
Master’s Thesis Nr. 89

Systems Group, Department of Computer Science, ETH Zurich

NUMA Migration on the Barrelfish OS

by

Reto Lindegger

Supervised by

Kornilios Kourtis, Timothy Roscoe

27.8.2013

Abstract

A multiprocessor system with uniform memory access is difficult to scale due to the
increasing contention on the memory bus and the complexity of the connections between
CPUs and memory modules. Non-uniform memory access (NUMA) offers a solution for
these problems by introducing so called nodes. Each node consists of a set of processors
and local memory. Even though every processor can access memory on all nodes, the
access delay differs for local and remote memory. Applications spanning over multiple
cores might suffer from a high access delay for ill-placed memory. In this thesis, we
introduce an extension for the Barrelfish operating system capable of detecting local
and remote memory access and migrating memory between nodes. To achieve automatic
NUMA optimization, we implement a migration policy which analyzes the access pattern
and tries to find an optimal memory placement. Furthermore, we present a benchmark
for measuring the impact of NUMA optimization on memory access performance.

Acknowledgements

First and foremost, I would like to thank Prof. Timothy Roscoe and Kornilios Kourtis for
providing me with the opportunity to explore Barrelfish and contribute to it. This thesis
was a challenging, exciting and incredibly rewarding experience. Moreover, I would like
to thank Kornilios for his assistance and valuable feedback, Simon Gerber and many
other members of ETH Systems Group for their input and ideas and Remi Meier, Lukas
Humbel and Florian Köhl for interesting discussions and constant motivation. Last but
not least, I would like to thank my fiancée Elena Teunissen for keeping me from panicking
when I most needed it, my family for their support and my friends for providing time
away from work.

3

Contents

1 Motivation 7
Outline . 8

2 Non-Uniform Memory Access in Linux 9
2.1 Enhanced NUMA Scheduling . 9
2.2 Automatic NUMA Balancing . 10
2.3 Current State . 11

3 Non-Uniform Memory Access in Barrelfish 13
3.1 Barrelfish in a Nutshell . 14
3.2 Memory Allocation . 15
3.3 Memory Migration . 18
3.4 Memory Access Detection . 21
3.5 Memory Placement Policies . 24

4 Evaluation 25
4.1 Benchmark . 25
4.2 Results and Analysis . 26
4.3 Known Issues and Limitations . 32

5 Future Work 33
5.1 Page Table Access in User Domains . 34
5.2 Alternative Detection Mechanism . 34

6 Conclusion 37

A Benchmark Data 39
A.1 Hardware used for Testing . 39
A.2 Benchmark Results . 39

B Glossary 41

References 43

Bibliography 43

5

1 Motivation

With increasing CPU speed and the ongoing trend of striving towards machines with a
large number of cores, the main memory becomes more and more a bottleneck. Heavily
storage oriented applications such as in-memory databases are especially sensitive to
memory-induced delays. A multiprocessor system with uniform memory access is diffi-
cult to scale, since the contention on the memory bus increases with a higher number of
processors. The CPUs have to stall while waiting for data to arrive from main memory.
One possible solution to address this problem is the use of non-uniform memory access
(NUMA).

Multiprocessor systems with non-uniform memory access divide the main memory into
disjoint region called nodes. Each node has a separate memory bus, which allows the
load for read/write instructions to be distributed onto different buses, thus reducing the
overall bus congestion. One possible setup is one processor per node, so that every CPU
has its own local memory. Note that one CPU can have more than one core, hence it is
still possible for several cores to share one NUMA node. The assignment of processors
to nodes depends on the design and layout of the hardware. An example of such an
architecture is depicted in Figure 1.1.

Although memory access is not limited to the CPU’s assigned node, the difference in the
access time can be significant. While local memory can be accessed relatively fast, store
and load requests to other nodes are slower. Ideally, each task (or process) on a NUMA
system would run on one CPU and use exclusively local memory. Of course this scenario
is oversimplified and rarely encountered in practice. Imagine a multi-threaded program
that operates on a large data set (database, compiler). You could run all threads on
one node and if you are lucky, there are several cores on this node’s CPU. But from the
load-balancing point of view, it is not the wisest thing to do. If the target system consists
of many processors and nodes, you probably want to distribute the load equally on all
nodes. However, this also means the threads are moved away from the data, increasing
the average distance from the processing units to the memory and therefore the access
time. To reduce the loss of performance caused by the long access paths, a careful place-
ment of the data is desired. An operating system can help the programmer by providing
functionalities to allocate memory on certain nodes. This enables the programmer to
allocate memory based on the thread distribution and application characteristics. Of
course, this technique is very static and demands the programmer to know the memory
access pattern at compile time as well as in-depth knowledge of the program flow. A
more elegant solution lets the operating system deal with smart NUMA allocation and
memory placement. A NUMA aware OS can keep track of the memory regions and

7

CPU 0 CPU 1

Memory Bus

Memory

CPU 2 CPU 3

Memory Bus

Memory

Interconnection Network

Node 0 Node 1

Figure 1.1: Architecture of a possible NUMA system

the cores accessing them. When multiple cross-node memory requests are detected, the
system can minimize the overhead of cross-node traffic by moving the corresponding
pages to the accessing node. The conditions under which pages are moved to different
nodes are determined by the operating system. The basic idea is that the time saved
by reduction of the average memory access distance outweighs the overhead of access
detection and move operations. The difficulties of this enhancement are the reduction of
the overhead for access detection and page migration to a minimum, hiding the move op-
eration from the application such that the application can run continuously and finding
an appropriate migration policy.

Outline

This thesis focuses on the functionalities required to detect local and cross-node memory
access and to migrate memory from one NUMA node to another. First, we analyze how
access detection and memory relocation is achieved by the new Linux kernel. Second,
we introduce an extension to the Barrelfish operating system that allows for NUMA
aware memory allocation, access detection and memory migration. In the third part, we
analyze the impact of this enhancement on application performance by using a memory
benchmark with changing access patterns. Finally, we discuss the advantages, disadvan-
tages and problems of the described techniques.

8

2 Non-Uniform Memory Access in Linux

Support for NUMA awareness is highly desirable for modern and widely used operating
systems. For example, Linux introduced a library for NUMA related functionalities
several years ago. In 2004, the features were released for the kernel 2.6 [10]. Amongst
other things, the new control tool (numactl) and the new API allowed allocating memory
on specified nodes and setting memory affinity or allocation policies. The possibility to
relocate memory was later added to the library, but the migration had to be manually
triggered by the programmer [11]. Since automatic NUMA optimization is a really
nice thing to have, there has been quite some activity in the Linux community lately
regarding this task. In spring 2012, two different solutions for NUMA aware scheduling
and memory placement have been presented.

2.1 Enhanced NUMA Scheduling

The first published NUMA optimization was a large patch set contributed by Peter Zijl-
stra in March 2012 [7],[15]. According to the author’s description, the kernel is currently
doing a reasonably good job at keeping short running tasks on a single node. On the
other hand, long running tasks with a large memory footprint can get scheduled on other
nodes (for the sake of load balancing) and so diverge from their corresponding memory.
Since by default memory allocation is done on the node the task currently runs on, this
can lead to an unfortunate memory placement with chunks of memory scattered over
all nodes. In order to prevent memory scattering, Zijlstra introduces the concept of a
home node. Every process has its home node, and the scheduler will try not to move the
process away from it, but will do so if the system became unbalanced otherwise. How-
ever, memory is always allocated from its home node, even if the process is currently
running on another node. At some point, the system might get highly unbalanced with
many processes and little free memory on one node. So the scheduler checks if too many
processes are forced away from their home nodes, and if that is the case, it migrates the
process and its memory to another node. Memory migration is done by using a revised

9

method, called lazy migration, published by Lee Schermerhorn in 2010. The main idea
of this method is to move pages strictly out of necessity transparently from one NUMA
node to another. That is, a page scheduled for migration will not be relocated unless it is
accessed again. When a page migration is triggered for one or more pages, the memory
is unmapped from the page table and marked in a specific manner. The next memory
access to this region will cause a page fault and trigger the actual page migration for the
corresponding page. This technique is an efficient way of moving a large set of pages,
since only the ones that are actually used get migrated.

Furthermore, Peter Zijlstra introduced two new system calls. One call can be used
to form so called NUMA groups by binding several threads to one group ID. The second
system call binds a specified range of memory to such a group. A NUMA group will
always reside on the same node, so when one member of the group is migrated to another
node, all other members follow.

As opposed to the other NUMA enhancement techniques presented here, this method
does not detect or keep track of the local and cross-node memory accesses. It tries to keep
threads and memory on the same NUMA node and avoids situations where cross-node
memory access is even possible.

2.2 Automatic NUMA Balancing

Another approach to enhance NUMA performance was presented by Andrea Arcangeli
at around the same time [5],[1]. The objective stays the same: process and memory
should end up on the same NUMA node to increase performance. He does not use
a home node, but instead tries to determine on which node the task should run and
where the memory should be migrated to. In Zijlstra’s solution, the programmer has
the possibility to create NUMA groups and associate certain memory regions with a
group of threads. Arcangeli wants to hide all the optimization. Everything should run
in background to reduce the work for the programmer.

For this purpose, he introduces a mechanism to detect memory access and gather access
statistics. To support memory access detection, a new kernel thread is created, with the
purpose of scanning through each process’s address space, marking anonymous pages
with a special flag and clearing the present flag in the page table entries. Upon load or
store instruction to this memory region, the address translation done by the hardware
will fail, since the corresponding page is not marked as present. A page fault is triggered
and the operating system’s page fault handler is executed. The handler function sets
the present bit in the page table entry, and the interrupted task can continue to run.
Furthermore, the page fault handler can determine which NUMA node the accessing
process resides on and what page it tried to read or write. This information is used
to gather statistics about the process and the memory page. Every process maintains
an array with every entry holding a counter for one NUMA node. The length of this

10

array also equals the number of nodes. For every accessed page, the counter of the cor-
responding node is increased. On the other hand, every page also keeps track of where
it is accessed from. Creating an array for every page would require too much memory,
hence the statistics for the pages is coarser. Every page only remembers the last node
it was accessed from. At some point, the scheduler has to decide whether it should mi-
grate a certain process or not. Thus, the scheduler analyzes the accessed NUMA nodes
for every process. The process is migrated to the node targeted by the most read or
write operations. Since the memory of one process can potentially be scattered all over
the (physical) address space and thus reside on different nodes, it is not enough to just
relocate the processes. Therefore memory migration is also performed for achieving an
ideal memory/process placement.

Automatic NUMA balancing, or short AutoNUMA, has a quite simple policy for re-
locating pages. As already mentioned, the NUMA node ID of the last accessing CPU
is stored for every page. Should a cross-node access happen, the page is queued for
migration. If the following access is initiated by another node, the migration is canceled.
After the first cross-node access, two faults from the same node will eventually trigger
the migration. For the migration, there is one worker thread per NUMA node for the
actual memory relocation. Obviously, not every read or write operation will be inter-
cepted and added to the statistics. The pages are periodically unmapped, so only the
first access directly after the unmapping will be caught.

One downside of AutoNUMA is the memory consumption. Linux keeps one struct
for every mapped page in a special data structure. AutoNUMA extends this struct to
maintain the access and migration stats. But since there are a many pages in a system,
the struct should be kept as small as possible. Adding new field leads to a much larger
memory footprint for the kernel.

2.3 Current State

After none of the two competing approaches prevailed, Mel Gorman also published a
patch set in the hope of building a basis for NUMA optimization where different poli-
cies could be added to [6],[9]. Eventually, his patches ended up in the Linux main tree1,
though with changes and addition of many contributors including Zijlstra and Arcangeli.
Gorman called his patch set ”Foundation of automatic NUMA balancing”. The patch
set should, as the name suggests, be a foundation for further approaches and policies.
He tried to use concepts from both previously presented change sets and merge them
as far as possible. The Linux kernel2 currently supports memory access detection using
soft page faults 3. According to this principle, pages or memory regions can be marked
and unmapped to intercept write or read operations. If automatic NUMA balancing is

1since version 3.8
2www.kernel.org
3by clearing the present bit of the page table entries

11

base av. G 0 D A C W U R PE res.av.

012345678912405263

P - Present
R - Read/Write
U - User/Superviser
W - Writethrough

C - Cache Disabled
A - Accessed
D - Dirty
G - PROT_NONE

Figure 2.1: Page Table Entry

enabled for a process, the kernel periodically scans through that process’s virtual address
space and tags its pages as NUMA pages. To speed things up, the periodically called
scan function first checks whether a process has ever been scheduled on another node
than it was originally started on. If this is not the case, the process’s memory probably
still resides on the same node, so access detection is not necessary and would not bring
any improvements. The new kernel also supports lazy migration, i.e. a page scheduled
for migration will only be relocated after another (provoked) page fault.

Additionally, Mel Gorman implemented a simple NUMA policy called ”move on ref-
erence of pte numa node” (MORON). MORON serves as a temporary placeholder until
a more sophisticated approach replaces it in the future. The main idea is to move a page
as soon as a cross-node access is detected. Despite its simplicity, the policy still offers a
performance improvement for simple access patterns.

2.3.1 Marking NUMA pages and catching page faults

In the following, we explore how the access detection is currently implemented in Linux.
The detection can be done on page-level, meaning that every page table entry (PTE)
can be marked individually. If the page was simply unmapped, the page fault handler
will not know if it is a provoked page fault or if it is an unexpected fault. Therefore, a
special flag is needed to mark the entry as NUMA-PTE. Rendering a page table entry
NUMA-aware occurs it two steps. Since page table entries (Fig. 2.1) possess only a
limited number of usable flag bits, the kernel developers reuse the 8th bit, known as
prot none and indicating that a page is present but not accessible from user space. Con-
fusion with actual protected areas is not possible, since the flags of the virtual memory
region (struct vm area struct) are checked for the prot none bit prior to checking for a
NUMA fault.

In the second step, the present bit in the PTE is cleared, triggering a page fault upon
a subsequent read or write operation to this page. The fault handler can check whether
the NUMA bit (prot none) is set, and reset the present flag if that is the case.

12

3 Non-Uniform Memory Access in
Barrelfish

Barrelfish is a multi-kernel operating system and designed to be run on many-core ma-
chines. With an increasing number of CPUs and cores, uniform memory access becomes
more unlikely and performance penalties due to non-uniform memory access becomes
an issue. As a result, Barrelfish might suffer from a performance drop should it run
on a NUMA architecture without further optimization. To avoid this problem, Bar-
relfish should support NUMA-aware memory allocation, memory migration and other
enhancement for increasing the performance on NUMA systems. So far, Barrelfish of-
fers functionality to set the affinity for allocation. By providing a base address and an
address limit, the desired memory region for future allocations can be defined. Since
memory of different NUMA nodes is distinguished by its physical address, selecting an
address range for memory allocation equals selecting a NUMA node for the allocation.
However, finding the appropriate memory range for a NUMA node as well as finding
the CPUs node ID is still a cumbersome task. Therefore, creating a simple and useful
interface for these NUMA-related queries is a goal of this thesis.

Currently, Barrelfish lacks support for memory relocation. Once allocated, a block of
memory cannot be moved to other NUMA nodes for optimization or other purposes.
The additional functionality for moving pages to other physical addresses is desirable
and is another objective of the proposed changes for Barrelfish.

The third enhancement of Barrelfish presented in this thesis is a mechanism to detect
memory access, allowing spotting cross-node memory operations and therefore poten-
tially ill-placed pages.

13

3.1 Barrelfish in a Nutshell

Prior to describing our proposed NUMA optimization, we give a brief overview of Bar-
relfish’s architecture with emphasis on its memory subsystem. For detailed information
we recommend referring to the Barrelfish website1. Unlike traditional operating systems,
Barrelfish runs one kernel per core, called cpu-driver. The cpu-driver is responsible for
scheduling dispatchers (nearest equivalent to UNIX processes), handling or forwarding
page faults, traps and exceptions and maintaining and modifying capabilities. Capa-
bilities are OS resources and can only be directly accessed and manipulated by the
cpu-driver. Capabilities can for example represent a block of typed memory. In this the-
sis, we will mainly use frame capabilities, which are a subtype of RAM capabilities. A
frame capability is basically a handle to a block of physical memory that can be mapped
into a domain’s virtual address space. Other capability types include device frames
(access to memory-mapped devices), cnodes (region of memory containing capabilities),
vnodes (memory for page tables, page directories etc.), and others. The capability types,
their usage and further information about capability management is described in Mark
Nevill’s Master’s thesis ”An Evaluation of Capabilities for a Multikernel” [13].

A user application can be referred to as user domain. Usually, a domain has one dis-
patcher running on one core. The dispatcher is the unit of kernel scheduling and manages
the domain’s threads. If a domain is spanned across multiple cores, one dispatcher per
core is deployed. Each dispatcher is responsible for the threads running on its core.

A relevant subsystem for this thesis is the virtual memory. It contains several com-
ponents and data structure which we describe here briefly. Detailed information about
Barrelfish’s virtual memory can be found in Simon Gerbers Master’s thesis ”Virtual
Memory in a Multikernel” [8].

The vspace is an object representing the virtual address space. It contains a list of
all mapped vregions and a reference to the pmap. The pmap is the architecture depen-
dant part of Barrelfish’s virtual memory subsystem. Amongst other content, it contains
functions for manipulating the page mappings (map, unmap, modify flags), information
about the address space and the root of the vnode tree.
Memory regions containing a page table or page directory are called vnodes. It is im-
portant to differentiate between the vnode capability and the vnode struct used in the
user domain. Vnode capabilities are the memory blocks which contain the architecture
dependant data structure 2 used by the memory management unit to translate virtual
to physical addresses. Each vnode capability has a corresponding vnode struct in the
user domain. This struct contains a reference to the capability and is part of the vnode
tree rooted at the pmap. A level in this tree corresponds to a level in the page table.
Inner vnodes represent the page tables, page directories et cetera. Leaf vnodes on the

1http://www.barrelfish.org
2for example PML4, PDPT, PDIR and PTABLE in X86

14

http://www.barrelfish.org

other hand represent the entries in the page table. Hence using a 4-level page table
leads to a 5-level vnode tree. Instead of creating one vnode for every page table entry,
there is one leaf vnode per mapping. Mapping a 64 KiB frame would result in a leaf
vnode covering 16 page table entries3. Leaf vnodes contain a reference to the mapped
(frame-) capability as well as meta-information about the mapping like mapping flags
and number of mapped PTEs.

Architecture independent concepts of Barrelfish’s memory system are vregions and mem-
ory objects. A contiguous block of virtual memory is described by a vregion. It is
associated with exactly one vspace and one memory object. A memory object also
represents a block of virtual memory, but can consist of several vregions. Moreover, a
memory object can contain a reference to the capability that is mapped at its covered
virtual address range. Memory objects are divided into types, e.g. a type one frame
containing exactly one frame respectively its capability. Another type is anonymous.
Memory objects of this type contain a list of frames that are mapped contiguously into
the virtual address space. For this thesis, we will mainly use anonymous memory objects.

Figure 3.1 depicts Barrelfish’s memory system and the components used in this the-
sis. While the diagram shows the most important objects and their relation, some
connections were omitted for simplification.

3.2 Memory Allocation

In order to allocate a block of memory on a specific NUMA node, it is essential to find
the corresponding physical memory range assigned to this node. Moreover, the CPU
affinity should be known so as to be able to allocate local memory. Both the memory
ranges and CPU affinities are stored in Barrelfish’s system knowledge base (SKB) which
mirrors the concept of a database about the hardware, populated at startup.

3.2.1 Initialization

Since querying the facts from the SKB for every NUMA-related operation is inconvenient
and slow, we implemented an initialization method for the NUMA library. The core
idea is to fetch the relevant information and store it for future use. An internal data
structure is created containing all NUMA nodes, their physical base addresses and their
sizes. Furthermore, the associated cores are stored in form of a bitmap for every node.
An additional function allows for querying the NUMA node ID of a given core. Taking
the core ID as argument, the function compares the bitmap of every node against the
core number and returns the matching node’s ID.

3assuming 4 KiB pages

15

F
ra

m
e

Frame
Capability

Capability
Reference

Kernel

User Domain

Phy. MemoryVirt. Memory

VNode
Capability

Capability
Reference

Memory
Object

VRegion

VRegion

VNode

VNode

VNode leaf

page table

page directory

Figure 3.1: Barrelfish’s Virtual Memory System

16

3.2.2 Allocation

The memory allocation logic is embodied within two new functions, which can be used
to get a block of physical memory on a specified node or on the local node respectively.
Both functions return a frame capability for the newly allocated block.

First, the current values for the memory affinity are stored so they can be reset later.
As mentioned previously, a function for setting the affinity for memory allocation al-
ready exists. This function is used to set the allocation affinity according to the desired
NUMA node. Next, a frame capability is obtained by calling the standard ram allocation
method. Finally, the previous values for the ram affinity are restored to prevent any side
effects.

3.2.3 Wrapper Functions

With this additional functionality described above, a basis for the new NUMA library
is created, and NUMA-aware memory allocation is feasible. For convenience reasons,
two wrapper functions allowing for allocating and already mapping a block of memory
are also included in the library. The virtual address of the newly obtained and mapped
block is returned. The wrapper function serve an additional purpose besides merely
simplifying the process of NUMA-aware memory allocation. As we will discuss later,
memory migration can only be done on the granularity of capabilities. Allocating a
large portion of memory leads to a large capability. Migrating such an entire memory
block to another NUMA node is slow, inefficient and unsuitable for NUMA optimiza-
tion. Memory migration should be done on a reasonably small scale. As the memory
access detection mechanism described later in this thesis works on the granularity of leaf
vnodes, the movable capabilities should not exceed the maximal leaf vnode size.

To meet these requirements, we decided to split the requested memory block into smaller
chunks of a defined size. The exact chunk size leading to the best performance is yet to
be analyzed and may be subject to further investigations. So as to allocate a large block
of memory, the wrapper function splits the request into smaller frames which are then
allocated and combined into an anonymous memory object. To identify vnodes which
were mapped with this wrapper function, we introduce a new vnode flag movable (Fig.
3.2).

Furthermore, the NUMA node ID of the allocated memory is stored in the mapping
of each chunk. This information is later used for cross-node access detection and espe-
cially for the NUMA optimization policies.

17

M N G B C E W

012345678

R - Readable
W - Writable
E - Executable
C - Caching Disabled

availableNUMA ID

1624

available

32

B - Message Passing buffer
G - Guard Page
N - NUMA marked
M - Movable

R

Figure 3.2: VRegion/VNode flags

3.3 Memory Migration

To improve performance on a NUMA system, migration of memory from one node to
another is sometimes necessary. The reason for migration might be a relocated process or
a changing access pattern of a multi-threaded and over several core spanned application.
For our NUMA library, we want to provide the possibility of migrating a given memory
region. In theory, the steps for relocating a block of memory are as flollows:

1. Allocate a new block of memory on the desired node

2. Copy the data from the old to the new location

3. Map the newly allocated memory on the old location’s virtual address

4. Delete (free) the old memory region

However, in reality the process is more complex, especially when the already existing
memory subsystem is not designed to support these actions. To elaborate how the
migration is done in Barrelfish’s new NUMA library, some details and difficulties are
described in the following section.

3.3.1 Preparation

As previously explained, we only support the migration of one capability. Allowing relo-
cation of a fraction of the capability would have undesirable implications. Since a frame
capability needs to be a contiguous block of memory, migrating only a part of the frame is
not an option. Splitting a capability into smaller chunks and migrating only one of them
would work, but has some ugly side effects. For the scope of this thesis we therefore allow
only migration of memory which was allocated by the above described wrapper function.

The first step is the easiest and straight forward. To obtain a new memory location
for the relocation, we request a new frame capability on the target node using our pre-
viously implemented allocation function. Since we have to copy the pages from the old

18

to the new location, the new frame capability has to be mapped somewhere in the vir-
tual address space. Although the frame will eventually be mapped on the same virtual
address as the source, we need to find another address for now, so that both the source
and the target frame are accessible in the current domain.

3.3.2 Duplication

Copying the pages from one to another location is achieved by the regular memcopy
function. Yet some possible issues have to be considered in the context of memory mi-
gration. When some pages are migration from node A to node B, the data on these
pages must not be altered from the point where they are copied until the point where
the pages are remapped on the same virtual address as before. In other words, we cannot
allow write access to the memory region we are about to relocate. If this requirement is
neglected, pages on the old NUMA node might get changed after they are copied and the
write operation gets lost. Therefore, we have to remap the source capability read-only.
A write access by any thread to this region will cause a page fault.

However, while solving one problem we created another: The accessing thread will trig-
ger a page fault and might not know how to resolve it. Let us explore Linux’s solution
to this problem. Keep in mind that Linux keeps a struct for every mapped page in an
internal data structure. Upon copying a page, the corresponding page struct is locked,
and the page is unmapped. The lock is released when the migration procedure is com-
pleted. On the other hand, a page fault handler also tries to acquire the lock for the
faulting page before handling the fault. By the time it acquires the lock, the migration is
already completed, and the page fault handler can resolve the fault by mapping the page.

An equivalent to Linux’s page struct are Barrelfish’s leaf vnodes. One main difference is
that a leaf vnode can cover more than one page. With a carefully chosen capability size
at allocation time, we end up with exactly one leaf vnode for each movable capability. A
page fault hander can therefore resolve the fault induced by a write access to read-only
page by comparing the movable flag. If a vnode is set read-only and the movable flag is
set, the handler waits until the migration procedure is finished. The migration procedure
indicates its termination by resetting the writable flag. This method can be improved,
especially since movable read-only memory is not allowed in this scenario. However, it
is sufficient for our test.

In the first step, we mapped the newly allocated frame somewhere in the virtual ad-
dress space in order to be able to duplicate the pages from the old location. Since
eventually we want to map the new frame to the same virtual address the old frame is
currently mapped to, we delete its previously established mapping again.

19

3.3.3 Mapping

In summary, the situation so far is as follows. We have two frame capabilities, one lo-
cated on the source NUMA node A and one on the destination node B. Once the data
from the source frame is copied, the memory looks identical on both frames. The source
frame is still mapped to its original virtual address, exactly where the user application
would expect it to be. The second frame on node B is not mapped at all. It is currently
not accessible, neither by the user application nor by the migrating process. Therefore,
the goal of this next step is to replace the old frame with the new frame. This is done
by changing the page table in such a way, that entries which pointed to the old frame’s
physical address now point to the new frame’s address.

Let us go a bit more into detail. In order to replace a frame capability, we need to
locate the corresponding memory object. Since we currently allow only memory relo-
cation for anonymous memory objects, we have a simplified situation. Nevertheless,
extending this function to support additional memory object types would be easily pos-
sible. The anonymous memory object contains a list with all frame capabilities it covers.
In this list, we need to find and replace the old frame located on node A with the new
frame. Once this is accomplished, we can call the mapping function for this memory
object, which finally invokes the kernel’s functionality for changing the page table entries.

One last problem has to be solved for the seamless exchange of frame capabilities. Bar-
relfish does not allow overwriting an existing page mapping in the page table. The
mapping function in the kernel checks the page table entries and refuses to change a
valid entry. Since until now there is no use case for remapping virtual addresses, an
attempt to do so is seen as error by the calling user task. In order for the migration to
work, we changed this behavior and allowed modification of page table entries. In the fu-
ture, a distinction between intended and unintended modification could be implemented,
possibly by introducing a dedicated function for remapping.

3.3.4 Cleanup

The data is copied to the new NUMA node and the virtual address of the migrated re-
gion now points to the new frame. The user application can already access the memory
on the new node and profit from a performance improvement.
As seen in Figure 3.2, every vnode holds the identifier of the NUMA node where the
mapped frame is located on. Since the location of the underlying physical memory has
changed, the identifier has to be updated. Furthermore, the old frame on the source
node is still allocated, albeit it is not mapped and therefore not accessible anymore. In
order to prevent a memory leak, the capability for this frame needs to be destroyed and
the memory has to be freed for later reuse.

After updating the vnode and destroying the old capability, the migration is fully com-
pleted. Any application accessing the moved memory region continues to work normally

20

without observing further changes. Yet, depending on the NUMA node the application
is running on, the memory access time has increased or decreased respectively.

3.4 Memory Access Detection

The functionality for page migration sets a foundation for memory access optimization.
However, programmers should not have to manually optimize their programs for better
NUMA performance. The mechanism should work automatically and remain hidden
from the running applications. When a domain spans over several NUMA nodes with
threads distributed on many cores, it is difficult to decide which node a shared data
structure should be allocated on. Moreover, during the application’s runtime the access
pattern might change. A previously ideal memory placement might become highly prob-
lematic due to an increasing number of cross-node accesses.

To investigate the application’s behavior, statistics about memory access has to be gath-
ered. This can be achieved by using the hardware mechanism responsible for memory
translation. For every memory access, the virtual address used by the software has to
be translated to a physical memory address. This translation procedure is an obvious
point for intercepting read or write operations. The memory translation hardware and
its associated data structure, the page table, can be misused for memory access detec-
tion. We came up with two different alternatives for this task. Due to time restrictions
we were only able to implement one of them, but we describe the idea of the second
method in this thesis as well. The implemented mechanism is similar to Linux’s method
described in section 2.3.1. Since Barrelfish’s architecture is quite different from Linux’s
monolithic kernel, some changes and adaptations were inevitable.

3.4.1 Granularity

While Linux employs access detection on the level of pages, we choose to use a leaf
vnode granularity. Unlike Linux, Barrelfish does not hold information about every page
in its internal data structure for the virtual memory. In Barrelfish, the lowest level in
the mapping data structure is a leaf vnode. It can contain only one page, but can also
consist of a set of pages. The range of a leaf vnode is determined by the size of the
mapping it represents. For example if a frame of the size of 512 KiB is mapped, one leaf
vnode containing 128 pages is created4. However, we did not want to add additional
leaf vnodes for all mapped pages since it would increase the memory footprint for every
application. Currently, we support only access detection for memory blocks allocated
with the wrapper allocation function described in section 3.2.3. This function already
splits the allocated block into reasonably small chunks and therefore leads to small leaf
vnodes. The size of these blocks fixes the granularity for access detection and for memory
migration. An optimal block size can be determined in the future or alternatively could
be made configurable by the application.

4Assuming 4 KiB pages

21

3.4.2 Detection by Page Fault

The implemented mechanism uses intended (or provoked) page faults. The major steps
for access detection are the following:

1. Mark a page as ’not present’

2. Access to this page triggers page fault

3. Identify accessing NUMA node

4. Mark page as ’present’

Since we do access detection on leaf vnode granularity, the unmapping and mapping is
actually applied to a set of pages instead of a single page. First, we mark a vnode for
access detection by introducing a new vnode flag, for simplicity here called numa flag.
We set this flag in the vnode for which we want to activate access detection. Further-
more, we clear the present flag. To propagate these changes to the page table, we use
the capability invocation for modifying the mapping flags on the corresponding frame
capability. The kernel then performs the actual modification in the page table.

The memory management unit (MMU), responsible for translating virtual addresses
to physical addresses, assumes a page is not present if the present bit in the page table
entry is not set. When an address inside this page is accessed, the MMU cannot translate
the address and triggers a page fault. Depending on the accessed address (e.g. an invalid
address), the type of fault (e.g. write on a read-only page) and also the implemented
behavior, a page fault handler usually maps the missing page or terminates the faulting
application. We patched Barrelfish’s page fault handler to locate the vnode correspond-
ing to the accessed address and check for the numa flag. If said flag is found, it means we
purposely triggered this page fault for the sake of access detection. The core responsible
for this access and thus the accessing NUMA node can be easily determined. What
this information can be used for will be discussed in a later section. By resetting the
present bit in the page table entry, the interrupted application can continue its execution.

Since access detection should run automatically in the background, manually marking
vnodes is not a common use case. Similar to Linux, the virtual address space should be
scanned periodically for misplaced memory and, if necessary, pages should be relocated.
In our implementation, a periodically executed function loops through all vregions and
marks the associated vnodes for access detection. However, we currently support only
access detection for memory allocated with our NUMA library. Therefore we only mark
vnodes with the movable flag.

22

3.4.3 Cross-Core Page Faults

The difficulty of this approach lies in the architecture of Barrelfish. As a multi-kernel
operating system, Barrelfish runs one kernel on each core. If a domain is spanned over
several cores, a dispatcher for this domain runs on each core and is responsible for
scheduling the domain’s threads on this core. While the virtual address space is shared
among the threads of the domain, each dispatcher maintains a tree with vnodes. At the
current state, when a mapping is created on one core and a vnode is inserted into the
local vnode tree, the other dispatchers for the same domain are not updated. There is no
mechanism yet for synchronizing the vnode trees. Even though the threads on all cores
can access the same virtual address space, the vnode for a specific mapping can only be
found on the core where this mapping was established. A mapping created once only to
remain unchanged does not cause any problems. The page table entries for this mapping
are set, and the MMU can translate virtual to physical addresses for all cores using this
address space. However, this implementation leads to challenges and limitations for our
detection mechanism.

The first limitation affects the unmapping or marking of vnodes for NUMA access de-
tection. As explained earlier, the vspace is periodically scanned for movable memory
and the corresponding vnodes. Since vnodes are not synchronized over all dispatchers of
one domain, they can only be found and marked on the node the mapping was created
on. Therefore the access detection is limited to the vnodes that were created on the
same core as the scanning thread is running. A possible solution would include running
scanning and marking threads on all cores. However, for our proof of concept we only
have one marking thread on core 0. Deploying such threads on all cores could be a part
of further improvements of the NUMA library. In our test cases, we use the memory
allocation function only on core 0 to ensure access detection on all relevant frames.

Another problem that arises with unsynchronized vnodes concerns the page fault han-
dler. If a set of pages is marked for access detection (present bit cleared), a page fault
occurs on the core that tries to access a memory address inside these pages. Theoreti-
cally, this is necessary for access detection. For page faults occurring on the same core
the page was previously unmapped (in our case only core 0), this works well. On the
other hand, a page fault on any other core is more difficult to handle. Since the vnodes
are not synchronized among the cores, the corresponding vnode for a faulting address
cannot be found if it was created and marked by another core. Without this vnode, the
page fault handler can neither determine the location of the memory (i.e. its NUMA
node ID), nor can it remap the page and thus handle the fault. The solution we came up
with includes sending a message to the core which unmapped the pages in the first place
(in our case always core 0). In the future, a broadcast-like request to all cores could be
used to identify the core responsible for handling the fault. Another approach would be
synchronizing the vnodes across all cores, so that every core can handle the page faults,
regardless of which core unmapped the pages. While sending a message for finding the
responsible page fault handler adds some overhead for the access detection and page

23

fault handling, synchronizing the vnodes adds overhead and complexity to the memory
mapping and all vnode modifications. A suitable solution for this problem might be
subject to future work.

3.5 Memory Placement Policies

NUMA optimization should run completely transparent and autonomous. No input or
hint from the programmer or the application should be necessary. Therefore, the NUMA
library should decide automatically if an application would benefit from a memory mi-
gration. Whether memory relocation would lead to an increased performance depends
strongly on the application’s memory access pattern. For example, if a thread on node A
accesses a local data structure and a another thread on node B simultaneously accesses
the same data structure, memory migration is useless or even harmful. On the other
hand, if a node A finishes traversing a local data structure, and a thread on node B
continues to access the same data, migration improves the application’s performance.

For different scenarios, the same migration decision has different consequences. Defining
one static migration policy can be counterproductive. We decided to offer an interface for
selecting and registering different policies instad of forcing a single policy. Utilizing the
above described mechanism for access detection, we can gather useful access statistics
and act accordingly. For every tracked access, the registered NUMA policy is called and
provided with the accessed address, the corresponding vnode and the accessing NUMA
node. A clever approach could comprise counting the local and remote memory oper-
ations and deciding whether migration is beneficial based on the percentage of remote
access.

3.5.1 NEMO

In the scope of this thesis, we implemented a simple memory placement policy called
NUMA enabled memory optimizer (NEMO). It is similar to the MORON policy imple-
mented in Linux (section 2.3). Whenever a cross-node access is detected, the accessed
frame is migrated to the accessing NUMA node. This behavior works well with sequen-
tial access to a data structure, but fails for concurrent access from different nodes. The
impact of this policy can be seen in the benchmark results and evaluation later in the
thesis. While it is clearly not an optimal solution for many cases, it demonstrates the
usage of the policy interface and the consequences for the running application. NEMO
can be replaced later with a much more sophisticated and tested standard policy.

24

4 Evaluation

4.1 Benchmark

To test the access detection, the migration mechanism, the NUMA optimization policy
and their influence on the performance, we developed an extendable memory benchmark.
The goal was to simulate a realistic memory access pattern comprising several threads
and local as well as remote read and write instructions. The benchmark consists of two
parts: the coordinator and the actual tests. We refer to the tests as sequences, since
each test is actually a sequence of different access patterns.

Sequences can be extended as desired and new sequences can be added to the benchmark
easily. The controller or coordinator is the centerpiece of the benchmark. It runs the
defined sequences by executing each phase consecutively, and measures the elapsed time
for each phase. The gathered measurements are then added up to provide an overall time
as well as detailed measurements per phase. For our performance tests, we implemented
two sequences with different behavior. The benchmark can be extended at a future date
if needed.

4.1.1 Sequential Access

This test consists of one initialization phase and two access phases. We measure only
access phase time, since the initialization phase does not contribute any information
about NUMA performance. First, a thread on the NUMA node A allocates a predefined
amount of local memory. On this allocated region, a linked list is initialized and shuffled
using the Knuth shuffle [12] in order to force random instead of sequential access. The
access phases traverse the list twice: First, the list is traversed by reading the pointer to
the next element for every element in the list. Second, the list is traversed and one byte
is written to each list element. The first phase is executed on node A, so the load and
store operations access the local memory. The second phase runs on node B but still
accesses the same data structure, which without further optimization leads to cross-node
memory access.

This simple test reveals two important conclusions. First of all, without any NUMA
optimization or cross-node access detection, we demonstrate the different access times
for local and remote memory. Second, with NUMA optimization enabled, the test shows
the impact of the access detection and the migration and reveals the overall performance
boost.

25

4.1.2 Cross-Node Access

The first test explored a simplified scenario targeted only at specific circumstances ig-
noring concurrent cross-node access. In reality, a data structure would most likely be
accessed from different threads on different nodes rather than in a sequential fashion.
The second test sequences attempts to include some more realistic access patterns and
uses simultaneous local and cross-node memory access. Therefore, we assess not only
the impact of access detection and page migration, but also the usability of the NUMA
optimization policy. A policy that initiates multiple migration operations will not reduce
the performance of the simple sequential access test above, since it will only trigger one
memory relocation. For a more accurate and realistic access pattern with several threads
and multiple of cross-node memory access, such a policy might generate some overhead
caused by numerous page migration operations.

There is one initialization phase, which allocates a block of memory of fixed size on
every NUMA node. A linked list is created on each node, similar to the one in the first
sequence. Four access phases follow the initialization:

Local Memory Access:
All threads run on the first node and access only local memory. This should not trigger
any NUMA optimization.
Shared Memory Access:
The treads are evenly distributed among all cores. All thread access memory on the first
NUMA node. Impact of NUMA optimization should be minimal.
Mixed Memory Access:
The threads are evenly distributed among all cores. Every thread starts with local mem-
ory access only and increases the amount of remote memory access up to 100%.
Unfavorable Memory Placement:
The threads are evenly distributed among all cores. Every thread reads memory from
its neighbouring NUMA node. Page migration can establish an ideal memory placement.

4.2 Results and Analysis

To compare Linux’s NUMA optimization and the implementation presented in this the-
sis, we used the same machine for running the benchmark on Linux and Barrelfish. We
executed the two sequences with and without NUMA optimization extension for both
operating systems. Additionally, we also tested AutoNUMA on Linux. Each test was
executed 10 times. The measurements presented in this section are the averaged values.

26

Figure 4.1: Overall results of Sequential
Access benchmark sequence

Figure 4.2: Overall results of Cross-Node
Access benchmark sequence

4.2.1 Overall Performance

First, we analyze the overall performance for each sequence. The elapsed time was mea-
sured in milliseconds for every phase of a sequence, excluding the initialization and setup
phase. The overall performance of a sequence is given by the sum of the execution time
for each phase. The results for the two sequences can be found in Figure 4.1 and Figure
4.2. A shorter execution time denotes a better performance.

As seen in Figure 4.1, the first test sequence benefits from the optimization. In this test,
the memory is first accessed by a local thread and then by a tread on a different node.
Since the access pattern does not include concurrent access from different nodes, the
memory is moved exactly once. Barrelfish’s NEMO policy as well as Linux’s MORON
policy increase the sequence’s performance by roughly 20%, while AutoNUMA increases
the performance by 10%. The difference between MORON and AutoNUMA is due to
the slower reaction time of AutoNUMA. Three consecutive page accesses are required
to initiate a page migration. With a timer interval of 5 seconds, there is a delay of 10
seconds after the first cross-node access.

Figure 4.2 shows the results of the second benchmark sequence. The sequence con-
sists of 4 phases with different access patterns. Since several threads compete for the
memory, NUMA optimization is not as simple as in the first test. This test shows the
usability of a NUMA migration policy in a more realistic scenario. As depicted in the
diagram, the test runs slightly faster on Barrelfish than on Linux. A big difference to

27

Figure 4.3: Results of Local Memory Access
Figure 4.4: Results of Shared Memory

Access

the previous test is the increased number of threads running simultaneously on every
core. We suppose the reason for the increased runtime is the different algorithm for
thread scheduling in Barrelfish and Linux. Because it is not relevant for our evaluation,
we did not investigate the issue any further. In the following, we examine each phase
of the second test sequence individually and analyze how the different NUMA policies
influence its performance.

4.2.2 Performance per Phase

Figure 4.3 shows the measurements of the first benchmark phase. Each core runs mul-
tiple threads that are reading a local data structure. Since all data structures are local
to the threads, no cross-core accesses are performed. This is a best-case scenario for an
application; therefore no memory migration is required. Nevertheless, it is an interesting
phase, because it shows the impact of access detection on the performance. The over-
head introduced by the access detection in Barrelfish is roughly 5%. Linux’s detection
mechanism adds an overhead of 3% while AutoNUMA increases the runtime by less than
1%. The relatively large overhead in Barrelfish is induced by the page fault handling,
especially on cores where messages are required (see section 3.4.3). Barrelfish’s detection
mechanism clearly leaves room for improvement.

Figure 4.4 displays the results for the Shared Memory Access phase. We did not ex-
pect much improvement in this test phase, since the same data structure is accessed

28

Figure 4.5: Results of Mixed Memory
Access

Figure 4.6: Results of Unfavorable Memory
Placement

by multiple threads on different cores. Due to many cross-node accesses, we expected
the memory to be copied recurrently from one node to another and back, leading to
an increased phase runtime. However, the tests show that the performance actually
increases with NUMA optimization. Even though the memory is copied repeatedly, the
application benefits from the relocations. Our interpretation of the situation is as fol-
lows. Assume two nodes A and B, one of them, say A hosting a data structure. While
the threads on node A can access the data structure locally, the threads on B have a
longer access delay. Therefore, all threads on node A finish presumably earlier than
the threads on node B. Since the benchmark measures the time until all threads are
finished, the threads on B are decisive. If the memory is copied back and forth on
the nodes, each thread has partially local memory access and partially remote memory
access. This behavior leads to a longer runtime for threads on node A, but a shorter
runtime for threads on node B. Moreover, our implementation of the memory migration
never completely unmaps the frame until it is copied. Since the benchmark only reads
the data structure, no thread has to be stopped for the memory relocation. Overall,
every thread has roughly the same runtime, thus the measured time for the phase de-
creases by approximately 10%. Linux on the other hand unmaps a page completely for
relocation, therefore the memory is inaccessible for the duration of the migration. This
might be the reason for the smaller performance boost on Linux.

Figure 4.5 shows the impact of NUMA optimisation on the Mixed Memory Access bench-

29

Figure 4.7: CPE for Unfavorable Memory Placement

mark phase. In this phase, there is a data structure stored on each node. Threads start
with local access only and increase the percentage of remote memory reads over time.
In the beginning, there are no cross-node reads, thus no memory relocation is required.
In the end, there is only remote memory access, so one memory relocation per node is
enough to establish a situation similar to the initial condition. If the access is not limited
to the local node, optimization is more difficult and similar to the Shared Memory phase
described above. In Figure 4.7, the measured cycles per element (CPE)1 for the Mixed
Memory Access phase are illustrated. Without optimization, the CPE increases with an
growing amount of remote memory reads. The CPE can be reduced when NUMA op-
timization is active. The worst case scenario comprises all CPUs accessing both remote
and local memory with an equal probability of 50%.

1Element in the list which is traversed by the benchmark

30

Figure 4.6 shows the results for the test phase with unfavorable memory placement. In
this phase, threads on every core access memory on a neighbouring NUMA node. While
this is a suboptimal situation, the memory placement can easily be fixed by the NUMA
policy. NEMO can increase the performance of this test by approximately 40%. As
depicted in Figure 4.8, the overhead induced by remote memory access is roughly 40%.
Therefore, this last phase demonstrates the best possible performance improvement.

Figure 4.8: Difference for local and remote memory access

31

4.3 Known Issues and Limitations

The tests show a reasonable improvement in performance for memory access on a NUMA
system. Nevertheless, the current implementation of the access detection and memory
migration has some restrictions. For the benchmark, some assumptions had to be made
which would not be guaranteed in a real-world application.

4.3.1 Limitations of Access detection

Access detection by intercepting page faults works well and does not add much overhead.
Yet, the usage of the mechanism currently implemented is limited. First of all, as
already mentioned earlier, there is only one thread for marking the vnodes. Moreover,
only vnodes created on the same core as the scanner thread runs on are marked. This
restricts the access detection to memory allocated by the first core only (or whatever core
is running the scanner thread). The second limitation concerns the page fault handler.
When no vnode for a faulting address can be found on the local core, the page fault
handler lets core 0 handle the page fault and waits until the corresponding pages are
mapped again. To avoid any problems with the access detection mechanism, the NUMA
memory allocation function should be called on the same core as the scanner thread is
running.

4.3.2 Limitations of Memory Migration

Memory migration suffers from the same problem as access detection. For relocation a
block of memory, access to the corresponding vnodes is essential. Since the vnodes can
only be found on the core the mapping was created on, the migration function may only
be called on the same core as the original allocation was done. Furthermore, migration
only works on capability granularity. It is not possible to migrate a fraction of a frame
or a memory range spanning over several frames. To enforce the block size limitations,
only memory allocated with the wrapper function described in section 3.2.3 is allowed
for migration.

32

5 Future Work

Currently, there are some limitations for using the access detection and memory mi-
gration mechanisms. The core for scanning and allocating memory has to be chosen
carefully. Moreover, the function for memory migration is also tied to the core where
the memory was allocated. There are several possible improvements or optimizations
for the implemented library:

Page Fault Broadcast:
A technique for finding the core which unmapped a certain page would allow to unmap
pages on all cores. A page fault handler would for example send a broadcast to all cores
and one core would eventually handle the fault and notify the sender. This is a necessary
condition for running scanner threads for access detection on all cores.

Scanner Threads:
Deploying a thread on each core for scanning and marking leaf vnodes would allow to
monitor all potentially movable frames. With this setup, every core is capable of unmap-
ping pages. Therefore it is essential that page faults can be directed to the core which is
responsible for unmapping the page (for example by finding the responsible core using
a broadcast).
Another optimization includes the timer interval for the scan. At the moment, a scan
is performed every 3 seconds. By experimenting with different intervals, an optimal
trade-off between page fault overhead and access time improvement may be found.

Core-Independent Migration:
In the current implementation, the core that established a mapping can move the mem-
ory affected by this mapping. Allowing every core to migrate any memory would require
a similar technique like the page fault broadcast. The core calling the migration function
would request the appropriate core responsible for this specific memory block to execute
the migration.

Memory Block Size:
At the moment, NUMA memory is split into 1 MiB blocks. This is the granularity for
access detection and memory migration. Modifying this block size may change the over-
all performance and memory consumption of an application. Smaller blocks lead to a
bigger memory footprint, since more capabilities and leaf vnodes are created and stored.
It also leads to more page faults, thus the page fault handling overhead increases.

33

On the other hand, larger memory blocks would allow more fine grained access detection,
accurate memory placement and presumably fewer move operations. Experiments could
reveal a convenient size. Another possibility would be an adaptive block size.

Migration Policies:
Our implementation for access detection allows to register a custom policy handler. The
policy would decide at what point a frame should be migrated. In the future, more
policies could be added to find a good standard policy and to give the chance to adapt
the policy to different use cases.

Lazy Migration:
Similar to Linux, Barrelfish could offer a lazy migration policy. Memory blocks sched-
uled for migration would not be moved instantly but rather unmapped and marked for
migration. Upon the first access originated from the target node, the frame would be
migrated. With this technique, memory would only be migrated if it is ever used again
by the target node.

5.1 Page Table Access in User Domains

In 2012, a research group from Standford University presented a paper about a project
called Dune [3]. The goal of Dune is to provide applications with access to hardware
features in a safe manner. It enables an application for example to access the page
table directly, without having to make a call into the kernel. This is made possible by
using the virtualization hardware in modern processors. The access detection mechanism
described in this thesis could benefit from such a direct and safe access to the paging
hardware. Marking vnodes for detection and especially clearing the present bit in the
page table entries would not require an invocation to the kernel anymore. It could be
done by the application directly, without having to ask the kernel to do it. Of course the
same is true for remapping the marked pages in the page fault handler. The overhead
introduced with the access detection by page faults could be reduced to a minimum.

5.2 Alternative Detection Mechanism

In the following section we present a different approach for access detection. It also
uses the page table, but avoids page faults completely. Due to time constraints we were
not able to implement this method. However, we shall describe here the basic idea be-
hind it, since it would be an interesting project for the future. Avoiding page faults
has several advantages. First of all, page fault handling takes time and the application
(or at least the thread that caused the page fault) is stopped for that duration. With-
out any page faults, the running thread does not get interrupted for access detection.
Second, a method for requesting other cores to handle page faults as described above is
not needed. The amount of messages necessary to track memory operations is minimized.

34

Instead of soft page faults, the page table entry’s accessed bit is used. This bit in-
dicates, that the page was accessed at least once. The page table would be scanned
periodically and the accessed bit would be read and reset for the relevant entries. This
would provide information about what pages were recently (during the timer interval)
accessed. With the above suggested technique for providing user domains (restricted)
access to the page table, reading and clearing this bit could be done quite fast. Since
the bit only reveals if a page was accessed or not, but does not allow to determine the
accessing core or NUMA node, further adaptations would be needed. Identifying the
origin of a memory operation is one of the challenges in this approach. It could be done
by duplicate the page table. Currently, there is one page table per domain, even if the
domain is spanned across several cores. By duplicating the page table, each core could
have its own page table for memory translation. This would allow to detect page access
for every core separately. The per core information would be accumulated by using
an echo-algorithm as described by Ernest Chang in ”Echo Algorithms: Depth Parallel
Operations on General Graphs” [4]. The collected data would provide statistics about
what core (or NUMA node) accessed what pages.

Aside from the fact that the memory consumption would be increased by using mul-
tiple page tables per domain, one problem remains yet to be solved. All page tables of
the same domain need to be consistent. So synchronizing the tables would be necessary.
When one core changes an entry, either by mapping or unmapping a block of memory
or by changing the permission flags, all other cores need to adapt these changes.

35

6 Conclusion

In the scope of this thesis we introduced a new approach to improve the performance
of applications running on Barrelfish on a system with non-uniform memory access.
We extended Barrelfish with three different functionalities, and provided an extendable
benchmark for testing the performance impact.

First, we introduced a method for allocating memory on a given NUMA node. Pro-
vided with a node ID, the implemented library determines the matching memory range
for this node, and allocates a frame of desired size in this range. Moreover, the library
allows for allocating memory on the local NUMA node by identifying the caller’s node
ID and executing NUMA allocation on this node. Second, we introduced a technique for
relocating a block of physical memory. The virtual addresses pointing to this address
region remain unchanged for this relocation, thus the procedure is completely transpar-
ent for the user application. In order to migrate a memory frame to another node, the
content of the frame is copied to the new location, the page table is modified to map
the new instead of the old frame, and the old frame is freed. Third, we implemented
memory access detection for Barrelfish. The detection mechanism allows for tracking
an application’s memory operations. Additionally, the mechanism provides a hook for
placement/migration policies. The policy gathers information about local and remote
(cross-node) memory operations and decides when a frame should be moved. We imple-
mented a policy called NEMO which relocates a memory range whenever a cross-node
access is detected.

To test access detection, memory migration and our policy, we implemented a bench-
mark with a changing memory access pattern. The benchmark is extendable, so that
different access patterns and tests can be added in the future. The benchmark may also
help to develop and test new, more sophisticated placement policies. As our benchmark
has shown, the policy introduced in this thesis can improve the performance of memory
accesses by a significant amount. While the overhead induced by the access detection is
small, it could be reduced even more by improving the page fault handling used by the
detection mechanism or avoiding the page faults altogether.

37

A Benchmark Data

A.1 Hardware used for Testing

All tests and benchmarks were executed on a X86 64 machine running a 64 bit version
of Barrelfish or Linux respectively. The system has two NUMA nodes with one dual
core CPU on each node.

Hardware
CPU: 2x Dual-Core AMD OpteronTM 2220
Frequency: 2.8 GHz
L1 Cache (per core): 64+64 KiB (i-cache and d-cache)
L2 Cache (per core): 1 MiB
Main memory: 8 GiB (4 GiB per node)
Linux: Kernel 3.9 (MORON), Kernel 3.3 (AutoNUMA)

A.2 Benchmark Results

The execution time per phase and sequence is measured in milliseconds. The following
table lists the averaged measurements and the standard deviation of all tests.

Barrelfish NEMO Linux MORON AutoNUMA
avg. σ avg. σ avg. σ avg. σ avg. σ

Local Read 14260 3 14236 3 13502 189 13993 945 13356 260
Remote Read 1 20200 6 14891 8 20378 334 14396 284 19707 390
Remote Read 2 20199 4 13732 4 20381 338 14061 180 15000 772
Total 54659 12 42859 12 54260 860 42449 485 48063 1181

Local Phase 205262 374 216654 3492 214300 1611 220415 2418 215129 3872
Shared Phase 110882 548 97666 1493 134532 1269 131781 947 129940 4339
Mixed Phase 509580 4187 452319 7392 540287 4917 535165 2919 533360 11553
Unfavorable 175763 6968 98907 2740 183069 1149 180505 578 191803 11020
Total 1001487 9078 865546 7819 1072188 8669 1067866 4761 1070233 24117

39

B Glossary

The structures, concepts and terms of the Barrelfish OS used in this thesis are listed below.
Information about the operating system’s architecture can be found on the official homepage1.

Capability: An object representing OS resources (e.g. physical memory or interrupt rout-
ing tables). Capabilities are located on protected memory and can only be accessed or modified
by the cpu-driver. Since capabilities are managed by trusted code, they are safe from unautho-
rized access or malicious modification.

Capability Reference: An object used in user domains for referencing a capability. The
Capability itself can only be accessed and modified by the cpu-driver.

CPU-driver: Kernel in Barrelfish. Each core runs a cpu-driver, responsible for dispatcher
scheduling, capability management and interrupt, trap and exception processing. No state is
shared between the cores.

Dispatcher: The unit of kernel scheduling. It manages the threads of its domain on one
core. A domain has usually one dispatcher. If the domain is spanned over multiple cores, it has
one dispatcher per core.

Domain: An application or service in Barrelfish. Threads in a domain typically share the
same virtual address space.

Frame: A block of contiguous physical memory of various size.

Memory Object: An object representing a block of virtual memory. It consists of one or
more vregions. Unlike vregions, memory objects are typed. Two examples of memory types are
frames and anonymous memory.

MMU: Memory Management Unit; Hardware component which translates virtual addresses
into physical addresses by using a page table. The MMU also checks access permissions for
memory pages and page flags.

NUMA node: A part of a NUMA system containing one or multiple processor(s) and some
memory. A processor can access all memory addresses on the same node equally fast. The access
time differs between memory on the local node and memory on a remote node.

Page: A block of contiguous physical memory with a fixed size (4 KiB for normal pages).
Virtual memory can be mapped with the granularity of pages.

1http://www.barrelfish.org/

41

Page Table: Data structure used for address translation. The table comprises one entry for
each mapped page in the virtual address space. Additionally to the translated address, the entry
also contains flags for access permissions, user/superviser protection and cache options. The
page table usually has multiple levels for fast and space-saving translation of addresses in a large
and sparsely populated address space.

PMap: An object representing the mapping of virtual to physical addresses. It contains the
vnode tree’s root node and various functionalities for mapping and unmapping virtual addresses
or modifying the mapping flags.

SKB: System Knowledge Base; A database for information about the system (e.g. number
of cores, memory affinity,..). It runs as a system service on one of the cores and can be accessed
by all applications.

VNode: Either a level of the page table (page directory, page table,...) or a set of page ta-
ble entries.

VNode Tree: A data structure containing all vnodes of a virtual address space. Each level
of the tree represents a level in the page table. The Leafs of this tree represent one or more
page table entries and contain additional information about the mapping and a reference to the
mapped physical frame.

VRegion: An object representing a block of contiguous virtual memory. The vregion does
not comprise information about the mapping of virtual memory.

VSpace: An object representing the virtual address space. A vspace holds a list of all vre-
gions in the address space and has reference to a pmap.

42

Bibliography

[1] Andrea Arcangeli. Autonuma alpha10. http://lwn.net/Articles/488686/, March 2012.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The multikernel:
a new OS architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages 29–44, New York, NY,
USA, 2009. ACM.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos
Kozyrakis. Dune: Safe user-level access to privileged cpu features. In Proceedings of the
10th Symposium on Operating Systems Design and Implementation, Stanford, CA, USA,
2012.

[4] Ernest J.H. Chang. Echo algorithms: Depth parallel operations on general graphs. The
IEEE Transactions on Software Engineering, SE-8:391–401, 1982.

[5] Jonathan Corbet. Autonuma: the other approach to numa scheduling. http://lwn.net/

Articles/488709/, March 2012.

[6] Jonathan Corbet. Numa in a hurry. http://lwn.net/Articles/524977/, November 2012.

[7] Jonathan Corbet. Toward better numa scheduling. http://lwn.net/Articles/486858/,
March 2012.

[8] Simon Gerber. Virtual Memory in a Multikernel. Master’s thesis, ETH Zurich, 2012.

[9] Mel Gorman. Foundation for automatic numa balancing. http://lwn.net/Articles/

523065/, November 2012.

[10] Andi Kleen. libnuma/numactl and NUMA API release notification. http://lwn.net/

Articles/67005/, January 2004.

[11] Andi Kleen. A numa api for linux. http://www.halobates.de/numaapi3.pdf, August
2004.

[12] Donald E. Knuth. The art of computer programming, volume 2 (2nd ed.): seminumerical
algorithms, pages 139–140. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[13] Mark Nevill. An evaluation of capabilities for a multikernel. Master’s thesis, ETH Zurich,
2012.

[14] Andrew S. Tanenbaum. Modern Operating Systems, pages 529–531. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2007.

[15] Peter Zijlstra. sched/numa. http://lwn.net/Articles/486850/, March 2012.

43

http://lwn.net/Articles/488686/
http://lwn.net/Articles/488709/
http://lwn.net/Articles/488709/
http://lwn.net/Articles/524977/
http://lwn.net/Articles/486858/
http://lwn.net/Articles/523065/
http://lwn.net/Articles/523065/
http://lwn.net/Articles/67005/
http://lwn.net/Articles/67005/
http://www.halobates.de/numaapi3.pdf
http://lwn.net/Articles/486850/

	Motivation
	Outline

	Non-Uniform Memory Access in Linux
	Enhanced NUMA Scheduling
	Automatic NUMA Balancing
	Current State

	Non-Uniform Memory Access in Barrelfish
	Barrelfish in a Nutshell
	Memory Allocation
	Memory Migration
	Memory Access Detection
	Memory Placement Policies

	Evaluation
	Benchmark
	Results and Analysis
	Known Issues and Limitations

	Future Work
	Page Table Access in User Domains
	Alternative Detection Mechanism

	Conclusion
	Benchmark Data
	Hardware used for Testing
	Benchmark Results

	Glossary
	References
	Bibliography

