconnect link is used to connect a

source node to a destination node, then there always exists a node which is directly

Chapter 6. A resource management subsystem for Barrelfish 55

connected to the source node using that link (line twelve). Since this assumption always

holds, the algorithm always terminates with the connecting interconnect links stored in

links (line nine).

6.2.5 Resource management using Barrelfish capability system

To ensure that the isolation guarantees provided by RCM always hold, we need to make

sure that there is no possible way for a process to use cycles of another process’ isolated

core or memory bandwidth. For this purpose, we use Barrelfish’s capability system which

is based on that of seL4 [41]. The capability model of seL4 makes sure that capabilities

cannot be forged or be modified without permission and that is exactly what we are

interested in.

We define two new capability types for resource management: RCMCore and RCM-

Mem. RCMCore is a capability with an ID of the core4 which the holder of the capability

can execute on and RCMMem holds a NUMA physical memory range which the owner

of this capability can allocate memory from. We need to modify a number of Barrelfish’s

internal subsystems to require these capabilities:

• The spawn daemon. Spawnd has an instance on each core in the system and it is

responsible for spawning new processes in the system. We modify this subsystem

to require a RCMCore capability and a RCMMem capability. We make sure that

the process has the privilege of executing on this core by checking its RCMCore

capability. The spawn daemon also loads the binary to the location indicated by

RCMMem and passes this capability to the process.

• The memory server. This server is responsible for memory allocation to different

processes in the system. With our modifications, the memory server requires a

RCMMem capability and it will allocate the memory from the memory range of

that capability.

• The monitor. Monitor is a special user mode application which can perform a

number of privileged tasks. One of these tasks is capability creation. We add

the functionality to monitor for creating RCMCore and RCMMem capabilities for

RCM. Monitor also has an instance on each core in the system.

We divide the system into two zones, isolation zone and normal zone. The cores

in the normal zone do not provide any kind of isolation grantees (i.e. applications do

not need any capability to execute on them). When an application wishes to execute

4This is a unique integer which Barrelfish assigns to each online core in the system.

Chapter 6. A resource management subsystem for Barrelfish 56

RCM

NUMA Node without
performance isolation

Monitor

Startup
App

NUMA Node with
performance isolation

Spawn
Server

Memory
Server

Isolated
App

1. Request RCM
Caps

2. Create
Caps

3. RCM
Caps

4. RCM
Caps

5. Spawn request
with RCM Caps

6. Verify
RCMCore 7. Allocate

memory with
RCMMem

9. Allocate
memory with

RCMMem

8. Spawn

Figure 6.2: Steps for executing an application in Barrelfish with the new subsystems.

in the system, it first needs to acquire a RCMCore and a RCMMem capability from

RCM. For this purpose, the application can run a small code in the normal zone to

acquire a RCMCore and a RCMMem capability with requested isolation properties for

the isolation zone. It can then use these capabilities to run under performance isolation.

Figure 6.2 shows the the steps required for an application to execute in a node with

performance isolation support.

We describe a library in section 6.2.7 which simplifies executing a new application

under performance isolation.

6.2.6 An API for multicore resource management

In this section, we talk about an API for allocating system resources from RCM. RCM

exports this API and applications can allocate resources with different performance or

isolation guarantees using it. This API invocation takes place at the step one of figure 6.2.

The set of performance properties which applications can specify are:

1. Memory latency

2. Memory read bandwidth

3. Memory write bandwidth

Chapter 6. A resource management subsystem for Barrelfish 57

RCM returns with best available core to memory allocation according to one of the

specified desired performance properties. RCM makes this decision based on the result

of the microbenchmarks we discussed in section 6.2.1.

The isolation properties which applications can specify are:

1. Core to memory isolation: the core and the path way to memory (i.e. interconnect

links) needs to be isolated.

2. Memory controller: the shared memory bandwidth will be isolated and RCM con-

trols further allocations to make sure that the memory bandwidth is not overcom-

mitted.

3. Cache: the application is requesting to run on an isolated cache.

Any of the above performance isolation properties may be specified. RCM’s API sup-

ports all the combinations of any of the isolation properties with one of the performance

properties. Additionally the API also supports:

1. NUMA-aware allocation with a specified performance property.

2. Core allocation on an isolated cache upon presenting the RCMCore capability

which owns the cache.

3. Core and memory allocations without isolation guarantees.

To answer all these allocation requests, the system topology described in section 6.2.4.

is walked and upon finding a matching candidate, the information regarding its allocation

and/or isolation properties is updated. A more detailed information regarding this API

is in appendix B.

6.2.7 A library for interacting with RCM

As we see in figure 6.2, executing an application in the new system seems rather com-

plicated. To address this, we created a library which interacts with RCM. The library

takes care of step one, four and five by implementing the functionality for communica-

tion with RCM and the Spawn server. The startup part is a small code (Startup App in

the figure) which links against this library and executes the main application by calling

a desired function in the library with the path to application and its arguments plus

desired performance or isolation properties.

Chapter 6. A resource management subsystem for Barrelfish 58

For convenience, the Barrelfish’s shell is also using this library and can act as a

startup code to execute the main application in isolation. An example of using Bar-

relfish’s shell to spawn an application under performance isolation is in appendix C.

6.2.8 Limitations of RCM

We elaborate on a number of limitations in the current design of RCM.

Memory sharing In the current implementation of Barrelfish, processes can easily

share memory by copying their memory capability to a specified destination. This

memory sharing utilizes the bandwidth of the interconnect path connecting these two

nodes. We violate one isolation property, if this path would be isolated at any point

during the execution of these two processes.

Solving this problem is not trivial since copying capabilities is used as a functionality

in Barrelfish and there is no easy way to control capability copying.

Another problem can happen inside an application: Since an application can ask

for multiple isolated core and memory, it will have access to different RCMCore and

RCMMem capabilities and it can use every combination of the two it desires and this

can violate interconnect links isolation like above. There are some possible solutions to

this problem:

1. The memory server also asks for the RCMCore capability and verifies with RCM

whether the path is isolated for this specific core and memory.

2. RCMCore and RCMMem merge into a single capability. While this has its advan-

tages, it also has limitations. For example, it is not trivial to ask for more memory

unless you provide a core for it. This is because RCM needs to know about which

cores access which memory locations. It also limits the flexibility of the application

to manage its allocated resources.

3. Introducing another capability for interconnect links (e.g. RCMLink) and provid-

ing them to the memory server for verification. The memory server needs to have

the interconnect topology as well.

4. Applications need to pass on their unique ID to RCM and RCM isolates all the

possible core to memory paths of this application. The problem with this approach

is under utilization since RCM implicitly isolates interconnect links which the

application might never use.

Chapter 6. A resource management subsystem for Barrelfish 59

Lack of process migration There is no process migration functionality in Barrelfish

and this has a number of indications in the current design. The processes that re-

quire performance isolation should execute first since as applications start executing

and spreading over the isolation zone, it will become unlikely to answer the requests for

an isolated core or cache.

In a system with process migration, a resource manager can move processes around

the system to answer some performance isolation requests which otherwise was not

possible.

This also makes it difficult to measure the effectiveness of the performance isolation

provided in the current version of RCM since the mapping of processes without isolation

guarantees to possible isolated resources like memory bandwidth is static. We describe

how we tackle this problem in section 7.3.

Multiple allocation at once The current API does not support allocating multiple

resources at once. For example, an application cannot ask for six isolated cores at once

and instead it needs to do it iteratively. This can lead to classical deadlock scenarios

where applications hold resources and waiting for other applications to release more

resources.

Cache sharing In the current version of RCM, we assume that each NUMA node

has a separate L3 and it is shared between the cores of that NUMA node. While this

is true for the systems we are working with in this thesis, this assumption is generally

false. There is a need for a library to detect cache sharing information at different levels

(L2, L3 and possibly L4 in the future) for different architectures and store them in SKB.

This is difficult since each vendor has a different way of producing this information and

it also tends to change even for the architectures of the same vendor as they evolve.

Assumption on the availability of local memory RCM assumes that there is

always memory attached to the local memory controller. It is certainly not the case in

most of the systems or with systems that support memory hot plugging.

6.3 Summary

We discussed in detail the design and implementation of a resource management sub-

system for Barrelfish which support resource allocation with desired performance prop-

erties or performance isolation. The current implementation support resource allocation

Chapter 6. A resource management subsystem for Barrelfish 60

through an API that allows specifying isolation properties with a desired performance

property.

To make this possible we used a number of building blocks like online performance

measurement microbenchmarks, detecting system memory topology and interconnect

topology using SKB, Barrelfish capability system and online measurement of memory

bandwidth consumption.

Chapter 7

Evaluation

Barrelfish’s resource management subsystem (RCM) enables applications to express two

major properties of the resources they are interested in:

1. Performance properties: the best path from an arbitrary core to an arbitrary mem-

ory location which has certain performance properties. The performance properties

are expressed in terms of lowest latency or highest read or write bandwidth.

2. Isolation properties: the resources that RCM allocates should be isolated from the

effects of other applications in the system. The isolation properties are expressed

in terms of isolated core, isolated memory controller, isolated shared cache and

isolated interconnect links.

To evaluate the benefits of RCM when providing these two properties, we have ported

four benchmarks from the PARSEC benchmark suite [37, 42] to Barrelfish. We first look

at the properties of these benchmarks in section 7.1 and then we evaluate the benefits

of RCM with these macrobenchmarks when using performance properties in section 7.2

and when using isolation properties in section 7.3.

We run the benchmarks in single threaded mode with the provided small workload

from the suite on our 4P Magny-Cours machine which we previously looked at its archi-

tecture in section 3.1.1.

7.1 PARSEC benchmark suite1

We closely look at the benchmarks that we are going to use.

1The description of the benchmarks are taken from [42].

61

Chapter 7. Evaluation 62

Blackscholes Blackscholes calculates the prices for a portfolio of European options

analytically with the Black-Scholes partial differential equation (PDE) [43]. The input

is a set of options of the portfolio and the output is the prices for all options which are

written to a file.

Canneal This kernel tries to find the minimum routing cost for designing chips using

cache-aware simulated annealing [44]. The input to Canneal is a file which contains

netlist data structure elements, and the configuration inputs to the simulated annealing

algorithm. It outputs the cost of final routing to the console.

Fluidanimate This Intel RMS application uses an extension of the Smoothed Par-

ticle Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive

animation purposes [45]. The input to fluidanimate is a file containing a number of

particles which describe the fluid. The algorithm output which is written to a file can

be visualized by detecting and rendering the surface of the fluid.

Streamcluster Streamcluster solves the online clustering problem [46]: For a stream

of input points, it finds a predetermined number of medians so that each point is assigned

to its nearest center. The quality of the computation is calculated using sum of squared

distances of the points to the center of their cluster. The input to the Streamcluster is

a set of configuration options which describe the random dataset to be generated and

the output is cluster information which is written to a file.

 0

 500

 1000

 1500

 2000

blackscholes

canneal

fluidanim
ate

stream
cluster

B
a
n
d

w
id

th
 i
n
 M

e
g

a
b
y
te

s

Read bandwidth
Write bandwidth

Figure 7.1: The memory bandwidth usage of the four ported benchmarks from
PARSEC.

Chapter 7. Evaluation 63

Now we look at the properties of these benchmarks which are of interest for this thesis.

Blackscholes, Canneal and Fluidanimate read their input from a file and Blackscholes,

Fluidanimate and Streamcluster write their output to a file as well. Since we do not

address I/O in this thesis, we only measure the performance data for the execution period

and we discard the initialization phase where the data is loaded from file to memory and

the part where the results are written back to a file. We call the execution period the

execution phase from now on.

 0

 1

 2

 3

 4

 5

 6

 7

 8

blackscholes

canneal

fluidanim
ate

stream
cluster

L3
 c

a
ch

e
 m

is
s

ra
te

 (
Pe

rc
e
n
t)

L3 miss rate

Figure 7.2: The L3 cache miss rate of the four ported benchmarks from PARSEC.

Figure 7.1 shows the measured memory bandwidth of the chosen benchmarks and

figure 7.2 shows the L3 cache miss rate. Canneal and Streamcluster have relatively

higher memory bandwidth usage and are the most interesting ones in terms of provided

shared memory bandwidth. Blackscholes’ dataset fits into the L2 cache and as a result it

does not consume considerable memory bandwidth during its execution phase. Canneal

is more cache unfriendly compared with the other three benchmarks since it has the

highest cache miss rate.

7.2 Benchmarking performance properties

We show that the many possibilities of process placement and the location of memory

result in variation in total execution time because of different memory latency or band-

width. There are even asymmetries in observed memory latency when cores allocate

memory locally as we discussed in section 6.2.1. We show that by using RCM, appli-

cations can have ideal execution time by expressing the memory performance property

that they are interested in.

Chapter 7. Evaluation 64

For each of the benchmarks, we measure their runtime on different NUMA cores

accessing different NUMA domains. Since the cores of each NUMA domain have similar

performance when accessing memory, we take one core from each NUMA domain. Since

the Magny-Cours machine has eight NUMA domains, we run 64 experiments for each of

the benchmarks. From these 64 runtimes, we extract the best and worst runtimes and

compare them with a runtime when the benchmark runs using RCM. We choose latency

as our desired performance property since it is clear that the consumed bandwidth of

the benchmarks are considerably less than the available main memory bandwidth on

each NUMA node.

 0

 1

 2

 3

 4

 5

 6

 7

 8

blackscholes canneal fluidanimate streamcluster

R
u
n
ti

m
e
 n

o
rm

a
liz

e
d
 t

o
 t

h
e
 b

e
st

 r
u
n
ti

m
e

38.6

Best
RCM

Worst (NUMA)
Worst

Figure 7.3: Runtime comparison of the PARSEC benchmarks. Best and worst run-
time are obtained by trying all possible core/memory allocation. RCM is when the core

and memory are allocated by RCM.

The normalized results with the best runtime is in figure 7.3. Except Blackscholes

which its workload fits into the L3 cache, all other benchmarks show a considerable

difference in their execution time (Look at Best and Worst) with regard to their core

and memory placement. Canneal shows off-the-chart difference since it has a high cache

miss rate and as a result high latency of accessing remote memory degrades its execution

time significantly. Due to asymmetries in observed local memory performance in different

NUMA nodes, NUMA-aware allocation can have suboptimal performance (look at Worst

(NUMA)). RCM always allocates the optimal core and memory due to its awareness about

latency of all cores to memory locations. With Canneal and Fluidanimate RCM performs

about 3% better than the best measured allocation with the default Barrelfish process

allocator. We believe this is because RCM enforces NUMA-aware loading of binary

image while it is not the case in the default implementation. We however did not verify

this due to time constraints.

Chapter 7. Evaluation 65

This experiment shows that applications can benefit from performance-aware re-

source allocation inside multicore operating systems.

7.3 Benchmarking isolation properties

A performance isolation benchmark should be able to show two desirable properties of

the system:

1. If an application is running with performance isolation guarantees then its perfor-

mance should not decrease if the system is overloaded with other applications.

2. If an application is running with performance isolation guarantees, the performance

of the other applications in the system should not dramatically decrease.

RCM provides isolation at:

1. Core by not placing any other process on an isolated core.

2. Interconnect by isolating interconnect links.

3. Cache level by not placing any other process on the cores which share a cache with

an isolated cache.

4. Shared memory bandwidth by making sure that the shared memory bandwidth is

not overcommitted.

The benefits of running one application on a core is obvious and indications of it

on other running applications fall into the area of scheduling and we do not address

it here. Isolation of interconnect links becomes interesting when interacting with I/O

devices. Since we mostly allocate memory locally, we leave it for future work. RCM

however is interconnect aware and isolates interconnect links whenever necessary during

our experiments. We study the more interesting cases of isolated cache and isolated

memory bandwidth.

Due to one of our design choices which we discussed in section 5.2.1, we cannot

migrate processes. It means that when it is detected that the shared bandwidth is

overcommitted, it is not possible to migrate some of the processes that are running in

this NUMA domain to another NUMA domain to ensure that performance isolation

guarantees are not violated. This limitation affects the way we can design our perfor-

mance isolation benchmark. This is because we do not have the knowledge of memory

Chapter 7. Evaluation 66

bandwidth requirements in advance. To cope with this limitation, we take an itera-

tive approach when running the instances of the benchmark. We explain our approach

shortly.

As discussed in section 6.2.5, we divide our Magny-Cours machine into two zones.

One with performance isolation support and the other for applications without any

performance isolation requirement. The isolation zone consists of four NUMA nodes

with 24 cores. We remove Blackscholes from the set of our benchmarks since it has no

interesting property which results in resource sharing. We use five instances of Canneal,

five instances of Fluidanimate and fifteen instances of Streamcluster to run together in

the system. We use more Streamcluster instances due to its high bandwidth consumption

which makes it possible to saturate the main memory bandwidth. We thus run 25

instances in the isolated zone in each of the measurements. This number is chosen to

make sure that without any isolation guarantee, all the cores run at least one instance.

We first let all the instances load their raw data (Streamcluster does not have this

phase) once and then we run their execution phase in an infinite loop. The order in

which we run the instances is as follows:

1. We first run one of the three benchmarks in one of the two different isolation

guarantees (isolated shared memory bandwidth or isolated cache).

2. When the first ten loops of the execution phase of benchmark finishes we run the

next one of the remaining two benchmarks without any isolation guarantee.

3. We iteratively add other instances from the three benchmarks as soon as the first

benchmark loop of the last one finishes.

4. As we are finished with fifteen instances of the benchmarks (five instances of each

three benchmarks), we iteratively add the rest of Streamcluster instances.

After all the instances are running their execution phase in a loop, we measure the

runtime of the execution phase of the instance under performance isolation. We also

measure the runtime of each one of the other instances in the system. We repeat the

experiment without any application running in performance isolation.

Figure 7.4 shows the normalized results of running the experiment. The red bars are

when the applications are running alone in the system and are chosen as the baseline.

The green bars are when the isolated benchmark is running with an isolated L3 along

with 24 other instances in the system and the purple bars when the isolated benchmarks

are running with memory bandwidth isolation with 24 other instances in the system.

Chapter 7. Evaluation 67

 0

 0.5

 1

 1.5

 2

canneal fluidanimate streamcluster

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e

Running alone
Isolated L3

System degradation, L3
Isolated B/W

System degradation, B/W

Figure 7.4: Runtime degradation of the instance which is running with cache or
memory bandwidth isolation and normalized average runtime degradation of all the

other instances in the system.

The blue and gray bars are the average runtime degradation of all the instances in both

isolation scenarios. We call this metric total system degradation. In this benchmark,

total system degradation is the sum of runtime values of all instances when there is one

isolated application in the system normalized with when there is no isolated application

running in the system. Formally, formulas 7.1, 7.2 and 7.3 are used to calculate the total

system degradation:

R♦ =

nB∑
i=1

nBi∑
j=1

R♦
i,j (7.1)

Where R♦ is the sum of the runtimes of all instances in the system, nB is the number

of different benchmarks that are running in the system, nBi is the number of instances

of the ith benchmark and R♦
i,j is the runtime of instance j of ith benchmark, all when

there is no isolated instance in the system.

R4 =

nB∑
i=1

nBi∑
j=1

R4i,j (7.2)

Where R4 is the sum of the runtimes of all instances in the system and R4i,j is the

runtime of instance j of ith benchmark, all when there exists an isolated instance in the

system.

Finally, the total system runtime degradation denoted by Dsystem is:

Chapter 7. Evaluation 68

Dsystem =
R4

R♦ (7.3)

Discussion: With all of the instances we see a similar pattern: when the isolated

instance is running with an isolated L3, its runtime duration does not increase at all.

However, since by isolating L3 no other application can run on the other cores of the die

with isolated L3, the other 24 instances should run on 18 cores instead of 23 available

cores. This results in upto 20% of observed system runtime degradation which as de-

scribed measures the average runtime degradation of all instances in the system. When

the isolated instance runs with isolated shared bandwidth, in the worst case its runtime

duration increases by 5%. This is expected because of the cache pollution effect. The

system runtime degradation decreases by 14%. It is less than the L3 isolation because

RCM allows benchmark instances to run in the cores of the die with memory bandwidth

isolation as long as memory bandwidth is not overcommitted.

It is clear that there is a trade-off coming with performance isolation. As we under-

utilize system resources to provide performance isolation to an instance, the performance

of other instances decrease. The finer level of provided performance isolation results in

greater under-utilization of the system resources which in turn decreases the overall per-

formance of the system. With RCM, we can decide the level of isolation we are interested

in by choosing between running on an isolated cores, cache or memory bandwidth.

Another interesting benchmark is to show the total runtime degradation of all the

applications without performance isolation guarantees when the number of applications

with isolation guarantees increases. To do this, we repeat the previous benchmark, but

this time we isolate more instances. We first isolate Canneal, then we isolate Fluidean-

imate and finally we isolate Streamcluster. In this experiment, it is only possible to

isolate memory bandwidth or L3 of three instances in the system so that other instances

can run in the rest of isolation zone.

Discussion: Figure 7.5 shows the result. The runtime of isolated instances with L3

isolation do not degrade. We can observe that as we isolate more L3 caches, the system

runtime degradation increases dramatically. When there are three isolated L3, 22 in-

stances should run on six cores. As a result, instances are running at about three times

slower. With isolated memory bandwidth the average runtime of isolated instances de-

creases by at most 5%. The system runtime however is much less compared with the L3

isolation. With three isolated instances, there is 47% total system degradation.

Chapter 7. Evaluation 69

 0

 1

 2

 3

 4

 5

1 2 3

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e

Number of isolated instances

Running alone
Isolated L3 (Average)

System degradation, L3
Isolated B/W (Average)

System degradation, B/W

Figure 7.5: Performance isolation experiment with multiple isolated instances.

This experiment shows that it is possible for applications with performance isolation

support to coexist in a multicore systems. However, it becomes more costly as we

increase the number of isolated instances in the system.

7.4 Summary

We described four macrobenchmarks that we ported to Barrelfish to show the benefits

of our resource management subsystem.

We first showed the benefits of performance-aware resource management and then

we showed the effectiveness of RCM in bringing performance isolation by designing

a performance isolation benchmark using a mix of the ported benchmarks. We also

discussed the trade-offs of running applications under performance isolation in multicore

systems.

Chapter 8

Conclusion

We looked at the architecture of two modern x86 multicore systems to study how they

differ from commodity systems in the way system resources are shared. In these sys-

tems, inter-processor main memory bandwidth, different levels of caches and the system

interconnect are implicitly shared between cores, but their allocation is not in the di-

rect control of the operating system. Using a synthetic microbenchmark, we showed

this implicit sharing of resources can result in undesired performance degradation of

performance critical applications.

Based on the obtained results of the microbenchmark, we discussed the possibility

of providing performance isolation on modern multicore hardware by controlling these

implicitly shared resources. We came up with the following concrete conditions under

which performance isolation becomes possible:

• The shared main memory bandwidth should not be overcommitted when a process

under performance isolation is using it.

• In cache-coherent systems, the coherency broadcasts result in excessive traffic on

the system interconnect. This can become a performance bottleneck on each pro-

cessor. Systems with mechanisms like cache directory reduce this traffic and avoid

the performance bottleneck. We conclude that hardware can provide performance

isolation if such a mechanism exists the system.

• The provided bandwidth on the interconnect links is limited and shared between

different cores of a processor. The operating system should provide a mechanism

to control this shared bandwidth.

• Some applications may require exclusive levels of cache for performance isolation.

The operating system needs to provide a mechanism for such a purpose. However,

70

Chapter 8. Conclusion 71

we argued that the shared last level cache is not usually the dominant factor in

performance degradation.

We then described the design and implementation of a resource management sub-

system for Barrelfish called RCM. RCM provides mechanisms for performance aware

resource allocation and performance isolation by respecting the mentioned conditions.

RCM provides these mechanisms using various techniques like interconnect topology

discovery, online microbenchmarks to measure different performance properties, online

performance monitoring at core level and architectural information like NUMA groups,

NUMA physical memory ranges and shared caches.

Finally, we looked at the benefits of having a subsystem like RCM in a multicore op-

erating system. For that end, we ported some benchmarks from PARSEC to Barrelfish.

Using them, we showed that applications can enjoy increased performance by perfor-

mance aware resource allocation in modern multicore systems. We also showed that

performance isolation is possible by the mechanisms that RCM provides and discussed

the performance trade-offs of running applications under different degrees of performance

isolation.

8.1 Future work

We describe possible directions for future work on this subject:

1. Studying the benefits of performance aware allocation and performance isolation

for multithreaded applications and I/O workloads.

2. Development of a cache topology discovery which interacts with SKB. This is

becoming more important due the diverse set of multicore processors, each having

its own architecture-specific way of retrieving this information.

3. Providing a time-slice during which performance isolation is guaranteed to avoid

underutilizing the system resources during the complete execution duration of an

isolated application.

4. Adding the functionality for applications to specify the amount of guaranteed

memory bandwidth they are interested in. RCM can then make a more aware

decision for core and memory placement based on the current consumption of

main memory bandwidth across all NUMA nodes in the system.

5. Support for process migration in Barrelfish to support dynamic mapping of isolated

applications to cores and memory regions.

Chapter 8. Conclusion 72

6. A more sophisticated estimation of memory bandwidth consumption of a new

application.

7. Complete implementation of RCM’s API. For example, currently there is no im-

plementation backend for releasing isolated resources.

Appendix A

Terminology

Currently, in the multicore research community, there are many terms used to describe

different parts of multicore systems. Some of these terms could mean the same thing.

Here, we have come up with a list of these keywords and what we mean by them in this

thesis. The terms that are related or used interchangeably are put together.

Core = physical core: An abstraction for a unit which has computing capabilities.

We base most of the definitions using core.

Hyperthreading = simultaneous multithreading = hardware threading: Each

core can have multiple execution threads running on it. Operating system usually sees

each hardware thread as a core for itself. Thus, if a core has for example four hardware

threads, it means that the operating system sees four cores instead of one.

Virtual core = hardware execution context: A virtual core is either backed by

a hardware thread or a physical core in systems without hardware threading support.

Die, node, NUMA node: Die is a small block of semiconducting material on which

different building blocks of a processor are implemented. Dies could host one or more

than one cores. If a die or a set of dies share the same path to memory, they are called

a node. Thus, if a die has cores with a memory controller, it is called a node or NUMA

node.

Processor = package = processor package, multi-chip module(MCM), multi-

node processor: A processor is a die or a set of dies with other units which provide

73

Appendix A. Terminology 74

other functionality required. When a processor is consisted of more than one die, it is

called a multi-chip module or MCM. A MCM with more than one memory controller is

called a multi-node processor.

Multicore processor = chip multicore processor = manycore processor: A

processor which has more than one physical core.

Cache directory, HT assist, probe filter, snoop filter: Different technologies to

reduce interconnect traffic caused by cache coherency protocol messages sent around to

implement the memory consistency model of the system.

Appendix B

RCM’s API

Barrelfish uses an interface description language called flounder [47] to generate messag-

ing or RPC stubs. We use flounder to describe RCM’s API. Below is a rather descriptive

interface file of RCM which we described in chapter 6:

1 interface rcm "Resource Manager Interface" {

2

3 alias numaid uint8;

4

5 typedef enum {

6 MEMORY_LATENCY_SENSITIVE ,

7 MEMORY_READ_BANDWIDTH_SENSITIVE ,

8 MEMORY_WRITE_BANDWIDTH_SENSITIVE ,

9 NO_PREFERENCE

10 } MEMORY_PERFORMANCE_INFO;

11

12 /* All the requests are in the form of:

13 * rcm_CORE_MEMORY_request

14 * cored means we do not care about the location

15 * of the core and and memd means we do not care

16 * about the location of the mem.

17 */

18

19 /* We do not care where the core or memory

20 * is coming from

21 */

22 rpc rcm_cored_memd_request(in bool exclusive_cache ,

23 in bool core_memory_isolated ,

24 in bool memory_controller_isolated ,

25 in MEMORY_PERFORMANCE_INFO memory_performance ,

75

Appendix B. RCM’s API 76

26 out errval err ,

27 out cap core ,

28 out cap mem);

29 /* We do not care where the core is coming from

30 * but we care where the memory is coming from.

31 */

32 rpc rcm_cored_numa_request(in bool exclusive_cache ,

33 in bool core_memory_isolated ,

34 in bool memory_controller_isolated ,

35 in MEMORY_PERFORMANCE_INFO memory_performance ,

36 in numaid numa ,

37 out errval err ,

38 out cap core ,

39 out cap mem);

40 rpc rcm_cored_local_request(in bool exclusive_cache ,

41 in bool core_memory_isolated ,

42 in bool memory_controller_isolated ,

43 in MEMORY_PERFORMANCE_INFO memory_performance ,

44 out errval err ,

45 out cap core ,

46 out cap mem);

47

48 /* Request for an isolated cache would inevitably

49 * results in isolated core as well.

50 */

51

52 /* We do not care where the memory is coming from */

53 rpc rcm_coreoncache_memd_request(

54 in bool memory_controller_isolated ,

55 in cap core_with_cache ,

56 in MEMORY_PERFORMANCE_INFO memory_performance ,

57 out errval err ,

58 out cap core ,

59 out cap mem);

60 /* We care where the memory is coming from */

61 rpc rcm_coreoncache_numa_request(

62 in bool memory_controller_isolated ,

63 in cap core_with_cache ,

64 in MEMORY_PERFORMANCE_INFO memory_performance ,

65 in numaid numa ,

66 out errval err ,

67 out cap core ,

68 out cap mem);

69

Appendix B. RCM’s API 77

70 /* Memory requests with isolation */

71

72 /* We do not care where the memory is coming from */

73 rpc rcm_coregiven_memd_request(in bool memory_isolated ,

74 in bool memory_controller_isolated ,

75 in cap core ,

76 in MEMORY_PERFORMANCE_INFO memory_performance ,

77 out errval err ,

78 out cap mem);

79 /* We care where the memory is coming from */

80 rpc rcm_coregiven_numa_request(in bool memory_isolated ,

81 in bool memory_controller_isolated ,

82 in cap core ,

83 in numaid numa ,

84 out errval err ,

85 out cap mem);

86

87

88 /* Memory controller isolation */

89

90 rpc rcm_memory_controller_isolation_request(in cap mem ,

91 out errval err ,

92 out cap mem_isolated);

93

94 /* Resource release */

95

96 rpc rcm_core_memd_release(in cap core ,

97 out errval err);

98 rpc rcm_cored_mem_release(in cap mem ,

99 out errval err);

100 rpc rcm_core_mem_release(in cap core ,

101 in cap mem ,

102 out errval err);

103 rpc rcm_memory_controller_release(in cap mem_isolated ,

104 out errval err ,

105 out cap mem);

106 };

Listing B.1: RCM Interface file

Out of these functions, we only have implemented rcm cored memd request,

rcm cored numa request and rcm cored local request due to time constraints. In

all of the implemented functions, it is possible to ask for an isolated core, isolated cache

Appendix B. RCM’s API 78

and isolated memory bandwidth with a desired performance propertie. Implementation

of the rest is left as future work.

Appendix C

Using RCM within fish

Barrelfish has an interactive shell called fish. We have added to fish the functionality

to use RCM for providing application execution under performance isolation. The com-

mand is called rcm. If we invoke rcm in fish, we see the following:

1 > rcm

2 Usage: rcm is_isolated (0/1) exclusive_cache (0/1)

3 memory_load_control (0/1)

4 memory_performance (0= latency /1= read_bw /2= write_bw)

5 application [args]

6 >

Listing C.1: Invocation of rcm in Fish

We can execute any application under RCM by defining whether it wants to run on an

isolated core (is isolated), isolated cache (exclusive cache) or isolated memory bandwidth

(memory load control) with one desired performance propertie (memory performance).

For example, rcm 1 1 1 0 test runs the application test with all the performance

isolation guarantees with the best available core to memory latency.

79

Bibliography

[1] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A.

Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for scalable

multicore systems. In Proceedings of the 22nd ACM Symposium on OS Principles

(SOSP), 2009.

[2] R. P. Draves, M. B. Jones, P. J. Leach, and J. S. Barrera. Modular real-time resource

management in the Rialto operating system. In Proceedings of the 5th Workshop on

Hot Topics in Operating Systems (HotOS), 1995.

[3] F. Bellosa. Process Cruise Control: Throttling Memory Access in a Soft Real-Time

Environment. University of Erlangen, Technical Report TR-I4-97-02, July 1997

[4] A. Marchand, P. Balbastre, I. Ripoll, and A. Crespo. Providing Memory QoS Guar-

antees for Real-Time Applications. Proceedings of the 14th IEEE International Con-

ference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

2008.

[5] G. Koren and D. Shasha. Skip-over algorithms and complexity for overloaded systems

that allow skips. In Proceedings of the 16th IEEE Real-Time Systems Symposium

(RTSS), 1995.

[6] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an operating system

architecture for application-level resource management. In the Proceedings of the 15th

ACM Symposium on Operating Systems Principles (SOSP), 1995.

[7] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns,

and E. Hyden. The design and implementation of an operating system to support

distributed multimedia applications. IEEE Journal on Selected Areas in Communica-

tions, Volume: 14 Issue:7, 1996.

[8] S. Hand. Self-paging in the Nemesis operating system. In Proceedings of the 3rd

Symposium on Operating Systems Design and Implementation (OSDI), 1999.

80

Bibliography 81

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer†, I.

Pratt, A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP), 2003.

[10] R. Liu, K. Klues, S. Bird, S. Hofmeyr†, K. Asanovi, and J. Kubiatowicz. Tessella-

tion: Space-time partitioning in a manycore client os. In Proceedings of the Workshop

on Hot Topics in Parallelism (HotPar) Usenix, 2009.

[11] G. Banga, P. Druschel, and J. C. Mogul. Resource Containers: A New Facility for

Resource Management in Server Systems. In proceeding of the ACM symposium on

Operating Systems Design and Implementation (OSDI), 1999.

[12] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches. IEEE/ACM In-

ternational Symposium on Microarchitectures, 2006.

[13] B. Ahsan and M. Zahran. Managing Off-Chip Bandwidth: A Case for Bandwidth-

Friendly Replacement Policy. Workshop on Managed Many-Core Systems (MMCS),

2009.

[14] R. Lee and X. Zhang. MCCDB: minimizing cache conflicts in multi-core processors

for databases. In proceeding of 35th international conference on Very Large DataBases

(VLDB), 2009.

[15] J. Lira, C. Molina, and A. Gonzalez. Analysis of Non-Uniform Cache Architecture

Policies for Chip-Multiprocessors Using the Parsec Benchmark Suite. Workshop on

Managed Many-Core Systems (MMCS), 2009.

[16] A. G. Ailamaki, D. J. Dewitt, M. D. Hill, and D. A. Wood. DBMSs on a modern

processor: Where does time go. In proceeding of 35th international conference on Very

Large DataBases (VLDB), 1995.

[17] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, A. Gupta. The impact of

architectural trends on operating system performance. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (SOSP), 1995.

[18] J. K. Ousterhout. Why Aren’t Operating Systems Getting Faster As Fast as Hard-

ware? Technical Report, Technote 11, Digital Equipment Corporation Western Re-

search Laboratory, 1989.

[19] I. Tuduce, Z. Majo, A. Gauch, B. Chen, and T. R. Gross. Asymmetries in Multi-

Core Systems Or Why We Need Better Performance Measurement Units. The Exascale

Evaluation and Research Techniques Workshop (EXERT), 2010.

Bibliography 82

[20] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. http://www.cs.virginia.edu/stream/ Accessed on Feb. 2011.

[21] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention Aware Scheduling on

Multicore Systems, in ACM Transactions on Computer Systems, vol. 28, issue 4,

2010.

[22] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing Cache Architectures and

Coherency Protocols on x86-64 Multicore SMP Systems. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009.

[23] I. Kuz, Z. Anderson, P. Shind, and T. Roscoe. Multicore OS benchmarks: we can

do better. 13th Workshop on Hot Topics in Operating Systems, 2011.

[24] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R.

Isaacs. Embracing diversity in the Barrelfish manycore operating system. In Proceed-

ings of the Workshop on Managed Many-Core Systems (MMCS), 2008.

[25] The ECLiPSe Constraint Programming System, http://www.eclipseclp.org/

Accessed on Feb. 2011.

[26] P. Mochel, The sysfs Filesystem, Proceedings of Annual Linux Symposium, 2005.

[27] P. J. Drongowski, Basic Performance Measurements for AMD AthlonTM 64, AMD

OpteronTM and AMD PhenomTM Processors, Advanced Micro Devices, Inc., Boston

Design Center, 2008.

[28] Intel Processor Identification and the CPUID Instruction, Application Note 485,

Jan. 2011.

[29] AMD CPUID specification, Publication 25481, Revision 2.34, Sep. 2010.

[30] Advanced Configuration and Power Interface Specification, Revision 3.0a, Dec.

2005.

[31] A. Kleen, A NUMA API for Linux, SUSE Labs white paper, Aug. 2004.

[32] Advanced Micro Devices, BIOS and Kernel Developer’s Guide (BKDG) For AMD

Family 10h Processors, Mar. 2008.

[33] Linux Programmer’s Manual, Accessed on Mar. 2011.

[34] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Blade

Computing with the AMD OpteronTM Processor (“Magny-Cours”). Symposium on

High Performance Chips (Hot Chips), 2009.

http://www.cs.virginia.edu/stream/
http://www.eclipseclp.org/

Bibliography 83

[35] K. Gharachorloo, MEMORY CONSISTENCY MODELS FOR SHARED-

MEMORY MULTIPROCESSORS, Technical Report: CSL-TR-95-685, Stanford uni-

versity, 1995.

[36] B. Waldecker and P. Conway, AMD OpteronTM Multicore Processors, Joint NER-

SC/OLCF/NICS Cray XT5 Workshop, 2010.

[37] C. Bienia†, S. Kumar, J. P. Singh, and Kai Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications, Princeton University Technical Re-

port TR-811-08, 2008.

[38] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and Haihang You. Accurate Cache

and TLB Characterization Using Hardware Counters, International Conference on

Computational Science (ICCS), 2004.

[39] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of memory hier-

archy parameters, Proceedings of ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, 2005.

[40] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,

L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operating system for

many cores. In Proceedings of the ACM Symposium on Operating Systems Design

and Implementation (OSDI), 2008. Linux benchmarks used in the paper: http://

pdos.csail.mit.edu/corey/osdi-bench.tar.gz, accessed on Feb. 2011.

[41] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:

Formal verification of an OS kernel. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP), 2009.

[42] C. Bienia, Benchmarking Modern Multiprocessors, Ph.D. Thesis. Princeton Uni-

versity, 2011.

[43] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal

of Political Economy, 1973.

[44] P. Banerjee. Parallel Algorithms for VLSI Computer-Aided Design. Prentice-Hall,

Inc., 1994.

[45] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid Simulation for In-

teractive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, 2003.

http://pdos.csail.mit.edu/corey/osdi-bench.tar.gz
http://pdos.csail.mit.edu/corey/osdi-bench.tar.gz

Bibliography 84

[46] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. High-

Performance Clustering of Streams and Large Data Sets. In Proceedings of the 18th

International Conference on Data Engineering, 2002.

[47] P. Dagand. Language Support for Reliable Operating Systems. Master’s thesis, ENS

Cachan-Bretagne – University of Rennes, France, 2009.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Background work
	2.1 Literature review
	2.1.1 Operating systems that aim at performance isolation
	2.1.2 Providing mechanisms for performance isolation
	2.1.3 Reducing contention over shared resources
	2.1.3.1 Reducing the contention over shared cache
	2.1.3.2 Multicore scheduling to reduce contention over memory subsystem

	2.1.4 Multicore benchmarks

	2.2 Barrelfish
	2.2.1 System Knowledge Base

	2.3 Linux and performance isolation
	2.3.1 System topology on sysfs
	2.3.2 NUMA memory allocation through libnuma
	2.3.3 User mode process placement and priority enforcement

	2.4 Summary

	3 A review of current multicore processors
	3.1 Current multicore architectures
	3.1.1 AMD Magny-Cours
	3.1.2 Intel Nehalem-EX

	3.2 Cache coherency and cache directory
	3.3 STREAM on modern multicore systems
	3.4 Summary

	4 Resource sharing and performance in multicore systems
	4.1 A synthetic microbenchmark
	4.1.1 Processing the results
	4.1.2 Experiment environment
	4.1.3 Reading experiment setup diagrams

	4.2 Cores sharing a memory controller
	4.3 Effects of the shared interconnect
	4.3.1 Performance degradation caused by coherency messages
	4.3.2 Performance degradation caused by routing data
	4.3.3 Performance degradation caused by sharing a link

	4.4 Hardware threads sharing a core
	4.5 Summary

	5 Performance isolation support in a multicore operating system
	5.1 Enforcing performance isolation
	5.2 Enforcing memory isolation
	5.2.1 Memory bandwidth isolation and process migration

	5.3 Performance degradation caused by sharing L3
	5.4 Summary

	6 A resource management subsystem for Barrelfish
	6.1 Representation of memory subsystem in Barrelfish
	6.2 A resource management subsystem for Barrelfish
	6.2.1 Microbenchmarks to detect memory performance properties
	6.2.2 Monitoring memory bandwidth consumption
	6.2.3 System topology using the information stored in SKB
	6.2.4 An algorithm to create the interconnect topology
	6.2.5 Resource management using Barrelfish capability system
	6.2.6 An API for multicore resource management
	6.2.7 A library for interacting with RCM
	6.2.8 Limitations of RCM

	6.3 Summary

	7 Evaluation
	7.1 PARSEC benchmark suiteThe description of the benchmarks are taken from bib:parsec2.
	7.2 Benchmarking performance properties
	7.3 Benchmarking isolation properties
	7.4 Summary

	8 Conclusion
	8.1 Future work

	A Terminology
	B RCM's API
	C Using RCM within fish
	Bibliography

