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1 Introduction

For a couple of years multicore systems have been the de facto standard and
today even in small personal computers the number of cores grows at quick
pace [3]. Researchers are working with chips that have more than 48 cores [13,15]
and the limit certainly has not been reached yet. One among many reasons for
this development is that several, relatively slow processors can be cooled more
efficiently than a single, very fast one. But it is a well known fact of course
that working with more than one core can be quiet tricky. Intuitively one would
think for example that two processors, in comparison to a single one, could do
twice as much work in the same amount of time, but this has long ago been
proven to be a fallacy [1].
While application programmers have a hard time conquering parallelism, op-
erating systems (OS) are presented with an at least equally difficult task of
managing all available resources of a given system. It has been pointed out [3,5]
that hardware will be no longer homogeneous in the future. Heterogeneous cores
on the same chip could be used to perform differing tasks or some cores could
even be switched off entirely to reduce power consumption. This means that
the cores have potentially different instruction sets as well, which poses an ad-
ditional problem for OSs. An intuitive example would be a Graphics Processing
Unit (GPU), that was originally designed for a very specific task.
Barrelfish is a research operating system released by ETH Zurich that explores
new architectural ideas to cope with modern hardware. It introduces the notion
of a Multikernel which (simplified) is the idea of running a lightweight kernel on
every single core. The kernels run independently from one another, i.e. there is
no shared state between them and a consistent view is achieved with message
passing. Together all these different mini-kernels form the OS, which can now
be viewed as a distributed system. Please refer to 3.1.1 and [4] for a more de-
tailed explanation.
The purpose of this thesis was to implement a so-called datagatherer for the
Barrelfish OS. The System Knowledge Base (SKB) is a program that stores
data about the hardware the OS is currently running on. For example it could
store the size of the data caches of a certain processor and make this information
available to other programs. Based on this knowledge it is possible to adapt
their behaviour according to it. A datagatherer is a program that queries the
hardware for all the desired information and stores it in the SKB.
Every bit of information is potentially important, in other words there might
exist an application that can benefit from it. An example are the cache pa-
rameters mentioned earlier. However there is of course a lot more that can be
stored. An other fact that can be used extensively is which processors have
shared caches. If two threads use the same data it is obviously beneficial if they
run on two processors that share one or more caches.
To make it possible for applications to apply further optimizations cache access
times are also collected by the datagatherers. This is done by a series of tests
to measure the latencies of all cache levels.
For this thesis we implemented the part of the datagatherer that gathers in-
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formation about Intel hardware only. Different hardware represents the same
information differently, for example Intel uses integer codes to describe the cache
parameters. To avoid potential problems all the data is stored in an abstract
format (3.4.2), that is independent from hardware vendors. The datagatherers
transform the data into this generic format, but they do not interpret it at all.
For example cache identifiers are stored but shared caches are not computed.
Predefined queries, expressed in the logical programming language Prolog, are
used to retrieve the data. Prolog makes it possible for very complex statements
to be expressed in a relatively simple and intuitive way. That makes this lan-
guage perfect to retrieve and interpret data at the same time.

The remainder of this document is structured in the following way:
The Background section (3) gives an introduction to the concepts that are rel-
evant for this document. Not everything can be covered thus the Related Work
section (4) provides pointers to several other sources for further explanation.
The Design (5) and Implementation (6) sections describe in detail how the data-
gatherer was built. After evaluating (7) the data, we draw the conclusion (8)
and outline future work (8.1).
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2 Motivation

The purpose of this thesis was to implement a datagatherer for the Barrelfish
operating system. A datagatherer is a specialized program designed to detect
various features about the hardware the OS is currently running on. The Sys-
tem Knowledge Base (SKB) stores this data in a machine independent format
(3.4.2) in order to make it available to other parts of the OS and in general to
every kind of application. Sophisticated queries, expressed in the logical pro-
gramming language Prolog, are used to access and interpret the data.

There are several good ways to optimise a program. An appropriate algorithm
combined with adequate datastructures is a good basis to start optimising a
program. The hardware that executes an application has many factors that
have to be taken into account when trying to get optimal performance. To
put it simple: “constants matter”. This means that at some point it becomes
necessary to take a closer look at the details of the hardware that executes a
program.
A specific example of important hardware parameters that could be of inter-
est would be the details of the cache. Programs pay a very high performance
penalty if the data they access is not present in the caches, but in main memory,
for example. In other words it is beneficial for a process to have the data it is
working on as high up in the memory hierarchy as possible.
A classic example is the traversal of a matrix. In C, matrices are stored in
row-major order. This means that when traversing the matrix (of byte entries)
row after row, we access the memory in sequential order. This is favourable,
since we access the data along the cache lines. Assuming we have a line size of
64bytes we have one cache miss every 64 accesses. If we do the traversal column
wise however we are no longer traversing the memory in sequential order. That
means that if the matrix is big enough we have one cache miss in every access.
The above example illustrates the point that algorithms should be implemented
in a cache aware way. Or more general that they have to take hardware details
into account.
The problem with this kind of information (cache parameters, etc.) is that it is
inherently hardware specific. If such optimisations are applied to a program it
gets tied to a specific machine. Very often though, one needs programs that are
portable across all kinds of hardware. We believe that there is a way to make
such low level optimisations possible while still keeping programs portable.
Our approach is as follows: A database, that runs in the background, stores
information about the hardware the OS is currently running on. It would for
example store the size of all the caches. An application can query this database
and adapt itself according to this information. The database stores the informa-
tion in an abstract format, meaning that it does not contain hardware specific
details. Applications can use this data to apply optimisations specific to the
hardware while at the same time staying at a level of abstraction that ignores
how the underlying system actually looks like. The optimal result would be an
application that is portable and runs efficiently on every type of platform.
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The Barrelfish OS, in combination with the SKB, provides exactly this interface.
Datagatherers that are specially tailored to the hardware are executed and fill
the SKB with as much useful information as possible. All the hardware specific
details are encapsulated within these programs, thus allowing the rest of the
applications to run at a higher level of abstraction.
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3 Background

3.1 Barrelfish

Barrelfish is a research operating system released by ETH Zurich. It was built
to investigate new architectural ideas for future multi- and many-core systems.
While classical operating systems like Linux, etc. tend to be rather monolithic,
Barrelfish embraces the idea of being a distributed system. There are several
reasons to abandon the classical view of operating systems as static constructs.
The main one being the fact that modern hardware looks more and more like a
networked system [5]:

3.1.1 The Operating System As a Distributed System [5]

Historically a distributed system is characterized by three key features: het-
erogeneous nodes, communication latency between them and the dynamic
change of the number of nodes.
It has been pointed out [3, 5], that future hardware will no longer consist of
homogeneous chips but rather of different components, each of which built for a
specialized task. An intuitive example for this is a GPU. The problem with het-
erogeneous CPUs for an OS is that the instruction sets are potentially different.
Therefore the same kernel can in general not be executed on every chip. Bar-
relfish introduces the notion of a cpudriver which is essentially a very lightweight
kernel that is executed on every core. As the term suggests, a CPU is thought
of as just another device that has to be handled by the OS and hence needs a
driver that manages it. Heterogeneity is no longer a problem since the driver
can (must), according to its definition, handle the hardware it runs on.

On modern NUMA machines CPUs are grouped into so called NUMA -
Domains each of which is physically built around a part of main memory (Figure

RAM RAM RAM RAM

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

communication network

Figure 1: Numa Domains

6

http://www.ethz.ch


1). Therefore processors access the part of main memory that is in their NUMA
- Domain faster than memory in other domains. These different access times
can be viewed as latencies that are present in the system.
As the number of cores increases, the probability that one of them fails increases
as well and hence we suddenly have hardware that might “loose” a CPU in the
middle of execution. The big difference to traditional hardware is that a crash
of the CPU is (should be) no longer equivalent to a crash of the whole system.
It is entirely possible and of course very desirable that the system can recover
and continue to work after it has lost one or more processors (nodes in the
distributed system).
We see that modern hardware exhibits important features of any distributed
system and therefore has to be viewed as a distributed system, as well.

3.2 System Knowledge Base (SKB)

The System Knowledge Base (SKB) [14] is a novel feature of the Barrelfish op-
erating system. It is essentially a database that stores information about the
hardware the OS is currently running on. It uses specialized programs (data-
gatherers) to collect relevant information which is stored as Prolog Facts (3.3.1).
Sophisticated Prolog - queries can then be used to retrieve it. To interpret the
Prolog code, the SKB uses Eclipse CLP [2,7].
Prolog is a logic programming language that allows for very complex queries to
be expressed in a fairly simple and intuitive way. Please check section 3.3 for a
short introduction to this language.
A simple example of how the SKB could be used: An application needs to run
in parallel on two cores. It is known in advance that both cores will often access
the same data. Therefore it would be useful to have a shared cache between
them. In this example the application would first send a query to the SKB, that
will then return a pair of cores that satisfy the requirement of sharing one or
more caches. Using this information the application can choose the appropriate
cores.
The SKB makes it possible to adapt the behaviour of an application directly to
the underlying hardware. Note that the logic which reacts to information from
the SKB (i.e. the part of the application that changes the behaviour of the
program) can be programmed in a very generic way, since information stored
in the SKB is kept in a format that is independent (3.4.2) of the underlying
hardware.

3.3 Prolog

This section gives a very brief introduction to the Prolog programming language.
For a complete and more detailed description, please refer to other documents.
A little tutorial can be on the website “Learn Prolog Now!” [6].
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3.3.1 Prolog Facts

A Prolog program consists of a Knowledge base and a number of queries.
The knowledge base constraints a set of facts. For example a simple knowledge
base, consisting of 2 facts:

colour(red).
colour(magenta).

A fact is assumed to be true. We now have an exemplary knowledge base that
stores the fact that red and magenta are both colours.
Queries are used to “ask questions” about the state of the knowledge base. To
answer the questions, the interpreter looks at the available facts and tries to
satisfy the query. For example, when asking :

?- colour(black).

the response will be

no.

since there simply is no fact stating that black is a colour. But of course when
asking if magenta is a colour, the query can easily be satisfied:

?- colour(magenta).
yes.

It is also possible to search for facts, that satisfy a given rule:

?- colour(What).
What = red ? ;

What = magenta

The results are red and magenta, as both would satisfy the query: “colour(red)”
and “colour(magenta)” are both facts that are present in the knowledge base.
This very powerful feature makes it possible to interpret facts according to a
given constraint. We will see that this is precisely what is needed in the context
of the SKB.
Let us consider a more complex example where we store information in the
following form:

cache(core nr, cache level, cache size, cache id).

Think of a system with 4 cores, each of which has 2 caches. We create a little
knowledge base:

cache(1, 1, 8192, 1).
cache(2, 1, 8192, 2).
cache(3, 1, 8192, 3).
cache(4, 1, 8192, 4).
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cache(1, 2, 524288, 5).
cache(2, 2, 524288, 5).
cache(3, 2, 524288, 6).
cache(4, 2, 524288, 6).

Note the shared caches between nodes 1 and 2 and between 3 and 4, respectively.
We define a rule to check whether two cores share a cache:

sharing cache(CoreA, CoreB) :-
cache(CoreA, , , ID),
cache(CoreB, , , ID).

The interpreter tries to satisfy it with the facts stored in the knowledge base
(the “ ” is a “don’t - care”):

sharing cache(1, 2).
yes.

There are two facts that satisfy the rule, namely:

cache(1, 2, 524288, 5).
cache(2, 2, 524288, 5).

If we have one core we could also use the query to find another core that shares
a cache with it:

sharing cache(3, Other).
Other = 3 ? ;
Other = 3 ? ;

Other = 4

The query is of course a bit too simple to do the job properly: we already know
that core 3 shares two caches with itself. Note that core 3 has 2 caches and
therefore the answer “3” is returned two times. Apart from this little extra
information we get the desired result and now know that core 3 shares a cache
with core 4.
This very powerful feature is exactly what we need for the SKB in order to
provide complex queries. Please refer to section 6 for more details about the
queries that are used to retrieve information.

3.4 Datagatherer

The purpose of this thesis was to design (5.1) and implement a program to
gather data about the hardware and (3.4.2) to decide how the data should be
stored and accessed.
The programs were written for Intel hardware only. Code to analyze other
hardware is present, but was not part of this thesis.
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3.4.1 Gathering Data

To collect as much data as possible, the SKB runs specialized programs called
datagatherers on every core. These programs run independently from one an-
other and write all data directly to the SKB . The data is not interpreted at all,
it is simply transformed into a generic format (3.4.2).
A central instrument to get information about the hardware is the CPUID in-
struction (CPUID instruction). It provides a very simple way to collect a lot of
information, be sure to check section 3.5 for a more detailed description.
To measure cache and memory latencies we implemented algorithms that adapt
to the underlying hardware, check section 6.4 for more details.

3.4.2 Storing Data

Data is collected by the datagatherers and then stored in the SKB. It is impor-
tant that the data is stored in a way that is independent from the underlying
hardware.
An intuitive example is information about the processor cache. When using
the CPUID instruction on an Intel processor to gather cache information (with
CPUID(2)), the result consists of hexadecimal codes that refer to a specific
cache configuration. The value 0xd, for example, refers to an L1 data cache
whose size is 16KB, 4-way set associative and has a line size of 64 bytes [10].
In a first attempt one could simply store the value 0xd in the SKB:

cache(0xd).

but this would bring about several problems. First of all the queries that access
the data became unnecessarily complex, since the corresponding configuration
would have to be determined. The even bigger problem however, is that the
value 0xd probably only makes sense for an Intel processor. When looking
at a broader context (3.1.1), where there might be different cores with differing
instruction sets in the same system, it becomes necessary to deal with all special
cases at the “query level”, e.g. one would need a different query for every kind
of hardware.
The previous approach is clearly a bad idea. Instead we store the information
in a format that is a bit more abstract. In the above example this could be done
in the following way:

cache(1, “data”, 16384, 4, “s”, 64).

All information is available and the format is sufficiently generic to write ab-
stract queries.
Note that in this setting the interpretation of the code is done by the datagath-
erer. It makes sense to perform this work at this level because the datagath-
erer is specialized to the hardware anyway, whereas the SKB should be at a
higher level of abstraction. In other words the SKB remains independent from
hardware. This transformation is the only interpretation that is made by the
datagatherers. Every other processing of the data is done by higher level code,
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predominantly written in Prolog.

3.5 The CPUID Instruction

This section gives an overview of the CPUID instruction. Some examples are
taken directly from Intel Documentation [10].
The CPUID instruction is used to gather information about the processor the
program is currently running on. The eax register determines the function that
is executed. When it is initialized to 0, written CPUID(0), for example, the
instruction returns information about the vendor. It would be executed like
this:

movl $0, %eax

cpuid

The result is written into the registers eax, ebx, ecx, edx. In the above example,
after the instruction has been executed the registers would look like this:

ebx 0x756E6547
ecx 0x49656E69
edx 0x6C65746E

When we interpret the integers as characters we get:

ebx u (75) n (6E) e (65) G (47)
ecx I (49) e (65) n (6E) i (69)
edx l (6C) e (65) t (74) n (6E)

Which corresponds to the ASCII string

GenuineIntel

Some functions need an additional argument that is passed via the ecx register.
Later we will use this second parameter extensively, but for now it is not very
important.
The CPUID instruction provides access to a wide variety of information, section
6 will cover the ones that were used in the context of this thesis.

3.6 Normal Forms

In this section we give a very brief overview of normal forms. We neither can nor
do we want to give a complete introduction to the topic in this document. This
section is merely intended to be a reminder that summarizes some important
points. A very good and detailed explanation can for example be found in [11].
There are of course numerous other documents that provide an equally well
structured introduction to the topic.
The examples that follow are inspired by [11].
Relations in a (relational) database can be re-organized (normalized) to reduce
redundancies and functional dependencies. Depending on which properties are
satisfied, the schema is said to be in a specific normal form:

11
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First Normal Form [11]

A relation is in first normal form (1NF) if and only if every attribute consists
of atomic values. The following relation

Family
Father Mother Child
Felix Joana {Robert, Marc}

Charly Karin {Nils, Jens}

is not in 1NF since the “child” attribute is composed of two values. Yet we can
easily transform the relation to meet the requirements of the 1NF:

Family
Father Mother Child
Felix Joana Robert
Felix Joana Marc

Charly Karin Nils
Charly Karin Jens

Second Normal Form [11]

Intuitively a relation is in the 2NF if it is in the 1NF and if it contains infor-
mation about only one concept. This means that there exists no non-prime
attribute that is dependent on a proper subset of any candidate key. For exam-
ple this relation:

Courses
StudentNr. CourseNr. Student Name Semester

181 5 Nina 8
151 1 Robert 6
151 2 Robert 6
151 3 Robert 6
131 2 Stefan 6
131 4 Stefan 6

is not in 2NF since there are the following functional dependencies:

{StudentNr} → {StudentName} and {StudentNr} → {Semester}

Consequences: The problem with the above relation is that there can be update
anomalies. If we would like to add the last names of the students, for example,
we would have to do this in several different places. To change “Robert” to
“Robert Meier”, for example, we would need to update three different fields in
the table.

Third Normal Form [11]

A relational schema < is in 3NF if for all functional dependencies of the form
α→ B, where

12



α ⊆ <
B ∈ <,

one of the three conditions holds:

1. B ∈ α (the functional dependency is trivial)

2. B is prime

3. α is a superkey of <

This means that < has to be in 2NF and every non-prime attribute has to be
directly dependent on every superkey of <. Consequently no non-prime attribute
provides a fact about a set of attributes that is not a key (Or: “Every non-key
attribute must provide a fact about the key, the whole key and nothing but the
key” [12]).

Boyce - Codd Normal Form [11]

To be in the Boyce-Codd normal form, a schema < needs to satisfy even stronger
conditions. Facts are then stored exactly once in the database. For every
functional dependency α→ β at least one of the two conditions must hold:

1. β ⊆ α (the dependency is trivial)

2. α is a superkey of <

13



4 Related Work

Operating System As a Distributed System

Baumann et. al. [5] introduced the idea of viewing a modern OS as a distributed
system. The main reason for this is that hardware looks more and more like
a networked system. Different types of cores (e.g. GPUs, FPGAs), that may
be plugged into the system dynamically introduce heterogeneity. Moreover
cache-coherent NUMA machines lead to different memory access times which is
essentially the same as communication latency.
Thus modern hardware exhibits key features of a distributed system and the
OS on top of it should therefore resemble a distributed application.
Another example of a distributed OS is the idea of “Factored Operating Sys-
tems” (fos) [16]. To achieve scalability they use the idea of distributed internet
services. A so-called server runs on every core which provedes the kernel services
and together they form the OS.

System Knowledge Base

A special feature of the Barrelfish OS is the System Knowledge Base [14]. Spe-
cialized programs analyze the hardware and gather data that is stored into this
database. Sophisticated queries allow applications to access the information at
runtime and adapt their behaviour according to the underlying hardware.

Cache Aware Algorithms

There is a great number of cache aware algorithms and systems. [8,17,18] some
are examples of such systems. Many of the algorithms have to be compiled
for every system they run on to optimally use the properties of the hardware.
The SKB goes one step further and provides desired parameters at runtime.
Applications that use the SKB no longer have to be custom tailored to every
system but can conveniently adapt themselves at runtime.

Measuring Latencies

Yotov et. al. [19] describe a set of algorithms to measure cache and memory
latencies. The paper describes in detail how latency measurements of all cache
levels can be obtained. For this thesis we adapted (5.2) the algorithms a little
bit since we do not need their complete functionality. The original algorithm
derives system parameters, in this case however this is unnecessary because they
are already stored in the SKB by the time the algorithm is executed.
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5 Design

This section covers the design of the datagatherer. Details about the implemen-
tation are covered in section 6.
As mentioned before, we focus on Intel hardware only.
The datagatherer is a relatively simple program that instantiates itself on every
core and gathers information. The instances run mostly independent from other
instances and save the information directly to the SKB.
Conceptually, the datagatherer consists of two parts: The first part (5.1) simply
queries the hardware and stores the information. The second component (5.2)
performs measurements (cache latencies, etc.). It makes extensive use of infor-
mation gathered earlier by the first part of the program. This part is executed
sequentially. That means that no two instances of the datagatherer can execute
it simultaneously. We need this because we have to avoid bus contention that
would yield very inaccurate measurements.

5.1 Gathering Data

The first part of the datagatherer simply queries the hardware and stores the
information directly to the SKB. Here we frequently use the CPUID instruction.
This function is called with one or two parameters. The first one, passed in eax,
determines the method that is executed, i.e. what kind of query is executed,
while the second one provides additional information for some queries. For
example we can execute the instruction with first parameter 4 to determine
some cache parameters. The second argument then further specifies the cache
that we want the instruction to be executed upon.
Not every processor provides the full functionality of the CPUID instruction.
Which functions are supported can be determined by querying CPUID directly.
The result tells us which integers can be passed in the eax register as the first
parameter. The datagatherer checks the availability of the methods and only
executes those that are present.
We created a wrapper function for every CPUID - method to make it easy to
selectively execute single methods.
Cache parameters are gathered at the end of this stage. To be able to do it
properly we need to perform some additional work, that relies on previously
gathered information.

5.2 Measuring Latencies

The second part of the datagatherer performs latency measurements with the
algorithms described by Yotov et al. [19]. For this we heavily rely on previously
gathered data, for example the algorithms need the capacity and the associa-
tivity of all caches.
Note that this task cannot be done in parallel on all cores at the same time
because we have to avoid bus contention to get accurate measurements.
To measure the access times of the caches we obviously need a function that
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can measure time. However this is a bit of a problem, since we do not actually
know which methods are available on the current processor.
At this point we know that the datagatherer has executed the first part (5.1),
thus the available features are stored in the SKB. The SKB itself provides a
query that determines which function is available to measuring the time. We
call this a measuring strategy and a simple integer code is used to represent
a specific strategy:

1 measurement_strategy(StrategyCLOCK, StrategyRDTSC,
2 StrategyRDTSCP, Apic, Strategy) :-
3

4 feature(Apic, "rdtscp") ->
5 Strategy is StrategyRDTSCP;
6 feature(Apic, "tsc") ->
7 Strategy is StrategyRDTSC;
8 Strategy is StrategyCLOCK.

This query checks which features are available and then tells us the best strategy.
In this context “best” means most accurate. The integer constants representing
the strategies are not fixed. That is why the query takes them as arguments.
We think it is better to avoid setting the constants, since the program that
executes the query is more flexible that way.
With this version of the query we have three alternatives to measure time: the
clock, rdtsc and rdtscp instruction, respectively. More could easily be added.
The problem with this approach is that the query has to be adapted as well.
This is tricky since the validity of the query-call, in the C code, for example, is
not checked at compile time.

5.2.1 Overhead

An inevitable problem with measuring the time are inaccuracies. We try to keep
them at a minimum, nevertheless our measurements suffer mostly from either
method-call overhead or loop-overhead.
To measure cache levels lower than L1 we have the problem that we need to
access the data in special ways to avoid cache hits in higher cache levels. To
access the L2 cache, for example, we need an L1 miss. To achieve this we use
(6.4) the algorithms of Yotov et al. [19]. These algorithms need information
about the hardware (cache sizes, associativity, etc.). The problem is that we do
not know these values at compile time and thus cannot use a macro to forego
using a loop, which incurs (loop-) overhead.
The other source of inaccurate measurements is the measuring itself. In other
words: the starting and stopping of the clock has a certain amount of overhead.
One way to minimize the effect of this overhead is to execute n instructions and
then divide the measured time by n. Let T be the actual execution time of an
operation, A the overhead of taking the time and n the number of executions.
Then the measured execution time M of one instruction is:

M =
nT +A

n
⇔
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M = T +
A

n

So we see, that if n is big, the effect of A on a single instruction becomes small.
Loop overhead on the other hand is independent from the number of iterations
since we are dealing with compare, add and jump instructions which occur in
every iteration. However the operations on the control variables of a loop are
mostly independent of the instructions in the loop body and therefore can be
executed in parallel, or out-of-order (whatever the processor chooses to do).
Thus it is not quiet clear how much overhead is actually caused by the loops,
especially when considering speculative execution, for example.
At the beginning we measure both the loop and the timing overhead and store
the values in the SKB. When taking measurements we can adapt the values a
bit to make them more accurate (we subtract the overhead from the measured
time).
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6 Implementation

As mentioned already before this thesis focuses on Intel hardware. We first
describe how we collect general information about the hardware with the CPUID
instruction. We then show how shared caches can be determined and at the end
of this section it is demonstrated how the access times to caches and to main
memory are measured. Throughout this section we present the Prolog queries
that are available to retrieve the data that is collected.

6.1 General Information

Right at the beginning we can do the two following things: first we can save the
vendor information. For that we store this simple fact to the SKB:

vendor(ApicId, “intel”).

and provide the following query to access the information:

1 get_manufacturer(Apic, Manufacturer) :-
2 vendor(Apic, Manufacturer).

Secondly, we determine some facts about the current cpu thread that executes
the datagatherer. We store the information in the following form:

cpu thread(ApicId, PackageId, CoreId, ThreadId).

To find the package of a specific core we provide the following query:

1 get_package_of_core(Apic, Package) :-
2 cpu_thread(Apic, Package, _, _).

6.2 Miscellaneous Information From CPUID

This section focuses on information that is gathered with the help of the CPUID
instruction. Sometimes we omit little details about the use of the CPUID in-
struction if they do not play a central role for this application. For a complete
description with all details, refer to the documentation [10].Very often one needs
to check single bits to get information. In these cases we omit the details of the
implementation since it would not be very interesting.

6.2.1 Determining Available Methods

The first thing that has to be done is to check which methods are applicable.
For this we execute CPUID(0) and check the eax register for the “largest stan-
dard function number”. Every method that is smaller (i.e. the first parameter
of the CPUID instruction is smaller) than this number is supported by the
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processor. We use a simple switch statement to execute as much functions as
possible:

1 //determine the highest function
2 uint32_t eax, ecx;
3 eax = 0;
4 ecx = 0;
5 cpuid(&eax, NULL, &ecx, NULL);
6 const uint32_t hightestFunction = eax;
7

8 //execute all functions that are available
9 switch(hightestFunction) {

10

11 case 0xA: //add information about performance monitors
12 case 9: //gather dca parameters
13 case 8:
14 case 7:
15 case 6: //add information about thermal sensors and
16 //power management capabilities
17 case 5: //add information about monitor/mwait parameters
18 case 4:
19 case 3:
20 case 2:
21 case 1: //add feature information
22 case 0:
23 default:
24 break;
25 };

Note that we do not execute all possible methods. Some missing ones are
executed in a different context (6.3).

6.2.2 Processor Features

Every processor has certain (special) features. For example it might support a
specific instruction, like the rdtsc command that can help to measure cpu clock
cycles.
To check which features are enabled or available on a specific logical core we
can use the CPUID instruction with parameter 1. It returns two bitmaps in
register ecx and edx. Every bit corresponds to a specific feature and if it is set,
the feature is enabled.
In our code we first define two string arrays to store the features:

1 const char* featuresECX[] = {"sse3", "pclmuldq", "dtes64",
2 "monitor_mwait", "ds_cpl", "vmx", "smx", "eist", "tm2", "ssse3",
3 "cnxt_id", 0, "fma", "cx16", "xtpr", "pdcm", 0, "pcid", "dca",
4 "sse4_1","sse4_2", "x2apic", "movbe", "popcnt", "tsc_deadline",
5 "aes", "xsave","osxsave","avx", 0, 0, 0};
6

7 const char* featuresEDX[] = {"fpu_x87", "vme", "de", "pse",
8 "tsc", "msr", "pae", "mce", "cx8", "apic", 0, "sep", "mtrr",
9 "pge", "mca", "cmov", "pat", "pse36", "psn", "clfsh", 0,
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10 "ds", "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "htt",
11 "tm", 0, "pbe"};

We then traverse the registers and look at every bit. The bit offset is used as
an index into the array to get the corresponding feature:

1 for (int i = 0; i < total_nr_bits; i++) {
2

3 //Check feature in ecx
4 if((0x1&ecx) == 0x1 && featuresECX[i] != 0) {
5 SKB_ADD_FEATURE(featuresECX[i])
6 }
7 ecx >>= 1;
8

9 //Check feature in edx
10 if((0x1&edx) == 0x1 && featuresEDX[i] != 0) {
11 SKB_ADD_FEATURE(featuresEDX[i])
12 }
13 edx >>= 1;
14 }

The facts that are stored into the SKB have the following form:

feature(apicId, featureName).

A concrete entry would then look like this:

feature(1, ”tsc”).

Which would tell us that the rdtsc instruction is available on core 1.
To access the data we provide the following queries:

1 is_feature_available(Apic, Feature) :-
2 feature(Apic, Feature).
3

4 get_all_features_of_apic(Apic, L) :-
5 findall(feature(Feature), feature(Apic, Feature), L).

The first query is basically just a fact check. It returns “yes” if a given feature is
available for a specific processor. To do the opposite, the second query returns
a list of features of a specific processor (it actually “binds” L to the result).

6.2.3 MONITOR, MWAIT Parameters

When the CPUID instruction is executed with parameter 5 it will return infor-
mation about the MONITOR / MWAIT instructions in the eax, ebx, ecx and
edx registers.
The information is stored as simple facts of the form:

monitor mwait(apicId, featureName, value). or
feature(apicId, featureName).
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Where featureName is the name of a parameter:

monitor mwait(1, “smallest monitor size”, 64).

The reason we create two different facts is because we like facts with a uniform
format. Some features have a parameter, while others are simply present or not.
For example processor 1 might support the MONITOR/MWAIT extensions:

feature(1, “monitor mwait”).

But to store the smallest monitor line size, for example we need an additional
parameter:

monitor mwait(apicId, “smallest monitor size”, value).

The alternative would result in non-uniform facts

feature(1, “monitor mwait”).
feature(1, “smallest monitor size”, value).

or in facts with potentially a lot of NULL values:

feature(1, “monitor mwait”, NULL).
feature(1, “smallest monitor size”, value).

Therefore we need (want) two different facts.
To access the data we have a simple prolog query that allows to retrieve desired
values:

1 get_monitor_mwait_value(Apic, Feature, Result) :-
2 monitor_mwait(Apic, Feature, Result).

The information that is stored in the other format can be retrieved with the
queries described in 6.2.2.

6.2.4 Digital Thermal Sensor and Power Management Parameters

The eax, ebx, ecx and edx registers return information about the digital ther-
mal sensor and power management parameters when the CPUID instruction is
executed with parameter 6.
This is again very “simple” data that can easily be stored in single facts of the
form:

feature(apicId, featureName). or
thermal power(apicId, featureName, value).

We use two different facts for the same reason as in 6.2.3.
To access the data we use the following query:

1 get_thermal_power_value(Apic, Feature, Result) :-
2 thermal_power(Apic, Feature, Result).

Again, the information that is stored in the other format can be retrieved with
the queries from 6.2.2.
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6.2.5 Architectural Performance Monitor Features

To obtain information about performance monitor features, the CPUID instruc-
tion is executed with the parameter 0xa. The information is again very simple
and we store it in facts of the form:

feature(apicId, featureName). or
performance monitor(apicId, featureName, value).

Simple features are stored in the “feature” facts, while complex ones, having a
parameter, are stored in a separate format. This is done for the same reasons
described in 6.2.3.
We do not determine each version of the monitoring capability.
While we use this query

1 get_performance_monitor_value(Apic, Feature, Result) :-
2 performance_monitor(Apic, Feature, Result).

to access the data, we use the queries from 6.2.2 to access the data that is stored
in the other format.

6.2.6 Direct Cache Access (DCA)

DCA information can be gathered with CPUID(9). We store the information
in the following form:

dca parameter(apicId, featureName, value).

and use this query

1 get_dca_parameter_values(Apic, Feature, Result) :-
2 dca_parameter(Apic, Feature, Result).

to retrieve the data.

6.2.7 Extended Features

The extended features are gathered with CPUID (0x80000001) and stored in
the same way as all other features (6.2.2).

6.2.8 Advanced Power Management

At the time we wrote this document, the only information that was available
from the CPUID(0x80000007) leaf, was whether “TSC Invariance” [10] was
available or not.
In the code we perform a simple check on one bit to see if the feature is available
or not. If it is, we add the following fact to the SKB:

feature(apicId, “invariant tsc support”).
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6.2.9 Address Sizes

The sizes of the physical addresses can be found out by executing the CPUID
instruction with parameter 0x80000008. The eax register then returns the sizes
and we store them in the following ways:

address size(apicId, “physical”, value).

for the physical address size and

address size(apicId, “virtual”, value).

for the virtual address size.
To access this data we define the two intuitive queries:

1 get_physical_address_size(Apic, Size) :-
2 address_size(Apic, "pysical", Size).
3

4 get_virtual_address_size(Apic, Size) :-
5 address_size(Apic, "virtual", Size).

6.3 Cache Information

This section covers the details relating to caches. We first describe how to
get general data about the caches. Afterwards we explain how we can get the
identifier of a specific cache.

6.3.1 Cache and TLB Descriptors

To best understand what a cache descriptor really is, we first look at a specific
cache of the processor:

“1st-level data cache: 16-KB, 4-way set associative, 32-byte line size”

This ache descriptor tells us most of the things we need to know. The level of
the cache, the associativity and the line size. Every cache in a system has
such a descriptor.
To access this information we execute the CPUID instruction with parameter
2. CPUID returns the so called “Cache and TLB Descriptor Decode Val-
ues” in the eax, ebx, ecx, edx registers. These are simple 1-Byte integers that
correspond to a cache descriptor: the value 0xC, for example, corresponds to
the above descriptor. This means that there are potentially four descriptors per
registers, although some might be marked as invalid. In our code we look at
every register and extract the values.
Unfortunately there is no elegant way to map the descriptor decode values to
descriptors, therefore we rely on a really big switch statement to do the job.
This looks something like this:
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1 switch(code) {
2

3 /* ... */
4

5 case 0xd: return
6 snprintf(destination, destinationLength, "cache(%d, 1"
7 "\"data\", 16384, 4, \"s\", 64", apic_id);
8 case 0xe: return
9 snprintf(destination, destinationLength, "cache(%d, 1"

10 "\"data\", 24576, 6, \"s\", 64", apic_id);
11

12 /* ... */
13 };

Once the descriptors are ready for use, they are saved to the SKB in the following
form:

cache(apicId, Level, Type, Size, N, AssociativityType, LineSize).

A specific example would look like this:

cache(1, 1, ”data”, 16384, 4, ”s”, 64).

This fact denotes a 16KB L1 data cache on core 1 (logical) that is 4-way set
associative and has a line size of 64 Bytes.
To get this information from the SKB we provide the following Prolog queries:

1 get_nr_of_caches_of_type(Apic, Type, Nr) :-
2 findall(Level,
3 cache(Apic, Level, Type, _, _, _, _),L),
4 length(L,Nr).
5

6 get_nr_of_caches(Apic, Nr) :-
7 get_nr_of_caches_of_type(Apic, _, Nr).
8

9 get_capacity_of_biggest_cache_of_type(Apic, Type, Capacity) :-
10 findall(C_Temp,
11 get_capacity(Apic, _,Type,C_Temp), C_All),
12 maximum_of_list(C_All, Capacity).

These are basic queries do determine the number of caches, or the capacity of
the biggest cache. There are several special predefined queries to count specific
cache types:

1 get_nr_of_instruction_caches(Apic, Nr) :-
2 get_nr_of_caches_of_type(Apic, "instruction", Nr).
3

4 get_nr_of_non_instruction_caches(Apic, Nr) :-
5 get_nr_of_data_caches(Apic, N1),
6 get_nr_of_unified_caches(Apic, N2),
7 (Nr is (N1+N2)).
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Note: Some queries are omitted here because they only differ in one pa-
rameter: for example the “get nr of data caches” query would simply call the
“get nr of caches of type” query with a different parameter.
Several algorithms, e.g. the timing algorithm described in 6.4, need specific
information about the caches, such as associativity and capacity. We provide
some queries for that as well:

1 get_associativity(Apic, Level, Type, Assoc) :-
2 cache(Apic, Level, Type, _, Assoc, _, _).
3

4 get_capacity(Apic, Level, Type, Capacity) :-
5 cache(Apic, Level, Type, Capacity, _, _, _).
6

7 get_capacity_of_biggest_instruction_cache(Apic,Capacity) :-
8 get_capacity_of_biggest_cache_of_type
9 (Apic, "instruction", Capacity).

Some cache descriptors give some additional information about the cache. For
example the value 0x25 tells us, aside from the previously mentioned informa-
tion, that we have a sectored cache. To store this additional information we use
a fact of the following form:

cache detail(apicId, specialInformation).

As mentioned in 6.2.3, we use a new fact to avoid facts of variable format.
At the time we wrote this document there were two descriptors that contained
information about the prefetching of the processor. If we encounter such de-
scriptors, we store them in the following format:

prefetching(apicId, amount).

Where amount denotes how many bytes the processor prefetches.

6.3.2 Cache Identifiers

To get the cache identifiers we apply the same algorithm as Intel does in their
“topology enumeration algorithm” [9]:
We iterate over all cache levels. In this context, the cache levels are called
“subleafs”. We use the CPUID(4, subleaf) function, where 4 is passed in the
eax register and the subleaf, i.e. the cache level, is passed in the ecx register,
to check if the current subleaf is valid. If it is we compute the cache id in the
following way:

1 uint32_t eax, ebx, ecx, edx;
2

3 eax = 1;
4 ecx = 0;
5 cpuid(&eax, &ebx, &ecx, &edx);
6 const uint8_t initialAPICID = 0xff & (ebx >> 24);
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7

8 eax = 4;
9 ecx = cacheLevel;

10 cpuid(&eax, &ebx, &ecx, &edx);
11

12 const uint8_t cacheType = 0xf & eax;
13

14 if (cacheType <= 0 || cacheType >= 4) {
15 return 0; //the cache type is invalid
16 }
17

18 const char* cacheType[] = {
19 "Invalid",
20 "data",
21 "instruction",
22 "unified"
23 };
24

25 const uint16_t cacheMaskWidth =
26 log_roundToNearestPof2(((eax >> 14) & 0xfff) + 1);
27 const uint32_t mask = ˜((-1) << cacheMaskWidth);
28 const uint8_t threadsSharingCache =
29 ((eax >> 14) & 0xfff) + 1;
30 const uint32_t cacheID = initialAPICID & (-1 ˆ mask);

Note that we use a little helper function called “log roundToNearestPof2”. For
a given argument n it first computes the smallest power-of-two integer a that is
not smaller than n and returns log a:

log roundToNearestPof2(n) = p

n ≤ 2p ∧ ( 6 ∃q : n ≤ 2q < 2p)

This information is then added to the SKB in the following way:

cache identifier(apicId, cacheType, threadsPerCache, cacheId, level).

This is enough to define two queries that check whether two processors share a
cache or not:

1 get_shared_cache(ApicA, ApicB) :-
2 get_shared_cache_type(ApicA, ApicB, _).
3

4

5 get_shared_cache_type(ApicA, ApicB, Type) :-
6 cache_identifier(ApicA, Type, ThreadsPerCache, Id, Level),
7 cache_identifier(ApicB, Type, ThreadsPerCache, Id, Level),
8 ThreadsPerCache >= 2,
9 vendor(ApicA, Vendor),

10 vendor(ApicB, Vendor).

We now have the cacheId but there is still a problem: In 6.3.1 we found out
a lot about the caches in the system. We know for example if there is a L2
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cache, etc. But we still do not actually have a mapping from cacheId to this
information. The only thing we have is the cacheType and the cache level. We
can combine this fact with one we stored before (6.3.1):

cache(apicId, “intel”, Level, Type, size, N, AssociativityType, LineSize).

to get the desired mapping:

1 get_shared_cache_level(ApicA, ApicB, Level) :-
2 get_shared_cache_type(ApicA, ApicB, Type),
3 cache_identifier(ApicA, Type, Tp, Id, Level),
4 cache_identifier(ApicB, Type, Tp, Id, Level).

In addition we provide more useful queries (the implementation not shown since
they depend on many auxiliary functions):

1 get_how_many_shared_caches(ApicA, ApicB, Count) :-
2 %how many caches are shared?
3

4 get_which_shared_caches(ApicA, ApicB, CacheLevels) :-
5 %which levels are shared?
6

7 get_dont_share_caches(List) :-
8 %a list of pairs of cores that don’t share a cache
9

10 get_sharing_caches(List) :-
11 %a list of pairs of cores that share a cache

6.4 Timing

This section describes the implementation of the timing algorithms. To measure
cache and memory access latencies we used the ideas of Yotov, et al. [19]. How-
ever we will not focus on the explanation of the algorithms, the best description
can be found directly in the paper [19].
As mentioned before the algorithms need information about the underlying sys-
tem. For example it needs to know the associativity and capacity of every cache.
The original version of the algorithm measures all these properties itself, but
here we are in a better position, since we know that the SKB already stores
(6.3.1) all this information. We also let the SKB determine the best way (5.2)
to measure the time on the current processor.
Armed with this information we do the same as the authors of [19]: Start the
clock, perform a number of accesses to memory, stop the clock and divide the
execution time by the number of accesses to get the access time for one element.
Unfortunately it is not as simple as that.
The problems are the caches themselves. When trying to measure the access
time to the L2 cache for example, it is necessary that the data is not already
present in the L1 cache. Thus we need an L1 cache miss. Similarly we need
misses in all caches if we would like to measure the access time to main memory.
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The idea, when trying to measure the access time to a specific cache level, is
to perform memory accesses in a way that (1) cannot be anticipated by the
pre-fetching mechanism of the processor and (2) produces cache misses in all
higher levels of the cache. Refer to [19] for an explanation of how this can be
achieved.
To measure the L1 latency we do not have to perform special access patterns to
memory since it is the lowest cache level, apart from the registers. The challenge
here is to keep the compiler from optimizing away the access operations. We
use a macro which copies an instruction and thus we do not need to use a loop
which would incur overhead. The macro we use is of the following form:

1 #define ONE(MACRO) MACRO
2 #define TWO(MACRO) ONE(MACRO) ONE(MACRO)
3 #define FOUR(MACRO) TWO(TWO(MACRO))
4 #define TEN(MACRO) FOUR(MACRO) FOUR(MACRO) TWO(MACRO)
5 #define HUNDRED(MACRO) TEN(TEN(MACRO))
6 #define THOUSAND(MACRO) TEN(HUNDRED(MACRO))
7 #define TENTHOUSAND(MACRO) TEN(THOUSAND(MACRO))

This allows us to measure the access time to the L1 cache in the following
way:

1 uint64_t start, stop;
2 int i;
3

4 int source = 0;
5 volatile int *volat_ptr = &source;
6

7 register int reg;
8 reg = *volat_ptr;
9

10 start = get_timer_value(strategy);
11 THOUSAND(reg = *volat_ptr;);
12 stop = get_timer_value(strategy);
13

14 long double exec = (long double) get_timer_difference(strategy,start,stop)
15 / (1000.0);

Note that we use helper - functions: “get timer value(strategy)” which returns
a time value (not specified exactly, depends on the strategy (5.2)) the important
point is that the “get timer difference(strategy)” method knows how much time
has passed between two measurements (depending on the strategy).
To measure the access time to lower cache levels we need to perform the memory
accesses in special ways [19]. The problem is that the access patterns depend
on parameters of the systems that are unknown at compile time. This makes
it impossible to completely avoid loops in our measurements. Hence we get
inaccurate measurements due to loop - overhead.
To measure the access time to main memory we build the “void-pointer” data
structure described in the paper by Yotov et al. [19]: an array of void pointers,
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where every element contains the address of another element in the array. If
we shuffle the addresses we can “follow” the pointers through the array and
simulate a pseudo-random access pattern to memory:

1 //every element stores it’s address
2 for (int i = 0; i < size; i++) {
3 *(void**)(elements + i) = elements + i;
4 }
5

6 //shuffle the addresses a little bit
7 for (int i = 0; i < size; i++) {
8 const int other = rand() % size;
9

10 void * temp = *(void**)(elements + i);
11 *(void**)(elements + i) = *(void**)(elements + other);
12 *(void**)(elements + other) = temp;
13 }
14

15 //traverse
16 volatile void *cursor = elements;
17 for (int i = 0; i < size; i++) {
18 cursor = *(void **)cursor;
19 }
20

21 //avoid the compiler from optimizing away the loop:
22 if (NULL == cursor) {
23 void *blocker = malloc(sizeof(void*));
24 free(blocker);
25 }

Again we suffer from loop overhead, although in this case we think that the
inaccuracy is negligible, since the access times to memory are much bigger com-
pared to the amount of work that has to be done to control the loop (compare,
add, jump).
Our current implementation also measures memory access times to other NUMA
- Domains. To achieve this, we allocate memory on an another processor and
then perform the same measurements as before.
After having measured the latencies we store the information in the following
form:

latency(apicIdFrom, apicIdTo, cacheType, latency).

Where cacheType is a string identifying the cache level (“L1”, “memory”, etc.).
And latency is the access time measured in cycles. ApicIdFrom denotes the
core that executed the measurements and apicIdTo is the “target” core. If the
datagatherer is running on core 0 and we have an access time of 377 cycles to
the memory of core 9 we would store the information like this:

latency(0, 9, “memory”, 377).

If we measure the access time to the L2 cache for example the apicIdFrom and
the apicIdTo would be the same. However we plan to implement measurements
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to remote caches as well in the future. Therefore the format is ready for this
possible next step.
To access the data we provide the following queries:

1 get_latency_of_type(ApicIdFrom, ApicIdTo, Latency) :-
2 latency(ApicIdFom, ApicIdTo, Type, Latency).
3

4 get_latency_l1_cache(ApicIdFrom, ApicIdTo, Latency) :-
5 get_latency_of_type(ApicIdFrom, ApicIdTo, "L1", Latency).
6

7 get_latency_l2_cache(ApicIdFrom, ApicIdTo, Latency) :-
8 get_latency_of_type(ApicIdFrom, ApicIdTo, "L2", Latency).
9

10 get_latency_memory(ApicIdFrom, ApicIdTo, Latency) :-
11 get_latency_of_type(ApicIdFrom, ApicIdTo, "memory", Latency).

Overhead

To make our measurements more accurate we measure the overhead of our
timing operations. Note that this has to be done before we measure the access
times, so that we can subtract the overhead from all measured values.
The first thing we do is to measure the overhead of taking the time:

1 start = get_timer_value(strategy);
2 TENTHOUSAND( a = get_timer_value(strategy);
3 __asm("":::);
4 b = get_timer_value(strategy);
5 )
6 stop = get_timer_value(strategy);
7

8 double overhead = (double) get_timer_difference(strategy, start, stop)
9 / (double) (10000+1);

Of course the problem is “circular” since we suffer from overhead when we try
to measure the overhead of the measurement. Nevertheless we think that the n
is big enough for a decent value.
We store the data in the following format

timing overhead(apicId, overhead).

To access the information, we provide the following query:

1 get_timing_overhead(Apic, Overhead) :-
2 timing_overhead(Apic, Overhead).

To measure the loop overhead we execute an empty loop. The important thing
however, is that it is not optimised away by the compiler. That is why we use
the following blocker (we use gcc 4.5.2):
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1 for (int i = 0; i < n; i++) {
2 __asm("":::);
3 }

which will then be translated into something that contains only one jump, com-
pare and increment instruction. We store the value in the following format:

loop overhead(apicId, overhead).

The information can be retrieved with the following query:

1 get_loop_overhead(Apic, Overhead) :-
2 loop_overhead(Apic, Overhead).
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7 Evaluation

The datagatherer performs all the hardware specific tasks to gather information
about the system the OS is currently running on. It fills the SKB with useful
information that other applications can use for their benefit. This document
covered the design (5) and implementation (6) of the Intel datagatherer and
introduced a format to store the information.
The complete program took about 1600 lines of C code to implement. In addi-
tion we produced about 180 lines of Prolog code.

7.1 Test Setup

We tested the datagatherer on two different machines. The first one is an Intel
Xeon X5355 (Clovertown) and an Intel Xeon L7555 (Beckton) with the following
specifications:

Clovertown Beckton
Cores 4 32
Threads 4 64
Clock Speed 2.66GHz 1.86GHz
Biggest Cache L2: 8MB L3: 14MB

After Barrelfish has booted it starts the SKB, and the datagatherer which in-
stantiates itself on every core in the system.

7.2 Runtime

In this section we give an overview of the runtime of the datagatherer. It collects
(6.2) general information about the hardware, the caches (6.3) and measures
(6.4) access times to the caches and to memory. As one might expect it takes
quiet a long time to measure all the access times. The first part however, in
which the hardware is queried with the CPUID instruction, executes very fast.
We executed the following tasks:

Task 1: Query the hardware

Task 2: Task 1 and measure cache latencies

Task 3: Task 2 and measure the access time to local memory

Task 4: Task 3 and measure the access time to remote memory

and found the following execution times on our Beckton:

Execution Time
Task 1 ∼ 0.08s
Task 2 ∼ 6s
Task 3 ∼ 83s
Task 4 ∼ 45 minutes
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The execution time of Task 4 is the maximum we could find in our system. That
means we looked at a processor that executed 31 remote measurements.
These numbers are by no means very accurate. The reason why they are pre-
sented is to give the reader a feeling of how long it takes to perform certain
tasks. Note that the Task 1 (querying the hardware) can be done in parallel on
all datagatherers, while all the measurements have to be done sequentially to
avoid bus contention.
It is immediately clear that we cannot perform all latency measurements when
the OS starts up. It would take far too long. The hardware however can be
queried without problem on every startup. In our opinion it is acceptable to
let every datagatherer perform the cache measurements as well. On the Intel
Beckton we found that is takes about three minutes for all datagatherers to
finish, which is still reasonable.
As indicated above the main problem is the time it takes to measure the mem-
ory access latencies. It gets even worse when we measure the access times to
all remote memory banks. This is simply not feasible. An approach could be
to postpone these measurements to the future and let the SKB pick a good
moment to do them. We do not want to shift the problem to another place,
but we believe the SKB is in a better position to do this decision. It might for
example be possible to perform one specific measurement lazily (when the fact
is requested). The program would then have to be stalled for about 80 seconds.
In special circumstances this might be tolerable, however in most scenarios this
is of course also impossible and in fact useless, since there is obviously no gain
in performance.
The measurements could be executed randomly, meaning that the SKB chooses
a time slot to perform a measurement and eventually, if the OS runs long enough,
all access times are stored.
There is one simplification that can be applied in the datagatherers that greatly
reduces the amount of work that has to be done. If we have a pair of processors,
say A and B, we do not measure the latency from A → B and from B → A,
but we do only one direction and assume that the other one would yield about
te same result. This reduces the amount of work by a factor of two. However,
if we have n logical processors we still need to do about

n(n− 1)

2
=
n2 − n

2
∈ O(n2)

measurements, which is quiet a lot, assuming that one measurement takes about
80 seconds.
The big problem with the simplification described above is that the assumption,
that A → B = B → A, is in general not true. Therefore when we do the work
properly we end up with twice as much measurements:

n(n− 1) = n2 − n ∈ O(n2)
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7.3 Storing Data

In this section we take a closer look at our data format. In section 6.2.2 we
describe how available features are stored. There is an inherent problem with
storing the features of a processor: they are processor / vendor specific. Some
features might be used for multiple processors / manufacturers while a great
number of them cannot. For example the “vmx” (virtual machine extensions)
feature seems to be the name of an Intel specific technology. It is possible to map
this instruction to an abstract concept (namely the support for virtualisation).
This allows the whole complexity to be pushed into the SKB, because this
information is enough for applications. The SKB alone has to know how the
“support for virtualisation” is actually implemented on a specific processor.
Let us now look at the different facts that are collected by the datagatherer:

(1) vendor(apicId , vendorName).

(1) prefetching(apicId , value).

(2) thermal power(apicId, featureName, value).

(2) monitor mwait(apicId, featureName, value).

(2) performance monitor(apicId, featureName, value).

(2) dca parameter(apicId, featureName, value).

(2) address size(apicId, memoryType , value).

(3) cpu thread(apicId , packageId, coreId, threadId).

(4) feature(apicId, featureName).

(4) cache detail(apicId, feature).

(5) cache(apicId, level, type , size, assocN, assocType, lineSize).

(5) cache identifier(apicId, cacheType , threadsPerCache, cacheId, level ).

(6) latency(apicIdFrom, apicIdTo, type , latency).

The underlined entries represent the keys to the relations.
Obviously we are in 1NF (3.6), because we only store atomic values. The first
two relations of category (1) are in Boyce-Codd NF (3.6) since “apicId” is the
superkey of both relations. For the relations in category (2), (3) and (6) we also
have functional dependencies of the form α→ β where α is a superkey and thus
we are in Boyce-Codd NF.
In category (4) we have trivial functional dependencies and therefore are also in
Boyce-Codd NF. Category (5) is also in Boyce-Codd NF. It is important to see
that both keys are minimal, there is no subset which describes one specific entry
in the SKB. In particular, the “cacheId” is not unique. “Level” and “apicId”
cannot be used as a key either, since there can be multiple caches at the same
level (instruction and data caches).

7.4 Timing Overhead

On the Intel Clovertown we found that the overhead of the time measurement
(5.2.1) is about 500 cpu cycles. For measuring the access latency to the L1 cache
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we execute 10000 instructions. According to:

E =
500cycles

10000

we get an error of about 0.05 cycles. To measure the L2 cache, we made 16386
accesses to memory which results in an error of about 0.03 cycles.
On another machine, an Intel Xeon L7555 (Beckton), we found the overhead of
the time measurement to be about 105 cycles which results in an error of about
0.0105 cycles for the L1 measurement, about 0.006 cycles for the L2 measure-
ment and about 0.0001 cycles for the L3 measurement, respectively.
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8 Conclusion

We designed (5) and implemented (6) a datagatherer for the Barrelfish OS. We
demonstrated a way to efficiently gather information about the hardware the
OS is currently running on. The datagatherer is a useful contribution to the
Barrelfish OS, since it provides a solid basis that makes it possible for a wide
variety of programs to apply optimisations that are very hardware specific.
The information that is made available could for example be used by algo-
rithms to adapt themselves to cache sizes, etc, while multi-threaded programs
can choose cores that support their needs (two cores that share a cache for ex-
ample).
The information is stored in a format that is independent from hardware ven-
dors, thus making it possible for the (Intel -) datagatherer, introduced in this
document, to work together with datagatherers for other hardware without
changing its implementation. The combination of different datagatherers, each
of which is specialised to a specific kind of hardware, makes the SKB ready
for future systems with heterogeneous cores. The data is stored in a generic
format that allows application to run mostly oblivious of the specific hardware
manufacturer, although the information could be accessed if it was needed.

8.1 Future Work

There are several things we would like to implement in the future. First of all we
can measure more access times, for example to caches of other processors. This
information allows for even better adaptation of algorithms to the hardware.
As mentioned in 7.2 we can still improve the way in which memory access times
are collected. It takes a very long time to execute all measurements and it really
is necessary to do this work gradually. For Intel hardware, it would be very
interesting and rewarding to analyze the QickPath Interconnect (QPI). This
information is very useful since it basically provides a “map” of the network,
i.e. the network topology. Programs can use this knowledge to further optimise
the core-selection since it is easy to choose cores that are “close together”. This
can already be done approximatively by looking at the inter - core latencies.
However the QPI network is extremely fast and it would be useful to make this
information available.
Another task is to change existing programs (of the Barrelfish OS) in such a way
that they actually utilise the information that is exposed by the datagatherers.
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9 Glossary

Barrelfish
A research operating system released by ETH Zurich that focuses on multi- and
many-core systems. Find more on the website: http://www.barrelfish.
org

CPU Driver
A mini-kernel that runs on every processor. Also take a closer look at “Multik-
ernel”

CPUID Instruction
An instruction that is used to query the hardware. Check section 3.5 for an
introduction, or look at the online documentation [10].

Datagatherer
A program that is executed on every core to gather information about the hard-
ware (e.g. cache size). Check section 3.4 for an introduction.

System Knowledge Base (SKB)
Stores all kinds of information that can be useful for application (e.g. L1 cache
hit latency). Applications can query this database using Prolog queries. Refer
to section 3.2 for more details.

Non Uniform Memory Access (NUMA)
Memory can be physically partitioned into smaller bits. Several cores are
grouped around one such “element of memory” that can be accesses fairly fast.
But when accessing remote memory, the access time becomes bigger (thus the
name, non uniform memory access).

NUMA - Domain
The cores that are grouped around a part of the memory form a NUMA - Do-
main.

Multikernel
Architectural model by Bauman, et al. [4]: One mini-kernel, called cpudriver,
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runs on every processor. There is no shared state between the kernels, a con-
sistent state is achieved with message passing. All these kernels work together
like a distributed system and form an OS.

Prolog
A logic programming language that is used to store and retrieve information
from the SKB. Section 3.3 gives a short introduction to the language.

Intel Xeon X5355 (Clovertown)
4 cores, 4 threads, 2.66 GHz, 8MB L2 cache, http://ark.intel.com/
products/28035/Intel-Xeon-Processor-X5355-8M-Cache-2_66-GHz-1333-MHz-FSB

Intel Xeon L7555 (Beckton)
8 cores, 16 threads, 1.866 GHz, 24MB L3 cache, http://ark.intel.com/
products/46494/Intel-Xeon-Processor-L7555-24M-Cache-1_86-GHz-5_
86-GTs-Intel-QPI
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