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Abstract

Trends in hardware design have led to processors with many cores
on a single die, which present the opportunity for commodity com-
puting to become increasingly parallel. These multicore architectures
bring with them complex memory and cache hierarchies and processor
interconnects. While the execution of batch parallel applications has
been researched in the context of high-performance computing (HPC),
commodity hardware is evolving at a faster pace than specialized su-
percomputers and applications are interactive, requiring fast system
response times and the ability to react to ad-hoc workload changes.
Leveraging and managing the existing potential for parallelization thus
presents a difficult challenge for the development of both commodity
operating systems and application programs, which have to keep up
with hardware developments and present nimble solutions.

This dissertation presents the design and implementation of oper-
ating system mechanisms to support the execution of a dynamic mix
of interactive and parallel applications on commodity multicore com-
puters. The main goals are to provide a system that is scalable with an
increasing number of processor cores, is agile with a changing hard-
ware architecture, and provides interactive response time to the user
when running a mix of parallel, interactive applications.

I describe a new operating system architecture, the Multikernel,
and report about a concrete implementation of it, called Barrelfish.
The Multikernel takes a novel view on the underlying hardware ar-
chitecture: as a network of autonomous, heterogeneous processors.
The Barrelfish operating system is structured as a distributed system
of servers to facilitate easy restructuring of OS services according to
the hardware architecture. Applying techniques from the field of dis-
tributed systems, Barrelfish demonstrates that the operating system can
scale and perform equally well as manually tuned operating systems,
like Linux, and in some cases better, while remaining agile with a
range of different multicore systems.

I present the design and implementation of the inter-process com-
munication system and process scheduler within Barrelfish and show
how it can be made scalable and agile by applying the Multikernel de-
sign principles. Finally, I apply the gang scheduling technique from
HPC and show how it can be made nimble to support interactive re-
sponse times via a novel technique called phase-locked scheduling to
support scheduling a dynamic mix of parallel, interactive applications.





Zusammenfassung

Hardwaredesign Trends haben zu Prozessoren mit vielen Kernen
auf einem einzelnen Chip geführt, welches der elektronischen Daten-
verarbeitung ermöglicht, paralleler zu werden. Diese multicore Ar-
chitekturen ziehen komplexe Speicher und Cache Hierarchien, sowie
Prozessorverbindungen mit sich. Während die Ausführung von paral-
lelen Stapelverarbeitungsanwendungen im Kontext von Hochleistungs-
rechnern gut erforscht ist, entwickelt sich Massenhardware schneller
als spezialisierte Supercomputer und die Anwendungen sind interak-
tiv, was schnelle Systemantwortzeiten und die Fähigkeit, schnell auf
ad-hoc Änderungen der Arbeitslast zu reagieren, voraussetzt. Die Aus-
nutzung und Verwaltung des existierenden Parallelisierungspotenzials
stellt daher ein schwieriges Problem für die Entwicklung sowohl von
Massenbetriebssystemen, als auch Anwendungsprogrammen dar, die
mit der Hardwareentwicklung mithalten und flinke Lösungen anbieten
müssen.

Diese Dissertation stellt das Design und die Implementierung von
Betriebssystemmechanismen vor, welche die Ausführung einer dy-
namischen Mischung von interaktiven und parallelen Anwendungen
auf multicore Massencomputern unterstützt. Die Hauptziele sind ein
System bereit zu stellen, welches mit einer steigenden Anzahl an Pro-
zessorkernen skaliert, Agilität gegenüber einer sich verändernden Hard-
warearchitektur bietet und dem Anwender interaktive Antwortzeiten
bereitstellt, während es eine Mischung aus parallelen und interaktiven
Anwendungen ausführt.

Ich beschreibe eine neue Betriebssystemarchitektur, den Multik-
ernel, und berichte über eine konkrete Implementierung derselben,
genannt Barrelfish. Der Multikernel nimmt eine neue Sicht auf die
darunterliegende Hardwarearchitektur: Als Netzwerk autonomer, het-
erogener Prozessoren. Das Barrelfish Betriebssystem ist strukturiert
als verteiltes System von Servern, welches ein leichtes Restrukturi-
eren von Betriebssystemservices anhand der Hardwarearchitektur er-
möglicht. Dabei wendet Barrelfish Techniken aus dem Bereich der
verteilten Systeme an und demonstriert, daß das Betriebssytem ebenso
gut skalieren und funktionieren kann, wie manuell auf die Hardware
abgestimmte Betriebssysteme, wie zum Beispiel Linux, und in eini-
gen Fällen sogar besser, während es agil gegenüeber einer Anzahl ver-
schiedener Multicoresysteme bleibt.

Ich stelle das Design und die Implementierung des Interprozesskom-
munikationssystems und des Prozess-Schedulers vor und zeige wie



beide Systeme skalierbar und agil gemacht werden können, indem
die Designprinzipien des Multikernels angewandt werden. Schließlich
wende ich die Gang-Scheduling Technik aus dem Feld des Hochleis-
tungsrechnens an und zeige, wie es durch eine neue Technik, genannt
phase-locked scheduling, flink gemacht werden kann, so dass es inter-
aktive Antwortzeiten beim Scheduling einer dynamischen Mischung
aus parallelen und interaktiven Anwendungen unterstützt.



Acknowledgements

I would like to thank my supervisor Timothy Roscoe for all his help, pa-
tience, support and advice, and the entire Barrelfish team, at ETH and Mi-
crosoft, for all the insightful discussions, around the whiteboard, in corri-
dors, and elsewhere, in particular Paul Barham, Andrew Baumann, Pierre-
Evariste Dagand, Jana Giceva, Tim Harris, Rebecca Isaacs, Ross McIlroy,
Adrian Schüpbach, and Akhilesh Singhania.

Also, I am heavily indebted to the authors of the work that this dissertation
builds upon, namely the Barrelfish team, interns, students, and collaborators.
Without them, this dissertation would not exist. In addition, I would like
to acknowledge my examination committee for the detailed feedback on
numerous drafts of this document.

I would like to thank the researchers, staff, and interns at the Microsoft
Research labs in Cambridge and Silicon Valley for the incredibly fun and
rewarding time.

Finally, I would like to thank my parents for their patience and support
through all the years, as well as Akhilesh Singhania, for being a very good
and supporting friend in good and in tough times. Thanks for making all of
this so much more worthwhile!

Zurich, August 2012.





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 6

1.4 Related Publications . . . . . . . . . . . . . . . . . . . . . 7

2 The Multikernel 9

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Hardware Diversity . . . . . . . . . . . . . . . . . . 11

2.1.2 Interconnect Latency Matters . . . . . . . . . . . . 12

2.1.3 Remote Procedure Call vs. Shared Memory . . . . . 15

2.1.4 Cache Coherence Protocol Scalability . . . . . . . . 18

2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Evaluation Platforms . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 x86-based Systems . . . . . . . . . . . . . . . . . . 22

2.3.2 Intel Single-Chip Cloud Computer . . . . . . . . . . 23

2.4 The Multikernel Architecture . . . . . . . . . . . . . . . . . 24

2.4.1 Explicit Inter-core Communication . . . . . . . . . 26



2.4.2 Hardware-neutral OS Structure . . . . . . . . . . . . 28

2.4.3 State Replication . . . . . . . . . . . . . . . . . . . 29

2.5 System Structure . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 CPU Drivers . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Process Structure . . . . . . . . . . . . . . . . . . . 35

2.5.3 Protection Model . . . . . . . . . . . . . . . . . . . 41

2.5.4 Monitors . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.5 Threads and Shared Address Spaces . . . . . . . . . 44

2.5.6 Knowledge and Policy Engine . . . . . . . . . . . . 45

2.6 Inter-domain Communication . . . . . . . . . . . . . . . . . 46

2.6.1 Naming and Binding . . . . . . . . . . . . . . . . . 47

2.6.2 Same-core Communication . . . . . . . . . . . . . . 48

2.6.3 Inter-core Communication . . . . . . . . . . . . . . 49

2.6.4 Application-level Messaging Performance . . . . . . 57

2.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Scheduling in a Multikernel 64

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 System Diversity . . . . . . . . . . . . . . . . . . . 67

3.1.2 Multiple Applications . . . . . . . . . . . . . . . . 68

3.1.3 Interactive Workloads . . . . . . . . . . . . . . . . 71

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Parallel Scheduling in High-Performance Computing 72

3.2.2 Scheduling with Information from Applications . . . 75



3.2.3 Commodity Multicore OS Scheduling . . . . . . . . 76

3.2.4 Studies in Commodity Multicore Scheduling . . . . 77

3.2.5 Blocking Cost Evaluation . . . . . . . . . . . . . . 78

3.3 Example Workloads . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Virtual Machine Monitors . . . . . . . . . . . . . . 80

3.3.2 Parallel Garbage Collection . . . . . . . . . . . . . 81

3.3.3 Potential Future Workloads . . . . . . . . . . . . . . 81

3.4 Design Principles . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Time-multiplexing Cores is Still Needed . . . . . . . 85

3.4.2 Schedule at Multiple Timescales . . . . . . . . . . . 87

3.4.3 Reason Online About the Hardware . . . . . . . . . 87

3.4.4 Reason Online About Each Application . . . . . . . 88

3.4.5 Applications and OS Must Communicate . . . . . . 89

3.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Scheduler Concepts . . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 Dispatcher Groups . . . . . . . . . . . . . . . . . . 91

3.5.2 Scheduler Activations . . . . . . . . . . . . . . . . 92

3.5.3 Deterministic Per-core Scheduling . . . . . . . . . . 92

3.5.4 Phase-locked Scheduling . . . . . . . . . . . . . . . 93

3.5.5 Scheduler Manifests . . . . . . . . . . . . . . . . . 97

3.6 Barrelfish Scheduler Architecture . . . . . . . . . . . . . . . 100

3.6.1 Placement Controller . . . . . . . . . . . . . . . . . 101

3.6.2 Planners . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.3 Core-local Timer Synchronization . . . . . . . . . . 103

3.6.4 CPU Driver Scheduler . . . . . . . . . . . . . . . . 104

3.6.5 User-level Scheduler . . . . . . . . . . . . . . . . . 106



3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Evaluation 111

4.1 Barrelfish Scheduler . . . . . . . . . . . . . . . . . . . . . . 111

4.1.1 Phase Change Cost and Scalability . . . . . . . . . . 112

4.1.2 Single Application Performance . . . . . . . . . . . 114

4.1.3 Multiple Parallel Applications . . . . . . . . . . . . 116

4.1.4 Agility . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Phase-locked Gang Scheduling . . . . . . . . . . . . . . . . 122

4.2.1 Scheduling Overhead vs. High-level Solutions . . . 122

4.2.2 Scheduling Overhead vs. Low-level Solutions . . . . 124

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Conclusion 130

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 Heterogeneous Hardware Architectures . . . . . . . 132

5.1.2 Distributed Execution Engines . . . . . . . . . . . . 133

5.1.3 Systems Analysis . . . . . . . . . . . . . . . . . . . 134

5.1.4 Programming Language Integration . . . . . . . . . 134

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 136



Chapter 1

Introduction

This dissertation presents the design and implementation of an operating
system and its mechanisms to support the execution of a dynamic mix of
interactive and parallel applications on commodity multicore computers.

Our goal is to provide a system that

1. is scalable with an increasing number of processor cores,

2. is agile with a changing hardware architecture, that is, capable of
adapting to the increasing diversity of hardware platforms and ex-
ploiting specific hardware features when available without sacrificing
a clear structure of the system in the interest of performance, and

3. provides interactive response time to the user when running a mix of
parallel and interactive applications.

During the research for this dissertation, a prototype of this operating system
was created. I use this prototype to argue the following thesis:

An operating system can achieve the goals of scalability and
agility on a multicore computer by making all inter-core com-

1



2 CHAPTER 1. INTRODUCTION

munication explicit, not assuming any specific hardware fea-
tures, such as shared memory, cache coherence, or a specific
memory interconnect topology, and by viewing state as repli-
cated instead of shared.

Furthermore, it can support interactive application response times
on a commodity multicore computer by employing inter-process
communication and scheduling components that multiplex hard-
ware efficiently in time and space, react quickly to ad-hoc work-
load changes, reason online about the underlying hardware ar-
chitecture, reason online about each application, and allow re-
source negotiation between applications and the operating sys-
tem.

The set of applications that benefit from these ideas is very diverse and
ranges from traditional throughput oriented task-parallel workloads, such as
web-servers and databases, to emerging recognition, mining, and synthesis
(RMS) desktop workloads [Dub05, LV03].

1.1 Motivation

As hardware manufacturers reach the processing speed boundaries of what
is physically possible using traditional hardware architecture, computing be-
comes increasingly parallel in order to keep up with the demands for more
processing power. On the hardware side, this is achieved by integrating
a growing number of processor cores into processor dies. Machines with
multiple cores on a die are called multicore machines. Leveraging and man-
aging the existing hardware potential for parallelization presents a difficult
challenge for the development of software systems, as it brings the issue of
scalability with it. In this case, scalability is the ability of software to yield
execution speedup proportional to the number of available processing cores.

In particular, operating systems are an important part of the overall software
stack. Many applications invoke operating system services to help carry out
operations that must scale. Thus, it is important that the services presented
by the operating system are themselves scalable in order not to prevent scal-
ability of the rest of the software stack.
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A fundamental problem of any operating system is the provision and mul-
tiplexing of hardware resources to user-space applications. Resource man-
agement primitives can be invoked frequently by commodity applications.
For example, several file descriptor allocations and deallocations are typ-
ically carried out by network applications when handling each new client
connection and has been shown to become a scalability bottleneck when
invoked frequently [BWCC+08].

There are many other published scalability shortcomings pertaining to op-
erating system resource management in multicore systems. For example,
mis-scheduling of parallel applications [PSB+10], contention on spin-then-
block locks [JSAM10], and lock granularity of CPU dispatch [BBD+09].
Many of these are symptoms of a more general problem of classical shared-
memory operating system architecture, which has been shown by many re-
search publications of the field (covered in Section 2.2) to be suboptimal in
light of hardware performance possibilities. At a high-level, this is due to
three factors:

1. Lock contention. Shared-memory data structures are typically pro-
tected by some means of mutual exclusion, such as locks. Increas-
ing the number of execution contexts trying to access the same data
structure results in contention, which slows down overall progress and
becomes a scalability bottleneck.

2. Cache coherence. Main memory access latencies have become so
slow in comparison to processor speeds that adequate performance
can only be achieved if special cache memories are employed that
are closer to processor cores. This results in an architecture where
caches are core-local and data shared by multiple cores has to be
kept coherent among their caches. This is typically achieved by a
hardware-implemented cache-coherence protocol that communicates
among caches by passing messages on a special high-speed memory
interconnect.

I will show later in this dissertation that naive usage of hardware cache
coherence can become a scalability bottleneck. This is due to the mere
nature of sharing data across a network of individual cache memories.
If cores have to go to remote cache memory frequently in order to
fetch or update a datum, this results in higher memory access latency.
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It is thus important that data is placed local to the core operating on it
and not moved to other caches often.

3. Abstraction. Classical operating system application interfaces, such
as POSIX, abstract away many of the properties of multicore hard-
ware. Instead, the illusion of a multiprocessor with a single shared
memory is upheld. This abstraction causes overheads, which, due to
cache coherence, starts already at the hardware level.

Looking ahead, as more and more cores are added, it is not clear whether
hardware cache coherence itself can scale indefinitely [BWCC+08, BPS+09].
Hardware designers already consider alternative, non-cache-coherent archi-
tectures. For example, both the Intel Single-Chip Cloud Computer (SCC)
[HDH+10] and Microsoft’s Beehive processor [Tha10] have been designed
without hardware cache-coherence.

At the same time, multicore hardware is becoming more diverse [SPB+08].
For example, Intel’s QuickPath [Int08] and AMD’s HyperTransport [Hyp04]
cache coherence interconnects present two very different ways to structure
the hardware architecture to route cache coherence messages: one is a ring,
the other a mesh. In addition, hardware is evolving fast: different cache
hierarchies, non-uniform memory architectures, and specialized accelera-
tor cores, such as graphics accelerators, are being integrated into multicore
platforms. All of these innovations have happened in the past decade. I
am going to investigate them and their impact on operating systems more
closely in Section 2.1.1.

Complex commodity operating systems are faced with an increasingly di-
verse range of hardware and modifying them to support this diversity is a
difficult task. For example, removing the Windows dispatcher lock to im-
prove dispatch scalability was described as a “heroic” effort that involved
the modification of 6000 lines of code in 58 files of the Windows source
code to cope with feature interactions [Rus09].

Given their fundamental importance and the amount of problems they face,
it makes sense to investigate the very techniques and mechanisms that are
employed in operating systems for commodity multicore computers.
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1.2 Contribution

In this dissertation, I make three principal contributions:

1. I describe an operating system architecture, termed the Multikernel,
that is scalable and agile. This is achieved via a novel view on the
underlying hardware architecture: as a network of autonomous pro-
cessors. This view supports a programming paradigm requiring a very
clear separation of data that completely avoids sharing and its associ-
ated problems of locking and cache-coherence and replaces it with
explicit message-passing-based communication among cores. Op-
erating system services are structured as distributed systems placed
on top of these networks and are malleable to the underlying hard-
ware characteristics, such as communication latency and connectivity
among processors.

2. I describe the components necessary to support the execution of a dy-
namic mix of interactive and parallel applications within a Multikernel-
based operating system, namely mechanisms for low-latency com-
munication between mutually distrusting processes, both on the same
and among separate processor cores, and a process scheduler that fa-
cilitates the scheduling of a mix of parallel and interactive applica-
tions via an interface that allows more insight into these applications’
scheduling requirements.

3. I describe and evaluate a novel scheduling mechanism called phase-
locked gang scheduling. This mechanism builds on the previously
described components to allow for interactive system response when
scheduling applications that are both parallel and interactive.

Via a series of benchmarks, I demonstrate that Barrelfish can scale and per-
form equally well as manually tuned operating systems, while remaining
agile with a range of different cache-coherent and non-cache-coherent mul-
ticore systems. Also, I demonstrate response times below 5 seconds for a
hypothetical future parallel interactive network monitoring application. Re-
sponse times of these short durations provide almost immediate feedback
to users and enable a class of compute-intensive problems to be treated by
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interactive applications using parallel algorithms. This provides users with
new, interactive ways to investigate and treat this class of problems.

1.3 Dissertation Structure

This dissertation is structured such that background literature, and related
work relevant to a topic are placed within the chapters that treat the topic,
instead of providing a single overarching chapter for related work. I have
motivated the thesis at a high level within this chapter. I am going to iterate
the motivation in a topical fashion in the following chapters, providing more
detail.

The Multikernel structure, as well as relevant features of its implementa-
tion, Barrelfish, are described in Chapter 2. In particular, the inter-domain
message passing subsystem, process structure, and protection model are de-
scribed. The Multikernel operating system architecture is structured so as
to support scalable and agile implementations of operating system services
designed for present and future multicore hardware architectures.

In Chapter 3, I describe the design and implementation of the scheduling
subsystem of Barrelfish that facilitates the scheduling of a mix of parallel
and interactive applications in a commodity multicore computing scenario,
by allowing applications to specify detailed scheduling requirements and by
scheduling via a novel mechanism termed phase-locked gang scheduling.

In Chapter 4, I evaluate the scalability and agility of the scheduler imple-
mentation. I also evaluate how well phase-locked gang scheduling compares
to traditional gang scheduling solutions in providing low overhead and short
response time to parallel applications.

Finally, Chapter 5 concludes the dissertation, by summarizing and providing
an outlook to future research.
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Chapter 2

The Multikernel

This chapter describes the Multikernel architecture, as well as one concrete
implementation, Barrelfish. Being agile with diverse multicore system ar-
chitectures, while providing a model that allows seamless operating system
scalability are the main design goals.

The Multikernel is based on message passing. Nimble inter-process com-
munication primitives, especially among cores, are a requirement for the ef-
ficient, scalable execution of applications on top of a Multikernel operating
system implementation. This chapter describes and evaluates the design and
implementation of these primitives in Barrelfish. The Barrelfish implemen-
tation represents one point in the Multikernel design space and is certainly
not the only way to build a Multikernel.

This chapter is structured as follows:

Section 2.1 motivates the Multikernel. Hardware diversity, processor inter-
connect latency, the performance of message passing versus shared memory,
and cache coherence protocol scalability are discussed.

Section 2.2 provides background on past multiprocessor and message-passing-
based computer architectures and the operating systems thereon.

9
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Section 2.3 describes the hardware platforms used to evaluate Barrelfish
throughout this dissertation.

Section 2.4 describes the Multikernel architecture, its design principles, and
the resulting implications for concrete implementations.

Section 2.5 describes the actual choices made in the implementation, Bar-
relfish, and explains which choices are derived directly from the model de-
scribed here and which are in place due to other reasons.

Section 2.6 describes and evaluates the design and implementation of the
inter-domain communication primitives, both on the same and across dis-
tinct cores.

Section 2.7 surveys related work relevant to the Multikernel design and mes-
sage passing primitives.

Section 2.8 summarizes this chapter.

2.1 Motivation

In the desktop and server space—the typical domain of general purpose op-
erating systems—uniprocessors and multiprocessors consisting of just a few
processors were the norm for a long time and scalability or platform diver-
sity were easy to solve at the operating system level.

Commodity computers with multicore processors are pervasive today and it
is likely that future core counts are going to increase even further [Bor07],
as Moore’s Law continues to hold and transistor counts keep increasing.
Multicore architectures are a recent development and research into multi-
core operating systems is being carried out at the time of this writing, with
several approaches to improve operating system scalability in general, and
process scheduling in particular. I am going to cover these approaches in
Section 2.2.

Being able to scale with this increasing number of cores is an important
software problem today and operating systems are not spared from it. As an
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important layer in the software stack, operating systems can become scala-
bility bottlenecks, even if application software is able to scale.

Furthermore, multicore architectures are diverse, with different, non-uniform
interconnect topologies, cache hierarchies and processor features [SPB+08].
This is a main difference to the cache-coherent, non-uniform memory (cc-
NUMA) and symmetric multiprocessing (SMP) architectures used in high
performance computing. Multicore operating systems have to be built to be
agile with the different architectures in existence and cannot be tailored to
one particular architecture that may not exist anymore in a few years’ time.

In this section, I argue that computers increasingly resemble networked sys-
tems with very similar properties, such as topology and node heterogeneity
and latency, and software should be programmed in a similar manner to soft-
ware running on such networked systems. In the following, I give several
examples.

2.1.1 Hardware Diversity

Multicore architectures are constantly evolving. This brings diversity in
manufactured systems with it and operating systems have to be able to adapt,
instead of being designed for one particular hardware configuration. A par-
ticular example of operating system tailoring to a specific hardware archi-
tecture are reader-writer locks [DS09], which are employed in the Solaris
operating system on the Sun Niagara processor [KAO05]. Cores on the Ni-
agara processor share a banked L2 cache and thus a lock using concurrent
writes to the same cache line to track the presence of readers is a highly
efficient technique, as the line remains in the cache. On other multicore sys-
tems that do not share L2 caches, this is highly inefficient, as cache lines
have to be moved constantly between the readers’ caches, incurring a high
latency penalty.

Production commodity operating systems, such as Linux, Windows, and
Solaris, used to optimize for the most common architecture on the market
and are becoming less efficient as hardware becomes more diverse. This
can be seen by the amount of work that is currently being done to optimize
operating systems to new multicore architectures, both within research, as
well as industry.
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For example, the Linux scalability effort [LSE] is a community-based ef-
fort to improve Linux scalability on multicore systems with large processor
counts. Algorithms for scalable synchronization in shared-memory mul-
tiprocessors have been developed [MCS91] and read-copy-update mecha-
nisms were introduced to improve multiprocessor scalability [MW08], but
had to be revised to improve real-time responsiveness [GMTW08]. Sev-
eral scalability improvements have been worked into the Windows operat-
ing system, for example, the removal of scheduler lock acquisition within
code handling timer expiration [Rus08] and receive-side scaling technology
to enable better scalability of network packet processing [Mic].

In some cases, modifying the operating system can be prohibitively difficult.
For example, improvements to the Windows 7 scheduler architecture to aid
it become more scalable on modern hardware modified 6000 lines of code
scattered across the operating system and have been described as “heroic”
[Rus09]. Similar effort was put into updating the Linux read-copy-update
implementation [MW08], as several other features had to be updated that
tightly depended on the old implementation.

But also within a single machine, hardware can be diverse. For example,
performance-asymmetric architectures that share the same instruction set ar-
chitecture (ISA), but have processors with different performance character-
istics [SNL+03, IKKM07], are widely proposed to provide a better power-
performance ratio. These architectures allow parallel programs to execute
on a fleet of low-power, low-performance cores, while sequential programs
execute on a few high-performance cores. Other architectures provide spe-
cialized ISAs to optimize certain functionality [HBK06] and many accel-
erator cores are increasingly programmable, such as graphics and network
processors.

2.1.2 Interconnect Latency Matters

Hardware memory interconnect architectures, such as HyperTransport [CH07]
and QuickPath [Int08], have replaced shared bus toplogies with a message
passing infrastructure. For example, the memory topology presented in Fig-
ure 2.1 for a commodity PC server shows that caches are connected by point
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Figure 2.1: Node layout of an 8×4-core AMD system.

Access cycles normalized to L1 per-hop cost

L1 cache 2 1 -
L2 cache 15 7.5 -
L3 cache 75 37.5 -
Other L1/L2 130 65 -
1-hop cache 190 95 60
2-hop cache 260 130 70

Table 2.1: Latency of cache access for the 8×4-core AMD
machine in Figure 2.1.

to point links. On these links, messages are passed to communicate the state
of cache lines among caches of different processors.

The problems these topologies exert are very similar to those observed in
networked systems. Link latency and utilization, especially over multiple
hops of the interconnect, are playing an important role in program efficiency
and scalability. In the future, these problems will increasingly impact cores
on a chip, as these become more complex. For example, the AMD Magny
Cours architecture uses HyperTransport links between two sets of six cores
on the twelve-core chip [Car10]. Other multicore architectures, such as
Larrabee [SCS+08, KPP06] and Tilera [WGH+07, VHR+07], use grid and
torus-based interconnect topologies among cores with complex communi-
cation trade-offs.

This complexity can be demonstrated with a simple cache access micro-
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Figure 2.2: Node layout of a 2×4-core Intel system.

Access cycles normalized to L1 per-hop cost

L1 cache 3 1 -
L2 cache 14 4.6 -
Other L1/L2 80 26.6 -
1-hop cache 128 42.6 48

Table 2.2: Latency of cache access for the 2×4-core Intel ma-
chine in Figure 2.2.

benchmark, whose results are shown in Table 2.1 for the 8×4-core AMD
machine presented in Figure 2.1. The benchmark shows cache line access
latency for all caches in the memory hierarchy of the machine. The results
are comparable to those presented by Boyd-Wickizer et al. for a 16-core
AMD machine [BWCC+08]. As can be seen, remote cache line access can
be up to 130 times slower than local L1 access and still up to 17 times slower
than local L2 access.

To show that these problems are prevalent also on other architectures, I con-
duct the same benchmark on a 2×4-core Intel machine, depicted in Fig-
ure 2.2, and show the results in Table 2.2. As can be seen, even on this
smaller, bus-oriented multicore machine with only 8 cores, remote cache
line access can be up to 42.6 times slower than local L1 access and still up to
9 times slower than local L2 access. Non-coherent message-passing-based
architectures, like the SCC, explicitly specify remote MPB access latencies
per hop. The trend shown by these benchmarks is for these problems to
exacerbate as multicore machines become larger.
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Commodity operating systems use shared memory data structures that ab-
stract away from the cache interconnect topology and designers do not rea-
son about topology from first principles. Instead, performance problems
show up later and their causes have to be found by complicated debug-
ging. While debugging, developers have to pay great attention to shared
data structure and algorithm layout, such that typical problems, like false
and superfluous sharing and cache line thrashing can be found. To eliminate
these problems, developers have to apply hardware-specific modifications to
these data structures and algorithms, customizing the code for a particular
hardware architecture.

On the other hand, in a distributed systems context, we can describe cache
operations as the cache performing a remote procedure call (RPC) to a re-
mote cache to fetch a cache line. Designing the operating system using these
concepts allows us to explicitly reason about coherent cache access, such as
the location of data and how long it will take for it to travel to the local
cache.

2.1.3 Remote Procedure Call vs. Shared Memory

Lauer and Needham have argued that there is no semantic difference be-
tween shared memory data structures and use of message passing in an op-
erating system. In fact, they argue that they are duals and neither model is
inherently preferable [LN78]. However, choosing one over the other can
be a performance trade off, depending on the hardware architecture that the
system is built upon. For example, one system architecture might provide
primitives for queuing messages and thus a message-passing based operat-
ing system might be easier to implement and be more performing. Another
system might support fast mutual exclusion for shared-memory data access
and thus a shared memory operating system might perform better.

An experiment1 can show this trade off on contemporary commodity hard-
ware. The experiment compares the cost of updating a data structure using
shared memory with that of message passing on a 4×4-core AMD system.
Figure 2.3 shows update latency against number of cores operating on the
data structure for updates of various sizes.

1This experiment was conducted by Paul Barham.
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Figure 2.3: Comparison of the cost of updating shared state using shared memory
and message passing on a 4×4-core AMD system.

In the shared memory case, each core directly updates the same small set
of memory locations (without locking) and the cache-coherence mechanism
migrates data among caches as necessary. The curves labeled SHM1–8 show
the latency per operation (in cycles) for updates that directly modify 1, 2,
4 and 8 shared cache lines, respectively. The costs grow approximately
linearly with the number of cores and the number of modified cache lines.
Although a single core can perform the update operation in under 30 cycles,
when 16 cores are modifying the same data it takes almost 12,000 extra
cycles to perform each update. All of these extra cycles are spent with the
core stalled on cache misses and therefore unable to do useful work while
waiting for an update to occur.

In the case of message passing, client cores issue a lightweight remote pro-
cedure call [BALL91], which we assume fits in a 64-byte cache line, to
a single server core that performs the update on their behalf. The curves
labeled MSG1 and MSG8, show the cost of this synchronous RPC to the
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dedicated server core. As expected, the cost varies little with the number
of modified cache lines since they remain in the server’s local cache. Be-
cause each request is likely to experience some queuing delay at the server
proportional to the number of clients, the elapsed time per operation grows
linearly with the number of client cores. Despite this, for updates of four
or more cache lines, the RPC latency is lower than shared memory access
(SHM4 vs. MSG8). Furthermore, with an asynchronous or pipelined RPC
implementation, the client processors can avoid stalling on cache misses and
are free to perform other operations.

The final curve, labeled Server, shows time spent performing each update
operation as measured at the server end of the RPC channel. Since it ex-
cludes queuing delay, this cost is largely independent of the number of cores
(and in fact decreases initially once there are enough outstanding client re-
quests to keep the server 100% utilized). The cache efficiency of the single
server is such that it can perform twice as many updates per second as all
16 shared-memory cores combined. The per-operation cost is dominated by
message send and receive, and since these costs are symmetric at the client
end, we infer that the difference between the Server and MSGn lines rep-
resents the additional cycles that would be available to the client for useful
work if it were to use asynchronous messaging.

This example shows scalability issues for cache-coherent shared memory
on even a small number of cores. Although current operating systems have
point-solutions for this problem, which work on specific platforms or soft-
ware systems, the inherent lack of scalability of the shared memory model,
combined with the rate of innovation we see in hardware, will create in-
creasingly intractable software engineering problems for operating system
kernels.

Figure 2.4 shows the result of repeating the experiment on the 2×4-core
Intel machine. In this case, we are plotting latency versus the number of
contended cache lines. We execute the experiment once for 2 and once for
all 8 cores of the architecture, both for message passing to a single server
core and for shared-memory. Again, we see that when contending for a
growing number of cache lines among a number of cores, remote proce-
dure calls increasingly deliver better performance than a shared memory
approach. When all 8 cores contend, the effect is almost immediate. When
only 2 cores contend, we need to access at least 12 cache lines concurrently
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Figure 2.4: Comparison of the cost of updating shared state using shared memory
and message passing on the 2×4-core Intel system.

before observing the effect. This confirms that the problem persists on other
architectures.

2.1.4 Cache Coherence Protocol Scalability

As more cores are integrated into multicore architectures, hardware cache-
coherence protocols are becoming increasingly expensive. It is not clear
to how many cores these protocols will be able to scale, and so it is possi-
ble that future multicore systems might not be fully cache-coherent [WA09,
MVdWF08, Bor07]. Mattson et al. argue that cache coherence protocols
might not be able to scale beyond 80 cores [MVdWF08]. Even if intercon-
nects remain fully coherent for a while, software can leverage substantial
performance gains by bypassing the cache-coherence protocol [WGH+07].

Finally, accelerator cores, like graphics and network controllers, are not
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Figure 2.5: Spectrum of sharing and locking disciplines.

cache-coherent with the rest of the system and research non-coherent multi-
core processors, such as the Intel Single-Chip Cloud Computer [HDH+10],
have already been built to investigate the use of non-coherent shared mem-
ory for the entire architecture.

2.1.5 Discussion

While it is unclear whether cache coherence is going away, the number of
cores in a system is going to increase and will bring more change to inter-
connect topologies. An operating system that is based on message passing
is a better fit for these architectures, as it can be deployed on non-coherent
systems without change and can exploit the underlying hardware message
passing facilities better.

The fast pace of hardware changes is a problem for commodity operating
systems, which are not designed with a changing hardware architecture in
mind and struggle to keep up. Furthermore, the increasing hardware di-
versity will make it prohibitively expensive for developers to adapt their
optimizations to these new platforms. A distributed system model allows us
to efficiently re-structure the operating system to the changing underlying
hardware without the need to rewrite vast portions of it.

Figure 2.5 shows the design spectrum between completely shared approaches,
over fine-grained locking, to fully distributed models. Traditionally, operat-
ing systems originated on the left hand side, as they were typically designed
with a uni-processor in mind and then gradually evolved to multiproces-
sors with ever higher processor counts, such that today’s commodity op-
erating systems are situated towards the center, where frequently accessed
data structures are partitioned across cores. Research operating systems pro-
posed clustered object mechanisms that improve data locality of these par-



20 CHAPTER 2. THE MULTIKERNEL

titions even further [GKAS99]. The approach presented in this dissertation
originates at the right hand side: We design the operating system and reason
about it as a distributed system, where all state is replicated by default and
consistency is maintained by distributed agreement protocols. In those cases
where it is appropriate, we employ sharing of data structures to optimize the
model.

2.2 Background

Machines that use message passing among cores have existed for a long
time. The Auspex [Bli96] and IBM System/360 implemented partially shared
memory and used messages to communicate between non-shared regions.
Furthermore, message passing has been employed on large supercomputers,
such as the Cray T3 and IBM Blue Gene, to enable them to scale beyond the
limits of cache coherence protocols. Unsurprisingly, their operating systems
resembled distributed systems. The Multikernel model has similar goals
with these approaches, but additionally has to be agile with a variety of
multicore architectures.

Using message passing instead of shared memory has been explicitly inves-
tigated in the past on the BBN Butterfly Plus multiprocessor architecture
[CDL+93]. This work found a bias towards message passing for the latency
of kernel operations and is early evidence that message passing can make
sense in a multicore operating system.

Similarly, the DEC Firefly multiprocessor workstation [TS87], is designed
as a network of MicroVAX 78032 processors communicating via remote
procedure calls that are implemented by the use of message passing. The
Taos operating system has been designed in the fashion of a distributed sys-
tem of multiple services sequestered into separate address spaces that com-
municate via RPC.

Several extensions have been made to existing commodity operating sys-
tems, like Linux, OS X, Windows, BSD, and Solaris, over the past decade
to help them scale with an ever increasing number of cores. Recent exam-
ples include modifications to the Linux kernel to better support a “shared-
nothing” application structure [BWCM+10], as well as the previously men-
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tioned efforts to reduce locks and their granularity in the Windows ker-
nel [Rus09]. Many of these developments are summarized and put into
historical context by Cantrill and Bonwick [CB08]. Research comparing
the scalability of Linux, BSD, and Solaris on multicore architectures finds
that none of these operating systems ultimately scales better than another
[CCSW10, BWCM+10].

Similarly, the L4 Microkernel has been extended for scalability on mul-
ticore machines [Uhl07]. The main problem in a Microkernel is that of
lock granularity for kernel operations that are naturally more fine-grain than
those of monolithic kernels. The extension introduces a mechanism to al-
low programs to explicitly specify expected parallelism and uses an adaptive
locking mechanism to switch between coarse and fine-grained locking, ac-
cording to the specification.

Microkernel architectures, such as Mach [BGJ+92], employ message-based
communication among processes, but do so to achieve protection and iso-
lation. Multiprocessors were either absent from consideration or the Mi-
crokernel itself remained a shared-memory, multi-threaded system and does
not manage cores independently. While some message-based coordination
of user-space services that execute on distinct cores might exist in Mach,
independent management of individual cores was not an explicit design cri-
terion for this operating system.

Disco and Cellular Disco [BDGR97, GTHR99] were based on the premise
that large multiprocessors can be better programmed as distributed systems,
an argument complementary to the one made in this dissertation. Simi-
larly, the Hive operating system [CRD+95] used a distributed system of
independent kernels, called cells, to improve system scalability and contain
software and hardware faults to the cells in which they occur. While in the
Hive operating system shared memory was still required to provide perfor-
mance competitive with other multiprocessor operating systems available at
the time, these systems can still be seen as further evidence that the shared-
memory model is not a complete solution for large-scale multiprocessors,
even at the operating system level.
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2.3 Evaluation Platforms

Barrelfish has been implemented for a range of contemporary multicore ar-
chitectures and machines, among them the x86 line of Intel processors (IA-
32 and Intel64), the Intel Single-Chip Cloud Computer, several ARMv5 and
ARMv7 based architectures, and Microsoft’s Beehive processor. Through-
out this dissertation, I demonstrate that the ideas are practical by evaluating
different parts of the Barrelfish prototype on a number of machines derived
from these architectures. I focus my evaluation by comparing against the
Linux operating system. Where appropriate, I elaborate on the performance
of other commodity operating systems, such as Windows and Solaris.

My choice of machines is comprised of Intel and AMD models of the Intel64
architecture, which are prevalent in the commodity computing space. Some
of these machines were introduced in Section 2.1. I also include the Intel
Single-Chip Cloud Computer research architecture as an example of what
a commodity computer could look like in the future. I am describing the
machines once in detail here and will refer to them later in the document.

2.3.1 x86-based Systems

The 2×4-core Intel system has an Intel s5000XVN motherboard [Int10] with
2 quad-core 2.66GHz Xeon X5355 processors and a single external memory
controller. Each processor package contains 2 dies, each with 2 cores and a
shared 4MB L2 cache per die. Both processors are connected to the mem-
ory controller by a shared front-side bus, however the memory controller
implements a snoop filter to reduce coherence traffic crossing the bus.

The 2×2-core AMD system has a Tyan Thunder n6650W board [TYA06b]
with 2 dual-core 2.8GHz AMD Opteron 2220 processors, each with a local
memory controller and connected by 2 HyperTransport links. Each core has
its own 1MB L2 cache.

The 4×4-core AMD system has a Supermicro H8QM3-2 board [Sup09] with
4 quad-core 2.5GHz AMD Opteron 8380 processors connected in a square
topology by four HyperTransport links. Each core has a private 512kB L2
cache, and each processor has a 6MB L3 cache shared by all 4 cores.
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Figure 2.6: SCC architecture functional diagram.

The 8×4-core AMD system has a Tyan Thunder S4985 board [TYA06a]
with M4985 quad CPU daughter card and 8 quad-core 2GHz AMD Opteron
8350 processors. I present the interconnect in Figure 2.1. Each core has a
private 512kB L2 cache, and each processor has a 2MB L3 cache shared by
all 4 cores.

All x86-based systems are equipped with an Intel e1000 Ethernet network
interface card that delivers network throughput of up to 1Gb/s.

2.3.2 Intel Single-Chip Cloud Computer

The Intel Single-Chip Cloud Computer [HDH+10] is a non-cache-coherent
architecture, based on IA-32 Pentium P54C cores, clocked at 533MHz. It
contains 48 of these cores, grouped into tiles of two cores each and linked by
a two-dimensional, high-speed mesh network. Figure 2.6 shows a functional
diagram of the SCC architecture.

The SCC uses a message passing architecture. Messages are exchanged on
the mesh network via routers. A router exists on each tile and is shared
by both cores. At the left and right edges of the mesh, two connections
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route messages to one of four memory controllers (MCs). Each core has
256KB of non-coherent L2 cache, and in addition each pair shares a 16KB
on-tile message-passing buffer (MPB). MPBs are memory-mapped regions
of SRAM that support fast non-coherent reads and writes of MPB data at
cache line granularity2. To support cache-line operations, each core has a
write-combine buffer that can be used to write to SRAM and DRAM alike.
In order to support mutual exclusion of writers to the same region of SRAM,
a test-and-set register is provided per core.

A cache invalidate opcode named CL1INVMB has been added to the archi-
tecture to allow software to control cache operations and invalidate stale
cache lines when they should be read fresh from either SRAM or DRAM.
This opcode executes within 2 processing cycles of the architecture.

2.4 The Multikernel Architecture

In order to achieve the goals of scalability and agility, a number of design
principles is followed that was not previously tried in this combination in
designing an operating system for commodity multicore computers. This
section presents the Multikernel architecture and discusses these three main
design principles. They are:

1. Make all inter-core communication explicit.

2. Make operating system structure hardware-neutral, that is, the archi-
tecture does not assume any specific hardware features, such as shared
memory, cache coherence, or a specific memory interconnect topol-
ogy. Such hardware features can be used as optimizations in imple-
mentations of the model.

3. View state as replicated instead of shared.

The first design principle is realized by using message passing instead of
shared memory for inter-core communication. This has the benefit that it

2The size of a cache line on the SCC is 32 bytes.
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Figure 2.7: The Multikernel model. Several potentially heterogeneous cores are con-
nected via a hardware memory interconnect. On top of this run per-core OS nodes
that use agreement protocols and asynchronous message passing to keep replicated
state consistent within the system. On top of this run applications that can utilize
several OS nodes concurrently for parallel processing.

does not assume cache-coherent shared memory and is thus a natural fit for
non-cache-coherent architectures. Furthermore, this architecture does not
share data among processor cores by default and thus encourages a scalable
implementation.

The second design principle is realized by using a component architecture
that allows OS services to be structured as distributed systems placed on
networks of cores. The structure of these distributed systems can be freely
defined at OS boot-time according to the underlying hardware characteris-
tics, such as communication latency and connectivity among cores.

The third design principle is realized by applying replication techniques and
agreement protocols from the field of distributed systems, which I will sur-
vey in Section 2.4.3. These techniques allow OS services to replicate state
only among those cores that need access and to optimize replication strate-
gies for different network configurations.
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In summary, this results in structuring the operating system as a distributed
system of servers that run on a network of distinct cores and communicate
via message passing, instead of using shared memory. Figure 2.7 shows an
overview of the architecture. The above principles allow the operating sys-
tem to benefit from the distributed systems approach to gain improved per-
formance and scalability, natural support for hardware heterogeneity, greater
modularity, and the ability to reuse algorithms developed for distributed sys-
tems.

2.4.1 Explicit Inter-core Communication

We design the operating system such that all inter-core communication hap-
pens explicitly via message passing. There will be no sharing of data struc-
tures, except for those needed to efficiently implement message passing
primitives, such as message channels.

As we have seen in the results shown in Figure 2.3, messaging can improve
performance as the number of cache lines modified grows. We anticipate
that many data structures exist within an operating system that require mod-
ification of multiple cache lines to finish an operation on the data structure.

Note that disallowing inter-core sharing within the operating system does
not preclude applications sharing memory among cores, only that the op-
erating system design itself does not rely on it. I will present the support
for shared memory applications, which will likely remain important due to
a typically simpler structure that is easier to program for, in Section 2.5.5.

Message passing makes all inter-core communication explicit and forces the
operating system developer to think hard about what state he communicates
with other cores, as well as how many of them and which. This enforces a
core-local policy by default that can be selectively broken through if the de-
veloper realizes that cross-core communication is really needed. In contrast,
classical operating systems typically employ point solutions to optimize the
scalability of hot-path data structures, like those discussed in Section 2.2.
These are difficult to evolve as multicore hardware changes and ignore fea-
ture interactions that might require updates to large portions of the operating
system implementation, especially when multiple data structures need to be
updated concurrently.
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Explicit communication allows the operating system to employ optimiza-
tions from the field of networked systems, such as pipelining and batching.
Pipelining allows having multiple outstanding requests at once that can then
be handled asynchronously by a service, typically improving throughput.
Batching allows sending a number of requests within one message or pro-
cessing a number of messages together and is another technique to improve
throughput. I am going to demonstrate this experimentally in Section 2.6,
which investigates message passing performance. These optimizations are
also going to help us gain superior performance of application-level bench-
marks conducted in Section 2.6.4, versus shared-memory operating system
approaches.

Furthermore, message passing is a natural way to handle cores with hetero-
geneous ISAs and those that are not cache-coherent, or even share mem-
ory, with the rest of the system, as it makes no special assumptions about
either. Shared memory data structures are naturally assumed to be in cache-
coherent memory and shared code naturally has to execute on the same
ISA. For example, it is possible to execute a single Barrelfish OS instance
on a machine consisting of an x86-based host PC and an SCC peripheral
[PSMR11], while no memory is shared among either platform. This is made
possible by communicating solely via message passing channels.

Message passing allows communication to be asynchronous. This is not
the case for the hardware cache-coherence protocol, which stalls the proces-
sor until the required cache operation is completed, as was demonstrated in
Section 2.1.3. Asynchronous communication allows cores to do other useful
work or halt to save power, while waiting for the reply to a particular request.
An example is remote cache invalidation: completing the invalidation is not
usually required for correctness and could be done asynchronously, instead
of waiting for the operation to finish.

Finally, using explicit communication makes systems more amenable for
analysis (by humans or automatically). Explicit communication forces de-
velopers to use well-defined interfaces and is thus naturally more modular.
As a consequence, explicit communication eases software evolution and re-
finement [FAH+06], as well as robustness to faults [HBG+06]. Indeed,
there is a substantial theoretical foundation for reasoning about the high-
level structure and performance of a system with explicit communication
among concurrent tasks, ranging from process calculi such as communi-
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cating sequential processes [Hoa] and the π-calculus [Mil99], to the use of
queuing theory to analyze the performance of complex networks [Jai91].
The treatment of analysis techniques is outside the scope of this disserta-
tion, but is an important avenue for future work and we will return to it in
Section 5.1.

2.4.2 Hardware-neutral OS Structure

We design the operating system such that it is not tailored to a specific hard-
ware structure. Instead, we employ a multi-server design that we can re-
structure according to the underlying hardware configuration. This way,
we minimize the reliance on implementation that needs to be written for a
particular architecture. Only the message transport mechanisms and device
drivers still have to be tailored to the architecture.

This design minimizes the amount of changes that have to be done to the
implementation in order to adapt to a new hardware architecture and elim-
inates feature interactions due to hardware-specific data structure designs
and the mechanisms that handle them.

As this dissertation will show in Section 2.6, the performance of an inter-
domain communication mechanism is strongly dependent upon hardware-
specific optimizations. The separation of low-level messaging and high-
level algorithms that is a natural consequence of the message passing ap-
proach allows both of these to evolve without impacting each other, result-
ing in a cleaner design.

These hardware-neutral design features make the operating system agile
with the changing hardware landscape. For example, I will show in Sec-
tion 4.1.4 how Barrelfish supports the same application performance as man-
ually tuned operating systems on different multicore platforms.

A final advantage is that both the protocol implementation and message
transport can be selected at run-time. For example, different transports may
be used to cores and devices on IO links, or the implementation may be fitted
to the observed workload by adjusting queue lengths or polling frequency.
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2.4.3 State Replication

For some operating system state, it is necessary that it be accessed by mul-
tiple processors. Traditionally, this is done via shared data structures pro-
tected by locks. In a Multikernel, explicit message-passing among cores
that share no memory leads to a model where global operating system state
is replicated instead of shared.

Replication is a well-known technique for improving the scalability of op-
erating systems [GKAS99, ADK+07], but is generally employed as an opti-
mization to an otherwise shared-memory kernel design. In a Multikernel, all
potentially shared state is replicated and accessed or updated using message
passing. Depending on consistency requirements, state updates can be long-
running operations to keep all replicas coherent and depend strongly on the
workload. The scheduler presented in Chapter 3 is one example operating
system service that employs replication to facilitate scalability.

Replicating data structures can improve system scalability by reducing load
on the system interconnect, contention for memory, and overhead for syn-
chronization. Also, bringing data nearer to the cores that process it will
result in lower access latencies and reduce processing times. Replication is
required to support processing domains that do not share memory and is in-
herent in the idea of specializing data structures for particular core designs.
Making replication of state a design requirement for the Multikernel makes
it easier to preserve operating system structure and algorithms as underlying
hardware evolves.

Replication is also useful to support changes to the set of available, running
cores, as we can apply standard mechanisms from the distributed systems
literature. This can be used, for example, upon a CPU hot-plug or shut down
in order to save power.

What we gain in performance through replication comes at the cost of replica
maintenance. This means higher latency for some operations, depending on
the workload, and means an increased burden for the developers who must
understand the data consistency requirements, but allows them to precisely
control the consistency policy. For example, a TLB flush can be achieved by
a single multicast, as it has no requirements on the ordering of flush opera-
tions over cores. Other operations might require more elaborate agreement
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protocols.

Several replication techniques and consistency schemes exist in the litera-
ture and I briefly discuss here their applicability to the Multikernel:

1. Transactional replication is used for transactional data, such as found
within database management systems and is typically described along
with a strict set of restrictions, called the ACID properties [HR83],
that define a valid transaction. The predominant consistency scheme
for transactional replication is one-copy serializability [Kem09]. File
systems most closely resemble transactional systems and thus transac-
tional replication is an adequate fit. However, in many cases, the full
ACID properties are too restrictive for adequate performance and are
often relaxed, for example in replication for the Network File System
version 4 [Pet06].

2. State machine replication is used predominantly within distributed
systems and relies on the assumption that these systems can be mod-
eled as state machines and reliable broadcast of state transitions to
replicas is possible. Maintaining consistency is modeled as a dis-
tributed consensus problem and algorithms, such as Paxos [PSL80],
exist to achieve it. State machine replication is used in distributed ser-
vices, such as Google’s Chubby lock service[Bur06]. Mutual exclu-
sion is an integral part of an operating system and thus this replication
model is useful in implementing it in a Multikernel.

3. Virtual synchrony [BJ87] is a replication technique used in group
communication systems, such as Transis [DM96]. Maintaining group
membership, as well as efficient, but reliable multicast of operations
carried out within a group, especially with regard to message order,
are the main focus of consistency schemes in this area.

Within a Multikernel, virtual synchrony can be used for services that
involve event notification, such as publish-subscribe. In such services,
applications can subscribe to messages of a given topic and an event
callback is invoked whenever a new message of that topic is published
to the group.

Examples of such systems within a Multikernel include the name and
coordination service, Octopus [Zel12], as well as file system buffer
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caches. Octopus supports creation of named information records that
can be subscribed to by applications. Update events are delivered
to subscribers whenever a record is updated. This service is useful,
for example, in the creation of the terminal subsystem, which is used
by multiple applications at the same time. Information about termi-
nal line discipline is stored in an Octopus record and can be updated
by applications with access to the terminal. Upon an update, all ap-
plications using the same terminal are informed to use the new line
discipline.

File system buffer caches can use group communication to cooper-
atively cache buffers among cores. Per-core lists of cached blocks
can be kept and group communication can be used to avoid fetching
blocks from cores that are distant or overloaded.

Other consistency schemes, such as eventual consistency [Vog09], relax the
time constraints on when replicas have to be consistent and can be applied
to any of the replication techniques presented above. As within distributed
systems, these schemes can be important within a Multikernel to improve
the performance of replicated operations at the cost of system consistency.

2.5 System Structure

A drawback of an operating system model relying solely on message passing
is that certain hardware performance optimizations may not be applicable,
such as making use of a shared cache between cores. Messages might still
be transported with lower latency on cores that share a cache, but laying out
shared data structures in shared cache memory requires a shared-memory
model.

To explore to what extent the Multikernel architecture can be applied in
practice, Barrelfish, a prototype Multikernel operating system, was devel-
oped. This section describes the structure of the Barrelfish implementation
of the Multikernel model, as well as the implementation of vital system
components.

Specifically, the goals for Barrelfish are that it:
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Figure 2.8: Barrelfish structure on the x86-64 hardware architecture. User-space
monitor processes, which implement OS services, communicate via user-mode
remote-procedure calls. Inter-processor interrupts might be employed for notifi-
cation of message arrival at destination cores and are handled by privileged CPU
drivers. Finally, both messages and interrupts are delivered on the cache-coherent
interconnect between cores. On top of this run the applications, which utilize OS
services.

• gives comparable performance to existing commodity operating sys-
tems on current multicore hardware;

• demonstrates evidence of scalability to large numbers of cores, partic-
ularly under workloads that stress global operating system data struc-
tures;

• can be re-targeted to different hardware, without refactoring;

• can exploit the message-passing abstraction to achieve good perfor-
mance by pipelining and batching messages;

• can exploit the modularity of the operating system to place operating
system functionality according to the hardware topology or load.

In Barrelfish, we place independent low-level operating system instances
on each core and have them communicate via messages. The low-level in-
stances consist of a privileged-mode CPU driver and a user-mode monitor
process, as shown in Figure 2.8. CPU drivers are structured such that they
execute completely core-locally. All inter-core messaging necessary for
low-level operating system service operation is carried out by the monitors.
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CPU drivers might only be involved in delivering inter-processor interrupts
as a means of notifying remote cores. As a distributed system, monitors and
CPU drivers represent the functionality of a typical Microkernel: Schedul-
ing, inter-domain communication, and low-level resource management are
all implemented within these two components.

The rest of Barrelfish consists of device drivers and other system services
(such as network stacks, memory allocators, etc.), which run in user-level
processes. Device interrupts are routed in hardware to the appropriate core,
demultiplexed by that core’s CPU driver, and delivered to the driver process
as a local message.

2.5.1 CPU Drivers

CPU drivers in Barrelfish are responsible for managing the per-core low-
level hardware features, such as context switching of processor register state,
system calls, traps, device interrupts and core-local timers. CPU drivers run
in privileged mode and it is in our interest to make them as simple as pos-
sible, such that the risk of bugs impacting arbitrary system state is reduced,
akin to the design of Microkernels. Thus, we do not incorporate any high-
level functionality into the CPU driver, in particular dynamic allocation of
memory. As such, it is possible for us to design the CPU driver in a com-
pletely event-driven, non-preemptable, single-threaded manner, using only
a single, pre-allocated stack that is not retained upon a return to user mode.
OS state is managed by manipulating capabilities, which user-mode passes
to the CPU driver upon a system call. Capabilities are explained in Sec-
tion 2.5.3. This makes it easier to write and debug CPU drivers, compared
to classical monolithic kernels, where all services, including device drivers
are executing in privileged mode and state of multiple threads has to be kept
simultaneously. In Barrelfish, we disable interrupts upon entry to the CPU
driver and carry out only one driver operation at a time, before leaving the
CPU driver with interrupts enabled.

The CPU driver is small. Including platform-specific code for all seven
supported architectures, it is comprised of only 22,133 lines of code, out of
which 2,981 lines are in Assembly. To compare, the x86-64 specific code
has a volume of 5,455 lines of code. Resident CPU driver code has a size
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of 185kB and data has a size of 4.7MB. This allows us to replicate CPU
driver code and data to core-local memory on a NUMA system, which can
improve performance as the frequently used CPU driver is always loaded
from memory close to the executing core.

As with an Exokernel [EKO95], a CPU driver abstracts very little from the
underlying hardware. Instead, it performs dispatch and fast local messaging
between processes on the core. It also delivers hardware interrupts to user-
space drivers, and core-locally schedules user-space processes. The CPU
driver is invoked via standard system call instructions with a cost compara-
ble to Linux on the same hardware.

As with Microkernels, CPU drivers are heavily specialized for the hardware
architecture they execute on, including data structure layout and system call
calling conventions. This improves execution time of its low-level services,
which are invoked frequently.

In contrast to Microkernels, CPU drivers execute entirely local to a core
and do not share data or exchange messages with other cores. Thus, inter-
processor communication is not offered as a service by CPU drivers. Also,
CPU drivers are not responsible for scheduling application threads.

The CPU driver interface to user-space consists of only three system calls:

1. A call to invoke a capability, which can contain a parameter to choose
a capability type-specific command,

2. a call to yield the CPU either to a specific or any other runnable pro-
cess, and

3. a call to conduct local message passing (LMP), which is described
and evaluated in Section 2.6.

Only the capabilities that describe CPU driver objects can be invoked with
the first system call. These objects manage the CPU-local interrupt dispatch
table, create and destroy processes on the CPU, map and unmap pages and
page tables, send inter-processor interrupts to other cores, and manipulate a
domain’s capability address space.
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2.5.2 Process Structure

The Multikernel model leads to a different process structure than in a typi-
cal monolithic multiprocessor operating system. A process in Barrelfish is
represented by a collection of dispatcher objects, one on each core on which
it might execute, instead of a single shared process control block.

Within Barrelfish, we also refer to such a collection of dispatchers as a do-
main and throughout this dissertation, the terms domain and process will
be used interchangeably. Strictly speaking, a domain is more general than
a process, as it describes any collection of co-operating dispatchers. For
example, a domain does not necessarily need to share a common virtual
memory address space. Within the work treated by this dissertation, how-
ever, there was no need to go beyond using domains in an identical fashion
to processes.

Dispatchers on a core are scheduled by the local CPU driver, which invokes
an up-call interface that is provided by each dispatcher to resume execution.
This mechanism is similar to the one used in Psyche [MSLM91] and to
scheduler activations [ABLL91], and contrasts with the Unix model of sim-
ply resuming execution. Above this up-call interface, a dispatcher typically
runs a core-local user-level thread scheduler. The upcall interface allows
information to be passed from the operating system to the application and I
am going to describe it in more detail in Section 3.5.2.

A dispatcher consists of code executing at user-level and a data structure
located in memory, split into two regions. One region is only accessible
from the CPU driver, the other region is shared in a read and write acces-
sible fashion between dispatcher and CPU driver. Protection is realized by
mapping the two regions on pages with different access rights (recall that
the CPU driver executes in privileged mode). The fields of the structure that
are relevant for scheduling are listed in Table 2.3 and described below. Be-
yond these fields, the user may define and use their own data structures. For
example a stack for the dispatcher code to execute on, thread management
structures, and so forth.

Barrelfish’s process structure is a direct result of the distributed nature of the
system and serves to improve scalability and agility. Dispatchers are core-
local entities that hold all of their own code and data on memory close to
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Table 2.3: Fields in the CPU driver-defined part of the dispatcher control structure.
The R/W column designates read-only or read-write access rights from the user-level
dispatcher.

Field name Type R/W Short description

disabled word R/W If non-zero, the CPU driver will
not up-call the dispatcher, except
to deliver a trap.

haswork pointer R If non-zero, the CPU driver will
consider this dispatcher eligible to
run.

crit_pc_low pointer R Address of first instruction in
dispatcher’s critical code section.

crit_pc_high pointer R Address immediately after last
instruction of dispatcher’s critical
code section.

entry points 5 pointers R Functions at which the dispatcher
code may be invoked, described
below.

enabled_save_area word array W Area for the CPU driver to save
register state when enabled

disabled_save_area word array R/W Area for CPU driver to save
register state when disabled

trap_save_area word array W Area for the CPU driver to save
register state when a trap or a
page-fault occurs
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the local core. Dispatchers can be placed arbitrarily on cores, based on the
underlying hardware topology. Domains spanning a heterogeneous set of
cores are supported, as dispatchers can be specially compiled for the cores’
ISA and communicate via message passing.

Also, the process structure is a result of the vertical structure of the oper-
ating system. The vertical structure aids in application agility, by giving
applications more control over resource allocation policies. Arbitrary im-
plementations of such policies can be realized in a library OS, according to
application structure. The assumption being that the application has better
knowledge about how its algorithms map to the underlying hardware topol-
ogy. A number of data structures and mechanisms result from this vertical
process structure, namely disabled and enabled modes, register save areas,
and dispatcher entry points. I am describing them in the following subsec-
tions.

Disabled and Enabled Modes

A dispatcher can operate in one of two modes: enabled or disabled. We
use these modes to facilitate user-level thread scheduling, described in Sec-
tion 2.5.5. Enabled mode is the normal operating mode when running a
program’s thread. Disabled mode is used to execute the user-level thread
scheduling code. This allows applications to implement their own thread
scheduling policies, according to application structure.

The modes control where the CPU driver saves application register state and
how it resumes a dispatcher. When the CPU driver resumes a dispatcher that
was last running while disabled, it restores its machine state and resumes
execution at the saved instruction, rather than up-calling it at an entry point
and requiring the dispatcher to restore machine state itself.

A dispatcher is considered disabled by the CPU driver if either of the fol-
lowing conditions is true:

• The disabled word is non-zero.

• The program counter is within the virtual address range specified by
the crit_pc_low and crit_pc_high fields.



38 CHAPTER 2. THE MULTIKERNEL

The range specified by the crit_pc_low and crit_pc_high fields is required
to allow a dispatcher to restore a thread context and transition to enabled
mode in one atomic operation. Within the critical region, the dispatcher
sets the enabled flag before it resumes the state and continues execution
of a thread. If these two operations were not atomic, a dispatcher could
be preempted by the CPU driver while restoring the thread context and the
restore operation would not be resumed by the CPU driver, as the dispatcher
is already enabled.

Register Save Areas

The dispatcher structure contains enough space for three full copies of the
machine register state. The CPU driver stores the register state to one of
these areas upon the following conditions:

1. The trap_save_area is used whenever the program maintained by the
dispatcher or the dispatcher itself takes a trap.

2. The disabled_save_area is used whenever the dispatcher is disabled,
and

3. the enabled_save_area is used in all other cases.

Figure 2.9 shows important domain execution states and into which register
save area state is saved or restored from, upon a state transition (Trap and
PageFault states have been omitted for brevity). The starting state for a
domain is “notrunning” and depicted with a bold outline in the figure.

Register save areas were also used in the Nemesis [LMB+96] and K42
[IBM02] operating systems. In contrast to Nemesis, Barrelfish domains do
not contain an array of save slots and cannot direct the CPU driver to store
to specific save slots. It is thus more similar to the model used in K42.

Dispatcher Entry Points

Unless restoring it from a disabled context, the CPU driver always enters a
dispatcher at one of five entry points. Whenever the CPU driver invokes a
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running
enabled

running
disabled

Preempt thread
[enabled_save_area]

notrunning
enabled

Preempt domain
[enabled_save_area]

Dispatch thread
[enabled_save_area]

notrunning
disabled

Preempt domain
Dispatch domain

[disabled_save_area] Dispatch
domain

Figure 2.9: Dispatcher state save areas are used when transitioning among domain
execution states. Arrows from right to left involve saving state into the labeled area.
Arrows from left to right involve restoring state from the labeled area. Regular text
and lines denote state changes by the CPU driver. Dashed lines and italic text denote
state changes by a user-space dispatcher. The state save area used is denoted in
square brackets on the transition label. The bold node denotes the starting state. No
state is modified upon a transition from the notrunning disabled state to the running
disabled state.

dispatcher at any of its entry points, it sets the disabled bit. Upon entering,
one machine register always points to the dispatcher structure. The value
of all other registers depends on the entry point at which the dispatcher is
invoked, and is described here.

The entry points are:

Run A dispatcher is entered at this entry point when it was previously pre-
empted. The last time it ran it was either enabled or yielded the CPU.
Other than the register that holds a pointer to the dispatcher itself, all
other registers are undefined. The dispatcher’s last machine state is
stored in the enabled_save_area.

PageFault A dispatcher is entered at this entry point when it receives a
page fault while enabled. On entry, the argument registers contain
information about the cause of the fault. Volatile registers are saved
in the enabled_save_area. All other registers contain the user state at
the time of the fault.

PageFault_Disabled A dispatcher is entered at this entry point when it re-
ceives a page fault while disabled. On entry, the argument registers
contain information about the cause of the fault. Volatile registers are
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saved in the trap_save_area . All other registers contain the user state
at the time of the fault.

Trap A dispatcher is entered at this entry point when it is running and it
raises an exception (for example, illegal instruction, divide by zero,
breakpoint, etc.). The machine state at the time of the trap is saved
in the trap_save_area , and the argument registers convey information
about the cause of the trap.

LMP A dispatcher is entered at this entry point when an LMP message
is delivered to it. This can happen only when it was not previously
running, and was enabled. On entry, four registers are delivered con-
taining the message payload. One register contains a pointer to the
receiving endpoint data structure, and another contains the dispatcher
pointer.

The diagram in Figure 2.10 shows the states a dispatcher can be in and how
it transitions among states. The exceptional states Trap and PageFault have
been omitted for brevity. We can see that preemption always returns the
dispatcher to the notrunning state. When not running, a dispatcher can be
entered by the CPU driver either by being scheduled (via the schedule()
function) or if an LMP is received (via the idc_local() function). The
dispatcher can then decide to dispatch a thread (via its resume() function)
and transitions to the running state. When a system call is made (via the
syscall() function), the dispatcher stays in the running state.

Dispatcher entry points are a core mechanism to make explicit to user-space
the occurrence of certain events, such as a dispatch or a pagefault. This
is necessary to achieve the goal of multiplexing hardware efficiently in time
and space, by allowing user-space applications full control over the schedul-
ing of threads within their timeslice.

While dispatch of a dispatcher is made explicit via the Run entry point,
de-scheduling is made explicit by the CPU driver scheduler incrementing a
per-dispatcher de-allocation count. This allows a language runtime to deter-
mine whether a given dispatcher is running at any instant and, for example,
allows active threads to steal work items from a preempted thread via a
lock-free queue, as done in work-stealing systems, such as the Cilk multi-
threaded runtime system [FLR98]. In this case, dispatcher entry points are
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Figure 2.10: Typical dispatcher states. Trap and PageFault states omitted for brevity.
Regular text and lines denote state changes by the CPU driver. Dashed lines and
italic text denote state changes by user-space. The starting state is in bold.

used in achieving the goal of reacting quickly to ad-hoc workload changes.
In a similar fashion, dispatcher entry points also help achieve the goal of al-
lowing resource negotiation between applications and the operating system,
by providing a path for the operating system to communicate core alloca-
tion changes to applications, by communicating when a time slice starts and
when it ends.

2.5.3 Protection Model

We utilize capabilities [Lev84] for protection and access control. In par-
ticular, we build upon the seL4 capability model [DEE06], which we have
ported to Barrelfish. I briefly describe the model here.

Capabilities are a protection mechanism where access is granted to a particu-
lar resource if the access requesting party holds the corresponding capability
referencing the resource. Capabilities themselves cannot be forged and are
protected by the privileged CPU driver, which is the sole entity allowed to
create new capabilities.

In Barrelfish, capabilities are stored in a special capability address space,
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of which one exists per dispatcher. Processes refer to capabilities by their
address and capabilities are stored in a special CPU driver-protected and
managed page table data structure.

In order to incur an action to be performed on an object, the corresponding
capability needs to be invoked by the incurring process. Invocation is real-
ized by a system call in Barrelfish to enforce protection. To ensure integrity,
a type system enforces compatible capability invocations. For each capa-
bility type, a distinct set of invocations exists. For example, a page table
capability possesses invocations to add and delete entries to and from the ta-
ble. Compatible page table entry capabilities are page frame and other page
table capabilities, depending on the allowed nesting of page tables supported
by the hardware architecture.

Capability types exist for raw memory, page tables, page frames, dispatch-
ers, as well as capability page tables. Page tables and frames make up the
virtual address space of a domain, while capability page tables define the
capability address space. All of these can be allocated by means of cast-
ing, or retyping, of a raw memory capability to the desired type. Once a
raw memory capability has been retyped, the type system ensures that no
further retyping of the same raw memory capability is possible. The Bar-
relfish specification [BPR+11] contains an overview of all capability types
and their relationships.

The CPU driver offers invocations on capability page tables to support copy-
ing and revoking of capabilities within the same address space. It is also
possible to send a capability as part of a message among domains. For mes-
sages on the local core, this is carried out by the CPU driver. When sending
capabilities on messages across cores, the monitors are involved: The core-
local monitor will serialize the capability and send it to the destination core’s
monitor. That monitor will deserialize the message and send it via a local
message to the destination dispatcher.

The model cleanly decentralizes resource allocation in the interest of scal-
ability. However, it also complicates the implementation of resource allo-
cation, which now has to happen entirely in user-space and it is no more
efficient than per-processor service instances implemented via other means.
In fact, all cores must still keep their local capability lists consistent to avoid
situations such as user-level acquiring a mapping to a protected object, like
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a page-table, by leveraging an inconsistent capability table view.

2.5.4 Monitors

Monitors are responsible for managing the potentially replicated global op-
erating system state and include most of the core functionality usually found
in the kernel of a traditional operating system, such as a global scheduling
policy. The monitors are user-space processes and therefore schedulable.
Hence they are well suited to the split-phase, message-oriented inter-core
communication of the Multikernel model, in particular handling queues of
messages, and long-running remote operations.

As will be described in Section 2.6, monitors are responsible for inter-
process communication setup, and for waking up blocked local processes in
response to messages from other cores if this is supported by the underlying
messaging protocol. A monitor can also idle the core itself (to save power)
when no other processes on the core are runnable, by invoking special CPU
driver functionality. Core sleep is performed either by waiting for an inter-
processor interrupt (IPI) or, when supported by the hardware architecture,
the use of appropriate monitor instructions to wait for incoming messages
from other cores, such as MONITOR and MWAIT on the x86 architecture.

In the current implementation, monitors communicate within a fully con-
nected network, requiring n2 connections, with n being the number of mon-
itors in the system. A more space-efficient way to communicate could be
realized by a multi-hop routing layer. This layer could also facilitate com-
munication to programmable peripherals, which typically require a proxy
connection and cannot be directly communicated with, as a direct connec-
tion from host PC processors to peripheral processors is typically not avail-
able. Such a layer was demonstrated to be feasible by Alexander Grest
[Gre11].

The CPU driver is heavily specialized for the core architecture, whereas
the monitor has very little hardware-specific functionality. Only code han-
dling processor boot-up and special message channel signaling protocols are
architecture-specific. The downside of the monitor/CPU driver separation is
that invocations from processes to the operating system are now mostly lo-
cal RPC calls (and hence two context switches) rather than system calls,
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adding a constant overhead on current hardware of several thousand cycles.
Executing the monitor in privileged mode would remove this penalty, at the
cost of a more complex privileged code base.

2.5.5 Threads and Shared Address Spaces

Threads in Barrelfish are implemented entirely in user-space, by a particu-
lar dispatcher implementation. The dispatch up-call from the CPU driver
scheduler facilitates scheduling threads at user level. Most current pro-
grams use shared memory data structures and multi-threading for paral-
lelism. Thus, the threads package in the default Barrelfish library OS pro-
vides an API similar to POSIX threads, which provides support for im-
plementing the traditional model of threads sharing a single address space
across multiple dispatchers (and hence cores) by coordinating runtime li-
braries on each dispatcher. This coordination affects three operating system
components: virtual address spaces, capabilities, and thread management,
and is an example of how traditional operating system functionality can be
provided over a Multikernel.

We call a process that shares the virtual address space across multiple cores
a spanned domain. Standard synchronization primitives, such as mutexes,
condition variables, semaphores and spin-locks are provided and a round-
robin thread scheduling scheme is implemented. I anticipate that language
run-times and parallel programming libraries will take advantage of the abil-
ity to replace the default threads package with a custom one.

In the default Barrelfish library OS, thread migration and inter-core com-
munication necessary to implement synchronization mechanisms is carried
out via messages passed by the normal inter-core message passing facilities
between dispatchers involved in a threaded operation. For example, when
a thread on one dispatcher releases a mutex upon which a thread of another
dispatcher is blocked, a wake up message is sent to that dispatcher to resume
execution of that thread, so it can acquire the mutex.

When sharing a virtual memory address space, capabilities also need to be
shared as they protect access to the shared pages and other associated CPU
driver objects. The Barrelfish user-space library operating system is re-
sponsible for keeping the capability space consistent across cores. At the



2.5. SYSTEM STRUCTURE 45

moment, only an initial replication of all capabilities is accomplished and
subsequent memory allocation is forced to be core-local and non-sharable.
Mark Nevill is currently investigating more appropriate capability replica-
tion strategies [Nev12]. These will presumably vary among capability types.
Also, an appropriate virtual memory subsystem that builds upon capability
replication is currently being designed by Simon Gerber [Ger12].

Implementing threads in user-space has the advantage of light-weight con-
text switch among threads, by not requiring a crossing to privileged mode,
and helps in achieving the goal of multiplexing hardware efficiently in time
and space. Also, it allows a user-space application full control over the
scheduling of its threads, a means to achieve the goal of reacting quickly to
ad-hoc workload changes.

Implementing threads in user-space has the disadvantage of a more com-
plicated context switch. We can see this especially when lazily switching
context of the FPU: FPU state has to be saved and restored at various points
during context switch, both in privileged mode and in user mode. While this
happens, we have to be careful not to touch the FPU while a lazy context
switch is being carried out. For example, in the steady state of the system,
the CPU driver is responsible for saving FPU state of a preempted thread and
the dispatcher is responsible for restoring the FPU state of the next runnable
thread. This makes sense, as it is the dispatcher that knows which thread
to dispatch next. However, FPU state may not change while a dispatcher is
manipulating it. That means the CPU driver has to transparently save and
restore FPU state for a dispatcher while it switches FPU context. To sim-
plify the implementation in Barrelfish, the CPU driver thus eagerly saves
and restores FPU state for a disabled dispatcher and lazily saves FPU state
for an enabled dispatcher.

Another disadvantage is that user-level threads require an asynchronous sys-
tem call interface. We support this in Barrelfish, but it complicates the im-
plementation of system services, by making each call split-phase.

2.5.6 Knowledge and Policy Engine

Barrelfish employs a user-mode service called the system knowledge base
(SKB) [SPB+08], which collects and maintains information about the un-
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derlying hardware topology in a subset of first-order logic. The current im-
plementation of the SKB is based on the ECLiPSe constraint programming
system [AW07], which has been ported to Barrelfish by Adrian Schüpbach
and is described in his dissertation [Sch12].

The SKB is populated with information from the ACPI subsystem, PCI bus
probes, and CPUID data. It is also updated from online measurements, such
as UMP communication latency and bandwidth between all core pairs of the
system. Finally, a priori information that cannot be discovered or measured
(such as the interconnect topology of various system boards, and quirks that
correct known flaws in discovered information, such as ACPI tables) is stat-
ically inserted into the SKB.

This information can be queried both by the operating system and appli-
cation software in order to lay out threads optimally on the non-uniform
system architecture and to choose appropriate inter-core synchronization al-
gorithms, for example replication strategies. This aids operating system and
application agility. The SKB is used by and has an interface to the scheduler,
which I describe in Chapter 3.

2.6 Inter-domain Communication

In this section, I describe the implementation of the inter-domain communi-
cation mechanisms, both on the same, as well as across distinct cores. All
inter-domain communication is structured into three layers:

• Interconnect drivers realize hardware message passing primitives, such
as messaging via cache-coherent shared memory among cores or a di-
rected, light-weight context switch on the same core on x86.

• Notification drivers implement low-level receiver notification mecha-
nisms upon message arrival, such as inter-processor interrupts on x86.
This avoids the need for polling for incoming messages.

• A marshaling state machine is responsible for providing a unified API
between users of the message passing facility that deal with high-level
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abstract message types and the low-level interconnect and notification
driver implementations.

The marshaling state machine is automatically synthesized from an abstract
description of valid message types and parameters for a particular protocol.
A domain-specific language called Flounder and corresponding compiler
have been developed for this purpose [Bau10], but will not be described in
further detail in this dissertation.

Communication channels are established and torn down via interconnect
driver-specific means implemented in the monitor. The following subsec-
tions describe what is required for each particular interconnect driver.

We start this section with an overview of how naming is realized in Bar-
relfish, so that channels among domains can be established via a process
called binding.

2.6.1 Naming and Binding

Before a channel can be established among two distinct domains, we have
to provide a means for the two domains to identify each other. In Barrelfish,
this is done by giving them names. Furthermore, to discriminate among dif-
ferent services a domain might be offering, names are given not to domains,
but to services they export.

Exporting of a service is done by making it known to other domains. The
canonical way to do this in Barrelfish is to register the service with the name
service, which has a fixed identifier that is known by every domain. In
the current implementation of Barrelfish, the name service is a centralized
service that executes on the bootstrap processor of the system.

The name service resolves a human-readable character string containing the
name of a service to an interface reference (IREF). An IREF is a unique
identifier specifying a particular service of a particular dispatcher on a par-
ticular core. New IREFs are allocated via requests to the core-local monitor.
Every domain has a pre-existing, dedicated channel to the local monitor for
this purpose. Monitors thus know all IREFs for their local cores and can
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forward channel bind requests to a dispatcher of the appropriate domain,
based on this information. If an IREF does not specify a service on the local
core, the local monitor will forward the bind request to the appropriate core,
based on the core’s identifier stored in the IREF. IREFs are of appropriate
size to store the complete information necessary to route a bind request.

The destination domain can respond to the bind request via its monitor chan-
nel to send an endpoint object back to the requesting domain, which will be
forwarded by the monitors. The nature of this endpoint object is intercon-
nect specific and described in the following subsections.

2.6.2 Same-core Communication

The CPU driver implements a lightweight, asynchronous same-core inter-
process communication facility, which delivers a fixed-size message to a
process and if necessary unblocks it. More complex communication chan-
nels are built over this using shared memory. As an optimization for latency-
sensitive operations, we also provide an alternative, synchronous operation
akin to LRPC [BALL90] or to L4 IPC [Lie95], not further described here.

To setup a channel using this primitive, which we call local message passing
(LMP), the corresponding LMP interconnect driver will request an endpoint
capability of the destination domain via the monitors as part of the bind
process. The endpoint capability identifies the endpoint of a new channel
to a particular destination dispatcher, chosen by the destination domain. To
make the channel bi-directional, the initiator of the bind will send an end-
point capability in return. Once both endpoint capabilities are delivered,
they can be invoked directly by the respective domains to send messages on
the LMP channel.

Message payload is delivered directly via a directed context switch, which
keeps all payload in processor registers. Only in the case of the destination
dispatcher not being ready to receive is the payload stored by the CPU driver
in a pre-allocated buffer in the dispatcher data structure of the receiving
dispatcher that is identified by the endpoint capability. In this case, message
receipt is signaled via a special flag in that memory range, which has to be
polled by the receiving dispatcher.
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System cycles (σ) ns

2×4-core Intel 845 (32) 318
2×2-core AMD 757 (19) 270
4×4-core AMD 1463 (21) 585
8×4-core AMD 1549 (20) 774

Table 2.4: One-way LMP latency on the
2×2-core AMD system.

Table 2.4 shows the one-way (program to program) performance of LMP
on the 2×2-core AMD system. To compare, L4 performs a raw IPC in
about 420 cycles on the same system. Since the Barrelfish figures also in-
clude a scheduler activation, user-level message dispatching code, and a
pass through the thread scheduler, we can consider this performance to be
acceptable.

2.6.3 Inter-core Communication

Inter-core interconnect drivers among the systems evaluated in this disserta-
tion vary by architecture. I describe the interconnect and notification drivers
for the x86 and SCC architectures in the following subsections.

The channel binding mechanism is identical among the inter-core commu-
nication mechanisms described in this section: a region of shared memory is
allocated by the destination domain upon a bind request. This shared region
is identified by a page frame capability, which is sent back on a bind reply
message via the monitors. When the page frame is delivered, both domains
split the memory region into two halves, each one containing a distinct mes-
saging endpoint.

x86 User-mode Message Passing

On the x86 platform, Barrelfish uses a variant of user-level RPC (URPC)
[BALL91] between cores, which we call user-mode message passing (UMP):
a region of shared memory is used as a channel to transfer cache-line sized
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messages point-to-point between a writer and a reader core. On the x86-
based evaluation machines, the size of a cache line is 64 bytes. In contrast
to URPC, UMP is not a procedure call, but instead an asynchronous, split-
phase communication mechanism.

Inter-core messaging performance is critical for Multikernel performance
and scalability, and the implementation is carefully tailored to the cache-
coherence protocol to minimize the number of interconnect messages used
to send a message. For a HyperTransport-based system, the shared region
of memory contains two circular buffers of cache line-sized messages, each
representing a uni-directional endpoint. Writer and reader core maintain
their respective buffer position for each endpoint locally.

For each message, the sender writes sequentially into a free cache line in the
buffer, while the receiver polls on the last word of that line, thus ensuring
that in the (unlikely) case that it polls the line during the sender’s write, it
does not see a partial message. In the common case, this causes two round
trips across the interconnect: one when the sender starts writing to invalidate
the line in the receiver’s cache, and one for the receiver to fetch the line from
the sender’s cache. The technique also performs well between cores with a
shared cache and on systems using Intel’s QuickPath interconnect.

Both parties need to know how many messages are in the buffer. This is
communicated by acknowledging the receipt of messages via special ac-
knowledgement messages that are sent on the other endpoint of a channel.
The acknowledgement message simply contains the number of messages
received thus far and messages are implicitly numbered sequentially. This
way, any sequence of messages may be acknowledged as a batch, but earlier
messages may not be omitted from being acknowledged. This is possible as
the transport is lossless. As long as a message has not been acknowledged,
it is assumed to be still in the buffer and may not be overwritten.

As an optimization, pipelined UMP message throughput can be improved at
the expense of single-message latency through the use of cache prefetching
instructions. This can be selected at channel setup time for workloads likely
to benefit from it.

Receiving UMP messages is done by polling memory. Polling is cheap
because the line is in the cache until invalidated. However, it is unreasonable
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System Cache Latency Throughput
(Clock speed) cycles (σ) ns msgs/kcycle

2×4-core Intel shared 180 (34) 68 11.97
(2.66GHz) non-shared 570 (50) 214 3.78
2×2-core AMD same die 450 (25) 161 3.42
(2.8GHz) one-hop 532 (26) 190 3.19
4×4-core AMD shared 448 (12) 179 3.57
(2.5GHz) one-hop 545 (11) 218 3.53

two-hop 558 (11) 223 3.51
8×4-core AMD shared 538 (8) 269 2.77
(2GHz) one-hop 613 (6) 307 2.79

two-hop 618 (7) 309 2.75

Table 2.5: UMP performance.

Latency Throughput Cache lines used
cycles msgs/kcycle Icache Dcache

UMP 450 3.42 9 8
L4 IPC 424 2.36 25 13

Table 2.6: Messaging costs on 2×2-core AMD.

to spin forever, as this wastes too many CPU cycles that can be utilized
by other runnable dispatchers. Instead, a dispatcher awaiting messages on
UMP channels will poll those channels for a short period before blocking
and sending a request to its local monitor to be notified when messages
arrive. At present, dispatchers poll incoming channels for a predetermined
amount of time before blocking. This can be improved by adaptive strategies
similar to those used in deciding how long to spin on a shared-memory spin-
lock [KLMO91].

Table 2.5 shows the UMP single-message latency and sustained pipelined
throughput (with a queue length of 16 messages) on the x86 evaluation ma-
chines; hop counts for AMD refer to the number of HyperTransport hops
between sender and receiver cores.

Table 2.6 compares the overhead of the UMP implementation with L4’s
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IPC on the 2×2-core AMD system3. We see that inter-core messages are
cheaper than intra-core context switches in direct cost, and also have less
cache impact and do not incur a TLB flush. They can also be pipelined to
trade off latency for throughput.

SCC Message Passing

This section describes what is needed to implement message passing for
the rather different SCC architecture. The SCC does not have coherent
caches, but a hardware-accelerated message passing infrastructure based on
fast SRAM. I refer the reader back to Section 2.3.2 for an overview of the
architecture. We will find that relatively few modifications are required and
that they are confined to a small part of the system, namely the interconnect
and notification drivers.

The inter-core interconnect driver for the SCC is based on the cache-coherent
user-level message passing (UMP) driver used on x86 systems. With some
modifications this mechanism reliably transports cache-line sized messages
via non-coherent shared memory on the SCC.

The modifications are:

• The size of a message, according to the hardware cache-line size, is
32 bytes.

• Memory for both the send and receive message channel is allocated in
the core’s region of shared RAM that is initiating a connection to an-
other core. Additional message-passing experiments, not shown here,
have shown this to be more performant than allocating the memory
close to the receiver core.

• Memory for the message channel is mapped as cacheable, message
passing buffer type, enabling the use of the write-combining buffer
for faster memory writes.

3L4 IPC figures were measured using L4Ka::Pistachio of 2009-02-25.
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While UMP was originally optimized for cache-coherent transports, these
optimizations do not hurt performance on the SCC and these modifications
suffice to use the interconnect driver on the SCC.

The polling approach used by UMP on x86 to detect incoming messages
is inappropriate on the SCC, since each poll of a message-passing channel
requires a CL1INVMB operation followed by a load from DDR3 memory,
which is costly. Consequently, an additional SCC notification driver aug-
ments the UMP driver with notification support.

The notification driver uses the on-tile message-passing buffer memory (MPB)
for efficiently communicating the identifiers of active UMP message chan-
nels, and an inter-core interrupt as the notification mechanism. It is imple-
mented within the CPU driver on each core, as follows:

One ring-buffer of IDs of those channels containing unread payload is held
statically in the receiver’s MPB. The buffer is written only by senders and
read only by the receiver. However, there are two read-shared cache lines
before the buffer, holding the current write and current read position, re-
spectively.

A buffer entry spans a cache-line (32 bytes). Currently, only a 16-bit channel
ID is written to that cache-line, limiting the number of distinct notifiable
channels to 65,536. The rest of the space is unused. Using a cache-line per
ID allows a sender to write new channel IDs to the buffer without having to
read the cache line for already existing IDs first, which was found to be too
costly.

A special notification capability is used on the sender side, holding the core
ID and channel ID of the receiver core of the notification. When invoked,
the sender’s CPU driver

1. acquires the test-and-set lock for the receiving core,

2. reads the current write position from the receiver’s MPB,

3. writes the channel ID into the next slot in the receiver’s MPB,

4. updates the current write position in the receiver’s MPB, and
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5. reads the receiver’s interrupt status.

6. If no inter-core interrupt is pending, it writes the status word with the
interrupt bit set to trigger a remote interrupt, and

7. clears the test-and-set lock for the receiving core.

On the receiver, a core-local message passing endpoint capability is regis-
tered in a special notification table inside the CPU driver. This table maps
channel IDs to local endpoints that will be signaled on notification. When
the receiver core is interrupted, it looks up all pending channel IDs present
in the MPB ring-buffer, and dispatches an empty message on each registered
endpoint in the table. If no endpoint is registered, the notification is ignored.
In user-space, the notification driver triggers the thread used to wait on in-
coming messages for the corresponding message channel, which can then
read the message.

In case of the receiver ring buffer being full when the sender tries to write a
new channel ID, the sender aborts the process and returns with an error code
to the sending user-space application, indicating a failed notification. The
user-space application will try to notify the receiver again at a later point
in time (currently unimplemented as this case was not reached during any
benchmarks). Rolling back the entire message send operation is not easily
possible, as the receiver might have been actively polling for a message and
might already be reading it, without seeing the notification first.

Allocation of new channel IDs is managed by the monitor of the receiving
core as part of the bind process. The CPU driver does not allocate channel
IDs.

Discussion of SCC Message Passing Design

At first sight, it may seem odd to use main memory (rather than the on-tile
MPB) for passing message payloads, and to require a trap to the CPU driver
to send a message notification. This design is motivated by the need to
support many message channels in Barrelfish and, furthermore, more than
one isolated application running on a core. The SCC’s message-passing
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functionality does not appear to have been designed with this use-case in
mind [PRB10].

Two further design alternatives were considered: notification trees and pay-
load in MPB. The former was implemented and benchmarked, but it turned
out to have worse performance than the ring buffer implementation pre-
sented above. I am going to describe it briefly here, for reference.

Notification trees use the same notification scheme as ring buffers, but em-
ploy a bitmap of channel IDs, represented as a two-level tree in the receiver’s
MPB. One bit for every distinct channel that can be notified. Tree nodes are
of the size of one cache-line (256 bits). The tree’s layout in the ring buffer
is such that the root node occupies the first cache-line. All other nodes are
leaves and are stored in left-to-right order after the root node. There are 255
leaves which contain a bit for each notifiable channel, yielding 65,280 noti-
fiable channels. A bit set in the root node indicates that the corresponding
leave contains set bits and should be considered when the tree is traversed.
In this scheme, sending a notification can never fail: A bit can either be set
or is already set, in which case no further notifications need to be sent for
the respective channel ID.

Sending a notification for a given channel ID in this design requires the
sender to

1. acquire the test-and-set lock for the receiving core,

2. read the root node from the receiver’s MPB,

3. set the bit for the corresponding leaf node of the channel ID in the
root node,

4. write the root node to the receiver’s MPB,

5. read the leaf node from the receiver’s MPB,

6. set the bit for the corresponding channel ID in the leaf node,

7. write the leaf node to the receiver’s MPB, and

8. read the receiver’s interrupt status.
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9. If no inter-core interrupt is pending, write the status word with the
interrupt bit set to trigger a remote interrupt, and

10. clear the test-and-set lock for the receiving core.

This mechanism requires two full cache-line reads and two full cache-line
writes from/to the receiver’s MPB and two bit operations as opposed to only
two 32-bit reads and two full cache-line writes in the ring buffer scheme.
We originally proposed notification trees, assuming the cost to access re-
mote MPBs would be an order of magnitude lower, as well as cheaper bit
operations on full cache-lines. After implementing and benchmarking this
scheme, it turned out not to be the case. I assume the slow bit operations to
be due to the size of the operands. Holding a full cache-line would require
8 integer registers on the Pentium. With only 7 present, we always have
to go to memory in order to execute a bit-scan. An expensive operation,
especially when the cache does not allocate on a write miss.

The final design devised is payload in MPB. In this scheme, instead of noti-
fying the receiver of a message in shared RAM, the message payload itself
is written to the MPB, obviating the need for shared RAM. The drawback
of this scheme is that it requires complicated book-keeping, as messages are
variable size and might not fit into the rather small 8KB receive buffer. It
also complicates managing quality of service, as multiple applications now
compete for the same receiver MPB. This forbids receiving applications the
use of the payload inside the MPB directly, as the MPB has to be freed up as
quickly as possible to allow other competing applications to make progress.
This requires copying the message out of the MPB into private RAM of the
receiver, which makes this scheme more expensive than the two previous
ones, especially as SCC caches do not allocate on a write miss.

We conclude, firstly, that relatively few modifications are required to imple-
ment operating system message passing primitives for the rather different
SCC architecture. Also, we conclude that care has to be taken to imple-
ment the right primitives for the hardware at hand in order to keep adequate
messaging performance, based on the hardware’s features and capabilities.
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Barrelfish Linux

Throughput (Mbit/s) 2154 1823
Dcache misses per packet 21 77
source→ sink HT traffic* per packet 467 657
sink→ source HT traffic* per packet 188 550
source→ sink HT link utilization 8% 11%
sink→ source HT link utilization 3% 9%
* HyperTransport traffic is measured in 32-bit dwords.

Table 2.7: IP loopback performance on 2×2-core AMD.

2.6.4 Application-level Messaging Performance

We evaluate higher-level messaging performance by carrying out a messag-
ing experiment on the IP loopback service provided by Barrelfish. Applica-
tions often use IP loopback to communicate on the same host and thus this
benchmark stress-tests an important communication facility, involving the
messaging, buffering and networking subsystems of the operating system.
IP loopback does not involve actual networking hardware and thus exposes
the raw performance of the operating system primitives.

Shared-memory commodity operating systems, such as Linux, use in-kernel
network stacks with packet queues in shared data structures. On Barrelfish,
IP loopback involves a point-to-point connection between two user-space
domains that each contain their own IP stack. This design has the benefit
that it does not require kernel-crossings or synchronization of shared data
structures. By executing a packet generator on one core and a sink on a
different core, we can compare the overhead induced by an in-kernel shared-
memory IP stack compared to a message-passing approach.

Our experiment runs on the 2×2-core AMD system and consists of a UDP
packet generator on one core sending packets of fixed 1000-byte payload
to a sink that receives, reads, and discards the packets on another core on
a different socket. We measure application-level UDP throughput at the
sink, and also use hardware performance counters to measure cache misses
and utilization of the HyperTransport interconnect. We also compare with
Linux, pinning both source and sink applications to individual cores, while
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the network stack executes in the kernel.

Table 2.7 shows that Barrelfish achieves higher throughput, fewer cache
misses, and lower interconnect utilization, particularly in the reverse direc-
tion from sink to source. This occurs because sending packets as UMP mes-
sages avoids any cache-coherent shared-memory other than the UMP chan-
nel and packet payload; conversely, Linux causes more cache-coherence
traffic for shared-memory synchronization. Barrelfish also benefits by avoid-
ing kernel crossings.

While it would be easy to take the Barrelfish loopback setup and execute it
in Linux, this does not work easily for a setup with an actual network card
and driver involved, which will have to execute in privileged mode in Linux
and thus require kernel crossings and shared memory data structures.

Web-server and Relational Database

A more realistic scenario involves a web-server serving both static and dy-
namic web content from a relational database.

First, we serve a 4.1kB static web page off the 2×2-core AMD machine to a
set of clients, and measure the throughput of successful client requests using
httperf [MT98] from a cluster of 17 Linux clients.

On Barrelfish, we run separate processes for the web server (which uses
the lwIP stack [lwI]), e1000 driver, and a timer driver (for TCP timeouts).
Each runs on a different core and communicates over UMP, allowing us
to experiment with placement of processes on cores. The best performance
was achieved with the e1000 driver on core 2, the web server on core 3 (both
cores on the same physical processor), and other system services (including
the timer) on core 0.

For comparison, we also run lighttpd [lig] 1.4.23 over Linux 2.6.26 on the
same hardware; we tuned lighttpd by disabling all extension modules and
logging, increasing the maximum number of connections and file descrip-
tors to 1,500,000, using the Linux epoll event handler mechanism, and
enabling hardware check-summing, scatter gather and TCP segmentation
offload on the network interface.
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Test-case Request throughput Data throughput

Barrelfish-static 18697 requests/s 640 Mbit/s
Linux-static 8924 requests/s 316 Mbit/s
Barrelfish-dynamic 3417 requests/s 17.1 Mbit/s

Table 2.8: Static and dynamic web server performance on Bar-
relfish versus static performance of lighttpd on Linux.

Table 2.8 presents the results of this experiment in the Barrelfish-static and
Linux-static rows. The Barrelfish e1000 driver does not yet support the
offload features, but is also substantially simpler. The performance gain
is mainly due to avoiding kernel-user crossings by running entirely in user
space and communicating over UMP.

Finally, we use the same load pattern to execute web-based SELECT queries
modified from the TPC-W benchmark suite on a SQLite [SQL] database
running on the remaining core of the machine, connected to the web server
via UMP. Table 2.8 shows the result of this experiment in the Barrelfish-
dynamic row. In this configuration we are bottlenecked at the SQLite server
core.

2.6.5 Summary

One should not draw quantitative conclusions from the application-level
benchmarks, as the systems involved are very different. Furthermore, enor-
mous engineering and research efforts have been put into optimizing the
Linux and Windows operating systems for current hardware. On the other
hand, Barrelfish is inevitably more lightweight, as it is less complete. In-
stead, the benchmark results should be read as indication that Barrelfish
performs reasonably on contemporary hardware, satisfying the goal of giv-
ing comparable performance to existing commodity operating systems from
this section.

For the message-passing microbenchmarks, I make stronger claims. Bar-
relfish can scale well with core count for these operations and can easily
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adapt to use more efficient communication primitives if the hardware pro-
vides these, as in the case of the SCC, satisfying the goals of scalability
and agility. Finally, I also demonstrate the benefits of pipelining and batch-
ing of messages without requiring changes to the OS code performing these
operations.

Bringing up a new operating system from scratch is a substantial task and
limits the extent to which one can fully evaluate the Multikernel architecture.
In particular, the evaluation presented in this dissertation does not address
complex application workloads or higher-level operating system services,
such as a storage system.

2.7 Related Work

Most work on operating system scalability for multiprocessors to date has
focused on performance optimizations that reduce sharing. Tornado and
K42 [GKAS99, ADK+07] introduced clustered objects, which optimize
shared data through the use of partitioning and replication. However, these
systems do not employ message passing to keep replicas coherent and shared
memory remains the norm.

Similarly, Corey [BWCC+08] advocates reducing sharing within the operat-
ing system by allowing applications to specify sharing requirements for op-
erating system data, effectively relaxing the consistency of specific objects.
As in K42, however, the base case for communication is shared memory.
In the Multikernel model, the operating system is constructed as a shared-
nothing distributed system, which may locally share data (transparently to
applications) as an optimization and no specific assumptions are made about
the application interface.

The Nemesis [LMB+96] operating system, designed to ensure quality-of-
service for multimedia applications, also used an approach around fine-
grained OS services and message passing, but on uniprocessors and also
does not take a variety of different hardware architectures into account.
Similarly, the Tessellation operating system [LKB+09] explores spatial par-
titioning of applications across cores for isolation and real-time quality-of-
service purposes. Real-time quality-of-service is not considered in this the-
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sis, while applications that are both parallel and interactive are not consid-
ered in Tessellation.

More closely related to the Multikernel approach is the fos system [WA09]
which targets scalability through space-sharing of resources. The main ar-
gument of the fos system is that splitting operating system resources across
cores, and even across machines, provides better scalability in multicore and
cloud computing scenarios. Only little has been published about the perfor-
mance and structure of the fos system.

Finally, Cerberus [SCC+11] presents an approach to scale UNIX-like oper-
ating systems to many cores in a backward-compatible way that mitigates
contention on shared data structures within operating system kernels by
clustering multiple commodity operating systems on top of a virtual ma-
chine monitor, while maintaining the familiar shared memory interface to
applications.

These systems focus on scaling, rather than addressing the diversity chal-
lenges that also accompany the trend toward multicore processors. An ex-
ception is Helios [NHM+09], which extends the Singularity operating sys-
tem to support heterogeneous multiprocessors and provides transparent point-
to-point inter-process communication using a specifically designed channel
abstraction [FAH+06], but does not tackle the problem of scheduling paral-
lel or interactive applications.

Prior work on “distributed operating systems” [TvR85], such as Amoeba
[vRT92] and Plan 9 [PPD+95], aimed to build a uniform operating system
from a collection of independent computers linked by a network. There are
obvious parallels with the Multikernel approach, which seeks to build an
operating system from a collection of cores communicating over memory
links within a machine, but also important differences: firstly, a Multikernel
may exploit reliable in-order message delivery to substantially simplify its
communication and improve inter-core communication performance. Sec-
ondly, the latencies of intra-machine links are lower (and less variable) than
between machines and require different optimization techniques. Finally,
much prior work sought to handle partial failures (i.e. of individual ma-
chines) in a fault-tolerant manner. This dissertation treats the complete sys-
tem as a failure unit and is thus able to exploit performance optimizations
that are not possible when also considering fault-tolerance, such as eliminat-
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ing timeouts on message delivery and being able to send using an arbitrarily
large message buffer, without needing additional messages to acknowledge
a smaller window of messages that might otherwise be lost.

Several alternative user-space inter-core message passing implementations
exist. For example, the FastForward cache-optimized concurrent lock-free
queue is optimized for pipeline parallelism on commodity multicore archi-
tectures [GMV08]. FastForward is able to enqueue or dequeue pointer-sized
data elements in 28.5 to 31 nanoseconds on an AMD Opteron 2218 based
system, clocked at 2.66 GHz. The one-way latency of a cache-line sized
message on that machine would thus amount to 456 nanoseconds, approx-
imately 2.8 times slower than Barrelfish on the fastest performing AMD-
based system considered in this dissertation. However, FastForward pro-
vides a proof of correctness, which was not done for Barrelfish’s message
passing facilities. Similarly, the Kilim [SM08] message-passing framework
for Java provides fast and safe message passing among threads of a single
protection domain. Unfortunately, nothing precise could be found about
Kilim’s performance.

2.8 Summary

An enormous engineering effort has been made in optimizing present day
commodity operating systems, such as Linux and Windows, for current
hardware, and it would be wrong to use the large-scale benchmark results
for comparison between these operating systems and Barrelfish. Instead
they serve as indication that Barrelfish performs reasonably well on con-
temporary hardware, indicated by our first goal in Section 2.5.

Since the Barrelfish user environment includes standard C and math li-
braries, virtual memory management, and subsets of the POSIX threads
and file IO APIs, porting applications is mostly straightforward. However,
this evaluation does not address complex application workloads, or higher-
level operating system services such as a storage system. Moreover, I have
not evaluated the system’s scalability beyond currently-available commod-
ity hardware, or its ability to integrate heterogeneous cores.
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Computer hardware is changing faster than system software, and in particu-
lar operating systems. Current operating system structure is tuned for a co-
herent shared memory architecture with a limited number of homogeneous
processors, and is poorly suited to efficiently manage the diversity and scale
of future hardware architectures.

Since multicore machines increasingly resemble complex networked sys-
tems, I have proposed and described the Multikernel architecture as a way
forward. I view the operating system as, first and foremost, a distributed sys-
tem which may be amenable to local shared-memory optimizations, rather
than a centralized system which must somehow be scaled to the network-like
environment of a modern or future machine. By basing the operating system
design on replicated data, message-based communication among cores, and
split-phase operations, one can apply a wealth of experience and knowledge
from distributed systems and networking to the challenges posed by hard-
ware trends.

Barrelfish, an initial, relatively unoptimized implementation of the Multi-
kernel, already demonstrates many of the benefits, while delivering per-
formance on today’s hardware competitive with existing, mature, shared-
memory kernels.



Chapter 3

Scheduling in a Multikernel

This chapter describes the design principles and implementation of the Bar-
relfish process scheduler architecture. Scalable and agile process scheduling
that is able to respond at interactive timescales is a requirement for the exe-
cution of a dynamic mix of interactive, parallel applications on a multicore
operating system.

Finally, I describe how to apply a particular idea from the HPC literature,
namely that of gang scheduling within the Barrelfish scheduler architecture
to schedule a mix of interactive, parallel applications on commodity ma-
chines. I call the resulting technique phase-locked gang scheduling, which
reduces the amount of inter-core communication required to synchronize
per-CPU schedules.

This chapter is structured as follows:

Section 3.1 motivates the Barrelfish scheduler design. System diversity,
performance when scheduling multiple parallel applications concurrently,
and interactive workloads are discussed.

Section 3.2 surveys scheduling background. Covered topics are parallel
scheduling in high-performance computing, scheduling with information
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from applications, traditional scheduling in commodity operating systems,
as well as recent studies in multicore scheduling.

Section 3.3 motivates why gang scheduling is an important technique to
enable parallel interactive applications, by putting the properties of these
applications in context with previous HPC applications that benefitted from
gang scheduling and showing how an example such application can achieve
better response time over best-effort scheduling in the Linux operating sys-
tem.

Section 3.4 describes the design principles of the Barrelfish scheduler ar-
chitecture. Time-multiplexing of cores, scheduling at multiple timescales,
reasoning online about the hardware, reasoning online about each applica-
tion, and communication between OS and applications are discussed as the
main principles.

Section 3.5 presents five concepts used within the scheduler to achieve the
design principles presented in Section 3.4. Deterministic per-core schedul-
ing, scheduler manifests, dispatcher groups, scheduler activations, and phase-
locked scheduling are discussed.

Section 3.6 presents the implementation of the scheduler within the Bar-
relfish operating system.

Section 3.7 surveys related work relevant to the scheduling ideas presented
in this chapter.

Section 3.8 summarizes this chapter.

3.1 Motivation

We start by observing that the trend towards multicore systems means that
commodity hardware will become highly parallel. Based on past trends,
we can assume that mainstream applications will increasingly exploit this
hardware to increase productivity. I characterize three key programming
models that make use of hardware parallelism:
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1. Concurrency. The program executes several concurrent tasks that
each achieve a part of the overall goal independently. For example,
an audio player application typically executes one thread to drive the
user interface and another thread to play back and decode a music
stream. These threads can execute on independent cores.

2. Parallelism. The program partitions the overall task into many smaller
ones and executes them in parallel to achieve a common goal. For ex-
ample, a 3D graphics drawing program partitions the rendition of an
image into a mosaic of smaller images that each core can then process.

3. Asynchrony. The program executes a long-running operation as part
of a task, but has more work to do. It can execute the long-running
operation on one core and execute another task on another, while wait-
ing for the first core to return the result. For example, a web server
can process one user’s request on one core and already start the next
request on another core, while waiting for the operation on the first
core to complete.

This dissertation is concerned with parallel programming. Within this area,
a new class of “recognition, mining, synthesis” (RMS) workloads is an-
ticipated by many to yield attractive applications on commodity platforms
[Dub05, LV03, SATG+07, ABC+06]. These workloads have the property
that they are both computationally intensive, as well as easily parallelizable.
They thus can benefit tremendously from parallel speed-up, while having
the potential to run within an end-user scenario.

In the past, highly-parallel machines were generally the domain of high-
performance computing (HPC). Applications had long run times, and gener-
ally either had a specialized machine to themselves or ran in static partitions
thereof; the OS was often more of a nuisance than an essential part of the
system. A diversity of hardware architectures, dynamically changing work-
loads, or interactivity are not the norm in high-performance computing. In
contrast, commodity computing has dealt with a variety of asynchronous
and concurrent programming models, but parallel computing was not the
norm.

Recently, with the rise of RMS workloads and parallel run-time systems,
such as OpenMP [Ope08], Intel’s Threading Building Blocks [Rei07], and
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Apple’s Grand Central Dispatch [App09], general-purpose machines in-
creasingly need to handle a dynamic mix of parallel programs with interac-
tive or soft real-time response requirements. This implies that the scheduling
machinery will be invoked more frequently than in HPC, as we have to deal
with ad-hoc workload changes induced by user input and be able to produce
a new schedule within a reasonable time span on the order of milliseconds
to be responsive to the user.

Furthermore, the scheduler has to be scalable with an increasing number of
cores, as well as agile with the frequently changing hardware architecture.
This is in line with the Barrelfish design principles as presented in Chapter 2.

In the following subsections, I am going to address the aspects of agility
with a diversity of systems, scheduling multiple parallel applications, and
interactive workloads in more detail and point out how current approaches
fail in delivering all three of them together.

3.1.1 System Diversity

Parallel application performance is often highly sensitive to hardware char-
acteristics, such as cache structure [ZJS10]. As systems become more di-
verse, manual tuning for a given machine is no longer an option as it be-
comes too much effort.

The HPC community has long used autotuners like ATLAS [WPD01] to
effectively specialize code for a specific hardware platform. However, their
usefulness in a general-purpose scenario is limited to the subset of applica-
tions amenable to offline analysis, which are dominated by scientific com-
puting workloads [PSJT08].

Dynamic adaptation at run-time still is an option and is in fact made eas-
ier by run-time programming models like OpenMP [Ope08], Grand Cen-
tral Dispatch [App09], ConcRT [Mic10] and MPI [Mes09], which make the
communication and synchronization aspects of a program explicit. Such
runtimes can improve performance, for example, by dynamically choosing
the best thread count for a parallel code section, or accounting for hardware
characteristics like whether two cores are on the same package.
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Figure 3.1: Relative progress for 2 concurrent OpenMP jobs on the 4×4-core AMD
system. Mean, minimum, and maximum observed over 20 runs of 15 seconds each
are shown.

While applying such heuristics within the run-time can work well for batch-
oriented HPC jobs on a small range of machines, it may not work across all
architectures, and may not be suited for more complex interactive, multi-
phase applications which mix parallel and sequential components. They
may not even reflect all program requirements, such as a need for some
threads to be scheduled simultaneously [Ous82, FR92].

3.1.2 Multiple Applications

HPC workloads have generally enjoyed exclusive use of hardware, or a
static partition thereof. However, in a general-purpose system multiple si-
multaneous parallel programs can interfere significantly.

I show this by example. The main workload for this example (and through-
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out the chapter) are two synthetic parallel programs that use the OpenMP
[Ope08] runtime system. OpenMP allows programs to control parallelism
and synchronization via directives. These directives can, among other things,
start a parallel region of a program, or synchronize among several threads. I
use the Intel OpenMP run-time that ships with the Intel C++ compiler ver-
sion 11.1 and execute the programs on the Linux operating system version
2.6.32. I found this combination of run-time and operating system to be the
most performant. I also examined the GNU OpenMP run-time that ships
with the GNU Compiler Collection on the Linux operating system and the
Sun OpenMP run-time that ships with the Sun Studio Compiler on the So-
laris operating system, but neither of these combinations outperformed the
combination of Intel run-time on the Linux operating system.

The first OpenMP program is synchronization-intensive and called BAR-
RIER. BARRIER executes a small amount of computation (incrementing a
variable in an array) and then executes the OpenMP BARRIER directive
to synchronize with all threads in the program. It does so in a tight paral-
lel loop, using the PARALLEL directive, such that it synchronizes with all
threads on each loop iteration. The other program simply executes the same
computation in a tight loop, without the BARRIER directive and is called
CPU-Bound.

The Intel OpenMP library uses spin-then-block primitives to implement the
barrier operation, where the run-times will spin on a shared variable for a
while before relinquishing the CPU to the operating system to make room
for another runnable application. This is a reasonable technique for any
parallel program executing in a time-shared environment [KLMO91] and
dramatically reduces the time taken to execute a barrier operation when the
synchronizing threads are executing all at the same time.

Figure 3.1 shows these two OpenMP applications interfering on the 4×4-
core AMD system. I measure the progress of each program by the number of
loop iterations executed over 15 seconds. I vary the total number of threads
demanded by the BARRIER program between 2 and 16 and use a different
value for each run of the experiment. The CPU-bound application always
uses 8 threads in this example.

When there are fewer total threads than cores, BARRIER’s progress de-
pends both on the number of threads and how the OS places them on cores.
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This is due to two factors:

1. a barrier among threads on the same package costs approximately half
as much in terms of execution time as one among different packages.
This is due to the inter-core communication latency, which, on the
4×4-core AMD machine, was measured to be 75 cycles between two
cores within the same package and 160 cycles between two cores on
different packages.

2. The overall cost to execute a barrier rises with the number of threads
involved in the barrier operation. This is simply due to the fact that
more threads need to be communicated with.

Linux’ scheduler is oblivious to the fact that inter-core synchronization is
cheaper on the same package and will randomly place BARRIER’s threads
on cores each time the experiment is executed. This accounts for the high
performance variance for BARRIER with low thread counts, even though
enough cores are available to schedule all threads simultaneously.

When the applications contend for cores, their performance degrades un-
equally: CPU-bound slows down linearly, but BARRIER’s progress rate
collapses. This is due to the fact that preemption of any thread by the CPU
bound program can cause synchronization within the BARRIER program
to take orders of magnitude longer. This, in turn, is due to the CPU bound
program executing for an entire time slice (it does not block) before control
is given back to the BARRIER program.

The UNIX adaptive feedback scheduling mechanism that is also employed
in Linux and which is supposed to boost the priority of blocking applica-
tions, does not provide the desired benefit in this case, as the BARRIER
application also spins to execute the barrier operation. There is no simple
solution around this problem. For example, we cannot modify the amount of
time spent spinning, since we would like to retain the property of being able
to execute barriers quickly in the uncontended case and there is no simple
way for an application to learn about or influence contention for cores.

This simple study shows the pitfalls of scheduling a mix of workloads on
multicore systems. Smart runtimes such as McRT [SATG+07] were not de-
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signed to solve this problem, since it is one of lack of coordination between
runtimes.

3.1.3 Interactive Workloads

Desktop and other interactive workloads impose real-time requirements on
scheduling not usually present in HPC settings. Applications often fall into
one of three categories:

• Firstly, there are long-running, background applications which are
elastic: they are not sensitive to their precise resource allocation, but
can make effective use of additional resources if available. One exam-
ple is a background process indexing a photo library and using vision
processing to identify common subjects. This is a common example
of an RMS workload.

• In contrast, some background applications are quality-of-service sen-
sitive. For example, managing the display using a hybrid CPU-GPU
system should take precedence over an elastic application using GPU-
like cores. While these applications require some quality of service,
their requirements change rarely.

• Thirdly, we must handle bursty, interactive, latency-sensitive appli-
cations such as a web browser, which may consume little CPU time
while idle but must receive resources promptly when it receives user
input, leading to ad-hoc changes in resource requirements.

Moreover, multicore programs internally may be more diverse than most
traditional HPC applications. The various parts of a complex application
may be parallelized differently – a parallel web browser [JLM+09] might
use data-parallel lexing to parse a page, while using optimistic concurrency
to speculatively parallelize script execution.

Traditional work on scheduling has not emphasized these kinds of work-
loads, where the resource demands may vary greatly over timescales, which
are much shorter (≈ 10ms) than found in traditional HPC scenarios.
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3.2 Background

This section introduces the scheduling concepts used in this chapter and
provides an overview of past work in this area. Parallel scheduling in high-
performance computing and traditional commodity OS scheduling are cov-
ered here, as well as using application information to manage resources in
HPC and grid computing, and recent studies in multicore scheduling. At the
very end of this section, I conduct a short study of blocking cost versus busy
waiting cost on synchronization primitives to highlight the problems faced
in scheduling parallel applications.

3.2.1 Parallel Scheduling in High-Performance Comput-
ing

Work on parallel scheduling in high-performance computing is mainly con-
cerned with batch and gang scheduling of long-running, non-interactive pro-
grams. Nevertheless, the HPC community is concerned with multicore ar-
chitectures, as they present a viable and cheap alternative to Supercomput-
ers. In this section, I survey briefly the parallel scheduling work in HPC.

Originally introduced as coscheduling by Ousterhout [Ous82], the class of
techniques that I collectively refer to as gang scheduling includes several
variants [FR92, AD01, FFPF05, FFFP03]. All are based on the observa-
tion that a parallel job will achieve maximum overall progress if its compo-
nent serial tasks execute simultaneously, and therefore aim to achieve this
through explicit control of the global scheduling behavior. Compared to un-
coordinated local scheduling on each processor, gang scheduling is partic-
ularly beneficial for programs that synchronize or communicate frequently,
because it reduces the overhead of synchronization in two ways.

First, gang scheduling ensures that all tasks in a gang run at the same time
and at the same pace. In parallel programs that use the single program,
multiple data (SPMD) model, work is typically partitioned equally among
threads. This allows threads to reach synchronization points at the same
time.
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Second, it is typically cheaper for a running task to resume from a period
of busy waiting, in which it remains active without releasing the processor
by spinning, than from blocking and voluntarily relinquishing control to the
local scheduler, allowing another task to execute while it waits. I am going
to examine this trade-off more closely in Section 3.2.5. However, if the
task spins for a long time, it wastes processor cycles that could be used by
other applications. Gang scheduling enables busy-waiting synchronization
by reducing average wait times, and thus the time wasted in spinning.

The claimed benefits of gang scheduling include better control over resource
allocation, and more predictable application performance by providing guar-
anteed scheduling of a job across all processor resources without interfer-
ence from other applications. It achieves this without relying on other ap-
plications to altruistically block while waiting. Gang scheduling has also
been proposed to enable new classes of applications using tightly-coupled
fine-grained synchronization by eliminating blocking overheads [FR92].

Gang scheduling also has drawbacks. Typical implementations for HPC
systems rely on centralized coordination for each gang dispatch, leading
to problems such as higher context switching cost and limited scalability,
compared to local scheduling policies. In the HPC space, these are mitigated
through the use of long time slices (on the order of 100 milliseconds or
more), or hardware support for fast dispatch synchronization [FPF+02]. For
example, the STORM resource manager is able to sustain gang scheduling
on a supercomputer with special hardware support at a time quantum of 2
milliseconds [FPF+02] and is able to scale up to at least 64 nodes. The
authors claim the possible support of interactive applications, but do not
present an evaluation.

Other downsides of gang scheduling include underutilization of processors
due to fragmentation when tasks in a gang block or the scheduler cannot
fit gangs to all available cores in a time slice. The problem of backfilling
these processors with other tasks is complex and much researched [Ous82,
FFPF05, CML01, WF03].

The first thorough examination of the tradeoffs of gang scheduling perfor-
mance benefits was conducted by Feitelson et al. [FR92] on a supercomputer
with dedicated message passing hardware, and reports that gang schedul-
ing improves application performance when application threads synchro-
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nize within an interval equivalent to a few hundred instructions on their
system. Otherwise, gang scheduling slows down overall progress due to
the rigid scheduling policy, requiring each thread of an application to be
scheduled concurrently, even when they wait on synchronization primitives,
which defies opportunities to schedule other activities in their place. I find
that these tradeoffs still hold, albeit at a time scale equivalent to a hundred
thousand cycles on the systems examined in this thesis, and thus the space
has widened considerably.

A more recent evaluation of gang scheduling appears as a case study [FE06],
which uses a similar synthetic workload to ours, and compares to schedulers
in several versions of Linux and Tru64 UNIX. It shows that shorter time
slices aid synchronization-oblivious schedulers, and shows that parallel ap-
plications tend to self-synchronize.

A study evaluating gang scheduling on clusters shows that spin-then-block
mechanisms have performance within 35% of gang scheduling, but lack the
scheduler synchronization overhead [DAC96]. This is evidence of the com-
mon assertion that gang scheduling has high dispatch overhead.

Another study evaluates several gang scheduling optimizations for dynamic
workloads on a cluster [FFFP03]. Using synthetic workloads, the authors
find that gang scheduling improves application response time and reduces
slowdown and that backfilling fragmented timeslices is only useful within a
limited multiprogramming level, which can be improved by using applica-
tions that do not benefit from co-scheduling to backfill [FFPF05].

This dissertation is not investigating the effects of bulk program IO under
gang scheduling. To an extent, this has been researched in the past. For
example, conventional gang scheduling has the disadvantage that when pro-
cesses perform IO or blocking communication, their processors remain idle
because alternative processes cannot run independently of their own gangs.
To alleviate this problem, Wiseman et al. suggest a slight relaxation of this
rule: match gangs that make heavy use of the CPU with gangs that make
light use of the CPU (presumably due to IO or communication activity),
and schedule such pairs together, allowing the local scheduler on each node
to select either of the two processes at any instant [WF03]. As IO-intensive
gangs make light use of the CPU, this only causes a minor degradation in the
service to compute-bound jobs. This degradation is offset by the overall im-
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provement in system performance due to the better utilization of resources.
Similar techniques can be employed when gang scheduling on Barrelfish.

3.2.2 Scheduling with Information from Applications

Recent work in HPC uses resource demand specifications to take hetero-
geneous and performance-asymmetric multicore architectures into account.
For example, a scheduling method for heterogeneous multicore processors
that projects a core’s configuration and a program’s resource demand into a
multi-dimensional Euclidean space and uses weighted distance between de-
mands and provision to guide the scheduling [CJ09] was shown to improve
energy and throughput in throughput-oriented scenarios.

A non-work-conserving scheduler has been designed for throughput-oriented
scientific workloads executing on simultaneous multi-threading (SMT) pro-
cessors [FSS06]. Executing several threads concurrently on these proces-
sors can often degrade performance, as many critical resources are shared,
such as memory access units. The scheduler uses an analytical performance
model to determine when to apply a non-work-conserving policy and thus
improves performance.

In grid computing, the environment is more heterogeneous, distributed, and
has to deal with more constraints, such as ownership and usage policy con-
cerns and thus scheduling happens at a higher level and is mainly concerned
with matching tasks to appropriate processing nodes. Grid computing is
relying largely on the Matchmaking [RLS98] algorithm. Matchmaking in-
troduces the notion of classified advertisements, which contain resource re-
quirement specifications submitted to the grid computing system along with
applications. The matchmaking algorithm tries to match these requirements
in the best possible way with offered resources, by splitting the problem
of resource allocation into matching and claiming phases and scheduling
resources opportunistically. This, again, benefits throughput-oriented appli-
cations, but does not work well for applications requiring quick service for
short time intervals.

Finally, techniques from quality of service architectures, such as Q-RAM
[RLLS97], that allow the specification of minimum and optimum required
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resources of hardware components from an application as constraints to the
system use a similar approach to the previous two.

None of the work presented in this section is concerned with interactive
workloads and thus only applies in limited ways to this dissertation. How-
ever, we observe that a lot of factors from application workloads have to
be taken into account when scheduling parallel applications within multi-
core and multi-node scenarios. Otherwise, only limited parallelism can be
provided to applications.

3.2.3 Commodity Multicore OS Scheduling

Commodity operating systems running on multicore machines are confronted
with the problems of dynamically changing workloads, scalability, and the
necessity of interactive response times.

The schedulers of mature commodity operating systems, such as Linux,
Windows, and Solaris have evolved from uniprocessors. In the Linux kernel,
prior to version 2.6.23, per-CPU run-queues and priority arrays were used
that provided adequate scalability for small multicore machines [Sid05].
From version 2.6.23, the completely fair scheduler (CFS) was used to com-
bat the problem that the old scheduler was unable to correctly predict which
applications were interactive and which ones were CPU-intensive back-
ground tasks [lina]. In either case, the schedulers were not designed with the
specific needs of multicore processors in mind. For example, the CFS sched-
uler can exert bad cache effects on multicore machines [And]. Linux intro-
duced scheduling domains that can be used to provide better performance
on NUMA and shared cache systems, by treating closely-coupled compo-
nents as a unit, which encourages thread migration and thus optimizes load
balancing within the unit, but they have to be configured manually [linb].

Windows has similar scheduling features to those of Linux, but also supports
cache-locality for threads and tries to keep threads on the core with highest
locality to minimize cache miss effects [win].

Solaris also explicitly deals with the fact that parts of a processor’s resources
might be shared among several of its cores. A processor group abstraction
is available that allows to model the system processor, cache, and memory
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topology to treat closely coupled components as a scheduling unit [Sax05],
similar to Linux’s scheduling domains.

Gang scheduling has not yet achieved uptake in general-purpose computing,
where time slices generally have to be short in order to guarantee good la-
tency, and parallel synchronization-intensive applications are a niche, though
notable exceptions include IRIX [BB95], which supported gang-scheduled
process groups as a special application class. Unfortunately, there is no ev-
idence whether this feature found great support among users of the IRIX
operating system. Finally, some user-level resource managers for cluster
environments [YJG03, Jet98] support gang scheduling, but are used pre-
dominantly for HPC.

Commodity OS schedulers are good at providing prompt best-effort ser-
vice to individual threads. This is good for single-threaded applications and
those that use threads for concurrency, the current common workload of
these systems. However, when presented with multiple parallel workloads
that need fine-grain coordination among threads, these schedulers run into
pitfalls, like the one presented in Section 3.1.2. These pitfalls stem from the
fact that each thread is treated in isolation, while threads involved in parallel
computation might require service as a unit.

3.2.4 Studies in Commodity Multicore Scheduling

Several application workload studies have been conducted to shed light on
the impact of multicore architectures on the performance of parallel and
desktop workloads and to what extent these workloads can be tuned to ben-
efit more from multicore processors.

A study conducted by Bachthalter et al. in 2007 suggests that desktop ap-
plication workloads, as of then, had little parallelism and suggests that more
work needs to be done in parallel programming run-time design and specu-
lative parallelism before workloads will truly emerge [BBF07]. A number
of parallel run-times have emerged since then and this is a sign that work in
parallel programming language run-time design has indeed occurred, sug-
gesting that the desktop application landscape is rapidly changing towards
parallelism.



78 CHAPTER 3. SCHEDULING IN A MULTIKERNEL

A study on cache sharing within RMS application workloads finds that cur-
rent RMS algorithms are not optimized for shared caches and cannot lever-
age performance benefits when two or more cores share a cache [ZJS10].
The authors transform some of these algorithms to make better use of shared
caches and observe up to 36% performance increases. This is evidence that
RMS workloads can benefit from shared caches in multicore machines when
appropriately tuned, but that care needs to be taken when scheduling multi-
ple of these workloads, such that caches are not over-utilized.

Studies on the effectiveness of informing multicore OS scheduling by per-
formance counters found that considering only a single or a small number
of per-core metrics, such as instructions per cycle or cache miss rate, are
not sufficient to characterize multi-application workloads [ZUP08]. An-
other study in contention aware scheduling finds that threads in multicore
machines do not only contend for cache space, but also on other shared re-
sources, such as memory controllers, memory bus and prefetching hardware
[ZBF10].

These studies suggest that a holistic solution to the scheduling problem is
required that takes multiple hardware parameters into account. Also, this
is evidence that simply trying to infer an applications’ requirements by the
operating system via the analysis of simple performance metrics is insuf-
ficient. Instead, an integrated approach that directly takes into account the
application’s resource requirements could be a better solution.

3.2.5 Blocking Cost Evaluation

Synchronization-agnostic scheduling can provide good overall system per-
formance by relying on the ability of applications to sacrifice some of their
resources by altruistically blocking execution. Blocking and resuming exe-
cution, however, takes time as well and as such incurs a cost to the applica-
tion.

Gang scheduling eliminates this cost by ensuring all threads of an applica-
tion always execute at the same time, allowing the application to busy-wait
instead. This is another significant benefit of gang scheduling. In this sec-
tion, I examine this tradeoff.
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The measurement of blocking overhead includes managing the kernel queues
of blocked threads to block and unblock, which involves system calls on
Linux, and the context switch to and back from another runnable applica-
tion (in another address space), but does not include any time spent waiting
while blocked.

The measurement of the cost for busy-waiting is the cost of one wait itera-
tion used to acquire a contended spinlock. This includes the cost to read and
modify the memory containing the spinlock, which usually involves fetch-
ing a cache line from another core that previously held the lock.

I developed two separate benchmarks, one to measure the cost of blocking,
the other to measure busy-waiting. For busy-waiting, I pin two threads to
two distinct cores on the same die. Both try to acquire the same spinlock
in a tight loop. Whenever the lock is acquired, it is released immediately.
On one thread, I measure the time taken to acquire the lock by reading the
CPU’s time-stamp counter once before trying to acquire the lock and, upon
successful lock acquisition, once after. I ignore the cases where the lock
could not be acquired.

To measure the overhead of blocking, I employ two processes that synchro-
nize via a Linux futex, which is the only reliable mechanism to block a
thread on that OS.

For both experiments, I determine the average time over 10,000 individual
measurements. On the Linux system, the cost to block is approximately
7.37 microseconds, whereas busy-waiting requires only 40 nanoseconds on
average. Blocking thus incurs a substantial additional cost, two orders of
magnitude higher than that of busy-waiting.

I thus conclude that gang scheduling can provide performance benefits in
current systems, by allowing applications to busy-wait instead of block.

3.3 Example Workloads

In this section, I give two examples of current workloads that do benefit from
gang scheduling, virtual machine monitors and parallel garbage collection.



80 CHAPTER 3. SCHEDULING IN A MULTIKERNEL

Finally, I argue why future workloads might greatly extend this set and give
an example such workload.

3.3.1 Virtual Machine Monitors

The first example scenario is brought about by virtualization. Virtualization
is pervasive today through the wide dispersal of cloud computing platforms
that offer compute infrastructure as a service and use virtualization for server
consolidation through virtual machine monitors, such as Xen [BDF+03].
Typical virtual machine monitors today offer multiple processors to guest
operating systems in order to allow them to make use of parallelism and
concurrency.

When para-virtualization [WSG02] is not employed, operating systems em-
ploy spin-waiting techniques to synchronize cores. While spin-waiting, a
synchronizing core is never relinquished to a higher-level executive, such as
a hypervisor. This is a reasonable technique when the OS is running on the
bare metal and those cores synchronized with are always executing at the
same time, leading to fast hand-over of the synchronization primitive to the
waiting core.

On the other hand, spin-waiting techniques can slow down an entire system
if virtualization is employed: This happens in those cases where the syn-
chronization peer is currently not scheduled and results in spin-waiting for a
potentially long time, using up CPU cycles that could otherwise have been
spent by another guest operating system running on the same core. Some
commodity operating systems even require that all cores are executing at the
same time and periodically check for this condition.

Gang scheduling ensures that synchronization peers are always executing at
the same time and thus avoids wasted cycles through spin-waiting. For this
reason, some virtual machine monitors employ gang scheduling for perfor-
mance and correctness reasons [GTHR99, WCS06].
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3.3.2 Parallel Garbage Collection

A second example scenario involves parallel garbage collection in modern
programming language runtimes. These garbage collectors are typically im-
plemented in a “stop the world” fashion, where a synchronization barrier is
executed at the end of a computation phase, before garbage collection can
commence. Another barrier is executed when garbage collection is finished
to start the next phase of computation.

Parallel run-times typically employ spin-then-block synchronization primi-
tives to implement barriers that spin for a limited amount of time in order
to speed up short synchronization wait times and then relinquish the core to
another running task by invoking a blocking system call. While using spin-
then-block synchronization typically works well with best-effort scheduling,
such as employed by the Linux operating system, it will still incur applica-
tion slowdown if invoked often enough, due to the overhead of a blocking
system call [PBAR11], as we have seen in Section 3.2.5.

The frequency of garbage collection depends on memory pressure and the
aggressiveness of the garbage collector. Under memory pressure, collection
occurs at a frequency close to or shorter than the time slice length of the
scheduler. In this case, barrier synchronization will slow down the program
under garbage collection if other threads are running concurrently. Gang
scheduling can avoid this slow-down by making sure all threads execute
concurrently.

3.3.3 Potential Future Workloads

These scenarios are important, but also uncommon, explaining the lack of
gang scheduling support in today’s general-purpose operating systems. In
particular, workloads that combine multiple parallel applications using fine-
grain synchronization are especially rare.

However, looking forward, emerging computationally-intensive and poten-
tially interactive “recognition, mining, and synthesis” (RMS) workloads are
widely anticipated [SATG+07, ABC+06, BKSL08]. These workloads are
attractive to run in an interactive setting. Parallelization allows their use on
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ever broader sets of data, while keeping run-time within the attention span
of the user.

As an example of a potentially important future workload, I investigate ap-
plications employing data stream clustering algorithms. Data stream cluster-
ing is considered an important aspect of future RMS workloads, and a ver-
sion of such an algorithm is included in the PARSEC benchmarking suite
[BKSL08], which is designed to be representative of next-generation ap-
plications for multicore computers. In particular, I consider an interactive
network monitoring application that employs data stream clustering to ana-
lyze incoming TCP streams, looking for packets clustered around a specific
attribute suggesting an attack. I argue that such workloads will become in-
creasingly important and useful.

Such an interactive application will use a small workload size, which it will
try to process quickly using the parallel clustering algorithm to update an in-
teractive display of attack patterns. This leads to more fine-grained synchro-
nization. I confirmed this experimentally on the 4×4-core AMD machine:
When run for 3 seconds on a small workload (specifically, the “simlarge”
dataset) using 16 threads, the benchmark executes 16,200 barriers with an
average processing time of 403 microseconds, and average barrier wait time
of 88 microseconds. In this case, synchronization occurs frequently enough
to benefit from gang scheduling.

The stream clustering algorithm uses mainly barriers to synchronize. Less
than 1% of all synchronization is carried out using locks and condition vari-
ables. A good barrier implementation is key to performance in this case. I
use a preemption-safe, fixed-time spin-block competitive barrier [KWS97].
While it is suggested to ignore competitive spinning and always block on a
barrier synchronization primitive when there is no information about other
runnable processes—a feasible technique under synchronization-oblivious
schedulers, such as in Linux—it obviates all benefits of gang scheduling.
This is why gang scheduled systems typically pick a value that is somewhat
larger than the expected average thread arrival time at a barrier. For exam-
ple, in flexible co-scheduling [FFPF05] a spin time of 120 microseconds
is chosen. Scheduler-conscious barrier implementations could potentially
further improve performance, but are outside the scope of this dissertation.

I fine-tuned the implementation to use a spin time of 50 microseconds,
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which is enough for 16 threads to pass the barrier without having to block
on an otherwise idle system at equal barrier arrival times.

To show application performance achieved under gang scheduling, I devel-
oped a simple gang scheduler for Linux. This runs as a user-space appli-
cation in the real-time scheduling priority class, ensuring that it is always
scheduled when runnable. It raises gang dispatched processes into the real-
time class and lowers de-scheduled processes into the time-sharing class in
a round-robin manner. Between dispatches, it sleeps for 15 milliseconds,
the effective time slice duration, which I determined to be equal to the av-
erage Linux time slice duration. When threads block, the Linux scheduler
will pick a process from the time-sharing class—including threads of an-
other gang—to fill the time until the thread becomes runnable again. This
approach is similar to cluster gang scheduling solutions previously imple-
mented for Linux [YJG03].

Application performance under this scheduler is below the achievable per-
formance of a kernel-space gang scheduler due to the overhead of running
in user-space and using system calls to control program execution, but suf-
fices for comparisons with other scheduling strategies. I have measured the
overhead of the gang scheduler indirectly as less than 1%, by measuring it-
erations of a tight loop composed of two identical processes executing once
under Linux and once under gang scheduling.

I compare the response time of the parallel network monitoring application
under the default Linux scheduling and under the gang scheduling regime
under different rates of network packet burst. Burst in this case refers to the
amount of packets arriving in quick succession on a stream. For the purpose
of this benchmark, I simplify the metric and send a number of random TCP
packets in multiples of 16,000 from a client machine via a Gigabit Ethernet
connection to the 4×4-core AMD machine, using a separate port for each
stream. I call this multiple the burst factor. Each TCP packet contains a
random payload of size 64 bytes. The client packet generator will iterate in
a round-robin fashion through the streams and send 16,000 packets for each
TCP stream. This means that after 16,000 packets have been generated for
the first stream, it will generate 16,000 packets for the next, and so on. These
bursts, according to the burst factor, are sent out within a fixed interval of 10
seconds to give the packet processor on the 4×4-core AMD machine time
to process the clusters.
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Figure 3.2: Parallel network monitoring under default Linux scheduling vs. gang
scheduling and space partitioning over a total run-time of 50 seconds under different
rates of packet burst. Error bars show min/max measured over 10 runs.

In this workload, for each of 4 TCP streams, cluster centers are updated ev-
ery 16,000 packets using a parallel computation. 8 threads are used for each
parallel computation, leading to a maximum of 32 threads under full load.
When no parallel computation is being executed for a TCP stream, only one
thread is being used to collect packets on the stream. When enough packets
are collected, this thread will start the 8 other threads for the parallel com-
putation and then wait for all of them to finish computing before continuing
to collect packets.

I also compare against a static space partitioning of the workload over the
cores of the machine, where only 4 cores can be provisioned for parallel
cluster computation of each packet stream, filling up all 16 cores of the
4×4-core AMD machine.

The results of this application benchmark are presented in Figure 3.2. The
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graph shows the latency between the arrival of all 16,000 packets on a
stream, and the update of the stream’s clusters as the burstiness of requests
increases. Gang scheduling allows the application to cope with increased
burstiness, maintaining an average compute time of 5 seconds with a small
variance. Performance under the Linux scheduler degrades as burstiness
increases. Furthermore, variance in performance increases considerably.
Gang scheduling also outperforms a static partitioning of the machine, be-
cause in order to handle the maximum burst rate, only 4 cores could be
provisioned for each stream, which slows down the parallel computation of
cluster centers.

We conclude that gang scheduling is an viable technique to enable paral-
lel interactive applications with response times adequate of user attention
spans. While static space partitioning of a machine might provide similar
response times in some cases, it is not elastic enough to provide equivalent
response times in bursty scenarios, as it exerts the problem of underutiliza-
tion when partitions are not used as allocated.

3.4 Design Principles

In this section I present five scheduler design principles that are important
for supporting the mix of interactive, parallel workloads we envision to find
on a general-purpose multicore OS. While the principles are independent
of particular scheduling algorithms, policies or performance metrics, and
are applicable to any viable approach which aims at addressing all the lay-
ers of the scheduling stack, they were conceived to be implemented in the
Barrelfish OS and thus also serve to achieve the design goals presented in
Chapter 2.

3.4.1 Time-multiplexing Cores is Still Needed

It is plausible that hardware resources will continue to be time-multiplexed,
rather than using spatial partitioning on its own. There are three reasons for
this:
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First, unlike many HPC and server systems, machines will not be dedi-
cated to individual applications. A desktop computer may run a parallel
web browser alongside an application that uses a managed runtime system
(such as the Java virtual machine). If parallel programming models are suc-
cessful, then any of these applications could potentially exploit all of the
resources of the machine.

Second, even if a machine contains a large number of cores in total, these
may vary greatly in capabilities. Hill and Marty’s analysis [HM08] sug-
gests that future multicore architectures might consist of a small number
of “big” cores that are useful to allow sequential phases of an application
to execute as quickly as possible (and reduce the Amdahl’s-law impact of
these phases), while a large number of “small” cores can facilitate execut-
ing the parallel parts of a program. Access to the big cores will need to be
time-multiplexed.

Third, the burstiness of interactive workloads means that the ability to use
processing resources will vary according to the user’s behavior. Time multi-
plexing gives a means of providing real-time quality of service to these ap-
plications without needlessly limiting system-wide utilization. For instance,
an interactive application may use a set of cores in a short burst in response
to each piece of user input (say, updating the world in a game), otherwise
consuming only a fraction of that much CPU.

Just as in current commodity operating systems, the need to time-multiplex
cores means that resource management cannot solely operate by partition-
ing the resources of a machine at the point when a new application starts.
The scheduling regime should be sufficiently nimble to react to rapidly
changing resource demands by applications. At the same time however,
it must reconcile short-term demands, such as by interactive applications,
with coarser-grained requirements, for example a virtual machine monitor
needing to gang-schedule the virtual CPUs of a multicore VM. This prin-
ciple thus serves to achieve the goal of being able to support interactive
applications, while being able to respond within short, interactive attention
spans.
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3.4.2 Schedule at Multiple Timescales

The Multikernel model calls for designs that eschew globally-shared data
in favor of decentralized communication. Due to the distributed nature of
the system, scheduling in Barrelfish should involve a combination of tech-
niques at different time granularities, much as in grid and cluster schedul-
ing [RLS98]. I argue that scheduling will involve:

• long-term placement of applications onto cores, taking into account
application requirements, system load, and hardware details – this is
where global optimizations and task migration decisions occur;

• medium-term resource reallocation, in response to unpredictable ap-
plication demands, subject to long-term limits;

• short-term per-core (or hardware thread) scheduling, including gang-
scheduled, real-time and best-effort tasks.

The mix of workloads and the need for interactivity in general-purpose sys-
tems means that, in contrast to prior work in HPC systems, gang scheduling
will need to occur over timescales typical of interactive timeslices (on the
order of milliseconds) to be able to respond to the user promptly. As a result,
the overhead and synchronization accuracy of dispatching a gang of threads
across decoupled cores becomes much more significant than in the past.
Firstly, we would like to avoid costly synchronization mechanisms such as
inter-processor interrupts. Secondly, because gangs will be dispatched more
frequently and for shorter durations, any penalty from “wasted” overlap time
in which some but not all threads in the gang are running will be multiplied,
leading to wasted processing time for all cores in the gang.

3.4.3 Reason Online About the Hardware

New processor and system architectures are appearing all the time [Int09]:
portability as hardware evolves is as critical as portability across different
processor architectures. Both OS and applications must be able to adapt
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well to diverse hardware environments. This requires reasoning about com-
plex hardware, beyond what can be achieved by offline autotuners or careful
platform-specific coding.

The performance of parallel software is closely tied to the structure of the
hardware, and different hardware favors drastically different algorithms (for
example, the performance of Dice and Shavit locks [DS09] depends criti-
cally on a shared cache and the placement of threads on distinct cores, as
opposed to other options [HSS05, SS01]). However, the appropriate choice
at runtime is hard to encode in a program.

Adapting scheduling policies to diverse hardware, whether across applica-
tions or among threads in a single program, requires

1. extensive, detailed information about the hardware in a usable form,
and

2. a means to reason about it online in the scheduler, when system uti-
lization changes. For example, whenever applications are started or
stopped.

Limited versions of such functionality exist, e.g. the proc and sys file
systems on Linux, and the CPUID instruction on x86 processors. How-
ever, these APIs are complex and specific to particular hardware and OS
components, making it non-portable to process their contents. Although
performance models such as Roofline [WWP09] and LogP [CKP+93] help
by capturing some performance characteristics of available hardware, we
would like to explicitly address the broader problem.

3.4.4 Reason Online About Each Application

In addition to the need for applications to exploit the structure of the hard-
ware on which they are running, the OS should exploit knowledge of the
structure of the applications which it is scheduling. For example, gang
scheduling can eliminate the problems shown in Section 3.1.2 by avoiding
preemption of synchronized threads. However, simple gang scheduling of
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all threads within applications is overly restrictive. For instance, OpenMP
typically only benefits from gang scheduling threads within each team. Sim-
ilarly, threads performing unrelated operations would favor throughput (al-
location of as much time to all threads as possible) over contemporaneous
execution. Finally, a single application may consist of different phases of
computation, with changing scheduling and resource requirements over its
lifetime. The optimal allocation of processor cores and memory regions thus
changes over time.

An application should expose as much information about its current and fu-
ture resource requirements as possible to allow the OS to effectively allocate
resources. This especially concerns information about the possible phases
of parallel execution they might go through and the resources they project
to require within each phase. For example, MapReduce applications follow
fixed data-flow phases with different resource requirements and can project
these requirements to some degree of accuracy at program start [ZKJ+08].
It is also possible to determine this information at compile-time for pro-
gramming paradigms like OpenMP [WO09].

3.4.5 Applications and OS Must Communicate

The allocation of resources to applications requires re-negotiation while ap-
plications are running. This can occur when a new application starts, but
also as its ability to use resources changes (in an extreme example, when a
sequential application starts a parallel garbage collection phase), and in re-
sponse to user input or changes in the underlying hardware (such as reducing
the number of active cores to remain within a power budget).

Hints from the application to the OS can be used to improve overall schedul-
ing efficiency, but should not adversely impact other applications, violating
the OS scheduler’s fairness conditions.

Efficient operation requires two-way information flow between applications
and OS. First, applications should indicate their ability to use or relinquish
resources. For instance, an OpenMP runtime would indicate if it could prof-
itably expand the team of threads it is using, or if it could contract the team.
Secondly, the OS should signal an application when new resources are al-
located to it, and when existing resources are preempted. This allows the
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application’s runtime to respond appropriately; for instance, if the number
of cores was reduced, then a work-stealing system would re-distribute work
items from the work queue of the core being removed.

De-allocation is co-operative in the sense that an application receives a de-
allocation request and is expected to relinquish use of the resources in ques-
tion. If this is not done promptly then the OS virtualizes the resource to
preserve correctness at the expense of performance. For example, if an ap-
plication is asked to reduce the size of a gang scheduled OpenMP team from
4 threads to 3, but does not respond, then it would find the team being mul-
tiplexed over 3 hardware threads rather than gang scheduled.

The need for communication between application and operating system has
also been called for in the database community, where database manage-
ment systems traditionally go to great lengths to second-guess and replace
OS functionality, because they have more information about their workload
requirements. This does not function well when other applications are ex-
ecuting concurrently in the system, and systems, like Cod [GSAR12], have
been proposed to allow for more communication among databases and op-
erating systems to alleviate this problem.

3.4.6 Summary

Due to the interactive environment and heterogeneous workload mix, general-
purpose multicore computing faces a different set of challenges from tradi-
tional parallel programming for HPC. To tackle these challenges, this dis-
sertation advocates for a principled approach which considers all layers of
the software stack. I have outlined a general set of such principles.

3.5 Scheduler Concepts

In this section, I present five scheduler concepts employed in Barrelfish:

1. Dispatcher groups,
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2. scheduler activations,

3. deterministic per-core scheduling,

4. phase-locked scheduling, and

5. scheduler manifests.

Together these concepts realize the design goals presented in the previous
section. Some of these concepts serve to realize spatial scheduling, such as
scheduler manifests and dispatcher groups. Deterministic per-core schedul-
ing serves to realize temporal scheduling. Scheduler activations are needed
in support of both temporal and spatial scheduling. Finally, phase-locked
scheduling serves to support spatio-temporal scheduling at fine-grained time
slices.

3.5.1 Dispatcher Groups

Dispatchers implement a user-space mechanism to multiplex a time frac-
tion of a single physical core among multiple threads of an application. The
upcall mechanism is used to notify dispatchers of the start of a timeslice
to facilitate user-level thread scheduling and dispatchers can communicate
directly to block and unblock threads within an application. Parallel appli-
cations typically have many dispatchers, at least as many as physical cores
have been allocated to the application and an application is able to con-
trol how its threads are scheduled on each core. To facilitate this process,
dispatchers can form groups that jointly submit resource requests to the op-
erating system.

For example, in the parallel network monitoring application shown in Sec-
tion 3.3.3, we have a phase of synchronization-intensive parallel processing
and thus can create a dispatcher group for all threads used to execute a new
round of this phase and request threads to be gang scheduled across the
group. Other threads that are active to collect network packets are running
within a different dispatcher group.

Dispatcher groups extend the notion of RTIDs [RLA07] that were conceived
in the McRT [SATG+07] parallel run-time system and aggregate require-
ments such as real-time, gang scheduling and load-balancing parameters.
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Membership of dispatcher groups may vary dynamically with workload. For
instance, a managed runtime using parallel stop-the-world garbage collec-
tion would merge all its dispatchers into one group during collection, and
then divide them into several groups according to the application’s work
once garbage collection completes.

Dispatcher groups are an important concept to minimize communication
overhead when conducting application execution phase changes and thus
serve to aid in fast baseline scheduler response time and scalability.

3.5.2 Scheduler Activations

Scheduler activations [ABLL91] are used to inform applications of changes
to resource allocations made by the operating system scheduler and serve to
achieve the goal of OS-application communication. Scheduler activations
can readily be implemented using Barrelfish’s schedule upcall mechanism,
as described in Section 2.5. Historically, scheduler activations are employed
to inform applications of resource allocation changes and several operating
systems had a similar notification mechanism, such as Psyche [SLM+90].

Currently, a data structure in shared memory that is mapped read-only into
application domains is employed. There is one such structure for each dis-
patcher of the domain. The structure is updated by the core-local CPU driver
scheduler to show the current core allocation in terms of real-time schedul-
ing parameters, such as scheduling period and allocated CPU time within
that period. The application can make use of this information to determine
how much service it receives on each core and decide to manage internal
resources based on this information.

3.5.3 Deterministic Per-core Scheduling

Deterministic per-core schedulers in the CPU drivers that schedule user-
space dispatchers form the basis of the Barrelfish scheduling system. They
are required to realize phase-locked scheduling and facilitate the specifica-
tion of processor requirements within scheduler manifests, as described in
the next sections.
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A deterministic per-core scheduler ensures that, in the long run, a once de-
fined schedule is being followed deterministically and can be predicted, even
when outside events might change it. For example a deterministic scheduler
can ensure that a thread is generally scheduled at a fixed rate and with a
fixed execution time. This may happen along with deterministically sched-
uled threads on other cores. Real-time schedulers typically fulfill this re-
quirement and we will use one such scheduler within Barrelfish.

The benefit of deterministic scheduling is that it can reduce inter-core com-
munication overhead by allowing us to specify one longer term schedule
for a core that we know it will follow without needing any further commu-
nication. This serves to achieve the goals of scalability and the support of
efficiently time multiplexing cores.

3.5.4 Phase-locked Scheduling

Phase-locked scheduling is a technique whereby we use the deterministic
property of the per-core schedulers to achieve a coherent global schedule
without steady inter-core communication requirements. With phase-locked
scheduling, cores need to agree on a deterministic schedule only once, at
the start of that schedule. It thus serves to achieve the goal of scheduler
scalability.

For this to work, all cores need to see the same time. In addition, to support
preemptive multi-tasking, all cores need to produce timer interrupts at the
same time. Many systems include a system-wide global timer, but it might
be too expensive to read when scheduling at fine time granularities. For
example, reading the real-time clock (RTC) or the programmable interval
timer (PIT) on the x86 architecture takes ten thousands of cycles. The high-
precision event timer (HPET) improves read time, but is not ubiquitously
available on x86 platforms. The x86 core-local time-stamp counter (TSC)
is cheap to read (25 cycles were measured on the evaluation systems of this
dissertation), but is not always synchronized among cores and can drift if
cores go into lower power modes. These issues, for example, were the cause
for numerous deadlock problems in the Linux kernel [New]. In addition, the
TSC cannot be programmed to interrupt the processor, which is required for
preemptive scheduling. Finally, global timers may not always be available
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in every system. For example, the SCC does not have such a timer. The
core-local APIC timers remain as a source of interrupts. However, these are
not synchronized.

We thus synchronize the scheduler timer sources of all cores involved in
phase-locked scheduling and set up scheduling parameters, such that a co-
herent global schedule is achieved. Once a schedule has been agreed upon,
no further inter-core communication is required, except for (infrequent) timer
re-synchronization if scheduler timer sources experience drift. In the follow-
ing subsection, I evaluate timer drift and synchronization overheads for the
x86 architecture.

Timer Drift

Phase-locked scheduling critically relies on cores always reading identical
timer values and getting timer interrupts at the same time. On the test plat-
forms, cores have local timers that need to be synchronized. It is thus rea-
sonable to ask whether these timers exert drift over time, in which case they
would need to be periodically re-synchronized when they drift too far apart.

I ran experiments on the 2×2-core AMD and 4×4-core AMD systems to
examine whether their core-local APIC timers experience drift over time.
In the experiments, I synchronize the core-local APIC timers once, using
the scheme presented in Section 3.6.3, set them into periodic mode with a
divisor of 1, without interrupts, and then measure APIC timestamps every
second on each core.

In this benchmark, cores are organized into a ring. Each timestamp mea-
surement is initiated from a core designated at benchmark start to be the
measurement coordinator, which signals a new measurement by flipping a
shared bit on an individual cache line in memory, which the next core in the
ring polls. Once the bit has changed, the next core will read its local APIC
timer and then set another shared bit for the next core in the ring and so on.
Each core stores each timestamp measurement individually in a private ar-
ray in memory. Once the benchmark is stopped, each core will print out its
timestamp values and they can be compared after the experiment, checking
whether their difference grows over time.
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Note that with this method, each core’s reading naturally will have an offset
of the previous core’s reading due to the ring organization of read-outs. I
have made sure that this difference is constant over time and can be removed
when comparing timestamp values.

I conducted these experiments for a day on each machine and did not en-
counter an observable growth in difference among APIC timer values, sig-
nifying that timers do not drift within this time span. All timestamp values
stayed within the baseline fluctuation of measured values and no trend of
drift away from this baseline was observable.

If timers do drift over larger time spans, then they have to be re-synchronized
periodically. The overhead for an APIC timer sync is currently on the order
of several hundreds of milliseconds, a very low overhead if timers need to
be synchronized less frequently than daily.

I conclude that, while a global, interrupt-generating timer that can be read
with low overhead is required for scalable scheduling of parallel workloads
on multicore machines, it is possible to simulate this global timer with low
overhead by periodically synchronizing local timers, such as APIC timers,
as long as they can be read with low overhead and generate interrupts. This
is due to the fact that local timers do not (or, if at all, rarely) drift in a
multicore system and the effort required to re-synchronize them is minimal
if a global reference clock is available, even if it is expensive to read or does
not generate interrupts.

Phase-locked Gang Scheduling

Phase-locked scheduling can be used to realize a variety of different paral-
lel schedules without the need for constant communication among cores to
synchronize the same. Here, I describe how phase-locked scheduling can be
used to realize gang scheduling. I make use of the phase-locked scheduling
capabilities of the Barrelfish scheduler architecture, as follows:

• I synchronize core-local clocks out-of-band of scheduling decisions
that must occur with low latency,
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Figure 3.3: Two Aquarium traces of a phase change conducted by the BARRIER
(red) application, once into best-effort scheduling and once into gang scheduling,
while the CPU-Bound (blue) application that is not gang scheduled is executing
concurrently. The x-axis shows time (cycles). The y-axis shows cores. Lines depict
messages being sent and received among cores. Black diamonds depict the end of a
timeslice.

• I coordinate core-local schedules only at times required by workload
changes, and

• I deterministically and independently schedule processes locally on
the cores.

This ensures that gangs are co-scheduled without the need for potentially
expensive inter-core communication on every dispatch.

When the application switches into a dispatcher group configuration that
employs fine-grain synchronization, the involved core-local schedulers com-
municate to conduct a scheduler requirement phase change to start gang
scheduling the affected dispatcher groups.

To illustrate how phase-locked gang scheduling works and how it compares
to synchronization-oblivious scheduling, I show an execution trace taken us-
ing the Aquarium trace visualization framework [Isa10] and shown in Fig-
ure 3.3. Fine-grain execution tracing is a feature in Barrelfish that is able
to record system execution events with CPU cycle accuracy through all lay-
ers of the system stack (applications and operating system). Aquarium is a
program that is able to visualize these traces, by displaying them on a graph
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that represents time on the x-axis and cores on the y-axis. Colored boxes
in the graph represent the execution of a particular program (according to
the color) at the point in the graph and lines represent messages being sent
among cores. Finally, diamonds depict the end of a timeslice.

In this example, I use again the BARRIER and CPU-Bound applications
described in Section 3.1.2. I show a phase change conducted by the BAR-
RIER application (red), once into best-effort scheduling (upper trace) and
once into gang scheduling (lower trace), while the CPU-Bound application
(blue) that is not gang scheduled is executing concurrently. Both applica-
tions use 4 cores in this case and the phase change is conducted across all
cores of the 2×2-core AMD machine, on which this trace was taken. The
lines at the left-hand side of the graph show communication among sched-
ulers to conduct the phase change on behalf of the requesting application.

The solid lines in the trace show inter-core communication. We can see that,
after the phase change is conducted, no more communication is necessary
and local APIC timers are synchronized. In a conventional implementation
of gang scheduling (not shown in the Figure), communication would be
required at the end of every timeslice (that is, at every row of diamonds in
the figure).

3.5.5 Scheduler Manifests

At startup, or during execution, Barrelfish applications may present a sched-
uler manifest to the scheduler to allow the OS to infer information about the
applications’ resource requirements. A scheduler manifest contains a spec-
ification of predicted long-term processor requirements over all cores, ex-
pressed as real-time scheduling parameters. In particular, worst-case execu-
tion time, scheduling period, deadline and task release time can be specified.
This allows the expression of the placement of synchronization-intensive
threads on gang scheduled cores. For example, in order to provide a phase-
locked gang scheduling policy, we set up identical release time, deadline,
worst case execution time and period of all cores involved in gang schedul-
ing a particular process.

Release time is an absolute time value that designates when a particular task
in the schedule is to be considered schedulable. If the current time is less
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than the release time, the scheduler will ignore the task. Release time allows
us to submit tasks to the run-queue early and time precisely when they start
being scheduled. This is a requirement for phase-locked scheduling, where
it is important that all tasks start their period precisely at the same time.

Scheduler manifests are divided into a number of dispatcher groups, its
member dispatchers, and resource requirement specifications divided into
several phases of execution, which may have different resource require-
ments. Despite the name, phases do not have to be iterated in any fixed
sequential order by applications. Instead, applications can switch between
phase configurations at any time using a call to the scheduler API.

Phases are useful for applications that have different execution states and
require different processor resources therein. For example, a web browser
might use a best-effort thread to manage each web page it is displaying.
Some of these web pages might display a video stream when clicked on,
in which case they require guaranteed periodic service and can be put in a
special real-time scheduling phase for this. Finally, a web page might start
a script that uses a parallel algorithm and requires gang scheduling of all
threads executing that algorithm. A phase can be allocated for this and the
threads be put into that phase.

Figure 3.4 shows an example manifest with two phases: The first phase is
a regular best-effort scheduling phase, useful for those threads of applica-
tions without special requirements. The second phase specifies deterministic
scheduling at a period of 160 milliseconds, a timeslice length of 80 millisec-
onds (specified by identical worst-case execution time and deadline), and a
release time of 480 milliseconds in the future from activation of the phase.

These parameters have to be picked by hand in the current version of the
system. In particular, this means that a reasonable value for the release time
has to be picked, such that all planners have executed the phase change until
the future release time is reached, which is system dependent. In the future,
the system should determine the release time automatically and spare the
user from specifying this parameter. In order to do so, the planners need
a fixed priority in the system to guarantee phase changes to be executed
within a certain maximum time span, which should be the lower bound of
the release time. We leave this issue for future work.
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# Best-effort phase with scheduling priority of 1
B 1

# Deterministic scheduling
# WCET period deadline release time
H 80 160 80 480

Figure 3.4: Example manifest specifying one single-threaded, best effort phase and
one gang scheduled phase. A B specifies best-effort scheduling with the scheduling
priority as parameter. An H specifies deterministic scheduling with worst-case exe-
cution time (WCET), period, deadline and release time as parameters, all specified
in milliseconds, in that order. Hash characters introduce comments.

Applications will not receive more than best-effort resources if a scheduler
manifest is not presented to the operating system. Currently, these manifests
are written by application developers. However, I expect that much of the
information in manifests could be inferred by compile-time analyses or pro-
vided by language runtimes instead, such that application developers would
not need to be involved in their specification.

Scheduler manifests resemble similar manifests submitted by applications to
grid computing systems or process manifests in the Helios operating system
[NHM+09]. Some current commodity operating systems provide scheduler
hints, which allow the application to impact OS scheduler policy and are
thus related to scheduler manifests. For example, similar to a technique
known as “preemption control” in the Solaris scheduler [Mau00], a Bar-
relfish dispatcher with a thread in a critical section may request to receive
more slack in order to finish the section as quickly as possible.

Another alternative to scheduler manifests is embodied by the Poli-C sys-
tem [And12], which presents a more dynamic way of negotiating resources,
by allowing programs to request resources via program annotations that are
submitted when reached in the execution. This has the benefit of more dy-
namism, but also the drawback of less time when calculating a new schedule
for the system. I conjecture that it would be possible to replace scheduler
manifests with this mechanism and get the same trade-off.
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Figure 3.5: Barrelfish scheduler architecture. Arrows represent communication
paths among the components. Swirled arrows represent threads and dashed arrows
represent multicast communication among planners. ntp is short for node time pro-
tocol, which is the protocol used to keep timers in sync among cores.

3.6 Barrelfish Scheduler Architecture

In this section, I present the implementation of the processor scheduler sub-
system within the Barrelfish general-purpose operating system, applying the
concepts introduced in the previous section.

Figure 3.5 illustrates the scheduler architecture on Barrelfish for reference.
Two components of the OS run on each core: the CPU drivers in privileged
mode, and the monitors in user mode. Also, application domains run dis-
patchers on every core on which they are executing (labeled ’Disp’ in the di-
agram), and these provide core-local, application-specific, user-level thread
scheduling functionality. Dispatchers are scheduled, in turn, by schedulers
executing in the CPU drivers via a two-level scheduling hierarchy.

The diagram shows three hypothetical user-application domains: the do-
main D1 is shown as running on four cores (hence having four dispatchers),
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D2 on two cores, and D3 on three. D3 is using two OpenMP parallel sections
and a shared garbage-collected run-time. The SKB, shown alongside the
other user-level applications, is both queried and populated by user domains
as well as by the OS (via the monitors). I will refer back to this diagram as
I explain the individual components in the following subsections.

3.6.1 Placement Controller

A centralized placement controller is embedded in the SKB. The placement
controller uses the application’s scheduler manifest along with knowledge
of current hardware utilization to determine a suitable set of hardware re-
sources for the application, which may then create dispatchers and negotiate
appropriate scheduler parameters on those cores. In general, an application
is free to create a dispatcher on any core, however only by negotiating with
the placement controller will it receive more than best-effort resources.

The Barrelfish scheduler API contains a call rsrc_manifest() to sub-
mit a scheduler manifest to the placement controller as plain text within a
variable length character array. It returns an identifier for the submitted man-
ifest, which is used in subsequent API calls to refer to this manifest. Once
a manifest is submitted, dispatchers of the same domain can join dispatcher
groups via a specially provided rsrc_join() system call. Joining a dis-
patcher group is always possible. Dispatchers are not in any dispatcher
group until they join one. This call assumes two parameters: a manifest
identifier and a dispatcher group identifier. Manifest and dispatcher identi-
fiers are encoded as 32-bit integers. One dispatcher group was sufficient to
conduct the experiments presented in Chapter 4 and so not more than one
group has been tested in the current version of the system.

In the version of the system used for experiments in this dissertation, the
placement controller executes a load balancing policy to distribute applica-
tion load over all available cores, based on utilization information that is
communicated with the SKB. When a resource request cannot be fulfilled,
the placement controller will reduce allocations of all running processes and
the requesting process equally until the request can be fulfilled. This global
allocation policy can be changed by the system administrator.
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The placement controller determines appropriate processor allocations ac-
cording to the global allocation policy for all different combinations of ap-
plication phases iteratively and transmits a schedule for each combination
separately to the planners, as soon as it is derived. This enables a fast phase
change, as all required scheduling information will already be available at
the appropriate core-local planners when the phase change occurs and need
only be submitted to their respective core-local CPU driver schedulers. It
thus serves to achieve the goals of fast scheduler responsiveness and scala-
bility.

3.6.2 Planners

Barrelfish implements per-core user-space monitors to implement core op-
erating system services that do not necessarily belong in kernel-space (see
Chapter 2 for a description).

I extend this component with a planner module that is responsible for the
core-local planning of CPU scheduling information for each dispatcher. In
vein of the Multikernel design, information about dispatcher groups and
gangs is replicated across those planners that are responsible for the per-
core resource control of the groups and kept up-to-date via message passing
instead of sharing state. When dispatchers form groups across cores, plan-
ners communicate to replicate the group’s scheduling information.

This design allows us to seamlessly draw long-term resource allocation deci-
sions centrally within the placement controller when this has a clear advan-
tage, like the admittance of new allocations and the allocation of CPU time
across a number of CPUs, while keeping performance-critical decisions,
like whether a dispatcher is currently in a group requiring gang scheduling,
decentralized.

Planners receive schedule information for all different combinations of ap-
plication phases from the placement controller as soon as these new sched-
ules have been derived. Upon dispatcher group phase changes, planners
communicate with corresponding peers on other cores to fulfill the phase
change quickly. If scheduling information for a particular combination of
phases is not yet available, planners will resort to best-effort scheduling un-
til scheduling information is available.
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A phase change is executed by submitting the required real-time scheduling
parameters to the core-local CPU driver scheduler independently on each
core that is involved in scheduling a dispatcher group that underwent the
phase change. When communicating with peer planners to conduct a phase
change, only the phase identifier, which has been previously received from
the placement controller, needs to be transmitted. Peer planners already
have all information required to schedule the phase available locally and
need only look up the phase identifier in a local lookup table, which yields
the real-time scheduling and phase synchronization parameters. Again, this
serves to achieve fast response times and scheduler scalability.

3.6.3 Core-local Timer Synchronization

I have extended the monitor with another module responsible for synchro-
nizing the core-local APIC timers that exist in the x86 and SCC architec-
tures, across all CPUs in the system. This can be done either by referring
to a global reference clock, or by using a time synchronization protocol that
uses round-trip time of messages, akin to the network time protocol [Mil91].

I have implemented two timer synchronization algorithms that both use a
global reference clock to synchronize. The first refers to the core-local time-
stamp counters (TSCs) as a global clock source. While TSCs are core-local,
they are synchronized on many systems, acting like a global clock. On
systems where this is not the case, the programmable interval timer (PIT) is
used instead. The PIT is a global clock source in an x86 system, accessible
by every CPU core.

In both cases, one core initiates a new clock synchronization period by exe-
cuting the following protocol:

1. Read a time-stamp from a suitable reference clock

2. Add a constant that allows enough time to finish synchronization among
all cores

3. Request to synchronize timers by sending the resulting time-stamp to
all other cores in the system
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Once received, all other cores stop regular system execution, waiting for
the reference clock to reach or surpass the transmitted time-stamp. When
the time-stamp is reached, all cores synchronously reset their APIC timers,
which enforces synchronization.

In the case that the reference clock is already past the time-stamp before the
first read-out, some cores will return failure to the initiator of the synchro-
nization period and another period will have to be started by the initiator.
In the current system, I start by allowing one timeslice (typically 80ms) to
synchronize and use exponential back-off to allow for more synchroniza-
tion time whenever this is not enough. I stop when synchronization takes
longer than one second, upon which I return error to the user and disable
phase-locked scheduling.

3.6.4 CPU Driver Scheduler

The CPU driver scheduler is responsible for scheduling dispatchers. Bar-
relfish supports different types of workloads at the lowest level of CPU
allocation. The scheduler in the CPU driver (see Figure 3.5) is based on
RBED [BBLB03], a rate-based, earliest deadline first scheduling algorithm,
which supports simultaneous scheduling of applications with hard real-time,
soft real-time and best effort scheduling requirements, while remaining flex-
ible in distributing the slack (idle CPU time) generated naturally by this
scheduling technique back to the tasks it is scheduling. In combination
with techniques for scheduling at different timescales this gives the ability
to time-multiplex CPUs over a large number of cores while still accommo-
dating for the time-sensitive requirements of some applications.

Within RBED, an earliest-deadline-first scheduling model is used to which
all task requirements are fitted. RBED ensures that admitted hard real-time
tasks get their requested allocations, while soft real-time tasks get notified
about missed deadlines. Finally, best-effort tasks are scheduled equivalent to
priority based schedulers. For hard and soft real-time tasks, RBED requires
scheduling parameters, such as deadline, worst-case execution time and pe-
riod. Best-effort tasks are scheduled with priorities identical to UNIX-based
schedulers.
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I chose RBED for its predictability. RBED produces schedules that repeat
periodically under stable resource allocations and is a prerequisite for phase-
locked scheduling. For example, gang scheduled tasks are submitted as hard
real-time tasks to RBED. For hard real-time tasks, RBED ensures exact ser-
vice when worst-case execution times, deadlines and periods are adequately
chosen. Gang admittance during scheduler manifest submission has already
ensured that all gangs are configured so that a combination of gangs that
would over-commit the real-time scheduler cannot be submitted.

The Barrelfish implementation of RBED resides entirely within the CPU
driver. I have added a release time scheduling parameter, which is not de-
scribed in the RBED paper. The interpretation of some other scheduler pa-
rameters is also different than described in the RBED paper. The execution
of a real-time task for a given period ends either if:

1. The task runs out of budget. In this case its executed time is larger or
equal to its worst-case execution time (WCET). This may happen for
any real-time task.

2. The task yields the CPU. When this happens the task’s executed time
is reset to 0, while its release time is increased by its period. This pre-
vents it from being re-scheduled within the same period in case slack
time is available and restores its budget for the next period. Real-time
tasks specify their worst-case execution time for each period and we
interpret yielding the CPU before expiration of that time to indicate
that the task is finished processing before its worst-case assumption.
Thus, it is not necessary to re-schedule the task within that period.
Yielding best-effort tasks are immediately re-released at the current
time, which ensures that they are re-scheduled whenever slack be-
comes available, but after all currently runnable best-effort tasks have
had their turn.

Figure 3.6 shows a diagram depicting the two situations. If no real-time task
has any budget, idle CPU time is not filled with real-time tasks. This deci-
sion was arbitrary through the implementation of RBED within Barrelfish
and was left unspecified in the RBED paper.
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Figure 3.6: RBED scheduling behavior in Barrelfish’s implementation. The top
graph shows the first case, the bottom graph shows the second case.

3.6.5 User-level Scheduler

Scheduling of application threads is done at user-level via dispatchers that
are implemented in the Barrelfish library operating system, which is linked
to every application. Dispatchers are put in control of execution via sched-
uler activations. In particular the Run upcall, first described in Section 2.5.2,
at execution resumption from the CPU driver scheduler is used for this pur-
pose.

Upon being entered at the Run entry point, a dispatcher will first poll all its
message channels for new messages and keep track of the current timeslice,
by incrementing a timeslice counter each time it is entered at the Run en-
try point. The current timeslice is important in handling yielding threads:
It is used for determining when all threads in the current timeslice have
yielded, in order to yield the entire dispatcher, instead of switching to the
next runnable thread.

After that, the next runnable thread is scheduled using a round-robin policy,
by selecting it from the top of a queue of runnable threads. If no threads
are runnable, the dispatcher will indicate to the CPU driver that it has no
more work to do, by setting the haswork field in the shared data structure
to zero, unless there are channels to poll periodically, in which case it will
simply yield the CPU to the next dispatcher. The CPU driver will activate the
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dispatcher again when notifications arrive for it and reset the haswork field
to one. There are no other scheduling parameters associated with threads in
the current version of the system and all threads are treated equally.

Cross-core thread management is also performed in user space. The thread
schedulers on each dispatcher exchange messages to create and unblock
threads, and to migrate threads among dispatchers (and hence cores). CPU
drivers are responsible only for multiplexing the dispatchers on each core.

In order to keep capabilities consistent across cores, a message to send ca-
pabilities to a remote dispatcher is implemented. In the current version of
the system, capabilities are transferred ad-hoc and only once for those ser-
vices that need consistent capabilities during setup of the service. A generic
service for consistent capabilities does not yet exist and is future work.

3.7 Related Work

User-level parallel programming frameworks have investigated using infor-
mation from applications to facilitate the scheduling of threads at the run-
time level. For example, scheduling in the McRT [SATG+07] integrated
language run-time system for large-scale multicore machines involves max-
imizing resource utilization and providing the user with flexible schedule
configurability, which is facilitated by McRT’s tight integration with the
programming language, by allowing application programmers to specify
scheduling preferences within their code [RLA07]. McRT shows improved
performance and scalability over previous run-times, especially for RMS
workloads.

Cache-affine scheduling is used in user-level run-times, such as process-
oriented programming [RSB12]. The message-passing-based structure of
these programs allows analysis of communication patterns and subsequent
classification of processes into cache-affine work units.

Lithe [PHA09] is a run-time framework to improve the scheduling of several
concurrently executing parallel libraries within a large parallel application.
It explicitly schedules threads of all libraries to avoid situations of over-
commit or adversarial placement of competing threads onto the same core.
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These user-level run-times work only from within one application and do
not aim to consider the bigger problem of scheduling multiple applications
as part of an operating system.

Poli-C [And12] is an exception. Poli-C presents language extensions and
a run-time system to allow programmers to specify resource requirements
within their program code and enforces these requirements via a central sys-
tem daemon process among multiple such applications. This is similar to the
approach presented in Section 3.5 of this dissertation. However, Poli-C em-
bodies an even more dynamic approach to managing resources that requires
information to be negotiated immediately when they are requested by pro-
gram code, instead of using longer-term reservations to facilitate prompt
response upon ad-hoc workload changes. The approach presented in this
dissertation allows the OS more time to process resource allocations, but
also requires applications to reason in advance about their possible require-
ments. Nevertheless, Poli-C’s ideas can augment the approach presented in
this dissertation and should be considered for future work.

Other commodity operating systems, such as Linux, also synchronize their
local APIC timers to get synchronized timer interrupts on each core. Linux
does this once at boot-up, for each core, by waiting for an HPET or PIT
overflow and then resetting the core-local APIC timer. Both the method
presented in this dissertation and the one used by Linux are adequate to
synchronize local APIC timer interrupt generation. Linux, however, does
not use a global clock to synchronize thread release time to conduct phase-
locked scheduling.

The Mafia scheduler [Ble10] for the Xen virtual machine monitor uses a
similar technique to phase-locked gang scheduling to reduce the overhead
of dispatch synchronization among a number of cores. No hard real-time
scheduling algorithm is used in the Mafia scheduler. Instead, regular round-
robin scheduling is used for each core and dispatch of a gang is started by
inserting each gang member once and at the same time into the schedule
on each core. The author finds that parallel applications that frequently use
barrier synchronization benefit from the gang scheduling technique, while
other applications do not. This underlines that it is important to enable gang
scheduling only for applications that benefit from the technique.

Work which has proposed new OS architectures, such as fos [WA09] and
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Tessellation [LKB+09], has appealed to co-scheduling applications on par-
titions of a machine, but with little attention so far to the implementation
problems to which such architectures lead. For example, Boyd-Wickizer et
al. call for schedulers that focus on making efficient use of cache mem-
ory to avoid expensive RAM access [BWMK09]. Instead of moving shared
data among caches, threads that want to access data are moved to the data.
The authors show preliminary evidence that this methodology can improve
performance on multicore processors.

3.8 Summary

The challenges brought about by multicore commodity computers, namely
system diversity, the promise of executing multiple parallel applications
concurrently, and interactive workloads have spawned the need for an oper-
ating system scheduling architecture that is able to support a dynamic mix
of interactive and parallel applications executing concurrently on a multi-
core machine, all the while being scalable, agile, and able to respond within
interactive attention spans.

Scheduling of parallel applications was part of the high-performance com-
puting community historically, where workloads are static and typically re-
ceive a dedicated slice of the machine. Hence, this problem was not tackled
in that community and the ideas developed there do not apply in a straight-
forward way to commodity multicore computing.

In order to tackle this mismatch, I have proposed and implemented a sched-
uler architecture within Barrelfish, a scalable and agile operating system.
I find that time-multiplexing of cores is still necessary, despite the num-
ber of cores available. Also, I find that scheduling should happen at multi-
ple time scales in order to break down the complex problem of scheduling
parallel applications on non-uniform multicore hardware. Additionally, the
operating system scheduler should be able to reason online about both the
hardware and each application, so to be agile with a changing hardware
architecture and to provide applications with the information necessary to
achieve the same level of agility. Finally, the operating system and appli-
cations should communicate about resource requirements and allocations,
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such that a changing mix of parallel, interactive applications that requires
dynamic re-allocation of resources can be scheduled effectively.

By applying the design principles of the Multikernel, I derived the con-
cepts of deterministic per-core scheduling, scheduler manifests, dispatcher
groups, scheduler activations, and phase-locked scheduling. The applica-
tion of these concepts brings about new challenges that so far were only ex-
posed in the distributed systems community. These problems include timer
synchronization and the problem of efficiently maintaining consistency of
scheduler state among cores.

Finally, I have demonstrated that gang scheduling as a technique can im-
prove the responsiveness of a hypothetical interactive parallel application by
ensuring that all threads are dispatched at the same time and thus lower cost
synchronization primitives can be used and threads do not need to be waited
for when synchronizing. Gang scheduler implementations in the literature
are developed with batch scheduling of high-performance compute appli-
cations in mind and support only coarse-grained time slice lengths, which
impacts response time negatively in interactive scenarios that have much
shorter timeslice lengths. I have shown how gang scheduling can be com-
bined with phase-locked scheduling to derive phase-locked gang schedul-
ing, which requires less synchronization of schedules among cores and thus
better supports the short timescales required in interactive scenarios. I will
evaluate these ideas in the following Chapter.



Chapter 4

Evaluation

In this chapter, I first present in Section 4.1 the evaluation of the over-
head and scalability of individual components of the Barrelfish scheduler
architecture through various microbenchmarks, as well as application-level
benchmarks showing the performance and agility of the entire scheduling
subsystem within Barrelfish.

Then, in Section 4.2, I am evaluating phase-locked gang scheduling, by
comparing its overhead both against a traditional user-level implementation
of gang scheduling, as well as a customized, low-level implementation.

In Section 4.3, I discuss the results presented in this chapter and conclude.

4.1 Barrelfish Scheduler

I first investigate the Barrelfish scheduler subsystem overhead.

In Section 4.1.1, I evaluate the baseline cost and scalability of conducting
an application phase change among a number of cores.

111
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In Section 4.1.2, I evaluate the baseline performance and scalability of iso-
lated, compute-bound applications and compare it to the same applications
running on the Linux operating system to show that Barrelfish can provide
comparable application performance and scalability with an existing com-
modity operating system.

In Section 4.1.3, I show that the holistic approach to multicore schedul-
ing can indeed improve application performance by revisiting the example
given in Section 3.1.2 and comparing to the same applications running on
Barrelfish with an appropriate scheduling manifest.

In Section 4.1.4, I show the agility of the Barrelfish scheduler with sev-
eral different memory architecture layouts, by comparing application per-
formance and scalability with that provided by natively tuned operating sys-
tems across a number of different architectures.

4.1.1 Phase Change Cost and Scalability

I measure the average cost of a single application phase change, changing all
scheduling parameters, over an increasing amount of cores. Phase changes
are expected to take place during program execution, at the boundary of
parallel sections with different scheduling requirements; we do not expect
them to occur more frequently than on the order of hundreds of timeslices
(several seconds). Resetting scheduling parameters more frequently would
not result in noticeable performance gains: these phases would be too short
to be perceivable by an interactive user of the system.

Phase changes are part of the performance-critical path of program execu-
tion and we should pay attention to their overhead. Figure 4.1 shows this
overhead for all of the x86 evaluation platforms (the SCC port did not exist
when this data was collected, but I expect it to have similar overhead). We
observe that phase changes have low overhead compared to the frequency
with which they are expected to occur. In the worst case, on 32 cores on the
8×4-core AMD machine, we observe a median overhead of 24,535 cycles,
or 12 microseconds. With an increasing number of cores, this overhead is
growing, as more cores need to be informed of the phase change. A multi-
cast or broadcast communication mechanism could be employed to improve
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Figure 4.1: Cost of conducting a phase change over a varying number of cores.
Median and standard deviation over 1,000 individual measurements are shown.

the scalability of this overhead, but is not necessary for the scale of cores
examined in this dissertation.

Conducting a phase-change involves a synchronous message with the phase
identifier from the dispatcher initiating the phase-change to the core-local
monitor. The monitor retrieves the required scheduling parameters for its
local core and which other dispatchers are involved in the phase change.
It forwards the phase change message to the core-local monitors of these
dispatchers. Once all messages are distributed, each monitor will transmit
the new scheduling parameters to their respective CPU driver schedulers.
Once this is done, responses are sent back to the initiating monitor, which
will forward a single aggregated response to the initiating dispatcher once
all responses are received.

The additional overhead involved in conducting phase changes over an in-
creasing number of cores is not as large as the baseline overhead for con-
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ducting a phase change on just a single core. This is due to planners exe-
cuting phase changes in parallel, once the request has been submitted to all
planners involved.

Phase changes bear resemblance to cell activation and suspension in the
Tessellation operating system. The cost to activate a Tessellation cell on 15
cores of an Intel x86 machine is 8.26 microseconds and 17.59 microsec-
onds to suspend it [LKB+09]. Barrelfish cannot be compared directly to the
quite different Tessellation OS, but we note here that the phase change over-
head agrees with the overhead of similar mechanisms in another multicore
operating system.

4.1.2 Single Application Performance

In this subsection, I use compute-bound workloads, in the form of com-
putational kernels of the NAS OpenMP benchmark suite [JFY99] and the
SPLASH-2 parallel application test suite [SPL], to exercise shared memory,
threads, and scheduling. These benchmarks perform no IO and few virtual
memory operations but we would expect them to be scalable. I introduce
each application briefly here:

• CG uses a Conjugate Gradient method to compute an approximation
to the smallest eigenvalue of a large, sparse, unstructured matrix. This
kernel tests unstructured grid computations and communications by
using a matrix with randomly generated locations of entries.

• FT contains the computational kernel of a 3-D fast Fourier transform
(FFT)-based spectral method. FT performs three one-dimensional (1-
D) FFTs, one for each dimension.

• IS is a large integer sort. This kernel performs a sorting operation that
is important in “particle method” codes. It tests both integer compu-
tation speed and communication performance.

• BarnesHut is conducting n-body simulations in three dimensions us-
ing a hierarchical method according to Barnes and Hut. This is use-
ful for galaxy and particle simulation. The algorithm uses an octree
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(a) OpenMP conjugate gradient (CG)
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(b) OpenMP 3D fast Fourier transform (FT)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14  16

C
yc

le
s 

×
 1

08

Cores

Barrelfish 
Linux

(c) OpenMP integer sort (IS)
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(d) SPLASH-2 Barnes-Hut
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(e) SPLASH-2 radiosity

Figure 4.2: Average execution time over 5 runs of compute-bound workloads on
4×4-core AMD (note different scales on y-axes). Error bars show standard devia-
tion.
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to represent space cells, with leaves containing information on each
body. The communication patterns are dependent on the particle dis-
tribution and are quite unstructured.

• Radiosity is computing the equilibrium distribution of light in a com-
puter rendered scene using the iterative hierarchical diffuse radiosity
method. The structure of the computation and the access patterns to
data structures are highly irregular. A task-stealing methodology is
used to distribute work over threads.

I compare the baseline performance and scalability of these benchmarks
across Barrelfish and Linux 2.6.26 to investigate whether a Multikernel can
provide similar application performance and scalability to a state-of-the-art
shared-memory operating system. I use GCC 4.3.3 as the compiler, with
the GNU GOMP OpenMP runtime on Linux, and a custom OpenMP imple-
mentation on Barrelfish. For each benchmark, the time needed to conduct
an entire computation over a number of time-steps is measured.

Figure 4.2 shows the results of these five benchmarks from the 4×4-core
AMD machine. I plot the compute time in cycles on Barrelfish and Linux,
averaged over five runs; error bars show standard deviation. These bench-
marks do not scale particularly well on either OS, but demonstrate that
despite its distributed structure, Barrelfish can still support large, shared-
address space parallel code with little performance penalty. The observable
differences are due to Barrelfish’s user-space threads library vs. the Linux
in-kernel implementation – for example, Linux implements barriers using
a system call, whereas the library implementation exhibits different scaling
properties under contention (in Figures 4.2a and 4.2c).

4.1.3 Multiple Parallel Applications

To show that the holistic approach to multicore scheduling can indeed im-
prove application performance, I revisit the example given in Section 3.1.2.
The experiment in that section was conducted on a Linux system. In order
to show a valid comparison, we first need to investigate whether we observe
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Figure 4.3: Relative progress of the two concurrent OpenMP applications from Sec-
tion 3.1.2 on the 4×4-core AMD system, running on Barrelfish with best-effort
scheduling. Again, mean, minimum, and maximum observed over 20 runs of 15
seconds each are shown.

different performance overheads and bottlenecks when this workload is ex-
ecuted on Barrelfish, where we have a different thread scheduling system
and OpenMP run-time library.

Figure 4.3 shows the two applications from Section 3.1.2 running on Bar-
relfish, with only best-effort scheduling. This configuration is identical to
the Linux system. We observe that the BARRIER application does not scale
as well as in the Linux example. Through further investigation, I con-
firm this to be due to the barrier implementation used in Barrelfish’s own
OpenMP library, which uses a single atomic thread counter shared by all
threads entering the barrier. Furthermore, threads wishing to leave a barrier
spin on a shared counter to observe a change in the current barrier iteration.
This causes contention on barrier entry and exit.
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Figure 4.4: Relative progress of the same two OpenMP applications, this time using
phase-locked gang scheduling. Also, we show the performance of the same applica-
tions running on Linux from Figure 3.1 again, in light-gray, for reference.

Better barrier implementations exist that alleviate some of these contention
problems and consequently scale better [MCS91]. However, since we are
still able to observe the same pitfall in the progress of the BARRIER appli-
cation when both applications need to be time-multiplexed, the conditions
of the experiment running on Barrelfish are not jeopardized and produce
adequately similar results to the Linux version.

We now add a scheduling manifest to the BARRIER application that is sub-
mitted to the placement controller on application start. This manifest is in
fact the one presented as an example in Section 3.5.5. It requests all cores
within the same dispatcher group to be dispatched at exactly the same time,
for exactly the same amount of time. Hence, Barrelfish will resort to gang
scheduling this application using the phase-locked gang scheduling tech-
nique. We run the experiment again.
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Figure 4.4 shows the two applications again, this time with the schedul-
ing manifest submitted by the BARRIER application. We observe that the
BARRIER application continues its progress, even when applications are
time-multiplexed. There is also less noise in the measured progress of the
CPU-bound application. Both are due to the gang scheduling technique now
enabled by Barrelfish, which ensures that all threads of the BARRIER appli-
cation are dispatched at the same time on all cores. This technique has the
side-effect that other applications tend to self-synchronize on the boundary
of timeslices, which is what we observe with the CPU-bound application in
this figure. Hence the smaller noise in measured experimental results.

4.1.4 Agility

In order to show that the Barrelfish scheduler is agile with several different
memory architecture layouts and can facilitate applications in their agility
with the same, I conduct an experiment running a scientific compute ap-
plication on the Single-Chip Cloud Computer and the 4×4-core AMD x86
platform and compare the performance to the same application tuned man-
ually to the platforms’ respective native operating systems. These two plat-
forms have very different memory architectures. However, Linux is the na-
tive operating system in both cases.

The scientific compute application in this experiment solves a synthetic sys-
tem of nonlinear partial differential equations using the lower-upper sym-
metric Gauss-Seidel method. It is taken from the NAS parallel benchmark
suite, where it is called LU. I choose problem size A to conduct this experi-
ment, which is the smallest size that is suggested to be used for benchmark-
ing Supercomputers.

The software environment presently available on the SCC uses a separate in-
stance of the Linux kernel on each core. Above this runs RCCE [MvdW10],
a library for light-weight, efficient communication that has been co-designed
with the SCC as a research vehicle for message-passing API design on non-
cache-coherent manycore chips, and as such is highly optimized for this
platform. RCCE runs in user-mode with raw access to the MPBs, providing
basic point-to-point message passing functionality as well as a set of higher-
level primitives, such as barriers and a reduce operation, akin to those found
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in MPI [Mes09]. As part of the RCCE distribution ships a version of the LU
benchmark that uses this library for message passing. I use this version as
the native contender for the comparison on the SCC architecture.

On the 4×4-core AMD machine, I compare against the original MPI imple-
mentation that ships with the benchmark suite. I use the OpenMPI [GWS05]
message-passing suite to implement the message-passing primitives. This
version is highly tuned, even for machine-local message passing. Another
version of the LU benchmark exists within the NAS benchmark suite that
is using shared memory and the OpenMP parallel programming framework.
I compared the performance of the OpenMP version to that of the Open-
MPI version and found the performance of the OpenMPI version to be
better. This is understandable: the benchmarks were originally conceived
as message-passing benchmarks and have subsequently been ported to use
shared memory. Hence, I choose the message passing OpenMPI version for
comparison.

On Barrelfish, I run a version using message-passing, which I have ported to
Barrelfish’s inter-domain communication API from the version that shipped
with the RCCE message passing library.

The Barrelfish, RCCE, and MPI implementations all use the same code base,
derived from the NAS benchmarks version 3.3. However, the MPI imple-
mentation is written in the Fortran language, while the RCCE version has
been manually ported to the C language. Nevertheless, both versions show
comparable performance when run using just a single process. For exam-
ple, when run on a single core on the same Linux OS on the 4×4-core AMD
machine, I observe that the RCCE version is taking 119.75 seconds to com-
plete, while the MPI version takes 90.01 seconds, a difference of a factor of
1.3.

Figure 4.5 shows the completion time of the LU benchmark running on
Barrelfish vs. the respective natively optimized version. We can see that
performance and scalability are similar in both cases. On the x86-based
systems, we see a higher baseline overhead, which can be attributed to the
different versions of the LU benchmark that were used in this comparison,
as explained earlier.

I note that the message-passing-based LU benchmark is designed to run only



4.1. BARRELFISH SCHEDULER 121

 0

 50

 100

 150

 200

 250

 1  4  8  12  16  20  24  28  32

T
im

e
 [

s
]

Cores

Barrelfish
Linux

(a) 8x4 AMD machine

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  4  8

T
im

e
 [

s
]

Cores

Barrelfish
Linux

(b) 2x4-core Intel machine

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1  2  4

T
im

e
 [

s
]

Cores

Barrelfish
Linux

(c) 2x2-core AMD machine

 0

 20

 40

 60

 80

 100

 120

 140

 1  4  8  12  16

T
im

e
 [

s
]

Cores

Barrelfish
Linux

(d) 4x4-core AMD machine

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  4  8  12  16  20  24  28  32

T
im

e
 [

s
]

Cores

Barrelfish
Linux

(e) Single-Chip Cloud Computer

Figure 4.5: Completion time of the LU benchmark, when run on Barrelfish vs. run
on the native Linux OS on several hardware architectures.
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with a number of processing nodes at a power of two, hence I cannot use
the maximum number of cores available in the SCC machine, which is not
a power of two.

I conclude that the Barrelfish operating system indeed is agile with a chang-
ing underlying hardware architecture. It successfully supports performance
and scalability comparable to natively tuned message passing and operat-
ing system implementations, without requiring changes to the applications
and only small changes to the operating system (in this case, the implemen-
tation of an interconnect and notification driver). In addition, in the case
of the SCC, Barrelfish provides multiplexing of the message passing hard-
ware facilities to multiple concurrently executing applications, a feature not
offered by the native RCCE message passing library.

4.2 Phase-locked Gang Scheduling

Now, we turn our attention towards the overhead of phase-locked gang
scheduling.

In this section, I first compare the overhead of phase-locked gang scheduling
to a traditional gang scheduling solution that is implemented in user-space
on the Intel Single-Chip Cloud Computer.

In a second experiment, I am comparing the overhead of phase-locked gang
scheduling to an optimized, centralized gang scheduling technique using
inter-processor interrupts that is implemented in the Barrelfish CPU driver
on the x86 platform.

4.2.1 Scheduling Overhead vs. High-level Solutions

Traditionally, gang scheduling has been realized using user-space resource
management software, like the SLURM cluster management suite [YJG03].
In the case of the Single-Chip Cloud Computer, where the programming
model is identical to clustered systems, SLURM is indeed the default system-
wide scheduler.
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The standard software distribution for this computer is designed such that
an unmodified Linux operating system is executing in an isolated fashion
on every core. In fact, the operating system instances are constrained via
hardware techniques, such as memory and IO virtualization, to their own
private memory regions and IO interfaces and know nothing about the other
OS instances running at the same time on the machine. Communication
with other cores is realized via a special device driver that abstracts the
memory interconnect as an Ethernet network, accessible via a device by the
OS instance. Higher-level application software, such as the SLURM cluster
management suite, is expected to manage and coordinate system resources
across the entire chip.

With a shared-memory operating system, such as Linux, there is no other
way to execute on this computer, as the architecture is not cache-coherent.
With the Barrelfish operating system, however, we can run a single-system
image across the entire chip and implement resource management, such as
processor scheduling, as an operating system service at a lower-level. This
allows us to integrate more tightly with other OS resource management
and control low-level hardware features, such as synchronizing each core’s
APIC timer, allowing for a lower total scheduling overhead. As a result we
can achieve scheduling at shorter timeslices than is possible at user-level. I
am going to show this in the following experiment.

In this experiment, I run the LU NAS benchmark (described in Section 4.1.4)
on 16 cores of the SCC alongside CPU stressor programs, running one each
on the first 4 cores. The CPU stressor programs spin forever in a tight loop
and thus use up their entire time slice. The LU benchmark runs as part of
a service that accepts client requests to carry out the LU benchmark com-
putation and return the result. This scenario is supposed to model a parallel
interactive application on a system consolidated with other services under
CPU load. The decision to use 16 cores for the LU benchmark and 4 cores
for the stressors was arbitrary. I tried other configurations with similar re-
sults.

I execute multiple runs of the experiment. For each run, I periodically re-
quest to compute the LU benchmark result of the class S problem size at
an interval of at least 2 seconds. Class S is small enough to be computed
in less than 1 second on 16 cores of the SCC, even when run alongside the
CPU stressors. It might still be delayed, however, if the overhead of the
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scheduler is too high. This means that if the computation does indeed finish
before the interval of 2 seconds, I wait until the end of the interval and do
nothing. If the computation finishes only after the 2 second interval, I im-
mediately start the next computation. Within a run, I repeat the LU compute
time measurement 10 times and take the average, before ending the run.

This setup simulates a parallel computation service, which might be embed-
ded as part of a server-sided script on a webserver, with an incoming request
load of one request every 2 seconds. Following the webserver example, this
would equate to a person requesting a fresh version of the website once ev-
ery 2 seconds. Obviously, a faster response of the final result is better than
a slower one, as it is a determining factor of the page load time.

Between runs, I shorten the scheduling timeslice length. I try five differ-
ent lengths between 5 seconds, the default timeslice length for the SLURM
cluster management suite, and 60 milliseconds, close to the average times-
lice length on Linux for interactive processes. With long timeslices, the
likelihood that we issue a request when the LU benchmark is not running is
high and the time to finish the computation will be longer. As we move to
shorter timeslice lengths, the time to finish computation shortens. However,
at the same time, the overhead of the scheduling implementation grows as it
is invoked more frequently.

Figure 4.6 shows that phase-locked gang scheduling can provide better re-
sponse time than the SLURM cluster management software. This is due to
lower overhead of the scheduler implementation. The SLURM software is
relying on TCP/IP messages sent between user-mode processes on distinct
cores, which then modify kernel-level scheduling parameters to synchro-
nize schedules. SLURM cannot leverage synchronized processor clocks to
realize phase-locked gang scheduling.

4.2.2 Scheduling Overhead vs. Low-level Solutions

To gauge the overhead of phase-locking schedules when compared against
another low-level implementation, I developed a centralized gang schedul-
ing solution that is implemented at the lowest level in the Barrelfish CPU
driver. The solution does not rely on synchronized processor clocks, but
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Figure 4.6: Overhead of phase-locked gang scheduling in Barrelfish vs. gang
scheduling using the SLURM cluster management software on the SCC. The graph
shows average completion time of the NAS LU benchmark, executing on 16 cores,
alongside 4 CPU stressor programs. Error bars show minimum and maximum mea-
sured over 3 runs of the experiment.

instead designates one core to be the schedule coordinator. I define two dis-
tinct inter-processor interrupts: One to activate scheduling of a particular
gang and one to deactivate gang scheduling. The coordinator core broad-
casts an inter-processor interrupt to context switch a gang to all other cores
involved in scheduling a gang upon expiry of each of its own timeslices. The
other cores disregard their own local clocks when scheduling a gang and re-
act solely to these broadcast interrupts to undertake a context switch. When
not scheduling a gang, the other cores use their local clocks and schedules.

In this experiment, I conduct a limit study where I vary the frequency of
context switches to evaluate at what rate phase-locked scheduling provides
a benefit to applications over a centralized solution. To measure application
progress, I run the BARRIER and CPU-bound applications on the 4×4-core
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AMD system and count the accomplished loop iterations of the BARRIER
application each second over the course of 10 seconds. The CPU-bound
application serves as background load. I configure the scheduler to switch
between the gang scheduled BARRIER application and the background load
on the boundary of each timeslice. Thus, there is one inter-processor inter-
rupt transmitted at the end of each timeslice.

I repeat the experiment, varying the timeslice length of the system between
80 milliseconds and 20 microseconds, the lower limit at which the system
operates reliably. To put the lower limit into perspective, I measure the
context switch duration on the 4×4-core AMD system to be 4 microseconds
and note that a time slice length of 20 microseconds is only 5 times this
duration, resulting in an overhead of one fifth just for context switching on
each time slice, which does not leave a lot of processor time for applications.

The results are shown in Figure 4.7, once for time slice lengths on the or-
der of microseconds and once on the order of milliseconds. With time slice
lengths in the range of milliseconds, I observe no difference in application
progress, regardless of scheduling mechanism, showing that the two mech-
anisms perform equally well within this range.

Within the microsecond range, between 1 millisecond and 500 microsec-
onds, there is still no difference in application performance among the two
mechanisms. With both schemes, we can see a slight drop in performance as
I lower the time slice length. This is due to the increased context switching
overhead, which I plot on a second axis in the microsecond graph.

We then observe a departure of application performance, starting at 200
microseconds time slice length. Phase-locked scheduling starts to perform
better. This is due to the overhead of sending the IPIs on core 0, which does
not exist with phase-locked scheduling. I measured this overhead to be on
the order of 1000s of cycles, or several microseconds. At 20 microseconds,
we observe 36% better performance when using phase-locked scheduling.
However, context switching overhead rises exponentially as we lower time
slice length. It rises to 20% of the total processor time available within a
time slice length of 20us, which explains the slowdown. Thus, this config-
uration is unrealistic for a commodity operating system like Barrelfish and
does not provide any benefit for applications.
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Figure 4.7: Phase-locked scheduling vs. centralized scheduling using inter-processor
interrupts at microsecond and millisecond granularity. For each scheduling approach
the graphs show average number of accomplished loop iterations per second over a
measured run-time of 10 seconds. Error bars show minimum and maximum mea-
sured. The microsecond graph also shows context switch overhead.
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We conclude that phase-locked gang scheduling does not provide any benefit
over centralized gang scheduling when implemented at a low-level within
realistic time slice lengths for a commodity operating system that supports
interactive applications. Context switching of applications on the order of
milliseconds is well within limits of providing responsiveness at interactive
attention spans.

4.2.3 Discussion

While phase-locked gang scheduling can provide improved application per-
formance over high-level gang scheduling solutions that are typically em-
ployed in cluster and cluster-on-chip scenarios, such as the SCC, it does
not show enough promise versus low-level centralized solutions that can be
implemented on traditional architectures, like x86.

I note that there exists a small window of opportunity of improved applica-
tion performance when using phase-locked scheduling for time slice lengths
up to 200 microseconds, but that this is outside of the reasonable range for
general-purpose commodity operating systems.

Still, the phase-locked approach does consume less hardware resources, by
eliminating the need for a coordinator core and inter-processor interrupts.
This, in turn, can improve performance on systems, where there is no dedi-
cated hardware bus for inter-processor signaling. For example, on the SCC,
all messages, including inter-processor interrupts, are delivered using the
mesh interconnect. On the event of congestion of this interconnect, gang
scheduling messages sent out centrally would become delayed by other mes-
sages on the mesh. This would ultimately result in jittery start and end times
of gangs and with that in reduced performance of applications with fine-
grain synchronization. Message interconnect congestion is not an issue for
phase-locked gang scheduling, where all coordination happens locally on
each core.
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4.3 Summary

In this chapter, I have shown that the concepts presented in Chapter 3 al-
lowed me to develop a scheduler that is scalable and allows applications to
achieve baseline performance and scalability comparable to natively tuned
operating systems on a number of different multicore platforms, without re-
quiring vast modifications of the operating system, contributing to the first
two goals of this dissertation of scalability and agility. Only the message
passing facilities had to be modified.

I hoped that the concept of phase-locked scheduling would improve gang
scheduling to fine-grained time slice lengths, by applying the Multikernel
principles of core-local state and reduced inter-core communication. I suc-
ceeded in developing a gang scheduler that is able to deliver improved paral-
lel application performance in a mix of parallel applications over schedulers
used in traditional commodity operating systems, such as Linux, that are
oblivious to the synchronization requirements of parallel applications. The
scheduler is also built to react to changes in the workload, which might
occur due to user input. This is an essential contribution to the goal of sup-
porting interactive response time to the user when running a mix of parallel
and interactive applications.

Finally, phase-locked gang scheduling performs better than high-level, cluster-
based gang scheduling solutions, such as SLURM. However, a subsequent
comparison against a naive low-level implementation showed that this is not
due to the technique of phase-locking, but due to the low-level implementa-
tion, which can utilize hardware features better than a high-level implemen-
tation.

Nevertheless, the technique of phase-locked schedulers consumes less hard-
ware resources than a naive, centralized implementation, by distributing
schedule coordination across cores. This can potentially benefit hardware
architectures that cannot dedicate resources for inter-core communication
techniques, such as inter-processor interrupts. For example, when the avail-
able inter-core interconnects become congested with other messages. This
is a contribution to the goal of agility, as it does not favor one memory sub-
system layout over another.



Chapter 5

Conclusion

With the advent of multicore architectures, commodity computing is be-
coming increasingly parallel and interactive application software is starting
to leverage this parallelism. At the same time, commodity hardware evolu-
tion is continuing at its usual pace. Motivated by these developments, this
dissertation has presented the design and implementation of operating sys-
tem mechanisms to support the execution of a dynamic mix of interactive
and parallel applications on commodity multicore computers. Scalability,
agility, and interactive response times when scheduling a mix of parallel
and interactive applications have been the three main goals of the presented
design.

In order to achieve these goals, this dissertation has made the following
contributions:

• In Chapter 2, I have introduced the Multikernel, an operating sys-
tem model and component architecture that makes all inter-core com-
munication explicit, makes the operating system structure hardware-
neutral, and views all operating system state as replicated instead of
shared. This model promises scalability and agility for operating sys-
tem implementations based on it.

130
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I have then reported about a concrete implementation of the Multiker-
nel, Barrelfish, and its inter-process communication facilities. I have
shown adequate baseline performance and scalability of the commu-
nication facilities via a series of messaging microbenchmarks. Bar-
relfish’s communication facilities are also able to provide superior
performance for the IP loopback service and a web server, compared
to equivalents on a mature commodity operating system.

Finally, I have reported on the simplicity of adding new specialized
communication facilities for new types of hardware.

• In Chapter 3, I have presented the design and implementation of the
scheduler subsystem within the Barrelfish Multikernel. The five con-
cepts of deterministic per-core scheduling, scheduler manifests, dis-
patcher groups, scheduler activations, and phase-locked scheduling
help to achieve the goals of scalability and interactive response times.

Via a benchmark I have motivated why gang scheduling can deliver
interactive responsiveness for future parallel interactive applications
and presented phase-locked gang scheduling as a technique to reduce
the overhead of classical gang scheduling implementations found in
high-performance computing. I have described the application of the
technique within the Barrelfish operating system.

• In Chapter 4, I have evaluated the concrete implementation of schedul-
ing within the Barrelfish Multikernel operating system and have shown
that Barrelfish is able to efficiently multiplex hardware in time and
space, while workloads executing on Barrelfish can perform and scale
equivalently to natively tuned operating system implementations. I
have demonstrated this across a variety of different machines, requir-
ing minimal changes to Barrelfish’s implementation, and thus I have
also shown the agility of the approach.

Via another benchmark, I have shown that, with phase-locked gang
scheduling, Barrelfish can avoiding mis-scheduling multiple parallel
applications. A surprising result was that, while phase-locked gang
scheduling is more efficient than high-level solutions typically em-
ployed in cluster-on-chip scenarios, like the SCC, the performance
gains versus low-level implementation on the x86 architecture are di-
minishing.
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Together, these contributions constructively prove the thesis stated in Chap-
ter 1: it is possible to design and implement an operating system that achieves
the goals of scalability, agility and supporting interactive response times in a
commodity multicore computing scenario, by providing inter-process com-
munication and scheduling components that

• multiplex hardware efficiently in time and space,

• react quickly to ad-hoc workload changes,

• reason online about the underlying hardware architecture,

• reason online about each application, and

• allow resource negotiation between applications and the operating
system.

Indeed, Barrelfish performs equivalently to, and sometimes better than, na-
tively tuned, mature operating systems.

5.1 Future Work

The Barrelfish operating system implementation presents a significant amount
of work. However, it is by no means a finished, mature operating system.
Several avenues for future work seem promising and I survey them within
this section.

5.1.1 Heterogeneous Hardware Architectures

Our current implementation is based on the Intel and AMD multiprocessors,
as well as the SCC research processor. These multiprocessor architectures
are homogeneous—all processors are identical. Barrelfish was not evaluated
in a truly heterogeneous environment.

Experiments were conducted with architectures comprised of an x86-based
host PC and an SCC peripheral device, all executing the same Barrelfish
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image [Men11]. However, this just presents a first step and only initial per-
formance results exist.

A port is in progress to the Netronome network accelerator architecture
[Sch11], as well as the Intel Many Integrated Core (MIC) architecture, which
will allow us to run a single Barrelfish image across a host PC and pro-
grammable accelerator cards.

This will also allow us to experiment with specialized data structures and
code for different processors within the same operating system. It also opens
the door to myriad of scheduling challenges, such as optimizing the util-
ity of accelerators by quantifying which application can make the most use
of them and placing computation strategically on accelerators, such that a
tradeoff of maximum application speed-up and minimum data movement
between system and accelerator memory is maintained.

5.1.2 Distributed Execution Engines

Structuring the operating system as a distributed system more closely matches
the structure of some increasingly popular programming models for data
center applications, such as MapReduce[DG04], Dryad[IBY+07], and CIEL
[MSS+11], where applications are written for aggregates of machines. A
distributed system inside the machine may help to reduce the “impedance
mismatch” caused by the network interface – the same programming frame-
work could then run as efficiently inside one machine as between many.

In fact, there are efforts to run the CIEL distributed execution engine in
this fashion [SMH11]. When coupled with an operating system, such as
Barrelfish, one could leverage efficient message passing that is agile with a
changing hardware architecture. Challenges that arise in this scenario are
again related to resource management when multiple CIEL applications are
executing, especially when multiple machines are involved. It is also worth-
while to investigate how resource management changes when a data-parallel
program is executing within one multicore machine, as opposed to executing
on a cluster.
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5.1.3 Systems Analysis

Systems based on explicit communication are amenable to human and au-
tomatic analysis. A substantial theoretical foundation exists for reasoning
about the high-level structure and performance of a system with explicit
communication between concurrent tasks, ranging from process calculi such
as communicating sequential processes [Hoa] and the π-calculus [Mil99], to
the use of queuing theory to analyze the performance of complex networks
[Jai91].

Leveraging this foundation to reason about Multikernel-based systems would
allow us to investigate the soundness of the systems built. We could ask
questions like: Can we be certain that, by design, the system will be dead-
lock free? How resilient will it be to faults? And, will the system be secure?
With ever more cores being integrated into multicore machines, these ques-
tions become ever more important.

5.1.4 Programming Language Integration

Programming language directives can help specify the programmer’s intent
and communicate application requirements to the operating system. So far, I
have only focused on programming language run-times. Going one step fur-
ther, programming language directives would allow programmers to specify
directly the intended resource requirements for program sections and allow
for an even better integration.

The Poli-C [And12] language extensions and run-time system are a promis-
ing first step in this direction. If integrated with the Barrelfish scheduling
framework, more fine-grained resource management could be made possi-
ble by leveraging the low-level Barrelfish scheduler implementation. Also,
all resources could directly be managed by and negotiated with the operating
system scheduler, obviating the need for an OS reserve, which is currently
used in Poli-C for all applications not under its control. Finally, dynamic ne-
gotiation could be better integrated with the language, by allowing program-
mers to specify what to do when only a subset of the requested resources is
available.
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5.2 Summary

As commodity multicore computer architectures become more and more
widespread, it is only a matter of time until application software will start
to leverage the offered parallelism to speed up computation. Operating sys-
tems are an integral part of the system stack and have to support this devel-
opment to secure performance benefits. This dissertation has presented the
design and implementation of operating system mechanisms to support the
execution of a dynamic mix of interactive and parallel applications on com-
modity multicore computers, a scenario that might become commonplace in
the near future.
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