
Master’s Thesis Nr. 258

Systems Group, Department of Computer Science, ETH Zurich

Running Linux binaries over Barrelfish using a Library OS

by

Marc Tanner

Supervised by

Roni Häcki
Lukas Humbel
Dr. David Cock

Prof. Dr. Timothy Roscoe

March 2019–August 2019

Abstract

The Graphene library operating system (OS) moves much of the functionality
provided by the Linux kernel into a library linked into the application’s own
address space. Instead of depending on a large array of system calls, the library
only relies on a narrow Platform Adaption Layer (PAL) providing high level
abstractions like virtual memory, threads and I/O streams. Advantages include
host OS independence and application mobility.

This work describes the porting of the Graphene PAL to the Barrelfish re-
search OS, enabling it to run unmodified, dynamically linked, Linux binaries
making use of typical Unix features such as pipes, signals and sockets. Chal-
lenges encountered while implementing the PAL interfaces, traditionally backed
by a monolithic kernel, on top of Barrelfish’s multikernel architecture are inves-
tigated.

1

Acknowledgments

I would like to express my gratitude towards professor Roscoe for giving me
the opportunity to pursue my interests in operating systems. I am especially
thankful to my supervisors Ronni and Lukas as well as the rest of the Barrelfish
team for their feedback, guidance and support during our weekly meetings.
Thanks to all members of ETH Zurich’s Systems Group and fellow students for
the intriguing discussions and welcoming work environment.

Finally, I would like to thank my family and friends for their understanding,
patience and continued support during my studies.

2

Contents

1 Introduction 5

2 Barrelfish 6
2.1 CPU Driver and Monitor . 7
2.2 Capabilities and Virtual Memory Management 7
2.3 Domains and Dispatchers . 8
2.4 User Level Threading . 8
2.5 Thread Local Storage . 9
2.6 Inter-dispatcher Communication 9
2.7 File System . 10
2.8 Networking . 10
2.9 Existing POSIX compatibility . 11

3 Graphene Library OS 12
3.1 Resource Handles . 13
3.2 File System . 13
3.3 Virtual Memory . 14
3.4 Threads . 14
3.5 Processes . 15
3.6 Inter Process and Network Communication 15

4 PAL Host ABI 16
4.1 Resource Handle . 16
4.2 I/O Streams . 16
4.3 Virtual Memory . 17
4.4 Threads . 18
4.5 Processes . 18
4.6 Exception Handling . 19
4.7 Sandboxing . 19
4.8 Miscellaneous . 19

5 Linux PAL Host 20
5.1 Virtual Memory . 20
5.2 I/O Streams . 20
5.3 Threads and Processes . 21
5.4 Miscellaneous . 21
5.5 Security Isolation . 21

3

6 Barrelfish PAL Host 22
6.1 Bootstrapping . 22
6.2 File Streams . 22
6.3 Virtual Memory Management . 23
6.4 Network Sockets . 25
6.5 RPC Streams . 26
6.6 Threads . 26
6.7 Processes . 28
6.8 Exception Handling . 29
6.9 Miscellaneous . 29

7 Evaluation 31
7.1 Performance . 31
7.2 POSIX Compatibility . 32

8 Related Work 34

9 Conclusion & Future Work 37

Bibliography 39

4

Chapter 1

Introduction

So-called library operating systems (OS) approaches to running applications
have seen much recent interest in the research community. In these systems,
exemplified by Drawbridge[43] and Bascule[9] at Microsoft, BSD “Rump Ker-
nels”[29], and Graphene at Stony Brook University, much of an existing OS is
compiled into a library which is then linked against an application written for
that OS. The library itself requires not the usual array of system calls but a
small number of API calls, which are implemented by a small portability layer
for a given host OS. The advantages are that programs written for one OS can
be easily executed on another, migrated or persisted on the same OS, or be sub-
ject to interposition techniques for replay and debugging. The decoupling of the
library OS from its host interface enables independent evolution and provides
security isolation with lower overheads than traditional virtual machines.

Graphene[52] is a library OS implementing a Linux personality capable of
running multi-process applications. This work describes the porting of the
Graphene Platform Adaption Layer (PAL), providing high-level abstractions
like virtual memory, threads and I/O streams, to the Barrelfish[8] research OS.
As a result, dynamically linked Linux binaries can be executed unmodified on
Barrelfish. Supported features include POSIX threads, pipes, signals and sock-
ets. Unlike existing PAL hosts such as Linux and FreeBSD, Barrelfish is not
architectured like a typical Unix system based on a monolithic kernel. Instead,
it minimizes shared state using the multikernel design. Discussed challenges
include bootstrapping of the library OS, the construction of a unified virtual
address space comprised of both file backed and anonymous pages, virtualiza-
tion of resources required for thread local storage and support for multi-process
abstractions.

The work is structured as follows: chapter 2 provides the necessary back-
ground information about Barrelfish. The Graphene library OS is introduced
in chapter 3 where host OS independent functionality is discussed. Chapter 4
describes the PAL used by Graphene to interface with the host OS. Chapter 5
investigates how the PAL is implemented on Linux. The porting of the PAL to
Barrelfish is detailed in chapter 6, which is subsequently evaluated in chapter 7.
I contextualize my and survey related work in chapter 8. Finally, I summarize
my contributions and conclude with ideas for future work in chapter 9.

5

Chapter 2

Barrelfish

CPU Driver, Core 0

Monitor

ramfsd

memserv

graphene

spawnd

CPU Driver, Core 1

Monitor

netsocket

serial

Figure 2.1: Barrelfish architecture overview

Barrelfish is a scalable research operating system based on the multiker-
nel[8] architecture. It treats the local machine as a distributed system[11] of
heterogeneous components, linked by a complex interconnect network. Instead
of relying on cache-coherent shared memory, it distributes or replicates OS state
using explicit message passing.

Similar to an exokernel[21], physical resource management is delegated to
system run-time library in user space, whereas the the kernel only enforces
protection and authorization. As in a microkernel[35] unprivileged user space
processes provide core system services (e.g. file system and network access) and
device drivers.

Figure 2.1 depicts the overall system architecture, circles represent indepen-
dent user space processes, arrows denote communication channels used by the
Graphene loader. Individual components are described in subsequent sections.

6

2.1 CPU Driver and Monitor

To emphasis its simplicity the privileged kernel is referred to as CPU driver.
Each core runs an independent instance, thereby allowing specialization and
seamless support of heterogeneous systems. The CPU driver follows the state-
less[22] kernel approach, it is single threaded, non-preemptive, non-reentrant,
has no blocking system calls and performs no dynamic memory allocation[44]. It
provides minimal hardware abstraction, enforces protection and performs autho-
rization of physical resources using capabilities[5]. Page faults, traps, exceptions
and device interrupts are delivered to user space using upcalls[14]. Dispatchers
are scheduled and fast local message passing among them is performed. Kernel
services are requested through a system call interface.

The monitor is a specially trusted user space process, complementing the
CPU driver on each core to perform potentially long running operations. The
monitors form an inter-core network used to provide low-level OS functionality
typically found in a monolithic kernel. OS state is replicated using distributed
algorithms to maintain consistency across core boundaries[5]. Each user level
process is provided with a connection to its local monitor which is subsequently
used to bootstrap inter-core communication.

2.2 Capabilities and Virtual Memory
Management

Access control to kernel objects and physical resources is enforced using capabil-
ities. Like seL4[33], Barrelfish employs a partitioned capability system in which
the typed memory of a capability is only accessible to the local CPU driver.
User space uses capability references, rooted in a dispatcher specific capability
space, to perform capability invocations through a system call interface.

Barrelfish applications construct their own virtual address space through
secure page table manipulations by means of capability invocations. A vari-
ant of self-paging[26] is used: the CPU driver reflects page faults back to
the affected dispatcher via upcalls. Above this kernel interface the system
library libbarrelfish provides convenient high-level abstractions similar to
those found in the Mach memory system[45]. The main components are[24]:

• Shadow page tables keep track of the virtual address space: all mappings,
including meta data and the used capabilities.

• Virtual regions represent a contiguous region of virtual memory.

• Memory objects back virtual regions by handling all their page faults.

• Virtual space structure, keeping track of a sorted list of virtual regions.

This separation allows a great deal of flexibility, different types of memory ob-
jects can employ different physical memory allocation strategies e.g. to exploit
NUMA effects or use huge pages.

7

2.3 Domains and Dispatchers

A process context in Barrelfish is represented by a domain, which bundles a
number of core bound dispatchers. The latter of which are scheduled by the
CPU driver in the form of a dispatcher control block (DCB). The first part of
the DCB is private to the CPU driver and contains references to the capability
space, root page table and scheduler information[5]. The second part of the
DCB is also accessible from user space and contains upcall entry points to
deliver page faults, traps, inter-domain messages and scheduler activations. A
domain’s address space spans core boundaries, but the capability space is local
to its dispatcher.

2.4 User Level Threading

Based on the dispatcher abstraction of the CPU driver a form of scheduler acti-
vation[2] is used to implement user level threading. A dispatcher can either be
enabled, meaning it executes application code, or disabled when executing code
within the threading library itself. The user level scheduler is non-reentrant:
when disabled upcalls are blocked. Both states have an associated save area
in the shared part of the DCB where upon preemption of the dispatcher the
register state can be saved. Resuming a disabled dispatcher, restores the pre-
vious execution state and code resumes within the threading library as if no
preemption happened. When resuming an enabled dispatcher, the CPU driver
changes the dispatcher state to disabled and then performs an upcall into the
user level scheduler. It can now decide to resume the same execution state or
save it to a thread control block (TCB) and restore a different thread. The TCB
is a purely user space structure of which the CPU driver is not aware. Besides
register state it also contains references to the associated dispatcher, regular
thread stack, exception stack, exception handler and thread local storage (TLS)
data.

For later sections it is crucial to understand the different stacks and register
states involved in handling a page fault:

1. The CPU driver catches a page fault and upcalls into the entry point
registered in the DCB.

2. The system runtime library executes on a dedicated dispatcher stack.

3. The thread exception handler is called on the thread exception stack and
given access to the register state at the time of the page fault.

4. The exception handler returns and the possibly modified register state is
restored. Typically execution resumes on the regular thread stack.

Notice that the exception handling mechanism is non-reentrant, meaning the
exception handler must not generated further faults.

The threading library also provides low-level synchronization primitives like
semaphores, mutexes and conditional variables as well as higher-level abstrac-
tion such as waitsets and deferred events.

8

2.5 Thread Local Storage

Thread Local Storage (TLS) provides fast access to thread specific data. C
applications can declare a variable to be thread local by specifying the storage
class __thread (a language extension supported by e.g. GCC1) which was
then standardized in C11 as _Thread_local. A common POSIX example of a
variable which could be declared that way is errno.

The x86-64 ELF TLS ABI[19] specifies that such variables are located rela-
tive to the thread pointer denoted by the %fs segment register. Barrelfish - like
Linux - uses variant II of the TLS specification, which mandates that the thread
pointer points to the thread control block and TLS variables are accessed using
a negative offset.

One peculiarity of the segment registers is that until the Intel Ivy Bridge
CPU models they could only be set in privileged mode. The full 64-bit virtual
address can be set using a Model Specific Register (MSR). Alternatively, the
32-bit segment base address can be set by manipulating entries of the Local
Descriptor Table (LDT). The table can subsequently be indexed using a 16-bit
segment selector which can be set in unprivileged mode.

The latter method is currently used by Barrelfish. Upon thread creation a
system call is performed to allocate a LDT entry pointing to the thread control
block. When performing a thread switch in user space, the segment selector
is adjusted accordingly. This avoids a system call which would somewhat de-
feat the purpose of user level threading. During a context switch to another
dispatcher the complete LDT base address is swapped out.

Notice that this setup dictates the location of the TCB which must neces-
sarily be allocated in the lower 32-bit of the virtual address space.

2.6 Inter-dispatcher Communication

Barrelfish implements a number of core system services as independent user
space servers exposing a remote procedure call (RPC) interface. Conceptually
services are published to a name server where clients can query for and subse-
quently bind to them. Flounder[6], an interface definition language, is used to
specify the API in terms of typed messages. Based on the definition a stub com-
piler generates plumbing code to marshal, dispatch, fragment and reassemble
messages.

The stubs provide a common interface independent of the underlying inter
connect driver (ICD) backend. On the same core Local Message Passing (LMP)
is employed to transfer small messages in hardware registers using a fast path in
the CPU driver akin to concepts found in L4 IPC[36]. Cross-core communication
uses a cache-coherent shared memory region to transfer cache-line sized frames
without kernel involvement. The technique is similar to user level RPC[12] and
in Barrelfish referred to as Userlevel Message Passing (UMP).

Figure 2.1 distinguishes them as follows: LMP channels on the same core
are denoted by normal arrows, whereas the core spanning UMP channels are
depicted using double arrows.

1http://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html

9

http://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html

2.7 File System

Barrelfish applications can access the hierarchical file system by means of a
generic Virtual File System (VFS) API which is implemented using RPC calls
to file system servers. Available backends include support for NFS, FAT32 and
ramdisks. The API exposes only very limited meta data: directories and files are
distinguished, the latter has an associated size property. A permission model is
currently not implemented. In contrast to a typical Unix environment neither
hard nor symbolic links are supported and a rename primitive is missing.

2.8 Networking

Barrelfish uses user space network drivers to set up the queuing interface of
modern network cards. Applications either manipulate these hardware queues
directly, by running their own network stack on a per flow-basis, or talk to an
additional user space service which performs the necessary multiplexing on their
behalf[5].

The net socket server performs this role by exposing a callback based RPC
interface. Clients can create either UDP or TCP sockets and will be notified
whenever data has been received or has successfully been transmitted. This
callback based interface fits the general event-based programming model favored
by Barrelfish, but proves to be challenging to fit into a more traditional BSD
socket API.

The actual network protocol implementation are provided by the lwIP TCP/IP
stack[20] which depending on the configuration provides 3 different program-
ming interfaces2:

• The raw API is event based, registered callback functions are directly
invoked from within the core IP stack. The application code and the IP
stack run in the same thread. This supports zero-copy operations where
the caller has to ensure that the data remains available until indicated
by a completion event. It completely bypasses the OS support layer, but
only one thread can run the packet processing loop and perform network
operations.

• The netconn API, also referred to as sequential-style. It provides block-
ing calls, facilitating a more traditional socket like usage. It introduces
a dedicated TCP/IP thread which runs the event-based protocol stack,
while application code, issuing blocking calls, must run in different exe-
cution contexts. It preserves zero-copy operations, but introduces more
abstractions and thread synchronisation primitives relying on an OS sup-
port layer.

• The sockets API provides a compatibility layer for BSD sockets as e.g.
specified in POSIX. It is implemented on top of the ’netconn’ layer. As a
result multiple threads can issue socket calls, albeit with higher overhead
due to the required synchronization.

2http://www.nongnu.org/lwip/2_1_x/group__api.html

10

http://www.nongnu.org/lwip/2_1_x/group__api.html

To further complicate matters Barrelfish source contains multiple versions
of the lwIP stack with different supported modes of operation.

The older and deprecated Barrelfish network architecture is based on lwIP
version 1.1.3 with modifications to talk to a common network service (netd) for
port allocation and ARP request lookup. These changes allow multiple network
aware applications to work concurrently. The original design is described in a
distributed systems lab project[47]. The lwIP stack is operated in OS mode
i.e. using a Barrelfish specific adaption layer3 providing: semaphores, mutexes,
mailboxes and a thread abstraction. Although it has some limitations (non-
existing timeout handling for semaphores, mailboxes always store only a single
message) it empowers all 3 lwIP API variants.

The newer Barrelfish network architecture uses lwIP version 2.0.2 without
the OS adaption layer, meaning the lwIP stack operates in mainloop mode and
only supports the raw, event-based API. This fits the general Barrelfish pro-
gramming model, but precludes multi-threaded and blocking access to the same
network stream. Instead of performing inter domain communication within
lwIP, a new library (libnet) was introduced to handle network initialization and
polling of lwIP events.

2.9 Existing POSIX compatibility

The C runtime library used in Barrelfish, derived from FreeBSD libc, in com-
bination with libposixcompat provides basic POSIX functionality. File opera-
tions are mapped to the VFS interface, sockets are implemented using the older
lwIP socket API. mmap() only handles the most basic cases, major limitations
include: only anonymous i.e. no file backed memory mappings, no overlapping
mappings, no partial unmappings. Dynamic loading of shared objects, signals,
fork and the exec families of functions are not supported to name just a few
omissions.

In contrast to Graphene’s library OS approach, applications need to be linked
against these compatibility libraries and can not be used unmodified.

3http://www.nongnu.org/lwip/2_1_x/group__sys__os.html

11

http://www.nongnu.org/lwip/2_1_x/group__sys__os.html

Chapter 3

Graphene Library OS

Graphene[52, 51] provides a Linux kernel personality in form of a shared library
which can be pre-loaded into an application address space. It implements the
Linux syscall interface, special devices and pseudo file systems using a narrow
Platform Adaption Layer (PAL). Moving the state from the kernel into the
application’s address space facilitates migration techniques and provides host
OS independence. Such a library OS process, with only a limited host OS
interface, is referred to as picoprocess.

Linux System Call API
310 Functions

146 Implemented

Host ABI
47 Functions

Unmodified Applications and Libraries

C Runtime (libc, libpthread, libdl, ld.so)

Linux Library OS

Platform Adaption Layer (PAL)

Host OS

Figure 3.1: Graphene architecture overview.

Figure 3.1 illustrates the basic Graphene architecture. Core system libraries
like the C runtime (libc), threading library (libpthread) ELF linker and loader
(ld.so), dynamic library linker (libdl) have been modified to perform function
calls into the library OS instead of system calls to the Linux kernel. Let us
exemplify the whole sequence:

1. An unmodified dynamically linked application calls malloc().

2. The call is resolved to the modified C library whose allocator requests
memory through the brk() or mmap() syscalls.

3. The library OS implements the syscalls using the DkVirtualMemoryAlloc()
PAL call.

4. The PAL call is satisfied by the native memory system of the host OS.

12

3.1 Resource Handles

In Unix systems file descriptors are employed by user space to reference kernel
objects. Within Graphene these objects and their respective state resides within
the library OS in the same address space. File descriptors are used to index a
lookup table to access generic handles, implemented as tagged unions.

The shared part contains a reference to the underlying PAL resource as well
as type, locking and reference counting information. The type specific section
contains the necessary bookkeeping data needed to provide the corresponding
POSIX interface. As an example: an opened file handle keeps track of its
original host path, file type, file size, the current file offset and a small data
cache around it.

3.2 File System

Much like the Linux kernel itself, Graphene also features a common Virtual File
System (VFS) interface abstracting different backends behind a common API.
The VFS contains a directory cache for metadata using positive and negative
entries to minimize PAL calls. Batched I/O operations of the readv() and
writev() syscalls are implemented at this level.

For actual data storage a ”chroot” style file system is used to expose a host
directory within the file system accessible to the picoprocess. The typical I/O
operations are mapped to their PAL stream counterparts. In order to reduce the
latency of repeated read() and write() syscalls with small buffers, a memory
mapped based caching mechanism is used around the current file position.

Applications also expect the presence of a number of character devices and
pseudo file systems emulated by the library OS:

• /proc with process information. The per-process directories contain sym-
links pointing to the root directory (root), the current working directory
(cwd) and the binary being executed (exe). The maps file exposes the
virtual address space layout. Finally, the fd subdirectory maps file de-
scriptors to their referenced objects.

• /proc/cpuinfo to advertise CPU capabilities and /proc/meminfo to ex-
pose the configured memory quota.

• /dev/tty representing the interactive console.

• /dev/random and /dev/urandom as random sources. The former requests
randomness from the host, while the latter is only seeded through the PAL
and then uses repeated hashing to produce output without ever blocking
its caller.

• /dev/zero as an infinite stream of zero bytes.

• /dev/null as a data sink, where read attempts always report end of file.

13

3.3 Virtual Memory

The Linux kernel provides a virtual address space abstraction consisting of page
aligned virtual memory areas (VMA) which can be individually allocated, dis-
posed or replaced. The mmap(), mprotect(), and munmap() system calls are
implemented by calling their counterparts within the PAL.

The brk() and sbrk() system calls, manipulating the ”program break” at
the end of the data segment of the loaded executable, are served from a pre-
allocated memory region. The standard C library allocator, which makes use of
these lower level interfaces to provide malloc() and free(), is used unmodified.

As an optimization the Linux kernel loads the vDSO, a virtual dynamic
shared object, into each process address space to provide syscalls
(e.g. gettimeofday()) which do not need elevated privileges. This mecha-
nism is currently not supported within Graphene. Instead, the affected system
calls are handled like all others: implemented in the library OS based on PAL
functionality.

The library OS itself uses slab allocators for various types of internal objects.
Address space layout randomization can optionally be enabled, to randomize
base addresses of returned allocations.

The current virtual address space layout is tracked using a sorted double
linked list of VMAs recording the base address, size, protection flags and backing
file handle (if any) of each contiguous memory area. Section 3.5 will describe
how this data is used to implement checkpointing and migration.

3.4 Threads

Applications typically use the POSIX threading (pthread) library to create
threads and related synchronization primitives like mutexes, conditional vari-
ables, reader/writer locks and barriers. Linux uses a 1:1 scheduling scheme
where the user space pthread_t control block refers to a schedulable kernel ob-
ject using a thread ID. This thread control block (TCB) structure also contains
the necessary data for thread local storage (TLS) as specified in the x86-64 ELF
TLS ABI[19]. The TCB was extended with additional references to cover the
bookkeeping needs of the library OS.

As was explained in section 2.5, setting the %fs segment register to an ar-
bitrary virtual address holding the TCB requires a privileged instruction. In
Linux the TCB can either be specified as an argument to clone() during thread
creation, or later by invoking the arch_prctl() syscall. Both the segment reg-
ister manipulation and thread creation are performed using appropriate PAL
calls.

The pthread synchronization primitives are all implemented on top of the
futex() system call. It allows to block the calling thread until a supplied
memory location has the desired value. A corresponding wake up mechanism
can be used to notify blocking threads. Within the library OS this functionality
is implemented using PAL synchronization events.

14

3.5 Processes

Unix systems create new processes using fork() by duplicating the calling pro-
cess. For the virtual address space this is typically implemented using copy-on-
write of the underlying physical pages. However, Graphene does not require a
shared memory environment. Instead, it creates a new pristine process, check-
points the parent and migrates all process state to the child via a PAL RPC
stream. This snapshot includes all virtual memory areas, process handles i.e.
file descriptors and signal handlers.

execve() is used to replace the currently running binary image with a new
program in a fresh virtual address space. Unless file descriptors are marked as
close-on-exec, they remain open and accessible to the new application. This is
implemented in the library OS by creating a new process and selectively migrat-
ing the desired file descriptors. Other transferred state includes the environment
variables and program arguments.

To implement multi process functionality like signal delivery and exit no-
tification, each library OS uses a dedicated inter process helper thread which
coordinates OS state using a mixture of point-to-point and broadcast RPC
streams. Global resources such as the process identifier namespace and inter-
faces like kill() and waitpid() are provided by exchanging messages over
these channels.

3.6 Inter Process and Network Communication

The library OS supports Unix domain, TCP stream and UDP datagram sockets
as well as pipes by relying on byte stream abstractions provided by the PAL.
This emphasises the use of high-level abstractions: the network stack is part of
the host OS and the library OS has no access to its internal state.

15

Chapter 4

PAL Host ABI

The Platform Adaption Layer (PAL) defines a host neutral application binary
interface (ABI) providing high-level abstraction like processes, threads, virtual
memory and I/O streams suitable to serve as a base for the library OS.

It is an extension of the Drawbridge ABI[43] used to host a library OS version
of Windows 7. The most prominent new interfaces concern the support of multi-
process applications. Extensions related to exception handling and thread local
storage were already present, although in slightly different form, in Bascule[9].

As guiding principles the PAL ABI should provide generic, host independent,
stateless, narrow interfaces to aid portability, reduce attack surface and facilitate
migration[51].

The PAL is responsible to translate from the x86-64 System V ABI used
by Linux to the host calling convention. It contains an executable and linkable
format (ELF) loader which loads application, library OS and PAL into a com-
mon address space, performs symbol resolution and dynamic relocation before
jumping to the application entry point.

4.1 Resource Handle

Analogous to the library OS (see section 3.1) the PAL also uses a tagged union
as a common handle referencing host OS resources. Apart from the type in-
formation the definition of this PAL_HANDLE is host dependent and provided by
concrete PAL implementations.

The common PAL code defines a global process control block structure
(PAL_CONTROL) capturing global state such as: the host type, process id, CPU
capabilities, memory quotas, profiling information and handles to the parent
process, main thread and broadcast stream. These are all initialized before
starting execution of the library OS.

4.2 I/O Streams

I/O streams provide a common byte stream abstraction for files, RPC com-
munication and TCP as well as UDP sockets. The DkStreamOpen() PAL call
defines an unified resource identifier (URI) scheme to refer to different kinds of
host OS objects:

16

• file:path where path is either absolute or relative to the current work-
ing directory. As a convention, paths ending in a trailing slash refer to
directory streams.

• pipe:name is used to initiate a connection to a previously published RPC
server pipe.srv:name with matching name.

• The same principle is also applied to TCP (tcp:address:port) and UDP
(udp:address:port) clients. The corresponding servers use the same ad-
dressing format, but with the tcp.srv and udp.srv URI scheme, respec-
tively.

• dev:tty referring to a character device representing the active console.

• The broadcast stream, connecting all picoprocess running in the same
sandbox, has no designated URI but is initialized automatically in the
PAL startup code.

All streams support I/O operations using DkStreamRead() and
DkStreamWrite(). Both calls take position arguments denoting absolute file
offsets. This is an example where the PAL ABI minimizes internal state and
instead externalizes it to the library OS. Non-file streams simply ignore the
position argument. The return value indicates the number of processed bytes.

Streams are accompanied with meta data like: the type, name, blocking
behavior, readable or writable state and access modes. Sockets expose certain
TCP options (keepalive, cork, nodelay) and expose the send/receive buffer sizes
and timeouts.

Server streams support a blocking DkStreamWaitForClient() call which
suspends execution until a connecting client appears. It returns a handle rep-
resenting the newly established connection.

File related streams support operations to truncate or extend
(DkStreamSetLength()) and persist (DkStreamFlush()) data as well as manip-
ulate their naming within the file system (DkStreamDelete() and
DkStreamChangeName()). The Unix permission model based on owner, group
and others with read, write and execute permissions is exposed through calls
for metadata queries.

An array of handles can be polled for activity using the DkObjectsWaitAny()
call which blocks until one of the observed handles indicates a state change, in
which case it is returned, or the given timeout expired.

4.3 Virtual Memory

The PAL provides a virtual address space abstraction consisting of page sized
regions which are either backed by file content or anonymous memory. Indi-
vidual pages can either be inaccessible or a combination of readable, writable
and executable. Existing memory areas can be superseded by new overlapping
mappings.

DkVirtualMemoryAlloc() allocates a page aligned, contiguous, anonymous
memory region either at a provided fixed address or lets the host OS decide
its location. Protection flags specify the aforementioned access modes, either

17

when creating the mapping or afterwards using DkVirtualMemoryProtect(). A
memory range can be returned to the host OS with DkVirtualMemoryFree().

Analogous to the anonymous mappings, DkStreamMap() can be used to es-
tablish file backed memory regions. The interface takes an additional opened
stream handle, file offset and optional copy-on-write flag. The latter specifies
that any changes are kept private to the current picoprocess and not shared nor
represented in the underlying file. DkStreamUnmap() invalidates an existing file
based memory area.

4.4 Threads

The PAL defines a thread abstraction with dedicated stack and register state,
but shared address space. DkThreadCreate() initiates a new thread, starts exe-
cution of the given entry point and returns a thread handle. A thread can volun-
tarily give up its associated scheduler time slice by calling
DkThreadYieldExecution(). Similarly, DkThreadDelayExecution() suspends
execution of the calling thread for a specified time frame. DkThreadResume()

restores the execution state of a given thread. The lifetime of the calling thread
can be terminated using DkThreadExit().

A number of thread synchronization primitives are also specified by the PAL.
Critical sections can be protected using mutually exclusive locking.
DkMutexCreate() returns a new mutex handle, DkObjectsWaitAny() acquires
the lock, DkMutexRelease() releases it. To enforce dependency relationships
among threads two different event types are defined:

• Synchronization events are used to model producer/consumer relation-
ships. When signaled, exactly one waiting thread is released and the
event is automatically cleared.

• Notification events are used to represent one-off occurrences, once set they
remain signaled until explicitly cleared.

Both event types can be signaled using DkEventSet() and reset with
DkEventClear(). As with mutexes, calling threads can block for an event by
means of DkObjectsWaitAny().

The %fs and %gs segment selector registers, used to refer to the thread
control block and thread local storage data, can be manipulated using the
DkSegmentRegister() call.

4.5 Processes

The process abstraction supported by the PAL does not assume any implicitly
shared state between parent and child. Instead DkProcessCreate() creates an
independent picoprocess with a new instance of the library OS and PAL. The
executable to launch can be specified using a file URI with an accompanying
arguments array. The caller receives a RPC handle set up as a communication
channel between parent and child. DkProcessExit() terminates all threads,
ends the process lifetime and returns the given exit status to the host environ-
ment.

18

The Graphene architecture minimizes state in the host OS, by moving it
into the user space library OS. However, in order to provide a POSIX envi-
ronment certain I/O streams, which can not be recreated independently, need
to be shared across process boundaries. Examples include opened file streams
whose underlying file has subsequently been deleted and bound network sock-
ets. For this reason, the PAL defines the DkSendHandle() call to transfer a
PAL handle over an established RPC channel from which it can be recovered
using DkReceiveHandle(). By sharing a handle the primitive exposes host OS
state to another picoprocess.

As an optional optimization for inter-process communication, the PAL spec-
ifies a fast bulk transfer scheme based on copy-on-write mappings of pages.
To avoid the latency of a RPC channel, the host OS is instructed to map the
same physical pages into different processes, but keep their changes private by
duplicating the pages upon modification.

4.6 Exception Handling

The PAL provides a mechanism to react to hardware exceptions (division by
zero, illegal instruction, memory faults), external signals (quit, suspend, resume)
and internal failures. DkSetExceptionHandler() allows the library OS to reg-
ister an exception handler for each of these events. The handler function will be
upcalled from the host OS with the register state causing the failure. The con-
trol flow of the exception handler must end with a call to DkExceptionReturn()

which destroys the exception stack frame and resumes execution by restoring
the possibly modified register state.

4.7 Sandboxing

The PAL defines a sandbox abstraction used to isolate library OS instances.
During application startup a static security policy can be specified using a
manifest file which white lists accessible directories, hosts and port ranges. The
PAL relies on the host OS to enforce isolation policies of the file system, RPC
streams and network sockets. Picoprocesses running in the same sandbox can
share resources, but cross-sandbox communication is blocked.

4.8 Miscellaneous

The DkSystemTimeQuery() PAL call returns the system time in microseconds
since the Unix Epoch. Access to a cryptographically secure random number
generator is provided via DkRandomBitsRead() which might block until enough
entropy has been collected. Other PAL interfaces query CPU feature flags
(DkCpuIdRetrieve()) and configured memory quota available to the picopro-
cess (DkMemoryAvailableQuota()).

19

Chapter 5

Linux PAL Host

This chapter summarizes how the PAL ABI is implemented on Linux, resulting
in a Linux-on-Linux setting with reduced host kernel exposure. The same basic
concepts also apply for the FreeBSD host or any other Unix-like system with
a monolithic, privileged kernel where state is centralized in a common address
space and all required primitives are available with the desired semantics. As
a result of the similarities between the PAL abstractions and the native system
interface, most PAL calls are thin wrappers around the corresponding host
syscalls.

5.1 Virtual Memory

This is exemplified by the virtual memory related interfaces: mmap() is used to
allocate memory, munmap() frees it and mprotect() changes the access rights.
Conveniently these interfaces provide the required semantics: they operate on
page aligned memory regions, support both anonymous and file based map-
pings, allow arbitrary overlappings. The PAL calls therefore only transform the
provided PAL flags and returned error codes.

5.2 I/O Streams

The implementation of the file based I/O stream interface is only slightly more
involved. The relevant section of the PAL_HANDLE structure stores: the file
descriptor referencing the host file, the original file name used to create the
handle and the current file position. File I/O operations compare the given file
offset to the cached value, adjust it if needed using lseek(), invoke the desired
read() or write() syscall and then advance the file position according to the
return value.

Other file related stream PAL calls, like set length (ftruncate()), flush
(fsync()) change name (rename()), delete (unlink()) or meta data related
functionality (fstat()), are implemented as pass through to the corresponding
syscall. By default all file descriptors are marked as close-on-exec to avoid their
leakage into child processes.

The RPC streams are by default backed by Unix domain sockets, but can
alternatively also use pipes. The network streams are served using the socket

20

API. The broadcast stream is implemented using a multicast IP socket.
Waiting for events on various types of PAL handles is implemented by pass-

ing the underlying file descriptors to poll(). Non-blocking semantics of the
stream interfaces is provided by setting the O_NONBLOCK property of the file
descriptor using fcntl().

5.3 Threads and Processes

The PAL also maintains a thread control block (TCB), unlike the one shared
by the C runtime and library OS it is referred to by the %gs segment register.
The TCB references the regular thread stack as well as the alternate signal
stack used to execute signal handlers. Thread creation itself is performed by
invoking clone() with appropriate flags to share the virtual address space and
file descriptor table. The synchronization primitives are implemented using a
combination of atomic instructions and futex() calls.

Process creation itself is performed using a combination of vfork() and
execve(), communication between parent and child is established using a com-
bination of pipes and Unix domain sockets. The latter is also used to implement
the DkSendHandle() and DkReceiveHandle() calls, by means of file descriptor
passing using SCM_RIGHTS and sendmsg().

As an optimization, the bulk IPC mechanism is implemented using a kernel
module, exposing a /dev/gipc device with a ioctl() interface, enabling sharing
of physical pages using a copy-on-write.

5.4 Miscellaneous

Manipulation of the %fs segment registers is supported using arch_prctl(),
%gs is reserved for use by the PAL TCB. The dev:tty character device is
mapped to the standard input/output file descriptors. /dev/urandom serves as
source of randomness. Queries for the system time are satisfied using either
clock_gettime() (if available via the vDSO) or gettimeofday(). The ex-
ception interfaces are implemented by registering corresponding signal handlers
which in turn call the PAL exception handlers.

5.5 Security Isolation

The sandbox properties are established using Linux host features. The seccomp-
bpf syscall filtering mechanism is used to limit host exposure to the about 50 sys-
tem calls used by the PAL implementation. To support static binaries, or more
generally executables with hard coded syscall instructions, the non-whitelisted
syscalls are reflected back into user space to their corresponding implementation
within the library OS.

The seccomp-bpf policy has only access to scalar syscall arguments passed
in registers, pointer arguments can not be dereferenced for inspection. An ex-
tension of the AppArmor Linux Security Module in combination with a trusted
user space process acting as a reference monitor is used to enforce security poli-
cies by validating arguments to syscalls like open(), connect() or bind(). This
restricts host access and isolates independent picoprocesses.

21

Chapter 6

Barrelfish PAL Host

This chapter documents the porting efforts of the platform adaption layer (PAL)
to the Barrelfish multikernel operating system architecture. Challenges expe-
rienced while mapping PAL interfaces and their - often implicitly assumed -
underlying POSIX semantics are discussed.

6.1 Bootstrapping

While Barrelfish uses the same calling conventions and executable format (ELF)
as Linux, it does currently not support dynamic linking of shared libraries. In-
stead, Barrelfish applications are statically linked and include all their depen-
dencies.

A first attempt tried to leverage earlier work on dynamic linking for Bar-
relfish[31]. The idea was to build the PAL as a shared library and use native
Barrelfish system components to load the environment needed to run the li-
brary OS. This approach would require build system modifications to produce
shared versions of all involved Barrelfish libraries. Due to the excessiveness of
the changes and the relative immaturity of the dynamic linking code, it was
ultimately abandoned.

Instead the decision was taken, to reuse the same ELF loader relied up on by
the Linux PAL host implementation. The main advantage being, that the GNU
C library derived code has already experienced widespread usage and provides
robust symbol resolution and dynamic relocation support. Together with the
rest of the PAL it is compiled into a static library archive and linked into a
regular Barrelfish application, functioning as a PAL loader. To resolve symbol
names of the PAL ABI itself, the fall back mechanism of the runtime loader was
extended to consult a lookup table with addresses populated at build time by
the static linker.

6.2 File Streams

The PAL handle for file abstractions is comprised of: a Barrelfish VFS handle,
cached file position and the absolute path name used to open the file.

Such a handle is allocated during the file open call which also needs to
support the equivalent of O_CREAT|O_EXCL semantics to ensure that the new file

22

did not previously exist. Contrary to that, the Barrelfish vfs_create() API
succeeds even when the file is already present. Instead, existence is tested by
an attempt to open the file: if successful, the exclusive creation request fails.
However, this procedure suffers from a time-of-check to time-of-use (TOCTOU)
race condition. Between the two RPC calls a third party could successfully
create the file, resulting in a PAL handle referencing an existing file. Changing
the Barrelfish VFS create API to fail for files which are already present, would
result in the desired POSIX behavior.

The read and write I/O operations are mapped to their Barrelfish coun-
terparts. In case the given absolute file offset does not match the cached file
position, the VFS handle is repositioned to the desired location. Then the I/O
operation is performed and the cached file position updated accordingly. The
same technique is used in the Linux host PAL implementation to avoid unnec-
essary seeks for consecutive I/O.

The Barrelfish VFS API currently lacks a rename primitive. For files the
following fall back was implemented:

1. Create or open destination file.

2. Truncate destination file to zero length.

3. Copy content from source to destination.

4. Delete the source file.

However, in case an error occurs this procedure damages an already existing
destination file. It also does not guarantee any atomicity as required by POSIX.
To fix this, the Barrelfish VFS API should be extended with a rename operation,
supported by each backend.

Another important behavioral difference concerns the lifetime of file han-
dles. In a POSIX environment an opened file descriptor remains valid when its
underlying path resource is unlinked, while with the current Barrelfish imple-
mentation the removal invalidates the file handle and subsequent I/O operations
fail.

Meta data queries report the type of a path element as either a directory or
file, the latter also has an associated size property. Due to the lack of a permis-
sion model everything is reported as world readable, writable and executable.

Other stream related PAL functionality to flush, truncate and close files is
provided using equivalent Barrelfish VFS calls.

6.3 Virtual Memory Management

Implementing the virtual memory related PAL calls, using Barrelfish primitives,
is complicated by the requirement that both anonymous and file backed memory
regions can replace pre-existing memory mappings. In fact this is not a seldom
used corner case, but used by the ELF loader during picoprocess initialization.
It allocates a contiguous, anonymous virtual memory area and then proceeds to
map individual, file backed ELF sections at fixed offsets over it.

Section 2.2 introduced the memory subsystem of Barrelfish and explained
how different types of memory objects are used to back virtual regions. More
concretely, memobj_anon handles page faults of an anonymous memory region

23

by mapping in frame capabilities on demand. Similarly, memobj_vfs serves page
faults of file mappings by wrapping an anonymous memory object and filling
its pages with data read from a VFS handle. With the current implementation
existing virtual regions and their backing memory objects can not be resized.

The challenge is how to combine these existing abstractions to build an
unified virtual address space with the desired properties. There are multiple
plausible options:

• A new memory object type associated with an all-encompassing virtual re-
gion. The distinction between anonymous and file backed memory, frame
capability management and other metadata bookkeeping would be han-
dled within the memory object. This design ignores much of the existing
high-level abstractions of the Barrelfish memory system.

• Splitting of existing virtual regions. When dealing with a request for
an overlapped mapping with different backing type, the existing virtual
region and associated memory object would be replaced by at most three
new ones. One preceding the mapping point, one representing the new
mapping and one covering the remainder of the original region. In order
for the pre-existing parts to remain unchanged, the data would have to be
copied over. Alternatively the ownership of the underlying frames would
have to be transferred to the new memory objects.

• Use page sized virtual regions. By breaking up larger allocation and map-
ping requests into the smallest possible allocation unit, subsequent replace-
ment or invalidation of sub regions becomes trivial. This approach reuses
Barrelfish’s existing high-level memory allocation functions. However, it
has considerable meta data overhead: each page sized chunk allocates an
associated virtual region with accompanying memory object. Due to the
existence of many virtual regions it also puts strain on the virtual space
structure. The sorted double linked list whose algorithms are linear in the
number of allocations i.e. pages can become a bottleneck.

The approach based on a new memory object type seemed like a layering
violation. Splitting and copying existing regions was disregarded because of
its complexity and concerns regarding thread safety. Due to its simplicity, the
option using page-sized virtual regions was adopted and any performance opti-
mizations were postponed.

Section 2.4 covered the exception mechanism used to handle page faults in
the self-paging paradigm used by Barrelfish. While POSIX defines sig_atomic_t
and the concept of async signal safety as a list of functions which can safely be
executed in a signal handler, the PAL leaves the exact exception handling con-
text unspecified. In any case, because page faults and other exceptions use the
same non-reentrant delivery mechanism, the registered PAL handlers must not
cause page faults as the resulting double fault would cause immediate thread
termination. Possible counter measures include:

• Allow nested exceptions / upcalls as in Psyche[39]. Upon entering the
runtime library from the CPU driver, the exception handler would be
executed on a new stack frame. Making the upcall delivery mechanism
reentrant is the most complex, but also most general approach.

24

• Decouple page faults from other exceptions. This could for example be im-
plemented using a dedicated stack for page fault handlers. Although this
option is not a general solution for all exceptions types, it will nonetheless
enable most typical signal handlers.

• Avoid page faults. Pre-fault all memory regions immediately after alloca-
tion. This is consistent with other high-level memory allocation functions
in Barrelfish and matches the behavior of the limited mmap() support in
the existing POSIX compatibility library. Like the previous approach it
is not a universal solution, but sufficient for the most common case.

A fully reentrant refactoring was deemed too invasive, the decoupling not
general enough for the effort. Hence, I accepted the negative performance im-
plication and settled for the pre-faulting strategy.

6.4 Network Sockets

The main architectural decision concerns the logical place of the network stack:
should it be part of the application address space like in an exokernel or exposed
through a shared system service as in a microkernel?

The PAL stream API defines a blocking interface which is a natural fit for
the BSD socket API as demonstrated by the Linux PAL host implementation.
Hence, a first attempt operated the lwIP network stack in system mode and
used the socket API directly (see section 2.8). As a pre-requisite for the system
mode in the newer lwIP version, the OS specific support layer needed to be
ported from the legacy lwIP code base. It provides a thread abstraction and
synchronization primitives like semaphores, mutexes and mailboxes for cross-
thread message exchanges. The Barrelfish network library (libnet) was changed
to start the lwIP stack in system mode, using a dedicated network thread in-
stead of periodically polling an event loop. While the socket API matches the
basic PAL requirements, moving the network stack into the application compli-
cates sharing of resources in a multi-process setting. It is unclear how the PAL
send/receive handle operations for network sockets, as required by a forking
server, would be implemented.

The other option is to use the network socket server, a user space service,
which multiplexes the networking hardware and provides a callback based RPC
interface. Internally it uses the lwIP network stack in raw mode. The main
challenge is to wrap the event based API to provide the blocking semantics
required by the PAL interfaces. The sending part is unproblematic and works
as follows:

1. Set socket status to sending and initiate send operation.

2. Enter an event dispatch loop for the waitset handling the RPC communi-
cation until the socket status changes.

3. The on-sent handler resets the socket status to ready.

4. Return to caller of PAL function.

25

More challenging is the receiving part. When serving a read call, a simi-
lar looping construct is used to wait until data becomes available. However,
data can arrive even when no consumer is immediately ready to read it. Hence,
it needs to be buffered within the PAL handle representing the socket. Un-
fortunately the net socket server interface currently provides no rate limiting
mechanism, resulting in potentially unlimited buffer growth. Incoming data
can also not simply be discarded, because it was already ACKed on the TCP
protocol level, meaning the sender will not retransmit.

6.5 RPC Streams

RPC streams are implemented by exposing a Flounder interface featuring a write
method to transfer a byte array. Using the existing Barrelfish IDC infrastructure
works for communication channels within a single as well as between different
dispatchers.

When opening a server pipe stream to which clients can subsequently connect
to, the Flounder interface is published to the Barrelfish name server. A map-
ping is maintained between the published Flounder interface reference identifier
(iref_t) and the PAL pipe number specified in the URI scheme (pipe.srv:).
The translation from the latter to the former needs to be accessible and con-
sistent across dispatcher boundaries. Either the file system or the name server
itself can be used to look up the interface identfier necessary to bootstrap the
communication channel.

The PAL handle representing the server pipe maintains a backlog of con-
nected clients. If said backlog is empty, DkStreamWaitForClient() will enter
an event dispatch loop until the connected callback is invoked, indicating that
a client appeared.

On the client side of such a pipe handle, incoming data is buffered using
a linked list of data chunks from which subsequent read attempts are served.
The blocking behavior when the pipe buffer is full is implemented using a com-
bination of failing further write requests and notifying the caller once more
space becomes available. Non-blocking operation mode is implemented by first
querying the can_send() method of the underling Flounder channel.

Broadcast streams are provided by graphened, a shared system service which
exposes a RPC interface with which each library OS instance registers itself dur-
ing PAL initialization. Incoming messages are forwarded to all other connected
clients. Upon process termination the broadcast channel is teared down.

6.6 Threads

Most of the thread related PAL interfaces can be mapped fairly easily to cor-
responding Barrelfish threading functionality. Examples include PAL calls to
yield, resume, delay and exit a thread.

The more interesting parts concern thread creation and in particular han-
dling of thread local storage. For the latter Linux and the PAL ABI expect to
set the thread pointer represented by the %fs segment register to an arbitrary
64-bit virtual address. However, as was discussed in section 2.5, Barrelfish uses
the same segment register for its own thread control block (TCB) and requires

26

it to be located in the lower 4GB of virtual address space. There exist mul-
tiple options to resolve these conflicts, let us first discuss different allocation
strategies for the TCB:

• Force the allocation of the TCB of the Graphene library OS to the lower
4GB of virtual address space. This would make it compatible with the
existing, local descriptor table based, segment management code of Bar-
relfish. The memory allocation function of the PAL would be extended
with a new flag, similar to MAP_32BIT as supported by mmap() on Linux.

• Change Barrelfish’s threading code to support arbitrarily located thread
control blocks. The architecture specific register state of both the dis-
patcher and user level thread structure would hold a full 64-bit virtual
address, instead of a 16-bit segment selector. The CPU driver would
save/restore its value whenever scheduling a different dispatcher. In the
most general case a new system call, similar to Linux’s arch_prctl(),
allows user space to update the segment register upon thread switching.
If the CPU supports the FSGSBASE extension, the syscall overhead can
be avoided by manipulating the registers directly using unprivileged in-
structions.

Instead of extending the PAL interface, the more general approach of elimi-
nating existing TCB allocation restrictions in the Barrelfish code was pursued.
The new system call exposes segment register state by accessing a corresponding
model specific register (MSR) interface. During initialization the CPU driver
enables the FSGSBASE extension by manipulating the corresponding bit in the
CR4 control register.

While this allows usage of arbitrarily located thread control blocks, it does
not resolve the conflict that both the Linux and Barrelfish environments demand
control over the %fs register. The following alternatives were considered to
remedy the situation:

• Use distinct segment registers as thread pointer. Because the goal is to run
unmodified Linux binaries, Barrelfish would need to leave %fs untouched.
Existing usage in curdispatcher() and thread_self() would have to
migrate to %gs. While the current Barrelfish code base does not use thread
local storage, these changes would also diverge from the x86-64 ELF TLS
ABI, requiring support from the compiler toolchain.

The resulting setting would be similar to that taken advantage of by Wine:
Windows and Linux use different TLS ABIs, meaning each environment
can use its native TCB access mechanism without causing a conflict.

• Virtualize the %fs segment register. While there is only one physical re-
source, make sure that both the Barrelfish and Linux environments always
run in a context with the segment register set to their expected value.

Using a different TLS ABI was dismissed as being too invasive. Instead, the
correct segment register state is restored whenever crossing the PAL boundary
separating the Linux and Barrelfish environments. The Barrelfish PAL intro-
duces its own thread control block, keeping track of the user level thread, its
exception stack and the current value of the %fs segment base address as seen
by the Linux library OS and Barrelfish, respectively.

27

struct pal_tcb {

struct pal_tcb *self;

int (* entry)(void *param);

void *param;

void *exception_stack;

void *fsbase_linux;

void *fsbase_barrelfish;

PAL_HANDLE thread;

};

Listing 6.1: Barrelfish PAL thread control block.

The PAL TCB is initialized within the newly created thread context and is
pointed to by the %gs register, which is reserved for this purpose and must
remain unchanged during the thread’s lifetime. The initial %fs value, as assigned
by Barrelfish’s threading library, is recorded. The exception stack allocated and
the exception handler registered. Finally, control is passed to the caller supplied
thread entry point.

DkSegmentRegister() simply returns or updates the fsbase_linux field
of the PAL TCB and rejects any modification of %gs which is also unused by
Barrelfish.

Whenever entering (leaving) the PAL the TCB is fetched through %gs, and
the Barrelfish (Linux) %fs segment register value is restored. More concretely,
this ”world switching” takes place within preprocessor macros used by the
generic portion of the PAL.

As for the thread synchronization primitives: PAL mutexes are directly
mapped to their Barrelfish equivalents, while synchronization and notification
events are provided using a combination of atomic instructions and conditional
variables. Atomic integers are used to track the number of waiters and whether
the event is signaled or not. Synchronization events release one waiter at a time
by signaling the underlying conditional variable, while notification events invoke
its broadcast operation.

6.7 Processes

Barrelfish spawns new domains using a RPC call to a process manager service.
During this invocation program arguments, environment variables and capabil-
ities can be passed to the new domain. Otherwise no implicit state is shared.
The DkProcessCreate() PAL call is implemented by spawning the Barrelfish
application graphene which operates as a PAL loader, as described in the boot-
strapping section. The path denoting the Linux binary to execute is prepended
to the actual program arguments.

The PAL calls to share handles across process boundaries are challenging to
implement in the existing Barrelfish setting. Unlike in other PAL hosts there
exists no monolithic kernel which centralises state and can mediate access to
resources by copying or reference counting corresponding kernel objects. The
Barrelfish analogon to the file descriptor passing of Unix systems is the capability
transfer. However, user space system APIs like the VFS or the socket server
interface use their own, non-capability based, resource handles.

Two plausible options to remedy the situations are:

28

• Extend each system service with an API to share a resource handle be-
tween domains.

• Independently recreate an equivalent resource handle in the receiving do-
main. However, because the sender is not obligated to close its handle
after sharing it, this requires that all associated state is maintained by the
caller.

The second approach is used for file streams. The sender first persists all
pending changes by flushing the handle, then transmits the full path over the
stream. The receiver proceeds to create a PAL handle by opening the same file.
This suffers from an obvious race condition and fails for files that have since been
unlinked, which was a motivating example for the send/receive interface. The
common case works because each read/write call takes an absolute file position
maintained by the library OS.

For network sockets no such workaround is possible. The network socket
server would require the aforementioned interface extension to make the socket
available to another domain. RPC streams can be rebound in the receiving
domain, but the way the existing Flounder mechanism is used only works for
point-to-point communication. An additional intermediate layer would be nec-
essary in case the sender keeps its handle alive.

6.8 Exception Handling

Recall how exception handling works in Barrelfish (see section 2.4). The CPU
driver upcalls into libbarrelfish where execution starts on the dispatcher stack,
before calling the thread exception handler on the thread exception stack. Dur-
ing thread initialization the PAL registers such a Barrelfish exception handler
which presents a different PAL entry point. The execution context switches
from the Linux application into the Barrelfish system library. As such the seg-
ment register virtualization needs to take place. The dispatcher context has its
segment register saved in the DCB. Within the exception handler the PAL TCB
can be recovered from the %gs register value as recorded at the time of the ex-
ception. Therefore, the thread pointer of the Linux environment can be restored
before invoking the function registered with DkSetExceptionHandler().

To support the DkExceptionReturn() PAL call, libbarrelfish was extended
with a new function which clears the thread’s exception state and resumes the
dispatcher with the given register state.

As was previously discussed in the context of virtual memory, the Barrelfish
exception mechanism is non-reentrant. Meaning that exception handlers must
not cause further exceptions. In particular, nested signal handlers, registered
with sigaction() and the SA_NODEFER flag, can not be supported using the
provided PAL implementation.

6.9 Miscellaneous

The dev:tty device is implemented using a global lock around the read/write
RPC interface provided by the serial sub system[23].

29

Because Barrelfish currently does not provide a native random source, the
rdrand instruction is used directly to generate random bytes. Failing that,
or during development and debugging, a constant byte stream is returned. In
any case, the current implementation is not suitable for serious cryptographic
applications.

The time stamp counter is used as a time source. During initialization the
CPU driver measures the number of cycles per millisecond and exposes the data
through a syscall. This information is subsequently used to convert the elapsed
cycles to a time interval.

30

Chapter 7

Evaluation

In this chapter the introduced overhead of PAL calls compared to their un-
derlying native Barrelfish interfaces is measured. Challenges, resulting from
Graphene’s architecture, in providing the expected POSIX semantics of shared
resources in a multi-process setting are discussed.

7.1 Performance

A number of PAL functions, exemplified by the file I/O operations, merely
pass on incoming arguments to the corresponding native Barrelfish interfaces.
Hence, the performance primarily depends on existing Barrelfish system compo-
nents. However, the virtualization of the %fs segment register, as discussed in
section 6.6, introduces a constant overhead whenever crossing PAL boundaries.

In order to quantify the performance implications of this ”world switching”,
a number of micro benchmarks were carried out on a dual-socket Intel Xeon E5-
2670 v2 @ 2.50GHz ”Ivy Bridge” machine with 10 cores per socket and 256GB
of main memory. The existing Barrelfish benchmarking infrastructure was used.
The presented cycle counts are averages over 106 iterations as reported by the
rdtsc instruction. Each benchmark was repeated 10 times, demonstrating sta-
bility by yielding the same results.

Recall the two possibilities to set a the full 64-bit virtual address of a segment
register:

• Using the unprivileged wrfsbase instruction, available in Intel CPUs
starting from the Ivy Bridge microarchitecture.

• By issuing a system call which uses the privileged wrmsr instruction to
change the corresponding model specific register (MSR).

To provide more context, the raw syscall overhead and micro benchmark of
the wrmsr instruction, as measured by the CPU driver during initialization, is
also reported in table 7.1.

31

Method Cycle count
Unprivileged instruction (wrfsbase) 35
Set segment register syscall 248
No operation (NOP) syscall 129
Privileged instruction (wrmsr) 134

Table 7.1: Micro benchmarks manipulating segment registers.

The unprivileged instruction is approximately 7 times faster than the MSR
based system call. It is a worthwhile optimization and a good match for Bar-
relfish’s user level threading model, featuring fast thread switching. Basing the
%fs segment register virtualization on it, keeps the constant cost added to each
PAL function invocation below Barrelfish’s syscall overhead.

Interestingly, the summation of the results for the NOP syscall and the
wrmsr instruction does not provide a lower bound for the measurements of
the set segment register syscall which essentially just combines the two. One
possible explanation is that the MSR micro benchmark is ran during CPU driver
initialization, while the others are initiated from user space once the whole OS
is operational.

More generally, performance optimizations have so far been of secondary
concern. The virtual memory related interfaces in particular, have proven to be
a bottleneck. Initial investigations revealed, that the dominating cost is not due
to the page-sized mapping approach described in section 6.3, but because of the
naive frame allocation strategy involving expensive capability retype operations.

7.2 POSIX Compatibility

The previous chapter already mentioned cases where the presented Barrelfish
PAL host implementation fails to provide the required POSIX behavior. Exam-
ples included the VFS interfaces (missing rename primitive, lack of atomicity,
invalidation of open file handles upon deletion) and the limitations of the excep-
tion mechanism. While these issues could be resolved by adapting the relevant
Barrelfish system components, in this section a more fundamental issue related
to Graphene’s current implementation of the multi-process abstractions shall be
discussed.

Listing 7.1 shows the C source code of a minimal example, illustrating be-
havior related to the file offsets of shared file descriptions. For brevity, header
includes and error checking has been omitted.

32

int main(void)

{

const char *msg;

int fd = open("demo", O_WRONLY|O_TRUNC|O_CREAT , 0600);

if (fork() > 0) {

wait(NULL);

msg = "Parent\n";

} else {

msg = "Child\n";

}

write(fd, msg , strlen(msg));

}

Listing 7.1: Behavior of a shared file description.

The program first creates a file, then forks off a child and lets it write through
the inherited file descriptor. After the child has terminated, the parent also
writes to the file. On a conforming system, the resulting file content is therefore:

Child

Parent

This works because both process specific file descriptors point to the same open
file description, holding the file offset and status flags, within the system-wide
table of open files. Hence, when the child writes its message, the file offset is
advanced and the subsequent write of the parent is placed after it.

Now recall that in Graphene’s design the state of the open file description,
including the current file offset, is maintained independently in each library OS
instance. Because this state is currently not replicated among different pico-
processes, the file offset as seen by the parent remains unchanged by the child’s
write. Consequently, the parent overwrites the previous message, resulting in a
file storing just:

Parent

The example illustrates how the POSIX interfaces encourage state centrali-
sation and complicate the distributed library OS design of Graphene.

33

Chapter 8

Related Work

The idea of putting more OS functionality into application libraries goes back
to Anderson[1]. Initially such systems like the Exokernel[21] aimed to provide
performance advantages by exposing low level hardware interfaces.

Roscoe et al.[48] questioned hardware based virtual machine interfaces and
argued for high-level virtualization abstractions.

The notion of a picoprocess as an isolated entity mapping a high-level guest
API to a narrow (syscall) interface originated from attempts to run applica-
tions in a web context. Xax[18] achieved OS independence by specifying an
ABI implemented by a platform abstraction layer. Embassy[27] called a similar
concept client execution interface (CEI), which was subsequently employed to
run single-process POSIX applications in a minimal picoprocess[28].

Drawbridge[43] refactored Windows 7 into a library operating system capa-
ble of running major applications. Benefits included improved application mo-
bility and isolation with lower overhead than traditional virtual machines. The
introduced Drawbridge ABI provides a small set of OS abstractions: threads,
virtual memory and I/O streams.

Bascule[9] provides portable and composable extensions (e.g. tracing and
checkpointing) for library operating systems based on interposition techniques
of the Drawbridge ABI. The Bascule ABI made all I/O operations asynchronous
and introduced new calls for exception handling and thread local storage. The
latter provides a way to allocate memory for TLS at thread creation time,
thereby avoiding the a system call required in the general solution when crossing
PAL boundaries. To showcase that extensions are both independent from the
library- as well as from the host operating system, a Linux library OS personality
was implemented and the Bascule ABI was ported to Barrelfish.

Graphene[52] demonstrated that the library OS approach can also be adapted
to multi-process applications by implementing a distributed POSIX implementa-
tion. The PAL ABI (see chapter 4) is adapted from Drawbridge with extensions
for library OS state coordination and sandboxing mechanisms. Other changes
related to exception handling and TLS setup were already present in Bascule.

Haven[10] and Graphene-SGX[53] leverage the Intel SGX hardware and li-
brary operating systems to shield unmodified applications from untrusted hosts.
Haven is based on Drawbridge and uses a library version of Windows 8, while
Graphene-SGX is a SGX host implementation of the Graphene PAL, thereby
enabling a Linux execution environment.

34

Plan 9[42] only provides a narrow syscall interface which shares similarities
with the Graphene ABI. The byte stream abstraction used by the 9P network
protocol, exposed through the file system, to talk to server processes, resembles
the RPC stream used in Graphene to coordinate library OS state.

Unikernels[37, 38] combine single-purpose applications with OS function-
ality in a single address space image expected to run on hypervisors or bare
metal. Because there is no need for protection, syscalls become function calls
with no change in privilege level. Neither page table switches nor TLB flushes
are necessary. This specialization allows the omission of unneeded functional-
ity and enables whole system optimizations leading to fast boot times and low
memory footprints. OSv[32] and HermiTux[41] are Linux compatible Uniker-
nels employing binary rewriting and dynamic library substitution techniques.
Unikernel Linux[46] is an attempt to turn Linux itself into a Unikernel.

User Mode Linux (UML)[16] runs Linux as a regular user space process.
However, unlike with a picoprocess there is no deduplication of host OS func-
tionality. Instead UML is implemented as an additional architecture of the
Linux kernel using host system calls. It has been characterized as an ”alterna-
tive approach to paravirtualization[4]”.

Rumpkernels[29, 30] enable reuse of compartmentalized drivers of a mono-
lithic kernel by means of a hypercall interface. As an example the NetBSD
originated rump kernel hypercall interface[40] covers: virtual memory, files and
I/O, exception handling, access to clock and randomness sources as well as
thread creation, scheduling and synchronization primitives. As such it is sim-
ilar to the picoprocess ABIs used by Drawbridge, Bascule and Graphene. By
reusing the syscall interface (driver) it is possible to run POSIX-like applica-
tions on platforms implementing the hypercall interface. However, compared to
Graphene limitations include: only anonymous mmap, no signals and no multi
process support.

Containers[50] virtualize core kernel data structures to provide lightweight
isolation among processes. Unlike with library operating systems, the OS per-
sonality does not reside within the application address space. The exposed
syscall interface is still huge, presents an attack surface and achieves no host
OS independence.

Google’s gVisor[25] improves container security by implementing the Linux
syscall interface in a ”user space kernel” (Sentry) thereby limiting host ker-
nel exposure. Depending on the mode of operation either Linux virtualization
(KVM) or process tracing (ptrace) techniques are used for system call redirec-
tion. Compared to Graphene the implementation leverages a high-level language
(Go), includes a user space network stack and delegates the acquisition of file
handles to a separated process (Gofer) accessible over the 9P protocol. Instead
of depending on a platform neutral adaption layer, host interaction is performed
directly using a reduced set of Linux syscalls.

K42[34] is a scalable operating system using object orientation to decompose
OS functionality and reduce state sharing. The Linux personality[3] of K42 is
mostly implemented in userspace. As in Graphene, the syscall invocation within
glibc is redirected to call into library functions residing in the application’s own
address space. In a critique of fork[7] the authors reflect on their experience sup-
porting it in K42, how it affects OS architecture and encourages centralization
of state.

NetBSD[49], FreeBSD[17] and Solaris/illumos have emulation layers sup-

35

porting unmodified Linux binaries. These operating systems share the typical
Unix architecture of a monolithic privileged kernel. The concepts are mostly
the same as on Linux but the implementations differ slightly. Linux emulation
is provided by using a different syscall table and a translation layer fixing up
the calling convention (e.g. whether syscall arguments are passed on the stack
or in registers), errno values and signal machinery. The Linux ABI is mapped
to corresponding native system calls.

The first version of the Windows Subsystem for Linux[54] uses picoprocesses
to virtualize the Linux syscall ABI on top of the Windows NT kernel to run
unmodified Linux binaries.

Wine[55] (for Windows PE binaries) and Darling[15] (for macOS Mach-O
executables) are other projects providing a familiar application execution envi-
ronment on foreign operating systems. While they provide certain kernel func-
tionality in user space services, they do neither refactor an existing code base
into a library nor rely on a narrow PAL ABI. Instead, they have to undertake
massive porting efforts to re implement a vast API.

Most closely related to my work is a previous Bachelor Thesis[13] which
attempted to port Graphene to Barrelfish. It cited the lack of dynamic linking
in Barrelfish as a reason why Linux binaries could not be run unmodified on
Barrelfish. The presented work circumvents this obstacle by reusing an ELF
loader within the PAL.

36

Chapter 9

Conclusion & Future Work

In its current form the presented work is able to run simple, unmodified, dynam-
ically linked, single-process Linux applications on Barrelfish using the Graphene
library OS. Supported features include threads, signals and I/O operations on
pipes, sockets and files. Major challenges during the porting effort included:
bootstrapping due to lack of native dynamic linking support, TLS resource han-
dling and the construction of a unified virtual address space comprised of both
anonymous and file backed memory regions. These were overcome by reusing
an ELF loader with a fallback for symbol resolution based on a static lookup
table embedded into the PAL library, virtualizing the %fs segment register by
performing a ”world switch” whenever crossing PAL boundaries and splitting
up larger memory management tasks into operations on page sized allocations.

During development it became clear that the existing Barrelfish paradigms
are often not a good match for POSIX - and by extension PAL - interfaces.
Barrelfish’s network socket server is event and callback based, whereas the BSD
socket API provides blocking calls. The current VFS implementation does not
cope with file handles whose underlying file system objects have been removed
and lacks rename and hard link primitives as well as a permission model. Bar-
relfish’s memory system enables a great deal of flexibility, but the provided
memory objects as high-level user space abstractions do not easily mix anony-
mous and file backed memory regions. The self-paging and non-reentrant excep-
tion mechanism puts restriction on the code of exception handlers and precludes
nested signal handlers.

More importantly POSIX encourages centralisation of state. This was re-
cently discussed in the context of fork()[7] but does also apply, albeit to a lesser
extend, to the underlying PAL interfaces enabling it in the library OS. Func-
tionality to pass PAL handles between processes is straightforward to provide
in a monolithic kernel where state is centralised and kernel objects can easily
be reference counted or copied, but more involved in distributed OS services. It
is even more complex for state solely kept in the library OS within the appli-
cation’s own address space. A concrete example of this is the file seek position
which is currently not shared even though the Graphene authors claim that it
”would be a straightforward extension to current RPC mechanisms”[52].

In my opinion the Graphene PAL ABI could benefit from a more detailed
and rigorous specification. Often the semantics of certain interfaces is implic-
itly assumed to match POSIX behavior - conveniently supported by existing

37

host implementations - instead of explicitly defined. Examples include: execu-
tion context of PAL exception handlers and their reentrant behavior, atomicity
of I/O operations, thread safety requirements and state of file streams whose
underlying file system object has been deleted.

Resolving the previously mentioned limitations related to the VFS and multi-
process abstractions as well as performance optimizations of the the virtual
memory interfaces is left for future work. The substitution technique used to
redirect system calls into the library OS only works for dynamically linked exe-
cutables. To also support statically linked applications, system call redirection
based on binary rewriting or trap reflection into userspace, as suggested by the
Bascule[9] authors, would be needed. The sanboxing policy is currently not
enforced, meaning independent library OS instances are not isolated and cross-
sandbox communication is not prohibited. Future work could explore a setting
with improved isolation guarantees where distinct, per-sandbox instances of sys-
tem services are used.

To conclude, while the presented system is capable of running simple, single-
process Linux applications, it is still a long way off a fully conformant distributed
POSIX implementation.

38

Bibliography

[1] T. E. Anderson. “The case for application-specific operating systems”.
In: Proceedings Third Workshop on Workstation Operating Systems. Apr.
1992, pp. 92–94.

[2] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry
M. Levy. “Scheduler Activations: Effective Kernel Support for the User-
level Management of Parallelism”. In: SIGOPS Oper. Syst. Rev. 25.5
(Sept. 1991), pp. 95–109.

[3] Jonathan Appavoo, Marc A Auslander, Dilma Da Silva, David Edelsohn,
Orran Krieger, Michal Ostrowski, Bryan S Rosenburg, Robert W Wis-
niewski, and Jimi Xenidis. “Providing a Linux API on the Scalable K42
Kernel.” In: USENIX Annual Technical Conference, FREENIX Track.
2003, pp. 323–336.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the
Art of Virtualization”. In: Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles. SOSP ’03. Bolton Landing, NY, USA:
ACM, 2003, pp. 164–177.

[5] Team Barrelfish. Barrelfish Architecture Overview. Tech. rep. 000. Ver-
sion 2.0. Systems Group, ETH Zurich, 2013.

[6] Andrew Baumann. Inter-dispatcher communication in Barrelfish. Tech.
rep. 011. Version 0.3. Systems Group, ETH Zurich, 2011.

[7] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe.
“A fork() in the road”. In: 17th Workshop on Hot Topics in Operating Sys-
tems. ACM, May 2019.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. “The Multikernel: A New OS Architecture for Scal-
able Multicore Systems”. In: Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA: ACM, 2009, pp. 29–44.

[9] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning, Ja-
cob R. Lorch, Barry Bond, Reuben Olinsky, and Galen C. Hunt. “Com-
posing OS Extensions Safely and Efficiently with Bascule”. In: Proceedings
of the 8th ACM European Conference on Computer Systems. EuroSys ’13.
Prague, Czech Republic: ACM, 2013, pp. 239–252.

39

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Appli-
cations from an Untrusted Cloud with Haven”. In: Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation.
OSDI’14. Broomfield, CO: USENIX Association, 2014, pp. 267–283.

[11] Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh Singhania,
Timothy Roscoe, Paul Barham, and Rebecca Isaacs. “Your Computer
is Already a Distributed System. Why Isn’T Your OS?” In: Proceedings
of the 12th Conference on Hot Topics in Operating Systems. HotOS’09.
Monte Verità, Switzerland: USENIX Association, 2009, pp. 12–12.

[12] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry
M. Levy. “User-level Interprocess Communication for Shared Memory
Multiprocessors”. In: ACM Trans. Comput. Syst. 9.2 (May 1991), pp. 175–
198.

[13] Yves Bieri. “Running Linux Binaries over Barrelfish using a LibraryOS”.
Bachelor’s Thesis. ETH Zurich, 2015.

[14] David D. Clark. “The Structuring of Systems Using Upcalls”. In: Pro-
ceedings of the Tenth ACM Symposium on Operating Systems Principles.
SOSP ’85. Orcas Island, Washington, USA: ACM, 1985, pp. 171–180.

[15] Darling - macOS translation layer for Linux. https://www.darlinghq.
org/. Accessed: August 2019.

[16] Jeff Dike. A user-mode port of the Linux kernel.

[17] Roman Divacky. “Linux emulation in FreeBSD”. Master’s Thesis. 2016.

[18] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. “Lever-
aging Legacy Code to Deploy Desktop Applications on the Web”. In:
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation. OSDI’08. San Diego, California: USENIX Associa-
tion, 2008, pp. 339–354.

[19] Ulrich Drepper. ELF Handling For Thread-Local Storage. Version 0.21.
2013.

[20] Adam Dunkels. “Design and Implementation of the lwIP TCP/IP Stack”.
In: Swedish Institute of Computer Science 2 (2001), p. 77.

[21] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. “Exokernel: An Operat-
ing System Architecture for Application-level Resource Management”. In:
Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples. SOSP ’95. Copper Mountain, Colorado, USA: ACM, 1995, pp. 251–
266.

[22] Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick
Tullmann. “Interface and Execution Models in the Fluke Kernel”. In:
Proceedings of the Third Symposium on Operating Systems Design and
Implementation. OSDI ’99. New Orleans, Louisiana, USA: USENIX As-
sociation, 1999, pp. 101–115.

[23] Raphael Fuchs. “A session control interface for a Multikernel”. Bachelor’s
Thesis. ETH Zurich, 2012.

[24] Simon Gerber. “Authorization, Protection, and Allocation of Memory in
a Large System”. PhD thesis. ETH Zurich, 2018.

40

https://www.darlinghq.org/
https://www.darlinghq.org/

[25] gVisor Architecture Guide. https://gvisor.dev/docs/architecture_
guide/. Accessed: August 2019.

[26] Steven M. Hand. “Self-paging in the Nemesis Operating System”. In: Pro-
ceedings of the Third Symposium on Operating Systems Design and Imple-
mentation. OSDI ’99. New Orleans, Louisiana, USA: USENIX Association,
1999, pp. 73–86.

[27] Jon Howell, Bryan Parno, and John R. Douceur. “Embassies: Radically
Refactoring the Web”. In: Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation. NSDI’13. Lombard, IL:
USENIX Association, 2013, pp. 529–546.

[28] Jon Howell, Bryan Parno, and John R. Douceur. “How to Run POSIX
Apps in a Minimal Picoprocess”. In: Proceedings of the 2013 USENIX
Conference on Annual Technical Conference. USENIX ATC’13. San Jose,
CA: USENIX Association, 2013, pp. 321–332.

[29] Antti Kantee. “Flexible operating system internals: the design and imple-
mentation of the anykernel and rump kernels”. PhD thesis. Aalto Univer-
sity, 2012.

[30] Antti Kantee and Justin Cormack. “Rump kernels: No os? no problem!”
In: Login: USENIX Magazine 39.5 (2014).

[31] David Keller. “Dynamic Linking and Loading in Barrelfish”. Bachelor’s
Thesis. ETH Zurich, 2015.

[32] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. “OSv: Optimizing the Operating System for
Virtual Machines”. In: Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference. USENIX ATC’14. Philadelphia,
PA: USENIX Association, 2014, pp. 61–72.

[33] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
“seL4: Formal Verification of an OS Kernel”. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09.
Big Sky, Montana, USA: ACM, 2009, pp. 207–220.

[34] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski,
Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria
Butrico, Mark Mergen, Amos Waterland, and Volkmar Uhlig. “K42: Build-
ing a Complete Operating System”. In: Proceedings of the 1st ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2006. EuroSys ’06.
Leuven, Belgium: ACM, 2006, pp. 133–145.

[35] J. Liedtke. “On Micro-kernel Construction”. In: Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles. SOSP ’95. Cop-
per Mountain, Colorado, USA: ACM, 1995, pp. 237–250.

[36] Jochen Liedtke. “Improving IPC by Kernel Design”. In: Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles. SOSP ’93.
Asheville, North Carolina, USA: ACM, 1993, pp. 175–188.

41

https://gvisor.dev/docs/architecture_guide/
https://gvisor.dev/docs/architecture_guide/

[37] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. “Unikernels: Library Operating Systems for the Cloud”. In:
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS
’13. Houston, Texas, USA: ACM, 2013, pp. 461–472.

[38] Anil Madhavapeddy and David J. Scott. “Unikernels: Rise of the Virtual
Library Operating System”. In: Queue 11.11 (Dec. 2013), 30:30–30:44.

[39] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.
Markatos. “First-class User-level Threads”. In: Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles. SOSP ’91. Pa-
cific Grove, California, USA: ACM, 1991, pp. 110–121.

[40] NetBSD Rump Kernel Hypercall Interface. https://man.netbsd.org/
cgi-bin/man-cgi?rumpuser. Accessed: August 2019.

[41] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. “A Binary-compatible Unikernel”. In: Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. VEE 2019. Providence, RI, USA: ACM, 2019, pp. 59–73.

[42] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. “Plan 9
from Bell Labs”. In: In Proceedings of the Summer 1990 UKUUG Con-
ference. 1990, pp. 1–9.

[43] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. “Rethinking the Library OS from the Top Down”. In:
ASPLOS XVI (2011), pp. 291–304.

[44] Barrelfish Project. Barrelfish Glossary. Tech. rep. 001. Version 2.0. Sys-
tems Group, ETH Zurich, 2013.

[45] Richard Rashid, Avadis Tevanin Jr., Michael Young, David Golub, and
Robert Baron. “Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures”. In: IEEE Trans.
Comput. 37.8 (Aug. 1988), pp. 896–908.

[46] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper,
Richard Jones, Orran Krieger, Renato Mancuso, and Larry Woodman.
“Unikernels: The Next Stage of Linux’s Dominance”. In: Proceedings of
the Workshop on Hot Topics in Operating Systems. HotOS ’19. Bertinoro,
Italy: ACM, 2019, pp. 7–13.

[47] Kaveh Razavi. “Barrelfish Networking Architecture”. Distributed Systems
Lab Report. ETH Zurich, 2010.

[48] Timothy Roscoe, Kevin Elphinstone, and Gernot Heiser. “Hype and Virtue”.
In: Proceedings of the 11th USENIX Workshop on Hot Topics in Oper-
ating Systems. HOTOS’07. San Diego, CA: USENIX Association, 2007,
4:1–4:6.

[49] Peter Seebach. Implementing Linux emulation on NetBSD. https://www.
linux.com/news/implementing-linux-emulation-netbsd. May 2014.

42

https://man.netbsd.org/cgi-bin/man-cgi?rumpuser
https://man.netbsd.org/cgi-bin/man-cgi?rumpuser
https://www.linux.com/news/implementing-linux-emulation-netbsd
https://www.linux.com/news/implementing-linux-emulation-netbsd

[50] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. “Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors”. In: Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. EuroSys ’07. Lisbon, Portugal: ACM, 2007, pp. 275–287.

[51] Chia-Che Tsai. “A Library Operating System for Compatibility”. PhD
thesis. State University of New York at Stony Brook, 2017.

[52] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira,
and Donald E. Porter. “Cooperation and Security Isolation of Library
OSes for Multi-process Applications”. In: Proceedings of the Ninth Eu-
ropean Conference on Computer Systems. EuroSys ’14. Amsterdam, The
Netherlands: ACM, 2014, 9:1–9:14.

[53] Chia-Che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Prac-
tical Library OS for Unmodified Applications on SGX”. In: Proceedings
of the 2017 USENIX Conference on Usenix Annual Technical Conference.
USENIX ATC ’17. Santa Clara, CA, USA: USENIX Association, 2017,
pp. 645–658.

[54] Windows Subsystem for Linux. https://blogs.msdn.microsoft.com/
wsl/. Accessed: August 2019.

[55] WineHQ - Run Windows applications on Linux, BSD, Solaris and macOS.
https://www.winehq.org/. Accessed: August 2019.

43

https://blogs.msdn.microsoft.com/wsl/
https://blogs.msdn.microsoft.com/wsl/
https://www.winehq.org/

	Introduction
	Barrelfish
	CPU Driver and Monitor
	Capabilities and Virtual Memory Management
	Domains and Dispatchers
	User Level Threading
	Thread Local Storage
	Inter-dispatcher Communication
	File System
	Networking
	Existing POSIX compatibility

	Graphene Library OS
	Resource Handles
	File System
	Virtual Memory
	Threads
	Processes
	Inter Process and Network Communication

	PAL Host ABI
	Resource Handle
	I/O Streams
	Virtual Memory
	Threads
	Processes
	Exception Handling
	Sandboxing
	Miscellaneous

	Linux PAL Host
	Virtual Memory
	I/O Streams
	Threads and Processes
	Miscellaneous
	Security Isolation

	Barrelfish PAL Host
	Bootstrapping
	File Streams
	Virtual Memory Management
	Network Sockets
	RPC Streams
	Threads
	Processes
	Exception Handling
	Miscellaneous

	Evaluation
	Performance
	POSIX Compatibility

	Related Work
	Conclusion & Future Work
	Bibliography

