
Master’s Thesis Nr. 83

Systems Group, Department of Computer Science, ETH Zurich

Multicore Virtualization over a Multikernel

by

Lukas Humbel

Supervised by

Stefan Kaestle, Adrian Schüpbach, Timothy Roscoe

5.5.2013



Abstract

The recent trend towards more CPU cores has led to the design of
the multikernel operating system architecture. Applications and operat-
ing systems, multikernel based or not, are adapted to take advantage of
multiple CPUs. When executed under virtualization, these applications
need multiple CPUs to achieve good performance. This thesis studies the
design choices and the performance of an implementation of a multi core
virtual machine monitor on top of a multikernel.

Whenever possible the design uses operating system facilities, for ex-
ample the message passing system or the access control. Our solution
is capable of running an unmodified Linux with comparable performance
to that of KVM. We show that Linux requires low latency interprocessor
interrupts to perform well. Additionally, we found a polling based mes-
saging mechanism unsuitable for emulating those interrupts on the host
side.

The performance evaluation revealed the slowdown caused by the need
of multiple memory indirections when running under virtualization. More-
over, the effects of gang scheduling on performance are quantified when
applied to virtual CPUs. This specific type of scheduling denotes the exe-
cution of all virtual CPUs at the same time. We have observed workloads
that perform not only better or equal under gang scheduling, but worse
too.

The effects of placing virtual CPUs on varying NUMA nodes have been
investigated. On our test machine, a memory bound microbenchmark
has shown considerable effects, while on other workloads they were non
existent or minimal.
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1 INTRODUCTION

1 Introduction

Many hardware virtualization solutions have been developed both for commer-
cial use and in academics. They have proven useful in solving a broad range of
tasks. Virtual machines are used to run multiple operating systems in parallel
providing isolation from each other. Servers can be consolidated to increase
utilisation of hardware resources, improve energy efficiency and save physical
space. To enable migration, virtual machines can be stopped and resumed at
any point in time.

The hardware landscape has changed significantly during the last decade.
Nowadays, multi-core systems are standard in commodity hardware and the
trend towards integrating more and more processing cores on a chip continues.
Hence it follows that applications and operating systems are adapted to take
advantage of multiple cores.

To cope with the increasing core count at the operating system level, one
idea is to use the multikernel architecture. A multikernel operating system em-
ploys independent kernels on each CPU1. Instead of relying on shared memory,
communication between cores is made explicit by using message passing.

To provide multi core optimised applications a familiar environment, it is
necessary to provide multiple CPUs to a system under virtualization. There
are already several virtualization systems on the x86 architecture that offer
this feature. While they all provide a very similar interface to the guest, their
implementation differs.

Since the guest operating system expects to run on bare hardware, it assumes
to own the hardware completely. To sustain this illusion in a multi core VM2,
the scheduling of the emulated CPUs must be done carefully. How to schedule
virtual CPUs fair and without degrading VM performance is still a matter of
research.

The aim of this thesis is to find a suitable implementation of a multi core vir-
tual machine running on a multikernel based operating system. We examine how
to implement the virtual machine monitor in a secure and well performing fash-
ion using the facilities provided by a multikernel system. These facilities include
capabilities for rights management, messaging infrastructure and fine grained
control over scheduling parameters. Due to time constraints, we were only able
to use AMD’s virtualization extensions. As Intel’s virtualization extensions are
similar, our design decisions made are applicable to Intel’s implementation too.
Although the design supports an arbitrary number of CPUs, we have limited
our evaluation to two CPUs.

In order to measure performance, the virtual machine should be able to run
an unmodified Linux. The performance of our implementation is compared to
the Linux kernel based virtual machine and to native execution. Once the VM
is started, we keep the allocation of virtual CPUs to physical CPUs static and
we allow at most one virtual CPU to run on each physical CPU. Therefore,

1Central processing unit
2Virtual Machine
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1 INTRODUCTION

the effect on performance of such different allocations is evaluated. A number
of workloads are used to identify non-uniform memory architecture (NUMA)
effects.

To gain a better understanding of the implications of different scheduling
strategies, different workloads are executed under gang scheduling, where all
virtual CPUs run concurrently and under a forced asynchronous scheduling. We
avoid scheduling optimisations in order to get reproducible worst case results.
This method is useful regarding the study of the guest’s behaviour. Due to the
lack of obvious optimisations, it is not possible to rate real world scheduling
techniques from our results.

Overview

An overview of the relevant subsystems for multiprocessing on x86 and the mode
of operation of x86 virtualization gives Section 2. In Section 3, the subsystems
of Barrelfish used by our virtual machine are explained. These include process
management, messaging, capabilities and the old state of the virtualization so-
lution, on which our implementation is based. Section 4 analyses problems that
multi core virtual machines face. Currently implemented and proposed solu-
tions to these problems are reviewed. Section 5 discusses the design decisions
made, whereas in Section 6 the implementation on top of Barrelfish is exam-
ined. Section 7 evaluates whether our goals are achieved or not and presents the
results of some experiments concerning core placement and scheduling strategy.
Eventually, Section 8 concludes the work by reviewing our design decisions and
performance results.
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2 VIRTUALIZATION ON X86

2 Virtualization on x86

2.1 Virtual Machine Terminology

Virtual machine is a commonly used term. In this thesis, virtual machine (VM )
refers to a system which provides the software running under it a duplicate of
real PC hardware. The host is the machine on which the virtual machine is
running. Physical CPU (pCPU ) refers to a CPU of the host.

The guest is the software running within the virtual machine and is usually
a whole operating system. Virtual CPU (vCPU ) refers to a (simulated) CPU
of the guest.

The virtual machine monitor (VMM ) is the controlling part of the virtual
machine. It emulates the hardware, manages memory for the guest and commu-
nicates with the host operating system. It is often also referred to Hypervisor.

One distinguishes between a type 1 VMM [Gol73] which runs directly on
the host hardware, while a type 2 VMM runs on a host operating system.
Examples for a type 1 VMM are Xen and VMWare ESX. A popular example
of a type 2 VMM is the Linux kernel-based Virtual Machine (KVM ). There is
some dispute if KVM is a pure type 2 hypervisor, because it requires a kernel
module to be loaded in the host operating system. However, the kernel module
is necessary if a VMM wants to use hardware extensions and KVM keeps as
much as possible in the user space. A context switch from the VM to the
VMM is called a VMEXIT. This happens for example when the guest wants to
access the hardware. The opposite context switch is called a VMENTER. This in
turn happens for instance when the VMM has emulated the requested hardware
access and wants to continue the VM execution.

2.2 Virtual Machine Overview

There are different techniques how to implement a virtual machine (see [San09]
for an elaborate discussion).

As the x86 architecture does not fulfil the virtualization requirements stated
by Popek and Goldberg [PG74], it is not possible to run a whole operating
system unprivileged like a normal user process. The requirements state that
every instruction should either behave the same in all privilege levels, or it
should always trap when running unprivileged. An example of a problematic
x86 instruction is POPF. When running privileged, the operation can be used to
set the interrupt enable flag. As it is undesirable to let unprivileged processes
change the interrupt behaviour, the instruction ignores the interrupt flag when
executed unprivileged. This is a violation of the virtualization requirements, as
the instruction should either behave unaltered or trap into the operating system.

To enable virtualization anyway, there are several ways around. First, one
could emulate the whole machine and not let anything run directly on the hard-
ware. As emulation adds a lot of overhead, the usefulness of such a solution is
limited.
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2.3 Virtualizing Memory 2 VIRTUALIZATION ON X86

To speed up emulation, the host could not directly emulate all operations
but emit code that is doing so. This approach is called binary translation. Using
this approach, VMware was able to virtualize x86 with acceptable performance
and no help from the hardware.

Another idea is not to fully virtualize every aspect of the platform, but to
modify the guest operating system to allow correct execution. This approach
is called paravirtualization. The big drawback is the need for modifying the
guest operating system limits the choice of available guest operating systems.
In the case of commercial operating systems, the vendor must cooperate with
the hypervisor manufacturer to include the necessary modifications.

As the hardware vendors realized the need for virtualization, they started to
include hardware extensions which allow the guest to run unmodified while tak-
ing full advantage of the hardware. The extensions give the VMM fine grained
control when to transfer the control back from the guest to the VMM.

We focus our work on the x86 architecture and on virtual machines which
make use of these hardware extensions (either AMD SVM or Intel VT). The
basic mode of operation for both extensions is based on ”trap and emulate”. The
VMM sets up a block of memory which describes the state of the virtual CPU
according to the CPU vendors specification. It then uses a special (privileged)
instruction to start the VM, providing the memory region as an argument.
The VM runs until an exit condition occurs, for example it may perform I/O
or access an unmapped memory region. Then, the CPU restores the state it
had before entering the VM and the control is transferred to the VMM. The
VMM examines the exit condition to determine what action caused the exit and
emulates the action the virtual CPU intended. After the emulation, it re-enters
the VM by performing again a VMENTER.

2.3 Virtualizing Memory

The VMM must take care that the guest can only access the memory designated
to it. The guest operating system expects to have direct access to the physical
memory and the currently used page table. Clearly, this operation must be
limited, otherwise the guest is able to access any physical memory region.

To do so, the x86 virtualization solutions offer two mechanisms. The first is
so called shadow paging, which works without hardware assistance. The VMM
intercepts all access to the page table register and translation lookaside buffer
(TLB) related instructions. Once the VMM catches such an access, it inspects
the page table and constructs a new page table which does not map guest virtual
to guest physical addresses but maps directly guest virtual to host physical. As
this operations are quite costly and introduce additional VMEXITs, hardware
manufacturers started to include improved MMUs which are able to perform
this operation in hardware.

Today, most systems support these hardware extensions to allow so called
nested paging. The nested paging mechanism implemented by AMD is also
called Rapid Virtualization Indexing (RVI ). Nested paging involves two page
tables, the outer page table is set by the VMM and the inner page table is set
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by the guest operating system. To translate a guest virtual address, first the
inner page table set by the guest operating system is traversed to find the guest
physical address. The found address is translated further into a host physical
address using the page table provided by the VMM. The hardware page table
walker has to perform a lookup in the outer page table at every step of the walk
of the inner page table. Hence the number of lookups is squared compared to a
non virtualized lookup. Once a mapping is found, a direct guest virtual to host
physical mapping is inserted into the TLB.

A guest and VMM context switch can happen without flushing the TLB by
making use of different tags for each domain. To save memory, a VMM may
not directly allocate and map all memory for the guest, but catch page faults
from the guest and install a mapping on demand.

2.4 Interrupt Handling

As x86 CPUs provide only one interrupt line for general purpose interrupts,
the interrupts from different sources must be multiplexed to this line. Before
the appearance of systems with multiple CPUs, x86 systems usually used the
Intel 8259 Programmable Interrupt Controller (PIC ). A single chip is able to
multiplex eight interrupt lines to one. To increase the number of interrupt
inputs, two or more PICs can be cascaded. Typically two of them were used,
providing 15 interrupt input lines. Once the CPU receives an interrupt, it reads
the interrupt vector from the PIC using additional lines.

A drawback of this design that only one output is supported. Hence, in a
system with multiple CPUs, only one would be able to receive interrupts. Also
the limited number of interrupt lines made it hard to create flexible hardware
extensions.

To overcome these limitations, the Advanced Programmable Interrupt Con-
troller (APIC ) has been designed. It replaces and extends the functionality of
the PIC. The biggest improvement over the PIC is the ability to route interrupts
to any core. This is important to distribute the interrupt load among cores and
enables true symmetric multiprocessing (SMP). SMP is a type of multiprocessor
architecture in which every core is able to perform the same set of tasks, such as
accessing the same memory, using I/O and, as mentioned, receiving interrupts.

The APIC system consists of a core local part, the so called local APIC. The
interface to the hardware consists of one or more I/O APICs. These APICs are
connected over a bus to transmit interrupts. The operating systems can config-
ure the I/O APIC to transfer interrupts to any local APIC. As an additional
interrupt source, each local APIC contains a core local timer.

It is desirable that the operating system can trigger an interrupt on a remote
core. To do so, the APIC supports interprocessor interrupts (IPI ). The OS can
command the APIC to send an IPI to any subset of cores. IPIs are also used to
boot secondary CPUs. Hence, the APIC is a crucial component for supporting
multiprocessing on x86.

Most systems still contain a PIC compatible interface to offer interoperability
with legacy operating systems. The PIC can also be used together with the

8
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APIC. To do so, the APIC is able to forward interrupt requests from a PIC
to the CPU. When using this combined setting, only the first CPU is able to
receive interrupts from hardware, but the secondary CPUs can still use the core
local timer and IPIs.

2.5 ACPI

Modern systems use the Advanced Configuration and Power Interface (ACPI )
to perform device discovery and energy management. The operating system
access the information by reading multiple memory mapped tables.

Some tables contain complex data structures, such as a device tree, or ex-
ecutable methods. These are written in a human readable format, called the
ACPI source language and are compiled and stored in byte code. The operating
system uses an interpreter to extract the structures or execute the methods.

Of relevance for multiprocessing is the Multiple APIC Descriptor Table.
Operating systems use this table to determine the number of installed CPUs
and their physical identification numbers.

The first multi processor x86 systems were produced before ACPI was fi-
nalised. Hence, they offered the information to the operating system in different
format. The systems used the Intel Multiprocessor Specification (MPS ).

2.6 Multicore Virtualization

Extending this trap and emulate strategy to multiple cores is straightforward:
For each additional CPU the VMM starts a new thread which performs trap
and emulate until the virtual machine is stopped.

However, there are several design choices when it comes to virtual hardware.
Either the emulation is permitted in each CPU execution thread. Then the
virtual devices must be aware of that and use locking where appropriate. Or,
one can use a single thread for all virtual hardware.

The virtual hardware itself may perform long running operations, such as
disk I/O. To provide an asynchronous interface to the guest, either the virtual
hardware must use asynchronous host APIs or start a new thread for such long
running operations. In cases where the virtual hardware must perform long
running computations, the use of asynchronous APIs is not possible.

As x86 is a shared memory system, each CPU should see the same memory.
Hence for each address translation from guest physical to host physical the same
mapping can be applied. In the case of nested paging, this implies the outer
page table can be shared by all vCPUs.

Having additional cores running in isolation is not useful. A platform that
supports SMP (or multiprocessing in general) must provide some infrastructure
to allow CPU discovery, communication and notification. As discussed, x86
provides these mechanisms through ACPI, shared memory and IPIs provided
by the APIC system.

Hence to support a x86 multi processor guest operating systems, the men-
tioned facilities have to be emulated. There is a number of commercial and
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free products that provide a multi core virtual machine, in this thesis we will
examine VMWare ESX, Xen, KVM and our own solution VMKit.

10



3 BARRELFISH

3 Barrelfish

Barrelfish [BBD+09] is a research operating systems developed by the Systems
Group at ETH Zurich, it uses a novel multikernel architecture. It is designed to
cope with recent and future hardware trends. It is built on the assumptions that
the number of cores per chip increases and that they will become heterogeneous.
Heterogeneous in the sense that not all cores may use the same instruction set,
the memory access latency is not uniform and that the caches do not need to
be coherent and accessible by all cores.

To cope with these trends, the multikernel architecture was designed. In such
an OS, every core hosts one kernel, called the CPU driver. Between these kernels
state is not shared, but replicated. If state across CPUs must be modified, it
is done over explicit messages. This way, no locks are needed inside the CPU
driver.

Each CPU driver is accompanied by a monitor instance. The monitor pro-
cesses, one on each core, are responsible for providing global shared state to
other processes. All monitors run an agreement protocol to keep the state con-
sistent. The monitor is also responsible for setting up messaging channels.

3.1 Process Management

The CPU driver is responsible for multiplexing hardware resources to user-space
processes. It is also responsible for scheduling and dispatch of the user-space
processes.

User-space processes are called domains in Barrelfish. A domain consists
of a virtual address space and a set of dispatchers. A domain which wants to
execute on a given core needs to create a dispatcher on the desired core. Once
the dispatcher is made runnable, it will enter the run queue of the CPU driver
and gets scheduled. To allow the CPU driver to execute user space domains, it
must keep some information, such as the runnable state, about the domains it
owns. This information is saved in the dispatcher control block (DCB).

Thread management is done entirely in user-space. When the dispatcher is
invoked from the CPU driver, it will not simply continue at the last executed
instruction, but it will call the user-space dispatcher. The dispatcher will decide
on its own which thread to run.

As a consequence of this design, the CPU driver cannot decide to put a
thread on another core. Hence threads are immovable assigned to a dispatcher,
which in turn is fixed to a specific CPU.

Barrelfish provides a generic way how to handle callbacks. When a user
space application sets up a messaging channel it can provide callbacks which
should be called when a message arrives. When a message arrives, the callback
is not called immediately but it is inserted in an event queue called waitset. As
there may be multiple waitsets, the process specifies the one it likes to use at
binding time. To allow the user process to handle these callbacks at well defined
times, it must explicitly dispatch events from the waitset. A process can request
an event from a waitset in a blocking manner.

11



3.2 Capabilities 3 BARRELFISH

The user-space dispatcher also contains support for timed callbacks, so called
deferred events. The dispatcher maintains a list of all not yet triggered deferred
events. Every time the dispatcher is invoked from the CPU driver, it checks if it
is time to execute an event. If so, it puts the event in the queue for the specified
waitset. When a user thread dispatches events from the waitset the next time,
the handler will be called.

3.2 Capabilities

Barrelfish uses capabilities to manage access to resources. A capability is an ob-
ject which is attached to a process and represents a right to use or the ownership
of a resource. So it can be seen as the opposite of an ACL, which is attached
to the resource and lists all processes allowed to use the resource. Capabilities
are stored inside the CPU driver and may only be manipulated by privileged
code. A process has no direct access to its capabilities, but uses references and
syscalls to perform actions on its capabilities.

3.3 Communication

Barrelfish uses explicit rather than implicit sharing of data structures. Implicit
sharing denotes the access of the same memory region from different processes.
Explicit sharing denotes replicated copies of the structures and synchronizing
them using messages. Barrelfish employs Flounder, a domain specific language
for describing interfaces. Flounder uses the descriptions to generate message
passing functions. For the client, using these methods is transparent. Internally,
flounder selects one from multiple possible backends at binding time.

Messages are passed over different backends, depending whether the com-
munication crosses cores. If it the communication stays on one core, Barrelfish
uses LMP. LMP stores the message payload directly in the CPU’s registers. If
the communication goes cross-core, UMP is used. UMP stores the payload in
memory. The receiver polls the memory to receive the message. To keep the
bus traffic as low as possible, the payload size matches a cache line size.

Another backend available is the UMP-IPI backend. In addition to the
mechanics of UMP, it sends an IPI to the destination core. On the destination
core, the CPU driver checks which process is receiving the message and schedules
the process immediately.

3.4 Old VMkit Architecture

Raffaele Sandrini [San09] wrote a single core VMM as his master thesis. It is
capable of running Linux and its performance is comparable to that of KVM.
However, the set of supported hardware is just enough to run Linux, it emulates
an AMD K6 CPU. It contains a virtual serial console. For interrupt handling,
it emulates a programmable interrupt controller (PIC ).

It is split into two domains, one containing the VM, one containing the
VMM, as depicted in Figure 1. When the CPU driver decides to schedule the
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VM, it does not perform a normal dispatch but performs a VMENTER. Whenever
an exit condition occurs, a message is passed to the VMM, which handles the
VMEXIT and makes the VM domain runnable again.

pCPU 0

CPU driver VMkit

V
M

M

V
M

O
th

er
p

ro
ce

ss

...

Figure 1: Old VMkit process layout. The kernel part of VMkit is involved when
a domain is dispatched.
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4 Literature Review

4.1 vCPU Scheduling

The threads of a multi core VM must be scheduled by either the host operating
system (in case of a type 2 VMM) or by the hypervisor itself (in case of a type
1 VMM). Scheduling VM threads is different than scheduling usual processes.
VM threads run an operating system which expects to run on bare hardware,
so they make assumptions on how long certain operations will take. However,
if we schedule the VM as we schedule normal processes, different vCPUs may
be scheduled at different times, destroying the illusion of completely owning
the hardware. When scheduling the vCPUs out of sync, the following problems
(among others) may be observed.

• Guests use spinlocks to synchronise access to kernel data structures. This
is tolerable, as long as the guest operating system can guarantee that the
lock will only be hold for a short period. For instance, when the lock is
only used to protect short, non preemptable kernel sections. When the
VMM decides to preempt a vCPU which currently holds a lock, it may
be impossible for other vCPUs to make progress. If the VMM takes no
care of this problem and Linux is used as guest, this can have a major
performance impact. We call this problem Lock holder preemption, as
first identified by Uhlig et al. using L4Linux [ULSD04].

• Another thing observed in Linux is the use of an IPI call response protocol.
The initiator sends an IPI and waits until a reaction of the receiver. The
waiting is done by polling a memory location in a non preemptable kernel
section. On real hardware, interrupts get handled almost immediately,
hence it is tolerable to block execution for this short timespan. This
protocol may also be invoked by user space applications which do not
perform any explicit synchronisation.

• Theoretically it may be possible that an operating system uses a CPU as
a watchdog to observe progress that other CPUs make. In a virtualized
setting, this may lead to false alerts, if an observed CPU isn’t scheduled
at the same time as the watchdog CPU. VMware uses this example to
justify their scheduling implementation [VMwb].

There are different ways to cope with this problem. One way to sustain
the illusion of completely owning the hardware is to use gang scheduling. Gang
scheduling (also known as co-scheduling), executes all vCPU threads belonging
to one VM at the same time. It restores most of the assumptions the guest
OS makes and solves all of the problems mentioned above, including the watch-
dog example. However, gang scheduling severely limits the flexibility of the
scheduler and the schedulers itself must synchronise across CPUs, which can be
costly. Gang scheduling may lead to fragmentation and therefore suboptimal
CPU utilisation. Imagine a dual core host system running a dual core VM and
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a single threaded process. While the process is running, one CPU must idle as
the gang scheduling forbids running only one vCPU.

A virtual machine may avoid the worst effects by not preempting a lock
holder. However, it is hard to detect for a VMM when its guest holds a lock.
Uhlig et al. noticed that the problematic locks occur almost exclusively in the
kernel, hence they propose to preempt vCPUs only when running in user-space.
Detecting if the preempted CPU is running in kernel or in user-space can be
done by inspecting the privilege level of the CPU. Using this method they were
able to achieve good performance when using Linux as a guest. However, as
vCPUs are not preemptable at any point in time anymore, the scheduler may
not be able to guarantee fairness.

Another possibility is to detect when a CPU needs to wait for a long time
until it can acquire a lock. Then the VMM may schedule another vCPU which
can make progress. This may either be done by a paravirtual extension of the
guest or the VMM may monitor the activity of the CPU. Linux for instance
supports paravirtualized spinlocks. AMD supports a triggering-threshold for
many subsequent PAUSE instructions. Pause instructions are typically used in-
side the spin loop to relax the CPU. A problem is that for this approach the
VMM has to know how many subsequent PAUSE instructions actually imply lock
holder preemption. When the limit is set too low, many false positives are de-
tected and unnecessary many context switches happen. Setting the threshold
too high increases the time needed to detect unnecessary spinning and hence
lowers utilization. However, at least when using Linux as guest, the approach
works well. If one wants to implement priority inheritance to schedule the lock
holder instead of the spinner, this technique is not useful, as it does not indicate
which CPU is actually holding the lock.

The Linux kernel also offers ticket locks, ticket locks guarantee fairness by
imposing a FIFO order on the lock acquiration. Once one process releases
the ticket lock, there is at most one vCPU which is able to acquire the lock.
Without using paravirtualization, the scheduler is not able to figure out which
vCPU this is. Hence when scheduling vCPUs without this information, the
chance of hitting the right vCPU gets smaller the more vCPUs the system has.

[Fri08] has shown, using two 16 vCPU VMs running under Xen, that the
effect of spinning may account of up to 7.6% of guest execution time. Even
worse, when using ticket spinlocks, up to 99.3% of guest time is spent waiting
for the lock. Using paravirtualized spinlocks, they were able to reduce the
overhead to under 3.6% and in the case of ticket locks to under 5.4%.

A similar approach may be taken to solve the IPI latency problem. When a
core sends an IPI it can be interpreted by the VMM as a directed yield, allowing
the receiving CPU to react quickly.

Preempting the vCPU only when in user-space and the spin detection solve
only the lock holder preemption issue. They do not help in the watchdog exam-
ple. However, it seems that lock issue is the main contributor to performance
degradation and current operating system don’t make use any watchdog like
mechanism.
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In the following survey, we examine how existing products handle this prob-
lem.

4.1.1 VMware ESX

VMware implements a proportional share-based algorithm [VMwb]. It assigns
each VM a user specified share of CPU time. The user may also specifies hard
lower limits (reservation) or hard upper limits (limits). The VMM will never
assign fewer resources than specified and never more. If it cannot met the lower
limits, it will not let the VM start. A vCPU has higher priority, if its used
vCPU time is further away from the user specified proportional share.

ESX 2.0, the first version of VMwares VMM that supported SMP, uses a
gang scheduling approach [VMwa]. The scheduler accounts skew for each vCPU.
The skew of a vCPU increases, when a sibling vCPU makes progress while the
original isn’t doing so. If the skew of a single vCPU exceeds a given limit,
typically a few milliseconds, the scheduler stops the entire VM. The VM will
only be rescheduled if there are enough pCPUs available to start all vCPUs at
the same time. This way, the skew can only become smaller.

As discussed, strict co scheduling may lead to CPU fragmentation. VMwares
slightly modified approach does not avoid this problem completely.

To overcome this limitation, ESX 3.0 introduced relaxed co-scheduling. It
still accounts each vCPU with skew, but requires only those vCPUs which are
skewed to be scheduled. This ensures that no vCPU can lag behind the others
too much. Relaxed co-scheduling reduces the chance of fragmentation, therefore
improving CPU utilization.

4.1.2 Xen

Xen was initially built for paravirtualization, but it now supports unmodified
guests using hardware extensions. Xen currently uses its credit scheduler by
default. Credits arrive at a fixed period and each vCPU receives a user defined
amount of credits. The scheduler checks frequently which vCPU is running and
accounts the running time to it by taking away credits. vCPUs which have a
positive credit balance are preferred by the scheduler. This is a proportional
fair share CPU scheduler, similar to the one of ESX, although it has no support
for gang scheduling.

Southern et al. [SHB09] have shown this may lead to performance degra-
dation for synchronisation heavy workloads in a contended setting. As Xen
originated from a paravirtualization hypervisor, it contains support for diverse
paravirtualized optimizations. One of these is the mentioned paravirtualized
spinlock supported by Linux.

Xen also implements a mechanism to prefer vCPUs which receive an in-
terrupt. If the guest issues the HLT instruction, the vCPU is interpreted as
blocked. Once an interrupt arrives and the concerning vCPU has credits left,
the vCPU enters the boost mode and is inserted at the front of the run queue.
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This guarantees that the CPU is executed at the beginning of the next time
slice.

4.1.3 KVM

While Xen and VMware ESX are type 1 hypervisors, the Kernel-based Virtual
Machine (KVM ) is embedded into the Linux kernel and makes heavy use of
its features. KVM denotes only the part running inside the Linux kernel. The
kernel part is responsible for executing guest code by using hardware features.
Device emulation and management is done in the userspace counterpart, QEMU.
It does not provide its own scheduler but relies on Linux, which currently uses
the completly fair scheduler (CFS ). CFS does not support any kind of gang
scheduling. KVM uses task groups to group together the vCPU threads of
a VM. This way the fairness between VMs with differing number of CPUs is
maintained.

KVM uses hardware extensions for spin detection.

4.2 Related Work

Tian et al. [TDY11] examined if the Xen credit scheduler meets its goals. They
observed that the scheduler maintains fairness only when assigning each CPU
the same weight. Xen migrates vCPUs along pCPUs, they have found that
the decisions made by the scheduler when to move a vCPU does not degrade
performance. They also found that Xen performs poorly (they claim due to lack
of gang scheduling) in a contended setting when running synchronisation heavy
workloads.

Weng et al. [WWLL09] proposed to differentiate the scheduling strategy
according to the VM workload. They distinguish between throughput and syn-
chronisation oriented VM. Gang scheduling is applied only to the VMs classified
as synchronisation type. The classification to which type a VM belongs can be
changed at run time. The change must be initiated by the system administrator.
Their proposed scheduler handles both classes of VMs.

Bai et al. [BXL10] proposed something very similar to [WWLL09], except
that they employ an algorithm which makes the decision whether the VM should
be gang scheduled or not.

Sukwong et al. [SK11] proposed an alternative to gang scheduling, balance
scheduling. They use KVM (and therefore Linux CFS) where each pCPU has
a local runqueue. Balance scheduling ensures that two sibling vCPUs are never
put in the same runqueue. Hence increasing the probability that sibling vCPUs
are scheduled at the same time. They claim to achieve, depending on the
workload, almost as good or better performance than gang scheduling.

Govindan et al. [GND+07] proposed an alternate communication aware
scheduler for Xen for multi-tier server applications.

Bae et al. [BXDL12] investigated how the placement of vCPUs on different
pCPUs affects power, energy and performance.
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Cherkasova et al. [CGV07] compared the three available schedulers of Xen
in a uniprocessor setting.
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5 Approach

5.1 VMM Design

A multikernel operating system avoids shared memory in the kernel. This prin-
ciple may also be extended to the applications running on the OS. In contrast,
a goal of the virtual machine implementation is to run shared memory guests,
such as Linux. The VMM must be able to access its guest’s memory, hence a
large part of memory must be shared by the execution threads which represent a
vCPU. Also, the state stored in emulated hardware is shared between the CPUs.
The only exception being is the local APIC, of which one exists for each CPU.
Because of this, we decided to implement the VMM as one domain running on
two pCPUs and share all memory among the two dispatchers.

On the old VMkit, the separation of the VM and the VMM into two domains
(see Figure 1) leads to increased complexity in the CPU driver. Also the context
switch from the VM to the VMM involves two context switches. This can be
reduced to one when the VM and VMM are running in the same domain. Hence,
we decided to do exactly the following: Remove the separation and create only
one domain, containing the VM and the VMM. Figure 2 illustrates the new
design.
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Figure 2: The new VMkit design. VMM and VM are in the same domain. The
role of the kernel part is to handle requests from the VMM to enter the VM.

As the VMM makes use of hardware extensions, it must be able to invoke
privileged instructions. To restrict access to these privileged instructions, we
introduce a new capability which has two invokes.

One to activate the hardware extensions, VMSETUP. VMSETUP checks if the
current CPU supports the required extensions and initialises them. It has to
be called on every CPU before making use of VMENTER. If the hardware is not
capable, an error code is returned. The other invoke actually enters the VM,
VMENTER. Figure 3 illustrates the control flow.
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CPU driver

asm(vmenter)

if interrupt then

save state

wait for interrupt

else

return

handle vmexit()

vmenter()

while runnable

VMM

...
VM

Figure 3: Non interrupted VMENTER/VMEXIT flow on one CPU.

Since the VMM runs one thread for each CPU and shares all memory, it must
make sure that accesses to common data structures are synchronised. To do so,
we introduce a coarse lock which is hold by the VMM during the handling of a
VMEXIT. This may introduce a performance bottleneck. As there is no complex
hardware emulated, we perform the emulation directly in the CPU thread. No
implemented hardware requires long running operations, so this should not lead
to performance problems. The only exception are being the timers, which use
an asynchronous host API (see Section 3.1).

5.2 Memory

As nested paging makes the implementation of the VMM easier and faster,
VMkit exclusively uses nested paging. The only drawback of this decision is
that some older CPUs, which do not provide nested paging, are unable to run
VMkit. We decided to make use of the tagged TLB, hence no TLB flush has to
be performed when switching from the guest to the VMM or back. To further
ease implementation, we use a fixed amount of memory provided to the guest.
All memory is allocated and mapped in the outer page table before starting the
guest.
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5.3 Physical Interrupt Handling

When the VM is running and a non-virtual interrupt arrives at the host, the
interrupt must be serviced by the host operating system. AMD’s hardware ex-
tensions handle this case by generating a VMEXIT, the VMM must then take care
that the interrupt gets handled. The VMM does so by resetting the interrupt
flag. The CPU will then take the interrupt and jump to the interrupt service
routine (ISR). The kernel part of the VMM must ensure that it saves its own
state suitable for rescheduling. However, when the operating systems wants
to schedule the VMM again, it does not know whether the VMM process was
running the VM or running in normal VMM user space code. We decided not
to add any kernel state to the process. This makes the VMM indistinguishable
from any other process for the scheduler. However, this means that whenever
the VMM gets rescheduled, it will first enter the VMM which in turn asks the
OS to enter the VM. This may have a performance impact.

5.4 Interprocessor Communication

x86 does not support explicit message passing. So most data transfer is done
using shared memory. However, unless the receiving core is constantly checking
for changed memory, shared memory does not provide a way to signal another
core. As explained in Section 2.4, x86 provides interprocessor interrupts to do
so.

A VMM must take care of these interrupts and ensure that they are delivered
with low latency. Low latency cannot be achieved by the VMM polling a memory
location, because most of the time not the VMM is running but the VM. Hence
we decided that the VMM triggers itself a physical IPI whenever a virtual IPI
has to be delivered. This has the effect that the target core leaves the VM
immediately and enters the VMM, which in turn can deliver the virtual IPI to
the VM.

5.5 Interrupt Controller

As discussed in Section 2.4, to support multiprocessing on x86 a platform must
offer an APIC.

Recent versions of the APIC (x2APIC ) offer support for more CPUs and an
optimized IPI interface. It also changes the interface from a memory mapped to
a model specific register (MSR) mapped interface. The IPI interface is changed
such that fewer accesses are needed to transmit those. This improvement may
prove especially valuable in the context of virtualization, as every access causes
an expensive VMEXIT. Also, a VMEXIT due to an illegal memory access is more
expensive than a VMEXIT caused by a MSR access, because the page table has
to be walked to detect the illegal memory access.

We decided, unless identified as performance drawback, not to use these
possibilities, but to emulate a standard APIC. This is done by creating a hole
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in the memory map, such that an access to the APIC memory region causes a
VMEXIT.

The operating system may choose where to map the APIC by setting a MSR
of the CPU. This is done in a per core fashion. So in theory, an OS can decide
to map the APIC at different locations for each CPU. This implies that the
page table for the nested paging can not be shared across CPUs, as the holes
may be at different locations. Fortunately, Linux does not remap the APIC, so
sharing the page table is possible when running Linux as a guest.

The APIC can either replace the PIC when it is accompanied with one or
more I/O APICs, or it can co-exist with one. When both exist, the PIC is wired
to the local APIC of the first core. We decided not to implement an I/O APIC
to reuse as much functionality as possible.
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6 Implementation

6.1 VMM / VM Interaction

To merge the VM and the VMM into one domain the following steps have
been performed. First, we added the VMM capability. At the moment, it
can be created without any protection, using the same mechanism as the ID
capability. To support untrusted applications, this must be changed, as owning
the capability can be used to access any physical memory location. Apart from
obtaining the capability, the security is maintained.

Then we implemented the two invocations of this capability VMSETUP and
VMENTER. VMSETUP did not change, so we were able to re-use the old code. We
transferred the specialised dispatch code to the VMENTER invocation. Whenever
a VMEXIT occurs, we return from the invocation to the VMM. In the special
case where the exitcode indicates the occurrence of a physical interrupt, we
tried enabling the interrupts and let the CPU process the interrupt by calling
the hlt instruction. Such that the operating system can handle the interrupt
immediately. However, this lead to problems when the VMM gets rescheduled,
as the state was not saved correctly. As a temporary solution, we did not treat
the interrupt caused VMEXIT as a special case, but always returned to the VMM
from the invocation. This way we were able to boot Linux.

Later on, as performance problems appeared, we changed this code to handle
interrupts correctly. As when sending a message or performing a yield, we
save the VMM’s state in the DCB when calling the VMENTER invocation, enable
interrupts and execute the hlt instruction. This leaves the domain in a state
suitable for rescheduling. As this change made performance even worse, we
noticed that the delay between interrupt detection and interrupt handling can be
as high as 80ms, which is the duration of Barrelfish’s scheduling period. Clearly,
we identified too many VMEXITs as caused by physical interrupts. One case where
this happens is the occurrence of a system management mode interrupt (SMI ).
We decided that the most generic solution is not to wait until an interrupt
happens, but just to check it. This is done by enabling interrupts for a short
time and then disabling it again. If no interrupt has happened the current code
will not be preempted and we re-enter the VM without any context switches.

This implementation leads to no wasted time when waiting for an interrupt,
while still allowing a simple return from the syscall for VMEXITs which are han-
dled by the VMM. To be able to save the state to the DCB, we must be able
to access information, such as the instruction pointer, from the caller, which is
not available to normal invocations. We added a special case in the capability
invoke code which passes this information as arguments to the invoke handler.

The VMM itself needs some change to handle the new design and to make
use of this new capability. Instead of a message dispatching endless loop it
now enters an endless loop which enters the VM, handles the exit condition
and re-enters the VM. Instead of creating a new domain, the VMM now just
allocates frames for the virtual machine control block (VMCB), which saves the
state of the virtualized CPU, the guest memory and the page table. To fill the
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VMCB, we need to retrieve the physical base address of the page table. In the
old design, this was not needed, as it was saved in the DCB of the VM domain.
To do so, we added a identity invocation, similar to the existing one for generic
frame capabilities, also for page table capabilities. As we want to use the page
table across two cores and capabilities are core local, we cannot simply use a
capability reference as parameter.

Finally, a lot of code can be removed. The DCB does not need to contain
any information about the domain being a VM and the dispatch code does not
need to know how to dispatch these specialised domain.

6.2 Virtual Hardware

6.2.1 CPU

The old VMkit emulated an AMD K6 CPU, which does not support neither
multiprocessing nor an APIC. Hence the vCPU has been upgraded to emulate
an AMD K7 processor. This is basically done by changing the information
provided by the cpuid instruction and implementing the new CPU features.
The VMM was extended to support the additional MSRs of the new CPU.

To prepare the VMM to support multiple CPUs, all CPU concerning in-
formation is factored out from the guest structure into a newly created CPU
structure. This required a large number of changes, however most of them were
trivial. The Linux real mode boot code of the secondary processor uses a differ-
ent instruction to access the CR0 register than the boot code for the primary
processor. Hence, support for the lmsw instruction was added.

Offline

INIT Received

Runnable

Running Blocked

Secondary CPU

Primary CPU

INIT IPI

STARTUP IPI

VMENTER

VMEXIT hlt & if=1

Interrupt

hlt & if=0

Figure 4: The states of the emulated CPU. if denotes the interrupt flag.
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We took care to handle all CPU states correctly. The CPU state is reset
whenever a transition to the INIT received state happens. Figure 4 illustrates all
CPU states and transitions. if denotes the interrupt flag of the CPU. Interrupts
can only be taken by the CPU when the flag is set. The hlt instruction is used
to let the CPU sleep until an interrupt happens.

The CPU is interpreted as being offline when the hlt instruction is exe-
cuted and interrupts are disabled. This careful implementation allows CPU
hot-plugging. The guest operating system can shut down and reboot a CPU at
any time.

6.2.2 APIC

As mentioned in Section 2.4, the Advanced Programmable Interrupt Controller
(APIC ) is crucial to support multiprocessing on x86. As discussed in Section
5.5, we have chosen to implement a standard APIC and intercept access to it by
creating a hole in the guest’s memory map. The invalid memory access VMEXIT
handler checks if the faulting address is in the region of the APIC memory. If
it is, the VMM will emulate the access to the APIC and continue the VM.

Apart from the interrupt routing ability similar to the one of the PIC, the
APIC also provides a core local timer and the ability to send IPIs.

As we have chosen to let the PIC be available in the system and not to
emulate any I/O APICs, nothing had to be done for interrupt routing, as the
PIC is still used to deliver interrupts from the emulated hardware. However, in
this co-existing of PIC and APIC, one has to make sure that not only interrupts
from one controller are delivered. To ensure this, after the PIC receives an
end-of-interrupt (EOI ) command, we first deliver the interrupts from the local
APIC and vice versa. On booting the first core, Linux calibrates the APIC timer
against the legacy PIT timer. If the fairness between both interrupt controllers
is not guaranteed, the calibration fails with some probability.

Figure 5 shows all entities which participate in interrupt handling during
runtime.

To implement the local APIC timer, we started by using Barrelfish’s timer
service. As this leads to locks when running two CPUs, we replaced all used
timers, including those used by the legacy PIT, with the now recommended
deferred events (see Section 3.1). Whenever the timer fires, we set the corre-
sponding bit in the interrupt ready register. If no interrupt is currently being
processed, we deliver the interrupt to the CPU. If an interrupt is in service, we
deliver the interrupt after operating system has issued an EOI action. As the
APIC specification does not require a specific frequency to be used, we have
chosen 100MHz.

To handle IPIs, each local APIC is connected over a Flounder binding to an
APIC bus instance. If one local APIC receives from the guest the command to
transmit an IPI, a message is sent to the bus instance. The message consists
of the contents of the interrupt control low (ICRL) and interrupt control high
(ICRH ) APIC register, together they encode the destination and the interrupt
vector to activate. The bus then examines the registers and figures out which of
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Figure 5: Object instances that participate in interrupt handling.

the CPUs should receive the IPI. The APIC supports different addressing modes,
we added support for the ones Linux uses. First, there is the physical addressing
mode. In this mode, an IPI is sent to exactly one core, the one encoded in the
destination field. After boot, Linux switches to the logical destination mode.
Each APIC contains a logical ID field which can be set to whatever the OS
considers appropriate. When using the logical destination mode, an IPI is sent
to a CPU if its logical ID and the destination register have at least one bit in
common. Using this mode, it is possible to selectively broadcast IPIs.

A particularly subtle issue is where to exactly start the CPU when a STARTUP

IPI is received. The APIC specification [APM] states the CPU should start
execution at the address specified by the vector field. The vector field is an
8-bit value and provides the upper 8-bits of a 20-bit physical address. As the
CPU starts in real mode, there are multiple combinations of the code segment
register (CS ) and the instruction pointer (IP) which map to the desired physical
address.

It turns out, Linux assumes that the IP is set to zero when the execution
starts. Otherwise it loads an invalid global descriptor table (GDT ) and an
invalid local descriptor table (LDT ), which causes problems that only start to
appear after the switch into protected mode is completed.

6.2.3 ACPI

As discussed in section 2.5, ACPI consists of multiple memory mapped ta-
bles. To locate the tables, the OS looks for the root system descriptor pointer
(RSDP), by scanning some fixed BIOS memory locations for a signature. The
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RSDP points to the root system descriptor table, which contains a list of all
provided ACPI tables. The Differentiated System Description Table (DSDT )
and the Multiple APIC Description Table (MADT ) are used to figure out what
CPUs are currently installed and what identification number they use. The
DSDT contains information in the ACPI machine language (AML) byte code.
We wrote a tree containing two CPUs and compiled it using the Intel ASL com-
piler. As ACPI provides a memory mapped interface and the tables mentioned
above are read only, we do not have to unmap the memory region. We just fill
the mapped memory with appropriate data.

We decided not to implement any form of MPS tables, as they are considered
legacy. However under certain circumstances Linux will fall back to these tables.
To get around this problem, Linux must be compiled without support for MPS.

The operating system may use information from the BIOS provided memory
map to know where the ACPI tables are stored. We added the region in the
memory map of the emulated BIOS. However, Linux fails to load the memory
map. We traced the bug down to the real mode emulator, which is unable
to cope with some optimised memory copy operations issued by Linux. As a
first solution, we modified Linux to copy each byte separately instead of using
memcpy. This allows Linux to correctly load the memory map. After completing
our implementation, we figured out that Linux assumes valid default locations
if no memory map is supplied.

However, supplying a memory map is highly desirable, otherwise Linux does
not know how much memory is installed and defaults to 128 MiB. Hence, if
Linux runs without the patch, a memory map must be passed over the kernel
command line.

6.3 Implementation Issues

Serial Console

VMkit emulates a PC16550 compatible serial interface which is infinitely fast
[San09]. This means, from the guest’s perpsective, the outupt FIFO buffer is
always empty. When activating two vCPUs, Linux somehow notices this fact
and stops writing to the serial line until the serial line receives a keypress. As a
workaround, which is necessary for automatic testing, the serial driver of Linux
can be patched.

Missing MPS Tables

As Linux tries to parse the MPS tables and we did not implement them, Linux
support for them must be turned off at compile time. When not doing so, only
one CPU will be recognised. We are not sure why Linux does so and does not
prefer the ACPI information.
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Timer Issues

VMkit used the deprecated Barrelfish timer service to emulate virtual timers.
The timers were replaced by the now recommended deferred events, which plug
in into the user level dispatcher. As the kernel has no knowledge of running
timers, the timer events can not achieve better accuracy than those of a kernel
time slice. The time slice is currently 80ms in Barrelfish. But Linux sets the
timer to fire each 10ms. Hence, the provided interrupts occur eight times too
slow, making the Linux guest time run eight times too slow. This implies, as
Linux uses the APIC timer as time source, the time reported from the Linux
cannot be trusted. Further, this may change the Linux performance, as pre-
empting the running application can only happen each 80ms instead of 10ms.

Lock Issues

One source of frustration was seemingly random occurring locks when running
with two vCPUs. In the end, we identified two issues.

It is crucial to never touch the VMCB of a running VM. The case we did not
notice for a long time happened when the second CPU used the serial console.
The serial output code checked if it is necessary to send an interrupt to the
CPU. If it is necessary, it sends an interrupt, which is routed through the PIC.
As the PIC always sends interrupt to the first core, it was possible that the
thread on the second core modified state on the first core, while the first core is
in the VM.

After resolving this issue, we still observed some weird behaviour on the
second core. It seemed like callback functions, such as Flounder binding call-
backs, were executed at random times. We assumed they are only called when
we actually dispatch events from the waitset. Under this assumption, we could
not identify the problem. After we printed stack traces in each handler we were
able to identify the problem: There is a thread running on the second core, the
so called slave thread, which dispatches events from the default waitset in an
endless loop. This thread is started after a domain is spanned to a secondary
core. The purpose of this thread is to receive messages from the monitor to
allow creation of threads on the secondary core.

We decided to use locks in all of our handlers, which solves the problem.
The cleanest solution would be to modify Barrelfish’s slave thread to not use
the default waitset.

Performance Issues

After having reached a stable state, we tried to perform some benchmarks and
encountered very bad performance. When using two vCPUs, a Linux compila-
tion slowed down by a factor of four compared to execution with one vCPU.
Once the system has booted, mainly the IPI subsystem of our new code was
used. As we were aware that the implementation of the IPIs was not optimal,
we measured the number and delays of IPIs sent. There were in fact many
and some of them needed almost 80ms, which is the interrupt period of the
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hardware timer, to reach their destination. This happened because Barrelfish’s
default messaging uses polling. And there is no way to poll while the VM is
running.

A solution to this problem is to accompany the virtual IPI with a real IPI.
When doing so, the real IPI will instantly evict the VM and transfer control to
the VMM, which can handle the virtual IPI.

To do this, Barrelfish supports an alternate backend for Flounder: UMP-
IPI. As the name suggests, it uses UMP to transmit the payload and signals
the receiving core using an IPI. UMP-IPI includes support for x86, but it was
broken. After resolving this issue by increasing the size of the notification buffer,
it looks like the messages are transferred and indeed an interrupt is triggered
on the receiving core.

Although now a real IPI is sent, the delay measured until reception is still
high. We are not completely sure why, but as a workaround we tried using the
default UMP backend and trigger IPIs separately. This way we were able to
observe the desired behaviour: A VMEXIT caused by an interrupt accompanied
with a virtual IPI Flounder message.
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Figure 6: Block diagram of the mainboard.3

7 Evaluation

To evaluate the performance of the implementation, we used three different
scenarios. The first consists of a one or two CPU VM running under different
virtualization systems in a non-contended setting. The main purpose of these
benchmarks is to specify overhead of virtualization in general and overhead of
our solution compared to other virtualization systems. We decided to use KVM
as the reference, because its architecture resembles the VMkit architecture. To
get a baseline, we also executed the benchmarks running on native hardware.

In the second scenario, we vary the placement of vCPUs on pCPUs. The
results should quantify what effects the NUMA architecture of the machine has
on performance. For reference, some experiments were also executed natively.

The third scenario quantifies the effect of scheduling vCPUs concurrently. To
get a reproducible worst case scenario, a synthetic background task is introduced
which runs non-preemptable on Barrelfish and competes with the VMM for CPU
time. The pattern of the time slice the background task receives is varied and
effects on the benchmarks running in the VM are observed.

3Source: SuperMicro H8QM3-2 mainboard manual
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7.1 Test Environment

All benchmarks are running on a 16-core machine. The motherboard has four
sockets, each hosting a 2.5 GHz quad core AMD Opteron 8380 processor.

Each core contains 64 KiB data and 64 KiB instruction L1 cache plus 512
KiB shared L2 cache. The cores are connected to 6 MiB L3 cache which is
shared among the same socket. As each socket has its own memory controller,
the memory is split into four NUMA nodes. Each memory controller hosts 4 GiB
of memory, totalling in 16 GiB of memory. To access a remote memory location,
the CPUs make use of the inter-socket HyperTransport interconnect. As seen
in Figure 6, the socket interconnect has a ring topology. For communication
between cores on the same socket, a crossbar switch is used. Hence, the cores
of a single package should have indistinguishable behaviour regarding memory
access.

HyperTransport is not only used to access remote memory, but also to trans-
port interrupts and handles I/O. To do so, two HyperTransport I/O controllers
are on the mainboard. One connected to CPU 1 which handles almost all hard-
ware and one connected to CPU 2 which adds more PCI Express slots.

The VM receives three GiB of memory. Whenever a benchmark is running
natively, the amount of RAM Linux uses is limited using the mem kernel param-
eter. To limit the number of CPUs, we used the maxcpu Linux kernel command
line argument.

When KVM is used, the host platform is an Ubuntu 12.04, running Kernel
3.2.0 and QEMU 1.0. CPUs are always pinned to one core, using the vcpupin

option.
Since there is no reliable timing source in the VMkit provided VM, we use the

time stamp counter of the CPU. The rdtsc instruction is executed from within
the VM, while the VM is configured not to intercept the rdtsc instruction.
When running native or KVM benchmarks, we use the gettimeofday function
as a timing source. Using this timing source, we measure the wall time.

As VMkit does not provide any virtual disk, the benchmark system runs
completly off the initial ramdisk. The userspace is based on Debian Squeeze 6
and uses a custom built Linux 2.6.32 kernel. Building a custom kernel allowed
us to ensure that it does not make use of paravirtual optimisations. It also
allows to turn off parsing of the MPS (see Section 6.3) tables, which confuses
Linux if not present. To get comparable results when running natively or in
KVM, the system also runs completly off the ramdisk.

7.2 Benchmark Description

Microbenchmark: World switch

The trap and emulate approach introduces an overhead compared to native
execution, where privileged instructions are directly executed in hardware. The
amount of virtualization overhead is heavily influenced by the time spent in
the VMM, as with using hardware extensions, normal guest execution works
with almost native speed. The time spent in the VMM is determined by the
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number of VMEXITs and how long it takes to process these. A lower time bound
for processing a VMEXIT is the time it takes to go from the VM to the VMM
and back. In this case, the VMM does not perform any action at all, except
returning the control to the VM.

To perform this measurement, the vmmcall instruction is used. This is a
special instruction that can be used for hypervisor calls from the guest.

Neither KVM nor VMkit perform any action except advancing the instruc-
tion pointer and returning into the VM.

Microbenchmark: Forkbench

Forkbench is a microbenchmark in which a parent process forks of a child and
waits until its completion. The child does not perform any work but immediately
exits. As this happens rather quick, one run of the benchmark consists of 1000
fork operations. To gather statistical data, 1000 of these runs are executed.

The primary motivation for including this benchmark was that we observed
performance problems in our implementation, which were most likely related to
the IPI latency. To verify progress, a microbenchmark that sends an IPI had to
be found. While running the Linux compilation, we found that during process
creation an IPI was triggered. Hence, we created this benchmark which does
nothing else than create processes.

Calling fork has a number of consequences. The child process sees a copy
of the memory from the parent process. Linux implements this copy operation
efficient using copy-on-write. When fork is called, the page table of the process
is copied and the pages must be remapped read only. This implies a need to
flush the Translation Lookaside Buffer (TLB). As other threads using the same
memory map may be running on another CPU, Linux must make sure that also
these CPUs flush their TLBs.

Linux ensures this by sending an IPI to the affected CPUs and prepares a
shared piece of memory, where each CPU writes into after it has completed
the operation. The CPU which initiated the process polls the memory location
until all CPUs have completed the flush. During this operation, preemption is
disabled. This implies, the CPU executing the fork operation will not make any
progress until all other CPU have reacted to its request.

After the TLB flush, the TLB must be refilled. On x86, this happens in
hardware by walking the page table until a mapping is found. The cost for
walking the page table is different in a virtualized setting, as there are two
nested page tables involved. See Section 2.3.

Microbenchmark: Hackbench

Hackbench is small benchmark created to measure performance of the Linux
scheduler. It is part of the rt-tests package4. It creates 10 communication
networks. Each communication network consists of 20 senders and 20 receivers,
all of them being processes. Sender and receiver are connected using a local

4http://git.kernel.org/cgit/linux/kernel/git/clrkwllms/rt-tests.git/
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socket pair (created using socketpair()). After all child processes, sender and
receiver, have started, all sender start sending messages to all receivers of the
same group. Sending a message is done by a blocking write to the sender’s
end of the socketpair. The message size is 100 bytes and each sender sends 100
messages to each receiver. The sender sends the first message to all its receivers,
it then continues with sending the next message without waiting on the receiver.
The receiver process performs a blocking read on its receiving socket. Hence,
during one run there are 10× 20× 100× 20 = 400′000 messages exchanged. To
gather statistical data, the process is repeated 250 times.

The buffer size for sockets5 is 112 KiB. As we are interested in the behaviour
where synchronization happens between cores, we let the benchmark run twice.
Once we set the CPU affinity of all sender processes to CPU zero and all receiver
to CPU one. In the other case, we do not set any CPU affinity and let the Linux
scheduler decide where to put the processes.

Care was taken that only the duration of the actual sending and receiving of
the messages is counted. Especially the rather costly fork operation is excluded
from measurement time.

Microbenchmark: Rambench

The aim of this benchmark is to measure the memory bandwidth and latency.
To do so, 512 MiB are allocated and a shuffled linked list is created in it. To
reduce cache effects, each element has the size of a cache line. Then the time
to traverse the list is measured. To advance to the next list cell, the previous
one must be fetched. As the next location is random, the chance of it being
in cache is small. Hence, most of the time, the CPU has to fetch the memory
location from main memory. So the cost of traversing this list is dominated by
the latency of the main memory.

A second test is performed, where the list is not shuffled, but linearly ar-
ranged. As the access pattern is highly regular, the cache can be used to satisfy
many memory requests. At some point, the cache has to be filled anyway, so
the dominant factor is the memory bandwidth.

When two CPUs are available, the benchmark is run twice, once pinned to
the first CPU and once pinned to the second CPU.

Case study: Linux compilation

Software compilation is a widely accepted benchmark. It exercises the file system
and the CPU. In our case, the file system resides on a ramdisk, reducing the
number of VMEXITs compared to a virtual hard disk. As a compile subject
we have chosen Linux 3.7. To reduce the time needed for benchmarking, we
configured Linux with make allnoconfig which sets all options to no. To
make use of the additional cores, we set the jobs option of make to four to run
multiple processes in parallel.

5read from /proc/sys/net/core/wmem default
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During compilation, mostly the compiler is running. Compared to the mi-
crobenchmarks, the process running time is higher. Also, the need of synchroni-
sation is rather low. The controlling make process waits until a process finishes
and starts a new one if possible. Some parts of the compilation consist of Bash
scripts. Bash scripts usually works by combining the work of many smaller
programs, hence many short running processes are created during these stage.

As discussed in 7.2, process creation requires the CPUs to synchronise.

7.3 Scenario 1: Performance in a non-contended setting

In this section we compare the performance of our implementation to native
execution and to KVM, using single and dual core VMs. No other significant
processes were running. All virtual CPUs were placed on the same NUMA node.

We found that VMkit performs as well as KVM in both, one and two CPU
settings. The Forkbench on two CPUs even runs much slower on KVM than on
VMkit. The Rambench illustrates the higher cost of TLB misses when running
the VM. In the cases of randomised access, more TLB misses are generated and
hence the overhead compared to native execution is much higher than in the
sequential access case.

7.3.1 Microbenchmark: World switch

System vmmcall latency
[cycles]

VMkit (old) 7538 ± 95
VMkit (new) 4572 ± 159
KVM 2165 ± 573

Table 1: vmmcall microbenchmark.

As seen in Table 1, the latency is decreased with the new VMkit design.
The old VMkit design uses two domains, one for running the VM and one

for runing the VMM. Hence, to process a single VMEXIT, the system must switch
out of the VM into the kernel, where a message is sent to the VMM domain. To
handle the message, a switch to the VMM domain is necessary. After handling
the VMEXIT this process happens again in reverse order.

The redesigned VMkit uses a simpler approach. Once the VM exits, Bar-
relfish’s kernel must simply return from the syscall that requested the VM op-
eration. After handling the VMEXIT, the VM is re-entered by using the same
syscall again. Thanks to the tagged TLB, no TLB flush and no page table
change is necessary.

The new architecture requires less context switches, which explains the ob-
served improvement in latency. The operation still takes more cycles than on
KVM, which handles the call directly in the kernel.
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7.3.2 Microbenchmark: Forkbench

To verify that the benchmark actually sends IPIs, we counted the number of
IPIs in the VMM and checked the output of /proc/interrupts.

System 1 CPU [ms] 2 CPUs [ms]

Native 56.3 ± 0.2 92.2 ± 0.4
KVM 105.6 ± 0.2 530.7 ± 8.6
VMkit 112.3 ± 0.7 196.2 ± 0.9

Table 2: Forkbench microbenchmark.

Table 2 shows the results of the Forkbench. The first thing to note is that
this benchmark takes actually more time when running on two cores. In the
single core case, there is no need to notify the other cores when the address
mapping has changed, so no IPIs are sent and no synchronization is necessary.

The program runs much slower in a virtualized environment, even using
only one CPU. As the benchmark creates a lot of processes and flushes the TLB
all the time, a significant part of the execution time is spent in the hardware
traversal of the page tables. Both KVM and VMkit use nested paging, which
increases the cost of a TLB miss.

Once two CPUs are used, the operating systems has to synchronise the two
cores when creating a new process. On native hardware, the synchronisation
adds approximately 36ms of overhead. VMkit gets slower by 84ms. The addi-
tional overhead comes either from the virtualized IPI, which has a higher latency,
or from the fact that the page tables must be traversed from both cores.

KVM struggles with this benchmark when running two CPUs. We have
not investigated the cause for this slowdown. Candidates are a suboptimal
implementation of IPIs or possibly running background tasks.

7.3.3 Microbenchmark: Hackbench

System 1 CPU Hackbench [s] 2 CPU Hackbench [s] 2 CPU Hackbench
with affinity [s]

Native 0.60 ± 0.02 0.38 ± 0.01 0.63 ± 0.01
KVM 0.77 ± 0.02 0.51 ± 0.03 0.69 ± 0.04
VMkit 0.63 ± 0.06 0.69 ± 0.09 1.03 ± 0.11

Table 3: Hackbench under different systems.

The results of the Hackbench are shown in Table 3. When going from one
CPU to two without explicitly setting the CPU affinity, native and KVM exe-
cutions are able to profit from the second CPU. In contrast, the execution on
VMkit does not speed up.
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When setting the affinity explicitly, all systems slow down. In this case,
the scheduler is not able to balance the processes equally among the two cores,
leading to higher execution times. Also the information that a communica-
tion socket is readable must be transferred cross core. This introduces some
synchronisation overhead.

7.3.4 Microbenchmark: Rambench

System Sequential Randomised
[s] Relative [s] Relative

Native 0.24 ± 0.0001 1.00 1.26 ± 0.0023 1.00
KVM 0.27 ± 0.0001 1.13 1.83 ± 0.0015 1.45
VMkit 0.26 ± 0.0002 1.08 1.82 ± 0.0017 1.44

Table 4: Rambench running under different systems using one CPU. Relative
factors are based on native execution.

Table 4 shows the results. As the placement benchmarks (see Section 7.4)
reveal that the core numbering under Barrelfish is somehow wrong, we picked
the results where VMkit is running on core 4. Also two CPU results are omitted,
because they are exactly the same as when running on one CPU.

As no VMEXIT should be triggered during the execution, both virtualization
systems introduce the same overhead. While in the sequential case, the overhead
is around 0.26

0.24 ≈ 1.08, in the randomised case it is higher 1.82
1.26 ≈ 1.44. The

randomised benchmark causes more TLB misses and hence has to walk the
page table much more often. As explained in Section 2.3, the cost of a TLB
miss is higher when running a virtualized system.

7.3.5 Case study: Linux kernel compilation

System 1 CPU 2 CPU
[s] Relative [s] Relative

Native 138 1.00 70 1.00
KVM 166 1.20 84 1.20
VMkit 157 1.14 81 1.16

Table 5: Linux compilation benchmark. Relative factors are based on native
execution.

Table 5 shows the results of the kernel compilation. The benchmark does
not perform much synchronisation, so it can take advantage of the additional
CPU. However, some parts of building Linux involve Bash scripts, which create
quite a lot of processes. As mentioned earlier, process creation requires the
guest kernel to synchronise.
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The compilation is quite memory intensive, we suspect this is the reason
why KVM performs worse than VMkit. VMkit allocates and maps all memory
before boot, while KVM behaves like a normal Linux process. The host Linux
catches the pagefault, installs a mapping on demand and continues the VM.

7.4 Scenario 2: Effects of vCPU placement

As the test machine offers four NUMA nodes, we wanted to quantify the per-
formance impact when the allocation of vCPUs to pCPUs is varied along the
NUMA nodes. Memory was allocated always from NUMA node zero. To see
effects of a single core VM when placed on different nodes, we let all benchmarks
with a single core VM run on each core.

We found that the Rambench, which specifically exercises the main mem-
ory, shows significant effects when executed on a remote NUMA node. Also we
observed some inconsistencies concerning the NUMA node numbering and asso-
ciated memory regions under Barrelfish. The ring topology of the interconnect
that shows up in the Rambench is not visible on the other benchmarks. We do
not have a full explanation for the effects observed.

7.4.1 Single core placement

Placement
(NUMA node)

Linux compile
[s]

Rambench
sequential [s]

Rambench
random [s]

0 158.67 0.31 ± 0.0002 1.93 ± 0.0019
1 156.77 0.26 ± 0.0002 1.81 ± 0.0017
2 160.45 0.37 ± 0.0002 2.30 ± 0.0023
3 159.12 0.33 ± 0.0002 1.96 ± 0.0019

Table 6: Placement benchmark when running with one CPU under VMkit.

Table 6 shows the results, which were grouped by NUMA node. When
looking at the results, something with the numbering of the NUMA nodes seems
wrong. As the memory is from node zero, we expected the best performance
when running on a CPU from node zero. To verify the numbering, we let the
Rambench run on native Linux. To force an environment as similar as possible
to the first experiment, the Linux NUMA allocator was used to get memory
from node zero and the CPU affinity was set to the desired CPU.

As Table 7 shows, contrary to the results from VMkit, the results from native
execution are as expected. We verified that VMkit on Barrelfish is really using
memory from node zero by printing the physical guest memory base address and
size and compare it to the NUMA information. The NUMA information from
Barrelfish was cross validated to the information Linux provides6. Barrelfish

6The information from Linux was gathered by specifying acpi=debug as kernel command
line parameter, then ACPI dumps are printed on boot.
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Placement
(NUMA node)

Rambench
sequential [s]

Rambench
random [s]

0 0.24 ± 0.0001 1.34 ± 0.0013
1 0.29 ± 0.0001 1.44 ± 0.0015
2 0.30 ± 0.0001 1.46 ± 0.0015
3 0.34 ± 0.0001 1.78 ± 0.0019

Table 7: Rambench when running with one CPU native. Placement is set via
CPU affinity and the NUMA allocator was used to get memory from node zero.

uses the APIC id by default to print the CPU number. The APIC id may be
modified by the operating system. To ensure this did not happen, we verified the
CPU number executing the VM is correct by using the information provided by
the cpuid instruction, which cannot be changed. None of these checks revealed
the cause of the problem.

Due to the ring topology of the socket interconnect (see Section 7.1), we
expect three categories of results. The fastest execution should be observed
when the running on the CPU where the memory is directly connected. The
second fastest results should be observed when the memory is one hop away.
Finally on one node the memory is two hops away, there the slowest execution
should be encountered. The native execution under Linux (see Table 7) shows
the expected behaviour. Also the execution in VMkit shows this behaviour
when we ignore the wrong numbering of NUMA nodes: Node 0 and 2 are two
hops away, node 1 is directly connected to the memory and node 3 is two hops
away.

In line with the variations of the Rambench is a slight variation of the Linux
compilation times. The effect is much smaller though, as the Linux compilation
is not completely memory bound.

Placement
(NUMA node)

Forkbench [ms] Hackbench [s]

0 108.9 ± 2.22 0.70 ± 0.07
1 108.6 ± 0.88 0.72 ± 0.07
2 108.5 ± 1.00 0.75 ± 0.03
3 113.3 ± 2.84 0.80 ± 0.08

Table 8: (Continued) Single core placement.

As seen in Table 8, Forkbench and Hackbench slow down slightly when
executed on NUMA node 3. We are not sure how to intepret this, as possible
NUMA effects should also appear on other nodes.

As we have seen, the Forkbench forces quite a lot of page table walks. As the
page tables also reside on memory from NUMA node zero, one might expect
a slowdown when running on a core which is not directly connected to the
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memory. However, as the working set is small and the memory is exclusively
used by this core, the caches should be able to hide the effect.

Also as the Hackbench has a small working set, we do not expect any vari-
ation. Due to the high variance of the benchmark, no final conclusion can be
drawn from the observed numbers.

7.4.2 Dual core placement

The next step is to activate two CPUs and let them run on different NUMA
nodes. We expect performance to degrade when not running all of the vCPUs
on the same NUMA node, due to increased IPI latency and increased memory
access latency. We kept the first core fixed and varied the second one. As the
single core placement scenario has shown that core 4 is the fastest, core 4 was
chosen as the fixed CPU. To ensure, that inverting the placement of the cores
does not have any effect, we executed one run also with inverted placement.

Placement
(NUMA node)

Linux compile Forkbench Hackbench
with affinity

CPU 0 CPU 1 [s] [ms] [s]

0 1 81.32 196.76 ± 1.6 1.04 ± 0.10
1 0 81.28 198.27 ± 2.3 1.06 ± 0.10
1 1 81.63 199.10 ± 2.4 1.02 ± 0.08
1 2 82.01 212.44 ± 4.4 1.29 ± 0.20
1 3 81.74 213.27 ± 1.6 1.24 ± 0.16

Table 9: Dual core placement.

Table 9 shows the results. The Hackbench without CPU affinity set does not
show any relevant effect and is not listed here. Also the Rambench executions
are not listed, as they show exactly the same behaviour as under the single core
VM.

The Hackbench and Forkbench both show slightly worse perfomance when
executed on NUMA nodes 1-2 and 1-3. It is not clear why the execution on
nodes 1-0 does not slow down as well. Maybe the chip internal interconnect
does not provide the same characteristics for the HyperTransport access, hence
NUMA node zero can be reached faster from core 4. Or, there is another issue
with node numbering, but since we run the experiment on all cores (see Section
9.2 for details) and aggregated the results here, we should have spotted such a
discrepancy.

The Forkbench slowdown might appear because of the increased IPI latency.
Also the same page table has to be traversed from two different sockets, hence
there might be some penalty due to remote memory access. On fork, the page
table is modified by Linux for copy-on-write, hence the cache may not fully be
able to hide these effects.

It is likely that during the Hackbench with affinity, the kernel frequently
needs to access shared data structures. Such as when a sender sends a message,
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the remote (potentially blocked) receiver process must be inserted into the re-
mote run-queue. Also the messages which are written on one core and read
from the other must be transferred over the interconnect. Hence, the latency of
accessing these shared data structures increases when executed on two different
NUMA nodes and slows down the execution.

As seen in Table 9, inverting the placement does not have any effect.

7.5 Scenario 3: Scheduling strategy

As discussed in the literature review section, performance may degrade more
than expected due to asynchronous vCPU scheduling. To get an impression
of the effect we performed benchmarks, where the time slice of the vCPUs are
shifted by various amounts.

We found the results of the Linux kernel compilation and the Forkbench in
line with our expectations. The Linux kernel compilation is CPU bound and
does not perform much synchronisation, hence it shows equal performance when
time slices are offset. The Forkbench in contrast, requires synchronisation all
the time and is therefore highly sensible to offset time slices. A surprise was
the behaviour of the Hackbench with affinity set. We expected worse behaviour
under offset time slices due to increased communication latency between the
senders and receivers. But the experiments revealed better performance under
offset time slices.

7.5.1 Method

To ensure that the CPUs are not scheduled out of our control, we modified
Barrelfish’s timer interrupt handler. The timer interrupt is responsible for pre-
empting the currently running domain. The handler of this interrupt increments
the kernel time, calls the scheduler to let it make a scheduling decision and
executes the selected domain. When the running process yields or another (non
timer) interrupt arrives, the scheduler is also invoked.

Hence to make absolutely sure that the vCPU does not get scheduled, we
let the interrupt handler spin for a given amount of time until it is allowed to
execute a domain. During this spinning, the CPU remains in a non-preemptable
state and nothing unexpected, such as a yield, can happen which would lead
to scheduling of the vCPU. This way, we hope to get reproducible, worst-case
results. A drawback of this approach is, that it does not necessarily matches a
real world scenario. In a real world scenario, the scheduler could upon reception
of a virtual IPI designated to the VM, decide to schedule the VM with priority
and let it handle the interrupt.

On each timer interrupt, the kernel alternates between two delays. Either
in the synchronous case, the two cores running the VM choose the same delay
at the same time or in the asynchronous case, they always choose offset delays.
Figure 7 illustrates the different delays used in this section.

The hardware timer fires every 80ms, hence the spinning is activated each
80ms. We have chosen two different delay pairs 15ms/30ms and 5ms/40ms.
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15ms/30ms synchronous

Core 0 ...

Core 1 ...

15ms/30ms asynchronous

Core 0 ...

Core 1 ...

5ms/40ms synchronous

Core 0 ...

Core 1 ...

5ms/40ms asynchronous

Core 0 ...

Core 1 ...

Figure 7: The different scheduling patterns. Black dots indicate timer inter-
rupts. White areas indicate spinning inside the kernel, green areas the VM.

The numbers were chosen so that the amount of concurrent VM execution dif-
fers, while keeping the total time each CPU gets constant. During all bench-
marks, each vCPU of the VM runs during 1 − 15ms+30ms

2·80ms = 1 − 5ms+40ms
2·80ms ≈

71.8% of total time. Hence, the expected slowdown compared to the non-
contended setting is 1

0.718 ≈ 1.39.

7.5.2 Results

The results are shown in Table 10 and 11. As seen in Table 10, the Rambench
does not show any variations when running under offset time slices. This is
expected, as the Rambench is strictly single threaded.

The Hackbench without affinity shows no variations, but the slow down
factor of ≈ 1.26 is smaller than the expected factor of 1.39. We do not have
an explanation for the small slow down. The absence of varying results under
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Pattern Rambench Rambench Hackbench
sequential random without affinity
[s] [s] [s] Rel.

15ms/30ms sync. 0.44 ± 0.0127 2.64 ± 0.0111 0.87 ± 0.10 1.28
15ms/30ms async. 0.43 ± 0.0119 2.67 ± 0.0112 0.86 ± 0.10 1.26
5ms/40ms sync. 0.43 ± 0.0180 2.65 ± 0.0193 0.86 ± 0.11 1.26
5ms/40ms async. 0.43 ± 0.0182 2.65 ± 0.0186 0.88 ± 0.09 1.29

Table 10: Contended setting benchmark.

Pattern Linux compile Forkbench Hackbench
with affinity

[s] Rel. [ms] Rel. [s] Rel.

15ms/30ms sync. 112.11 1.38 273.7 ± 13 1.39 1.30 ± 0.12 1.26
15ms/30ms async. 112.62 1.39 320.7 ± 10 1.63 1.19 ± 0.13 1.15
5ms/40ms sync. 112.07 1.38 272.7 ± 18 1.39 1.35 ± 0.13 1.30
5ms/40ms async. 113.66 1.40 397.8 ± 13 2.03 1.19 ± 0.13 1.15

Table 11: (Continued) Contended setting benchmark. Relative factors are based
on non-contended VMkit execution.

different time slice allocations indicates that the Linux scheduler is always able
to schedule one of the communication processes and that these processes can
indeed make progress.

The Linux compilation slows down by a factor of ≈ 1.39 as expected. As
the benchmark is likely to be CPU bound and the need for synchronisation is
minimal, the moving of the time slices does not have any effect.

In the two synchronous cases, Forkbench slows down by a factor of ≈ 1.39
as predicted. However, as explained, a fork operation can only complete as
soon as every CPU has responded. Hence the Forkbench is only able to make
progress when both CPUs are running. To verify this assumption, we calculate
the slowdown factor by using only the concurrent running time.

In the asynchronous case with 15ms and 30ms delay, the fraction of time
where both CPUs are running is 1 − 30ms

80ms ≈ 62.5%. Hence the execution time
slows down by a factor of 1

0.625 ≈ 1.60.
Correspondingly in the case with 5ms and 40ms delay, the fraction is 1 −

40ms
80ms ≈ 50% and the execution slows down by a factor of 1

0.5 ≈ 2.
The calculated factors match the measured ones. Figure 8 also gives an indi-

cation that Forkbench exclusively makes progress while both CPUs are running.
Contrary to the Forkbench, the execution time of the Hackbench with affin-

ity actually decreases when the CPUs are being scheduled asynchronous. A
program which has a large sequential fraction should show such behaviour, as
only one execution thread makes progress at a given point in time. It is not
clear where the Hackbench contains a significant sequential part. As it does not
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Core 0

Core 1

Figure 8: Forkbench running with asynchronous timeslice. Green is the VM.
Arrows indicate exchanged IPI messages.

have any explicit locks in the benchmark code, the reason must be somewhere
in the kernel or library functions. One suspect is the FIFO queue by which the
two sockets are connected. If the queue is implemented naively, only one reader
or writer may modify the queue. In general Linux is implemented quite efficient
and the number of queues is pretty large. Hence we do not think this is the
bottleneck.

Another suspect are the scheduling queues. During the benchmark, processes
frequently block on read and have to be taken of the run-queue. Also, the writer
processes write tiny amounts of data all the time; on every write the (potentially)
blocked reader has to be inserted into the run-queue. Access to these scheduler
queues must most likely be synchronised.

However, it does not get faster from the asynchronous 15ms/30ms to the
asynchronous 5ms/40ms. This indicates that only specific amount of work can
be completed without the other core responding. We suspect that after a short
time, all FIFO buffers are full and the writer processes also start to block. The
same could happen when the sender have sent all their messages and terminate.
Then the system must wait on the other CPU, which runs the receivers, until
it can finish.
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8 Conclusion

Our aim was to find a suitable implementation of a VMM that supports multiple
vCPUs on a multikernel.

We have done so by extending VMkit, the VMM of Barrelfish, to provide two
CPUs to a guest operating system. According to our goals, we paid attention to
implement VMkit efficient. In the end, our implementation reached performance
comparable to other virtualization systems. Our solution is able to run an
unmodified Linux by making use of the hardware extensions available on modern
x86 CPUs. The guest Linux uses the newly implemented hardware. The APIC,
for instance, is used to deliver IPIs and also as timing source. For CPU discovery,
ACPI is used.

The design of the VMM has proven to work, although in retrospect, we
would probably try to implement the VMM as two separate domains, sharing
only the address space of the guest. From our point of view, this seems more
compatible with Barrelfish’s approach of explicit sharing than memory sharing.
Using this two domain approach, we would also avoid some unexpected be-
haviour of Barrelfish that only occurs with one domain spanning multiple cores.
With hindsight, the decision to leave the PIC in the system was most likely
wrong. We think that making the PIC and the APIC work together correctly
took more time than just implementing an I/O APIC and discarding the PIC.
In order to prevent non privileged processes from compromising the system, a
coarse grained VMM capability is introduced.

We identify that a polling based messaging protocol is unsuitable for rapid
transmission of virtual IPIs. Low latency virtual IPIs have shown to be essential
to achieve good performance. To accomplish a satisfactory delivery latency,
sending an accompanying physical IPI is required.

To evaluate performance, a number of microbenchmarks are introduced and
some of them revealed interesting effects. The increased cost of TLB misses, due
to nested paging, could be observed multiple times. KVM shows a considerable
slowdown when running the Forkbench on a two CPU virtual machine.

Furthermore, we looked at how core placement on different NUMA nodes af-
fects performance. As expected, a microbenchmark exercising RAM bandwidth
and latency shows significant slowdown. However, all other benchmarks did not
show such large effects. So far, we found no exhaustive explanation for those
smaller effects. No significant impact caused by increased IPI latency between
different NUMA nodes could be observed. In general, the test machine seems
to do a good job in hiding NUMA effects. As virtualization adds another layer
of complexity, we do not think that this is a good method to study NUMA
behaviour.

The effect of gang scheduling has been investigated. Benchmarks, that syn-
chronise often, suffer from performance degradation, while independent work-
loads are not slowing down when scheduled asynchronously. A certain class of
workloads, however, shows better performance when the vCPUs are scheduled
asynchronously. Surprisingly, one of our microbenchmarks, the Hackbench with
affinity set, belongs to this class. We have not fully investigated what exactly
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causes this behaviour, but we suspect some kernel level synchronisation intro-
duces a sequential part. The classification if a program performs better or worse
under gang scheduling is hard. One does not only need to understand the be-
haviour of the application, but also how different operations in the Linux kernel
are implemented.

8.1 Future Work

The extended VMkit is usable to reproduce some effects of different scheduling
strategies. The lack of supported hardware, especially I/O devices, makes it
impossible to run more complex benchmarks. Adding more virtual hardware
devices would allow us to run more interesting benchmarks, for example a web
server. With this support, the latency of replying to a request could be mea-
sured. I/O limited benchmarks exercise the scheduler in a different way than
the benchmarks we used. The workloads we used present an always runnable
VMM process to the scheduler.

Our benchmark results have shown some effects we do not fully understand
yet. Especially some questions concerning the placement of vCPUs on differ-
ent NUMA nodes remain open. It is disputable to use a VM to answer such
questions, as it introduces a lot of complexity and indirections, which can easily
shadow NUMA effects.

As mentioned before there are other design alternatives for a VMM on top
of a multikernel. It would be interesting to restructure the VMM into two (or
more) domains that communicate exclusively through messages. This could
result in insights how to implement a VMM on a non shared memory system.

In order to enable migration of running Barrelfish domains, one might put
specific subsystems of Barrelfish inside a VM. To do so, messaging channels
must be bridged into the VM and after migration one has to pay attention to
recreate the bindings correctly.

As the classification, whether a program slows down or speeds up under gang
scheduling, is hard, one might try to alter the guest operating system to make
its behaviour more predictable. For example a process that calls fork still blocks
until all concerning TLBs are flushed (not to do so would be incorrect). The
hope is, that this fork operation will not block the whole operating system.

Maybe using a Linux kernel with the real-time patch7 improves the situation,
since the patched kernel remains preemptable in more situations. The usage of a
multikernel based operating system as guest may also help. The communication
is made explicit and the operating system is aware of message latency, that could
solve some of these issues as a side effect. However, this does not help to solve
any user space synchronisation issues.

Literature suggests that many effects of scheduling are not observable with
two cores or that these effects get more distinct. VMkit is already designed to
support more than two CPUs, nevertheless it has never been tested and most
likely some little modifications will be necessary.

7https://rt.wiki.kernel.org/
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Paravirtualization is known to improve performance. When the guest makes
use of paravirtualization, it would be interesting to verify if KVM shows the
same bad performance on the Forkbench as in our evaluation.
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Schüpbach, and Akhilesh Singhania. The multikernel: a new os
architecture for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles,
pages 29–44. ACM, 2009.

[BXDL12] Chang S Bae, Lei Xia, Peter Dinda, and John Lange. Dynamic
adaptive virtual core mapping to improve power, energy, and perfor-
mance in multi-socket multicores. In Proceedings of the 21st inter-
national symposium on High-Performance Parallel and Distributed
Computing, pages 247–258. ACM, 2012.

[BXL10] Yuebin Bai, Cong Xu, and Zhi Li. Task-aware based co-scheduling
for virtual machine system. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing, pages 181–188. ACM, 2010.

[CGV07] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Compar-
ison of the three cpu schedulers in xen. Performance Evaluation
Review, 35(2):42, 2007.

[Fri08] Thomas Friebel. Preventing guests from spinning around, June
2008. Xen Summit Boston 2008.

[GND+07] Sriram Govindan, Arjun R Nath, Amitayu Das, Bhuvan Urgaonkar,
and Anand Sivasubramaniam. Xen and co.: communication-aware
cpu scheduling for consolidated xen-based hosting platforms. In
Proceedings of the 3rd international conference on Virtual execution
environments, pages 126–136. ACM, 2007.

[Gol73] Robert P Goldberg. Architectural principles for virtual computer
systems. Technical report, DTIC Document, 1973.

[PG74] Gerald J Popek and Robert P Goldberg. Formal requirements for
virtualizable third generation architectures. Communications of the
ACM, 17(7):412–421, 1974.

[San09] Raffaele Sandrini. VMkit: A lightweight hypervisor library for Bar-
relfish, 2009.

[SHB09] Gabriel Southern, David Hwang, and R Barnes. SMP virtualization
performance evaluation, 2009.

47



9.1 References 9 APPENDIX

[SK11] Orathai Sukwong and Hyong S Kim. Is co-scheduling too expensive
for SMP VMs? In Proceedings of the sixth conference on Computer
systems, pages 257–272. ACM, 2011.

[TDY11] Jia Tian, Yuyang Du, and Hongliang Yu. Characterizing SMP Vir-
tual Machine Scheduling in Virtualization Environment. In Inter-
net of Things (iThings/CPSCom), 2011 International Conference
on and 4th International Conference on Cyber, Physical and Social
Computing, pages 402–408. IEEE, 2011.

[ULSD04] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dan-
nowski. Towards scalable multiprocessor virtual machines. In Pro-
ceedings of the 3rd Virtual Machine Research and Technology Sym-
posium, pages 43–56, 2004.

[VMwa] VMware. Co-scheduling SMP VMs in VMware ESX Server. Tech-
nical report.

[VMwb] VMware. VMware R© vSphere: The CPU Scheduler in VMware
ESX R© 4.1. Technical report.

[WWLL09] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu. The hy-
brid scheduling framework for virtual machine systems. In Proceed-
ings of the 2009 ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, pages 111–120. ACM, 2009.

48



9.2 Raw Benchmark Results 9 APPENDIX

9.2 Raw Benchmark Results

CPU Linux compile Rambench Sequential Rambench Randomised
[s] [s] [s]

0 158.58 0.31 ± 0.0002 1.95 ± 0.0019
1 159.11 0.31 ± 0.0002 1.93 ± 0.0018
2 158.03 0.31 ± 0.0003 1.92 ± 0.0020
3 158.95 0.32 ± 0.0001 1.92 ± 0.0018
4 156.35 0.26 ± 0.0002 1.82 ± 0.0017
5 156.62 0.26 ± 0.0002 1.82 ± 0.0018
6 156.89 0.26 ± 0.0002 1.81 ± 0.0016
7 157.22 0.26 ± 0.0001 1.80 ± 0.0016
8 160.60 0.37 ± 0.0001 2.31 ± 0.0023
9 160.28 0.37 ± 0.0002 2.30 ± 0.0023
10 160.30 0.37 ± 0.0003 2.31 ± 0.0021
11 160.61 0.37 ± 0.0002 2.30 ± 0.0025
12 158.74 0.32 ± 0.0002 1.96 ± 0.0018
13 159.52 0.32 ± 0.0002 1.97 ± 0.0021
14 158.98 0.33 ± 0.0003 1.96 ± 0.0018
15 159.27 0.33 ± 0.0002 1.96 ± 0.0020

CPU Forkbench Hackbench
[ms] [s]

0 107.1448 ± 0.7942 0.72 ± 0.0474
1 109.0601 ± 0.8732 0.73 ± 0.0476
2 106.9935 ± 0.7525 0.72 ± 0.0479
3 112.3174 ± 0.7074 0.63 ± 0.0577
4 108.6995 ± 0.8337 0.74 ± 0.0177
5 108.5936 ± 0.7415 0.76 ± 0.0581
6 109.0956 ± 0.7719 0.76 ± 0.0572
7 107.9625 ± 0.7516 0.64 ± 0.0622
8 107.7536 ± 0.8398 0.75 ± 0.0299
9 109.0212 ± 0.8361 0.74 ± 0.0259
10 108.6087 ± 0.8426 0.74 ± 0.0267
11 108.3094 ± 0.8397 0.75 ± 0.0297
12 115.2143 ± 0.7538 0.84 ± 0.0720
13 114.7233 ± 0.7418 0.74 ± 0.0761
14 108.4072 ± 0.8211 0.84 ± 0.0690
15 114.0728 ± 0.7417 0.78 ± 0.0527

Table 12: Single core placement on all available cores using VMkit. The shading
indicates the NUMA node.
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