
Master’s Thesis Nr. 136

Systems Group, Department of Computer Science, ETH Zurich

Consensus on a multicore machine

by

Roni Häcki

Supervised by

Prof. Timothy Roscoe
Stefan Kaestle

Moritz Hoffmann

March 2015–September 2015

Abstract

The communication latency within a multicore machine is almost non existent
and non uniform. The reduced propagation time changes the requirements for
a consensus protocol from reducing the number of communication rounds to
reducing the number of messages. Furthermore, a multicore machine features
clusters of cores within which consensus is easier and faster to solve. By running
di�erent protocols within clusters and between clusters we can solve consensus
with a hierarchy of agreements.

In this thesis, we investigate the problems that consensus on a multicore
machine faces and propose solutions. In a second part, we present an agreement
framework that hierarchically composes di�erent consensus protocols and shared
memory according to the performance characteristics of the underlying multicore
machine.

Contents

1 Introduction and Motivation 8

2 Background 10
2.1 Barrel�sh . 10

2.1.1 CPU Driver . 10
2.1.2 Dispatcher . 11
2.1.3 Capabilities . 11
2.1.4 Inter-Dispatcher Communication 12
2.1.5 Waitsets . 12

2.2 Multicore Characteristics . 13
2.3 Failure Model and Failure Domain 13
2.4 Shared Memory vs. Message Passing 14

3 Existing Consensus Protocols 15
3.1 Two Phase Commit (2PC) . 15
3.2 Paxos and Multi-Paxos . 17
3.3 1Paxos . 20
3.4 Raft . 22
3.5 Evaluation . 27

4 Improvement for Multicore 28
4.1 Consensus Inside . 28
4.2 Micro Benchmarks . 29

4.2.1 Setup . 29
4.2.2 Response Time . 29
4.2.3 Message Processing . 30
4.2.4 Wait Time . 32
4.2.5 Ping Pong Benchmark . 33

4.3 Tree Broadcast . 34
4.4 Protocol Implementation Overhead 35
4.5 Selection Overhead . 35

1

5 Framework Design 36
5.1 Composability . 36

5.1.1 Performance . 36
5.1.2 Failure . 37

5.2 Interfaces . 37
5.2.1 Replica Interface . 37
5.2.2 Internal Interface . 39
5.2.3 Client Interface . 40
5.2.4 Framework Interface . 41

5.3 Policy . 42
5.3.1 Protocol Choice . 42
5.3.2 Shared Memory . 42
5.3.3 Summary . 43

6 Implementation 44
6.1 2PC . 44

6.1.1 Tree Broadcast . 44
6.1.2 Removing the Leader . 46

6.2 Raft . 46
6.3 1Paxos . 48

6.3.1 Acceptor Failure . 48
6.3.2 Leader Failure . 49
6.3.3 Flooding Message Channels 50

6.4 Single-writer Multiple-reader Queue 50
6.5 Broadcast Replication . 52
6.6 Composability . 52
6.7 Key Value Store . 53

7 Evaluation 55
7.1 Setup . 55
7.2 Improvements for Multicore . 56

7.2.1 Tree Broadcast and Message Processing 56
7.2.2 Barrel�sh Implementations 58

7.3 Failures . 59
7.4 Composition . 61

7.4.1 2PC . 61
7.4.2 2PC without Leader . 62
7.4.3 1Paxos . 63
7.4.4 Broadcast Replication . 65

7.5 Key Value Store . 66

8 Related Work 69
8.1 Rex . 69
8.2 Composing Shared-Memory Algorithms 69
8.3 Optimizing Collective Communication on Multicores 70

2

9 Conclusion 71
9.1 Future Work . 72

9.1.1 Failure Model . 72
9.1.2 Protocols . 72
9.1.3 Improvements for Multicore 72
9.1.4 Network Layer . 72
9.1.5 Usage within Barrel�sh 72
9.1.6 Framework Cleanup . 73

A Two Phase Commit 74
A.1 Consensus Inside Message Passing 74
A.2 Barrel�sh Message Passing . 75
A.3 Removing the Leader . 77

A.3.1 Benchmarks . 77

B Raft 79
B.1 Problem Benchmarks . 80
B.2 Response Time . 82

C 1Paxos 84

Bibliography 86

3

List of Figures

2.1 The multikernel design model. Adapted from [4] 11

3.1 2PC: base case without con�ict 16
3.2 Paxos: base case without failure 18
3.3 Multi-Paxos: base case without failure 19
3.4 1Paxos: base case without failure 21
3.5 Raft: base case without failure 26

4.1 Response time: comparing 1Paxos and 2PC using 8 replicas . . . 30
4.2 Micro benchmark: 2PC message types using 8 replicas 31
4.3 Micro benchmark: 1Paxos message types using 8 replicas 31
4.4 Micro benchmark: wait time using 8 replicas 32
4.5 Ping pong: send time between core 0 and cores 1-47 33
4.6 Tree broadcast: example of a one-sided tree 34

5.1 Shared memory: performance of writes w.r.t. number of cores . . 42

6.1 Tree broadcast: example of a one-sided radix 2 k-nomial tree . . 45
6.2 Raft: problem of additional messages 47
6.3 1Paxos: acceptor failure. Adapted from [9] 48
6.4 1Paxos: leader failure. Adapted from [9] 49
6.5 Shared memory queue: layout in memory 51

7.1 Multicore improvements: cycles per message type 2PC 56
7.2 Multicore improvements: cycles per message type 2PC using

broadcast tree . 57
7.3 Multicore improvements: throughput of implementations based

on QC-libtask . 57
7.4 Barrel�sh: response time of di�erent protocols w.r.t. number of

clients . 58
7.5 Barrel�sh: throughput of di�erent protocols w.r.t. number of clients 59
7.6 Failures: response time during recovery from a failure 60
7.7 Failures: performance w.r.t. number of failures recoverable 60
7.8 Composition: throughput of compositions of 2PC w.r.t. number

of clients . 61

4

7.9 Composition: response time of compositions of 2PC w.r.t. num-
ber of clients . 62

7.10 Composition: throughput of compositions of 2PC without leader
w.r.t. number of clients . 62

7.11 Composition: response time of compositions of 2PC without leader
w.r.t. number of clients . 63

7.12 Composition: throughput of compositions of 1Paxos w.r.t. num-
ber of clients . 64

7.13 Composition: response time of compositions of 1Paxos w.r.t.
number of clients . 64

7.14 Composition: throughput of compositions of broadcast replica-
tion w.r.t. number of clients . 65

7.15 Composition: response time of compositions of broadcast repli-
cation w.r.t. number of clients . 65

7.16 Key value store (CAS): write time w.r.t. number of clients 66
7.17 Key value store (spinlock): write time w.r.t. number of clients . . 67
7.18 Key value store (spinlock): throughput w.r.t. number of clients . 68

A.1 2PC: throughput w.r.t. con�ict probability 78
A.2 2PC: response time w.r.t. con�ict probability 78

B.1 Raft: throughput and additional number of messages w.r.t. the
number of clients . 81

B.2 Raft: throughput using 1 and 8 clients with a varying sleep time 81
B.3 Raft: response time w.r.t. number of clients 82
B.4 Raft: response time with sleep time between requests w.r.t. num-

ber of clients . 83

5

List of Listings

5.1 Composability: replica interface 37
5.2 Composability: lower layer interface 39
5.3 Composability: client interface 40
5.4 Composability: replica to client communication interface 40
5.5 Composability: framework interface 41
6.1 Shared memory: single-writer multiple-reader queue interface . . 51
6.2 Key value store: simple implementation 53
6.3 Key value store: interface for clients 54
A.1 2PC: message struct de�nition 74
A.2 2PC: Flounder interface de�nition 75
A.3 2PC: abort message type . 77
B.1 Raft: Flounder interface . 79
C.1 1Paxos: Flounder interface . 84

6

List of Tables

4.1 Micro benchmarks: cores assigned to NUMA nodes 29

7.1 Evaluation: benchmark machines 55
7.2 Evaluation: cores assigned to NUMA nodes 55

7

Chapter 1

Introduction and Motivation

In recent years, the core count of multicore systems increased and there is no
end to this trend. One of the scaling problems for an operating system on a
multicore machine is sharing data. The most widespread operating systems
feature a single kernel where data is shared between all the cores. There is a
general consensus that for scaling an operating system to a higher core count,
data should no longer be shared but replicated.

Out of this reason, research operating systems as Barrel�sh [24] started to see
a multicore machine as a distributed system. Problems that are easy to solve
when data is shared, become harder when distributed. Data that was previously
shared, has to be held consistent between communication nodes. In distributed
systems, consistent replication is often solved by consensus protocols.

Can we simply take any existing consensus protocol and run it on a multicore
machine? A multicore machine has large di�erences to the traditional network
setup. Communication within a multicore machine o�ers more guarantees and
lower propagation time than communication over a network. If a consensus pro-
tocol does not consider the advantages of a multicore machine, the performance
bene�ts are lost.

Consensus protocols are not only useful for replicating data, but also for tol-
erating failures. The current hardware model is not absolute. In the future,
full veri�cation of hardware may become too complex and failures have to be
taken into account as part of the hardware model. If the hardware no longer
guarantees failure safety, the software has to compensate. The operating system
has to prevent the system from crashing because of a partial hardware failure.

Reaching consensus over a large number of replicas is not a cheap task. Replica-
tion over all cores of a multicore machine has to take into account the topology
of the machine to be e�cient. Certain clusters of cores share the same mem-
ory or even an L3 cache. If we de�ne such a cluster as a failure domain, we

8

can replicate within a cluster by using shared memory and reduce the cost of
replication. To prevent failures from crashing the whole machine, a consensus
protocol that can tolerate failures is run between failure domains.

The goal of this thesis is to establish a framework for handling consensus on
the Barrel�sh operating system. The framework should provide a toolbox of
di�erent protocols and algorithms. Based on the topology of the multicore ma-
chine, the framework should compose shared memory with consensus protocols
to yield optimal performance while still assuring fault tolerance for a given fail-
ure domain.

9

Chapter 2

Background

2.1 Barrel�sh

Barrel�sh [24] is a research operating system built at ETH Zurich. Barrel�sh
tries to tackle two upcoming problems. The �rst problem is scalability for multi-
and many-core systems. The second is heterogeneity of system hardware. A
large part of the design of Barrel�sh is driven by these two problems.

2.1.1 CPU Driver

A new approach for designing an operating system is the multikernel [4]. Some
time ago, operating system designers realised that for scaling to a large number
of cores, sharing state between cores is becoming a bottleneck. In a multikernel
each core runs a kernel or in Barrel�sh terminology a CPU driver. Barrel�sh
tries to avoid shared memory and send explicit messages instead. The system
itself is seen as a distributed system and not as a single large unit. The CPU
driver is single threaded and non-preemptive. It abstracts very few resources
similar to an exokernel [11]. The CPU driver provides hardware resource multi-
plexing, message passing, scheduling of dispatchers on the local core, as well as
access of kernel objects and physical memory by using capabilities [19]. Other
operating system services are either implemented in libraries or similar to mi-
crokernels [20] in servers that run as a user-space process. The main design
blocks are shown in �gure 2.1.

10

Figure 2.1: The multikernel design model. Adapted from [4]

2.1.2 Dispatcher

Dispatchers are the unit of kernel scheduling. In Barrel�sh, dispatchers are im-
plemented similar to scheduler activations [2]. The kernel manages a Dispatcher
Control Block (DPC) for each dispatcher. The dispatcher itself schedules user-
level threads. In contrast to a traditional kernel, the Barrel�sh CPU driver uses
upcalls to inform a dispatcher that it is scheduled. The remote endpoints used
for messages passing are derived from the dispatcher's capability.

2.1.3 Capabilities

Capabilities [19] are a form of access control. The principle is inverse to Access
Control List (ACL) where the permissions are attached to an object. Capabil-
ities are keys enabling the subject to access a certain object. From user-space
the capabilities referencing memory and other resources can not be directly ac-
cessed. Capabilities can only be manipulated by system calls. Therefore, the
kernel prevents unauthorized accesses and security is enforced by the kernel. In
Barrel�sh, capabilities are typed ("untyped" being a type itself). All memory
that is not claimed for bootstrapping is initially untyped. From the untyped ca-
pability, every other type of capability is formed by retyping (satisfying certain
rules) and splitting the large untyped capability. The kernel does no dynamic
memory allocation and can not run out of memory. The capability types and
the rules of retyping are de�ned in a Domain Speci�c Language (DSL) called
Hamlet [8]. Through Hamlet the capability system can use types freely.

11

2.1.4 Inter-Dispatcher Communication

The multikernel design heavily relies on message passing. A considerable amount
of the performance of such an operating system depends on message passing. In
Barrel�sh there are two backends hidden behind a general message passing in-
terface. Depending on if a message is core local or between cores, one of the two
backends Local Message Passing (LMP) or User-level Message Passing (UMP)
is used.

LMP

If two dispatchers on the same core are communicating, the LMP backend is
used. Conceptual LMP is adapted from Lightweight Remote Procedure Call
(LRPC) [5]. LMP requires endpoints to communicate and a channel has two
endpoints (remote and local). The endpoints are retyped from the dispatcher
of a process. Each endpoint contains bu�ers for message passing. The sender
invokes the remote endpoint with the message to send. As a result of the
invocation, the kernel copies the message into the associate bu�er and makes
the dispatcher runnable.

UMP

Inter core communication in Barre�ish is implemented as a variation of User-
Level Remote Procedure Call (URPC) [6] called UMP. Similar to LMP, a UMP
channel requires an endpoint capability to communicate with. Messages are sent
by shared memory in combination with polling and inter-process interrupts. The
shared memory is split into sending and receiving bu�er. Entries of a bu�er are
the size of a cache line. The sender writes into the bu�er while the receiver is
polling for new data. The bu�ers are circular and overwriting not yet processed
data is prevented by an epoch �ag bit.

Flounder

Flounder [3] is an interface de�nition language that generates code for message
passing. Through Flounder the user can de�ne message signatures based on
common C types. Flounder generates all required functions from exporting
functionality, over the binding process to initialize a channel up to marshalling
the arguments and sending a message. It generates C code for both LMP and
UMP and decides automatically which backend to use.

2.1.5 Waitsets

Waitsets are the main mechanism for event handling in Barrel�sh. A mes-
sage channel has to be registered to a certain waitset. Events on a message
channel as receiving a message can be raised by calling event_dispatch() or
event_dispatch_non_blocking(). A waitset maintains a queue of threads that

12

are waiting for events to be raised. An event is de�ned as a function pointer
and a pointer to the arguments (closure).

2.2 Multicore Characteristics

What are the di�erences between running a consensus protocol over the network
and running the protocol between cores of a machine? In general, communi-
cation channels between cores give more guarantees than the network between
machines.

The largest di�erence is the propagation time. Over a network the propaga-
tion time takes up the largest chunk of time. On a multicore machine it is the
contrary, the transmission time between cores is almost non existent. The dra-
matic change in transmission time can become a problem for adapting existing
protocols to a multicore machine. Consensus protocols that are designed to
work over a network, try to reduce the number of communication rounds. The
main objective on a multicore machine, is to reduce the number of messages [9]
since the dominating factor is the time to send and receive a message.

The communication channels on a multicore machine give the guarantee that
no message is lost or dropped and a message can not be corrupted (as long as
there are no hardware failures). Therefore, there is no need for checksums and
resending messages. Building on these facts, we can save certain acknowledge-
ment messages. Further, messages sent between cores have an upper bound on
how long it takes until they arrive. A message sent over the network does not
have an upper bound and can take an arbitrary time to arrive at the destination.

2.3 Failure Model and Failure Domain

The failure model is essential for a consensus protocol. If there are no failures
in the system, simple protocols as Two Phase Commit (2PC) often yield good
enough results. If crash failures are part of the model, protocols as Raft [23]
and variants of Paxos [15] are frequently used. The most complicated case are
Byzantine failures. Byzantine failures not only consider crashes of replicas but
also malicious behaviour as injecting wrong information into the system. The
more general the failure model, the more computationally intensive the consen-
sus protocol.

In addition to the failure model, we have to de�ne a failure domain. Cur-
rently, it is normal that if a single core of a CPU fails, the machine is shut
down. If hardware failures become part of the computing model, shutting down
the whole machine is not a reasonable choice. There are three granularities of
failure domains we consider: machines, Non-Uniform Memory Access (NUMA)
nodes, and cores. The smaller the failure domain granularity, the more replicas

13

are needed.

We did not want to start with the most complicated failure model at the begin-
ning. We chose the simple model of crash-stop. In the crash-stop failure model,
the unit that fails stops and does not execute any further operations. Further,
there is no malicious behaviour. The failure domain we consider is a NUMA
node. A NUMA node as the failure domain opens up the possibility to run a
di�erent protocol or algorithm within a node.

2.4 Shared Memory vs. Message Passing

In the past, shared memory and message passing were seen as a dual [18]. In
recent years, message passing seems to be the preferable choice [4]. For each
write to a shared memory location, the cache coherency protocol invalidates the
cache entries of all the cores that share this particular cache line. As a result,
the more nodes (and cores) that share a cache line, the slower the updates to
shared memory get. Message passing as it is used in Barrel�sh [24] allows the
user only to allocate channels between a pair of cores. In this manner, the bus
is not �ooded from the cache coherency protocol and communication is made
explicit. The only performance reduction for message passing when scaled to
a larger number of cores is a queueing e�ect, since the CPU drivers are single
threaded.

14

Chapter 3

Existing Consensus Protocols

The consensus problem requires multiple processes to agree on a single value.
The more elaborate the failure model, the more communication is required to
prevent an invalid agreement. A valid agreement ful�ls the following require-
ments:

� Termination: every process decides on a value.

� Validity: if all processes propose the same value, all correct processes
choose said value.

� Integrity: at most one value is chosen by a process and the value must
have been proposed by some process.

� Agreement: all processes agree on the same value.

Consensus is a fundamental problem of distributed systems. Consensus is
needed to prevent inconsistencies between replicas. Each consensus protocol
has distinct characteristics. To compose di�erent protocols, it is essential to
understand the building blocks of the composition. In the following section, the
most relevant protocols for this thesis are explained.

3.1 Two Phase Commit (2PC)

Two Phase Commit (2PC) is a well known consensus protocol that is based on
a leader. It is often referred to in the context of database transactions. There
are many variations of 2PC that are optimised for speci�c use cases. As the
name suggests there are two phases:

� Prepare Phase: contacting all participating replicas and prepare them
for the commit (and �nd con�icts if there are any).

� Commit Phase: after all replicas responded and no con�ict is detected,
the leader tells the replicas to commit. After a replica commits the
changes, it sends an acknowledgement to the leader.

15

2PC can not handle failures because each replica has to respond to the leader. If
either a replica or the leader fails, the agreement stalls. During normal operation
the replicas communicate according to the pattern shown in �gure 3.1.

Figure 3.1: 2PC: base case without con�ict

If a con�ict of two requests is detected by one of the replicas, the agreement has
to be aborted. Instead of a ready message the replicas send an abort message.

16

If the leader receives any abort message, it broadcasts an abort message to all
the replicas to avoid stalling further agreements.

Another version of 2PC removes the leader and lets the clients directly broad-
cast the prepare messages to the replicas. By removing the leader, the maximal
throughput of the system should increase. A disadvantage is an increased con-
�ict probability since multiple clients suggest values and not only a single leader.

3.2 Paxos and Multi-Paxos

It took a long time to prove that solving consensus in a partially synchronous
system is possible [10]. Paxos was one of the �rst fault tolerant consensus
protocols to solve consensus in such a system. It was �rst proposed in 1989 by
Leslie Lamport [15] and explained using a �ctional legislative consensus system.
The value of Leslie Lamport's protocol stayed unnoticed until 1998 when it was
published in a journal. Since then, several variations with di�erent trade-o�s
were published (e.g. [13, 16, 17]). A participant of the protocol can perform
di�erent roles:

� Proposer: proposes requests from clients to a quorum of acceptors.

� Acceptor: accepts proposals from proposers and can refuse if there are
con�icts. Proposers send a proposition to a quorum of acceptors and can
only proceed further if the proposition is accepted by a quorum.

� Learner: learns the proposed values. A learner is passive and is the
replication part of the protocol.

� Leader: if there are several proposers, their proposals may con�ict indef-
initely. To guarantee progress, only a distinguished leader proposes the
values. Electing a leader is an optimization.

At the beginning, a proposer sends a prepare message with a proposal number
N and the value from a client request to a quorum of acceptors. The acceptors
accept the proposal and reply with a prepare response message, if the proposal
number N is larger than any previously seen proposal number. Otherwise, the
acceptors do not answer or send a negative-acknowledgement. If multiple pro-
posers propose di�erent values, the prepare messages let the acceptors detect
con�icts.

In a second phase, the proposer sends an accept message to a quorum of ac-
ceptors. The accept message contains the same values as a prepare message. If
the proposal number N is large enough, the agreement succeeds and the accep-
tor broadcasts a learn message to inform the learners of the chosen value. If
a learner receives learn messages from a quorum of acceptors, it commits the
chosen value.

17

Figure 3.2: Paxos: base case without failure

Paxos only considers a single agreement, but most systems require a stream
of agreements. For multiple agreements, Multi-Paxos is used. Multi-Paxos
assumes that only a single proposer is chosen as a leader and that the leader is
rather stable.

18

Figure 3.3: Multi-Paxos: base case without failure

19

When the leader is chosen, the �rst phase with prepare messages is no longer
necessary and the number of delays to reach an agreement is reduced. A more
common case where the roles are combined (replica is acceptor and learner) is
shown in �gure 3.3. Through the forming of quorums of acceptors, Paxos as
well as Multi-Paxos can tolerate non Byzantine failures. As long as a quorum
of acceptors can be formed, Paxos and Multi-Paxos do not stall.

3.3 1Paxos

1Paxos, a Multi-Paxos variant adapted to a multicore machine, was proposed
by Rachid Guerraoui et al. [9]. The goal of 1Paxos is to reduce the number
of messages per agreement to the minimum. The key concept of 1Paxos is the
reduced number of acceptors. If there is only a single acceptor, the number
of messages from proposer to acceptors is reduced. Further, since only one
acceptor receives an accept, only a single broadcast to the learners is performed.
In 1Paxos the message types have the same meaning as in Paxos.

Failure-free case

1Paxos chooses the leader, similar to Multi-Paxos, through prepare and prepare
response messages. A proposer that wants to become leader sends a prepare
message to the active acceptor. If the proposal number of the prepare message is
greater than all previous proposal numbers, the acceptor answers with a prepare
response message. Assuming the leader and acceptor are elected, the leader can
send an accept message to the acceptor. The acceptor decides if it accepts the
proposal and broadcasts the accepted value to the learners depending on the
proposal number. The failure free case with an already chosen leader is shown
in �gure 3.4.

20

Figure 3.4: 1Paxos: base case without failure

21

Acceptor Failure

The leader is the only replica authorized to change the active acceptor. The
change from one acceptor to another must be con�rmed by a majority of replicas
to avoid more than one acceptor/leader pair in the system. Agreeing on a new
acceptor is achieved by a utility consensus protocol. The leader �rst ensures
that it is still the leader by inquiring all replicas to send it the leader id. If the
leader has received a majority of responses with its id, it announces the change of
acceptor to the other replicas. Afterwards, the leader sends a prepare message
to the new acceptor. The prepare message contains uncommitted proposed
values to cover the case if the acceptor received an accept message, but did not
broadcast the learn message before failing.

Leader Failure

Switching the leader is similar to a failure of the acceptor. A replica can try to
become leader if it suspects that the leader is no longer responsive. A replica �rst
acquires the acceptor id by requesting the id from all the replicas. If the replica
receives a majority of answers with the same id, it can proceed and announces
the change of leadership. The new leader requires a majority of replicas to
prevent a change of acceptor during the leader election. After the election, the
new leader announces its leadership to all the replicas. If an old leader received
a change of leadership message, it assumes that it has been replaced as the
leader.

Failure of Both Leader and Acceptor

If both the leader and acceptor fail, the protocol stalls until either the leader or
the acceptor is responsive again. The decision to handle this case by waiting is
based on the probability. Assuming the probability of two replicas failing at the
same time is already small, the probability of exactly the leader and acceptor
failing is even less.

3.4 Raft

Raft [23] is a more recent consensus protocol designed to be more understand-
able than Paxos. Raft decomposes the key elements of consensus such as leader
election, log replication, and safety. Further, a strong coherency between repli-
cas is enforced leading to a reduced state space. Raft can tolerate non Byzantine
failures as long as majority of replicas is still running. Since the paper [23] con-
tains a lot of implementation details, we explain Raft in more detail.

In Raft replicas can be in one of three states: leader, follower, or candidate.
The leader receives requests from clients and sends messages to followers to
replicate the state. Followers are passive and just react to incoming messages of
the leader. Only if a follower does not get a message in a certain time period, it

22

becomes a candidate and tries to become the new leader. The leader prevents
followers from becoming candidates by periodically sending a so called Heartbeat
to all followers. On becoming a candidate, the follower increases its term. The
term helps to discard messages from old leaders.

State

Hereafter is a summary of the state each role has to keep track of. For all servers
there are the following values:

� currentTerm : the highest term a replica has received in a message. In-
creases when a follower becomes a candidate.

� votedFor : the id of the candidate that received the replica's vote during
a leader election. Prevents replicas to vote for di�erent candidates in the
same term.

� log[] : a log entry contains a command, which should be applied to the
state machine, and the term.

� lastLogIndex : the index of the last entry that was written to the log.

� commitIndex : the index of the last log entry that is replicated among a
majority of replicas.

� lastApplied : the index of the last log entry that was applied to the state
machine.

Additionally to these values, the leader requires the two arrays:

� nextIndex[] : the index of the next log entry that the leader can send
to a follower.

� matchIndex[] : the index of the last log entry known to be replicated on
a certain follower.

The main mechanisms of the Raft protocol are implemented in two Remote
Procedure Calls (RPCs). The RPCs are called AppendEntry and RequestVote.
The AppendEntries RPC is executed for both replication and Heartbeats.

Remote Procedure Calls

An AppendEntries RPC has the following arguments and results:

� [In] term : the leader's term.

� [In] leaderId : the leader's id.

� [In] prevLogIndex : the log index before the new entry. Required for
consistency checks.

23

� [In] prevLogTerm : the term of the previous log entry.

� [In] entries[] : one or several entries that should be appended to the
log. Empty for Heartbeats.

� [In] leaderCommit : the leader's commitIndex.

� [Out] term : the current term.

� [Out] success : result of the RPC's consistency checks.

The entries that are appended to the log have to meet certain conditions. First
of all, the term must be larger or equal to the follower's currentTerm. If the
term is smaller, an old leader is still trying to append entries. Further, the entry
at prevLogIndex in the log[] must not be empty and match the prevLogTerm.
If there is a con�ict, meaning there is a non empty entry at the location of the
new entry that is appended, all the entries following the new entry are deleted.
If an AppendEntries RPC fails, the leader retries with the log entry before the
log entry that failed. In this manner, the leader enforces its log to any follower.

A new leader is elected by performing RequestVote RPCs. The arguments and
results are:

� [In] term : the candidate's term. Used to check if the candidate's log is
at least as up-to-date as the follower's log.

� [In] candidateId : the candidate's id trying to become leader.

� [In] lastLogIndex : the last index added to the log. Used for up-to-date
log check.

� [In] lastLogTerm : the term of the last log index.

� [Out] term : the current term of the follower.

� [Out] voteGranted : if the vote is granted.

If a candidate receives a majority of votes from followers, it becomes the new
leader. If there are two candidates trying to become leader and they tie, they
initiate another vote. The time a follower waits until it initiates a vote and
becomes a candidate, is the sum of the base wait time and a randomized wait
time. The randomization minimizes the number of clashes between two candi-
dates and a new leader is elected faster.

Leader Election

When a replica becomes leader, the replica periodically executes an RPC called
Heartbeat. A Heartbeat is an empty AppendEntries RPC. The Heartbeat RPC
prevents followers from converting to a candidate. As long as a follower receives
messages from either a candidate or a leader, it stays in the follower state. If

24

a follower becomes a candidate it increases its term, votes for itself, and starts
to request votes from other replicas. A candidate is only elected if it receives a
majority of votes. To prevent candidates with a less up-to-date log to become
leader, a candidate only receives positive votes if it has a more up-to-date log
than the follower it requests the vote from.

Log Replication

If the leader receives a request from a client, it writes the request down into
the log. The leader replicates the log by performing an AppendEntries RPC
to each follower. Further, each follower has two values: the commitIndex and
lastApplied. An entry in the log is committed if the leader has replicated the
entry on a majority of followers. With each AppendEntries RPC the leader
sends its commitIndex. If the commitIndex of the follower is less than the
commitIndex of the leader, the follower increases its commitIndex. The leader
has two arrays that it has to keep track of: nextIndex[] and matchIndex[].
The nextIndex[] keeps track of which is the next log entry the leader can send
to a certain follower. If lastLogIndex ≥ nextIndex[] holds for a follower, the
leader tries to send further entries. The matchIndex[] is the highest log entry
that is replicated on a follower. The leader can increase its commitIndex to
N , if a majority of matchIndex[] is larger than N and the term of this log
entry matches the current term. The lastApplied value is the last entry that
is applied to the state machine. If the commitIndex of a follower is less than
lastApplied, the follower increases lastApplied and applies the log entry at
the index lastApplied to the state machine. The base case of Raft is shown in
�gure 3.5.

25

Figure 3.5: Raft: base case without failure

26

3.5 Evaluation

Out of a multitude of consensus algorithms we decided on the following proto-
cols: 2PC, Raft, and 1Paxos. 2PC is our base line and simple to implement.
Since 2PC does not handle failures, it should have a better performance than
any algorithm handling failures. We consider 2PC to be a valid option to run
within NUMA nodes. Some years ago, a Multi-Paxos implementation was the
way to solve consensus, but within a multicore environment Multi-Paxos is a
poor choice because of the excessive use of messages. Raft is a protocol that
does not require a lot of messages and may �t into a multicore environment.
1Paxos is the last protocol we wanted to implement since it is developed to
�t into a multicore environment. 1Paxos utilizes the facts that the protocol is
running on a multicore machine and makes full use of the added guarantees.

27

Chapter 4

Improvement for Multicore

Before we can address the issues with consensus in a multicore environment, we
have to understand the problems. At the moment, there are a few framework
that consider consensus on a multicore machine. The framework most similar
to our goal is from Rachid Guerraoui et al. [9]. Luckily for us, the code is
publicly available. The code contains an implementation of 1Paxos, 2PC, and
Multi-Paxos. This seems to be a good foundation for further analysing the
requirements for running consensus on a multicore machine.

4.1 Consensus Inside

The framework of Rachid Guerraoui et al. [9] contains both the possibility to
measure throughput and response time. Three programs are available: client,
replica, and manager. A replica participates in the protocols and receives re-
quests from clients. The manager synchronizes the clients. Only after all clients
received a message from the manager, they can start sending requests to the
replicas.

Message passing between cores is implemented by a framework called QC-
libtask. Similar to Barrel�sh [24], QC-libtask uses shared memory and exploits
the cache coherency protocol to send messages. A communication channel con-
sists of two shared memory queues (send and receive) and is allocated between a
pair of cores. Further, a user-level thread is started that polls for new incoming
messages. To improve message delivery times, they made use of a user-level
thread library that reduces the delivery time to a simple lightweight user-level
context switch. The shared memory channels are abstracted by �le descriptors.
The abstraction leads to two functions for messages passing: fdread() and
fdwrite. Fdread() is a blocking call and may send the receiving thread of the
channel to sleep.

28

4.2 Micro Benchmarks

Micro benchmarks are a helpful tool to analyse issues. Fine grained measure-
ments help to pinpoint the code segments where time is lost.

4.2.1 Setup

For our experiments we made use of a 4×12 AMD Opteron(tm) 6174 processors
at 2.2 GHz with a total of 128 GB RAM. The CPUs are not native 12 cores but
actually 2×6 cores with a shared L3 Cache. The machine runs on Ubuntu 12.04.

The machine is divided into 8 NUMA nodes with 6 cores per NUMA node.
The cores are assigned to NUMA nodes according to table 4.1.

Table 4.1: Micro benchmarks: cores assigned to NUMA nodes
Node Number Cores

Node 0 0,4,8,12,16,20
Node 1 24,28,32,36,40,44
Node 2 1,5,9,13,17,21
Node 3 25,29,33,37,41,45
Node 4 2,6,10,14,18,22
Node 5 26,30,34,38,42,46
Node 6 3,7,11,15,19,23
Node 7 27,31,35,39,43,47

The programs we mentioned before (client, replica, manager) are assigned to
cores by the taskset command. The manager is always running on the last
core. The replicas are assigned to the �rst core on each NUMA node. Every
other core is used for clients. The assignment avoids putting clients and replicas
on the same core. When a client and a replica run on the same core, there is a
large overhead for context switching. For each request there would be a kernel
context switch from client to replica because sending a request is blocking.

4.2.2 Response Time

The response time is a crucial indicator for the usability of the consensus pro-
tocols in context of an agreement service within an operating system. For an
operating system 10'000 cycles are already a long duration. We measured using
8 replicas and put load on the system with 1 or 8 clients to see the behaviour
for di�erent loads.

29

Figure 4.1: Response time: comparing 1Paxos and 2PC using 8 replicas

1Paxos has a response time of 42'000 cycles where as 2PC is already around
98'000 cycles for a single client. A few tens of thousands cycles are too much let
alone when there is a higher load with 8 clients (180'000 and 720'000 cycles).
1Paxos has a reasonable standard deviation where as the standard deviation
of 2PC gets out of hand. To pinpoint where the time is lost, we did further
benchmarking but on a �ner granularity.

4.2.3 Message Processing

We added some code to the existing benchmark implementation that measures
the time in di�erent code segments and prints the results into a �le at the end
of the benchmark. For each protocol there are di�erent types of messages that
take a di�erent amount of time to process. The code is split up into measure-
ment segments of sending, receiving, processing, and rest. The sending part is
an invocation of fdwrite() that writes into the shared memory region. The
receiving part is more complicated. QC-libtask starts a receiving thread for
each channel it allocates. The receiving thread may also be sent to sleep. The
receiving time only accounts for the time it takes to receive the data and not the
sleeping/waiting time. The receiving time includes the time to copy a message
from the queue into some allocated memory. The processing time accounts for
the logic of the consensus protocol and the rest is the time the measuring code
takes up.

The replicas are started on cores 0-3 and 24-27. The benchmark consists of
a single client sending 1'000 requests. We benchmarked both 2PC and 1Paxos.
Note that �gure 4.2 shows the time from receiving a certain message type in-
cluding the reaction to this message type.

30

Figure 4.2: Micro benchmark: 2PC message types using 8 replicas

2PC has four message types: prepare, ready, commit, and ack. The only broad-
cast that is executed for each received message, is from the leader to the other
replicas with the prepare message type. The commit message type involves only
a single broadcast after receiving a ready message from all other replicas. We
amortized the cost of the send operation for the commit message type. Our
assumptions are that the send and receive time should dominate the cost. The
ack and prepare message types uphold the assumption. The ready and commit
message types are dominated by the processing cost.

Figure 4.3: Micro benchmark: 1Paxos message types using 8 replicas

For 1Paxos we excluded the message types prepare and prepare response since
they are only sent once at the beginning. We have two di�erent measurements

31

for the learn message type since the leader has to react di�erently. The results
are shown in �gure 4.3.

The three message types of 1Paxos are: request, accept, and learn. 1Paxos
in the base case only requires a single sequential broadcast of a learn message
from the acceptor to all other replicas. If the leader receives the learn message,
it informs the client that the agreement is completed. The receiving and send-
ing time matches the 2PC results, but the time spent processing the messages
is high. The processing cost clearly dominates if there is no sequential broadcast.

Just comparing the total time spent per message type 2PC seems to be faster
than 1Paxos. Considering the logic of the protocols, it is clear why 2PC has a
longer response time. 2PC has to wait for all replicas to respond. 1Paxos only
waits for the leader to receive a learn message. Still, there are large discrepan-
cies between the response time and the sum of the time spent per message type.
There is one quantity left that we did not take into account: the wait time from
receiving a message.

4.2.4 Wait Time

The wait time is the time fdread() blocks until data arrives and the thread
gets CPU time to process. Since QC-libtask starts a receiving thread for each
channel, there is a lot of potential overhead from switching between threads and
queueing threads for CPU time. The wait time can not be added directly to the
values measured before. A receiving thread may wait for an incoming message
since there is nothing else to process. Doubtless, the wait time is accountable to
some part of the response time. We excluded the wait time from the previous
graphs out of readability reasons since the values are large.

Figure 4.4: Micro benchmark: wait time using 8 replicas

32

The wait time is hard to decipher. The acceptor and leader of 1Paxos exhibit
a higher wait time than 2PC. A higher wait time can indicate both high load
or low load. If the load is high, the wait time increases because several threads
are queued and wait for CPU time. If the load is low, the threads may not
have anything to process and the wait time increases. Still, the high wait time
indicates that one thread per receiving channel is too much.

4.2.5 Ping Pong Benchmark

In a last benchmark, we are interested in how the send time changes depending
on which two cores are communicating. If there is a di�erence we can optimize
the communication patterns between cores. We wrote a benchmark that does a
ping pong between two cores on top of QC-libtask. One of the cores starts send-
ing a single message and both cores react to receiving a message by responding
back. We pinned one of the programs to core 0 and the other program changes
from cores 1 to 47. For each core we did three measurements with 1'000'000
messages sent back and forth per measurement.

Figure 4.5: Ping pong: send time between core 0 and cores 1-47

The send time clearly shows the NUMA topology. The communication between
core 0 and cores 4,8,12,16, and 20 that form the NUMA node 0 is cheaper than
with any other core. Since the AMD CPU is actually two 6 cores CPUs on the
same die, the cores of NUMA node 1 (24, 28, 32, 36, 40, 44) show a similar
e�ect. The cores of nodes 2 (1, 5, 9, 13, 17, 21), 4 (2, 6, 10, 14, 18, 22), and 6
(3, 7, 11, 15, 19, 23) seem to have a direct communication channel with node 0.
Any other core shows a higher number of cycles and we can assume that there
is a further hop over another NUMA node necessary. The di�erence from the
cheapest communication path to the most expensive is around 250 cycles.

Pinpointing the program on core 0 to another core yields other results but
shows the same NUMA topology. Changing the core only shows which cores

33

belong to a local node, have a single hop or more than one hop to the next node.

4.3 Tree Broadcast

From subsection 4.2.3 we can infer that a sequential broadcast is a costly oper-
ation. Instead of letting a single replica execute the broadcast, the replicas can
broadcast along a one-sided tree as suggested by Nishtala and Yelick [21]. If the
broadcast is along a one-sided tree, the cost is not centred at a single replica
but distributed to some degree to other replicas. An example of a one-sided
broadcast tree is shown in �gure 4.6.

Figure 4.6: Tree broadcast: example of a one-sided tree

The root of the tree �rst sends a message to its leftmost child. While the child
has already received the message, the root sends the next message to the second
child. When we assume the propagation time is almost non existent, the root
�nishes the broadcast when the leftmost node of the tree receives the message.
The colors in �gure 4.6 represent rounds. In a �rst round the root sends to the
red node. In the next rounds the blue nodes receive a message, then green and
at the end the orange nodes. By broadcasting along a tree, the root only has
to send messages to 4 nodes instead of 15. The load on the root is reduced and
broadcasts are more scalable to a higher number of nodes.

A drawback of a broadcast tree is failure handling. If one of the nodes within
the tree fails, the whole sub-tree does not receive the broadcast. The parent of
the failed tree node has to detect the failure and replace the failed node. We did
not consider the broadcast tree for consensus protocols that can handle failures
because of the added complexity.

34

4.4 Protocol Implementation Overhead

In our opinion, the cost of a consensus protocol running on a multicore machine
should be dominated by send and receive operations. In subsection 4.2.3 we
showed that the processing cost of the messages dominate. When we had a
closer look at the code (written in C++), we discovered several problems. Since
C++ supports object orientation, the message types are represented as classes.
When a message is received, there is an overhead for converting from one object
type to another type. Converting the message type often involved malloc() or
memcpy(). There are simpler solutions to change the type of a message. The
cost of malloc() and memcpy() depending on the size can vary from a few hun-
dred to thousands of cycles.

Further, several C++ library functions are used that can be replaced with sim-
pler primitives. The more we rely on library functions, the less we can control
what our code does. C++ may deliver features that simplify the implementa-
tion of complex consensus protocols, but in the context of an operating system
C is still the better choice.

4.5 Selection Overhead

QC-libtask starts a receiving thread for each channel it sets up. As an example,
if a leader has to send messages to 7 other replicas (8 replicas total) there are 7
user-level threads running and competing for CPU time. The matter gets worse
if we account for clients that send requests to the leader. A thread per client or
replica does not scale.

Let us have a look at the composition of the response time of 1Paxos. For
the moment let the time between sending on one core and receiving the message
on the other core be zero (almost the case). A client sends a request to the
leader where it is forwarded as an accept message to the acceptor after around
10'800 cycles. The acceptor requires another 12'600 cycles to broadcast the
learn messages, but the message to the leader is sent �rst after around 6'000
cycles. On receiving the learn message the leader requires another 8'800 cycles
to send the reply to the client. The sum accounts for 25'600 cycles of the to-
tal 42'000 cycles response time. Selecting and running the required receiving
threads should account for nearly all the rest of the missing cycles.

Barrel�sh has a solution to mitigate the selection problem: waitsets and event
handling. A waitset contains three queues for channels: idle, pending, and
polled. If a channel raises an event like the possibility to receive a message, it
is put into the pending queue. An application can call event_dispatch() that
removes the channel from the pending queue and returns the event (function
pointer and arguments) and executes it. In this manner, one thread to dispatch
events per replica is enough.

35

Chapter 5

Framework Design

The goal of this thesis is to establish an agreement framework for Barrel�sh.
Composability had a central role in the framework design and helps both per-
formance and failure tolerance. A uniform client and replica interface helps to
compose protocols. An option to automatically compose protocols according to
a policy delivers optimal performance for the underlying multicore machine.

5.1 Composability

One size �ts all can not be applied to a multicore machine. A multicore machine
is a two level hierarchy (within NUMA nodes, between NUMA nodes). Out of
this reason, we came up with the idea of a framework that composes protocols
on di�erent levels of the hierarchy. The composition works from top to bottom
with the higher layer starting the lower layers.

For the beginning there are only two levels in the hierarchy. In the future
we may add a higher layer to run protocols between machines. A composition
has advantages for both performance and failure tolerance.

5.1.1 Performance

In computer science divide and conquer is a well known concept. Composing
solutions for a smaller part of the system to �nd a solution for the whole system
is a reasonable approach. Often, a consensus protocol relies on a leader or at
least contains some form of broadcast to all replicas. In both cases, a single
replica is burdened with the cost of communicating to all other replicas. Send-
ing the messages along a tree can reduce the load but handling failures is hard.
The problem of high load on certain replicas can also be solved by a composi-
tion. A hierarchy of protocols represents a tree. Similar to a tree, the number
of replicas the leader communicates with is reduced. Even just composing the
same protocol on two layers should have a better performance because the load

36

is more evenly distributed to di�erent cores.

We considered two layers: within a NUMA node and between NUMA nodes.
The hierarchy gives us the advantage that we can compose hybrid combina-
tions of message passing and shared memory. Consensus protocols are often
hard to scale to a large number of replicas. Combining protocols using message
passing (between nodes) and shared memory (within nodes) should give a good
performance boost and enable us to scale to a larger number of replicas.

5.1.2 Failure

In section 2.3 we de�ned our failure model and failure domain. Within a failure
domain we can run protocols that do not have to consider failures. In theory,
a protocol that does not have to deal with failures should always yield a better
performance than a protocol that has to deal with failures. Moreover, within a
failure domain shared memory is an option that should not be discarded.

Between failure domains we have to rely on a protocol that can handle fail-
ures. The cost of tolerating failures can be high, therefore only a single replica
within a failure domain should participate in the higher layer protocol.

5.2 Interfaces

A common interface is the tool to get the composability to work. In the current
code there are four interfaces: an internal interface for replicas to start the
lower layer, the replica interface, the client interface, and an interface to start
the service.

5.2.1 Replica Interface

A user needs to de�ne what happens when the replicas have agreed on a value.
There is no dynamic linker for Barrel�sh yet and consequently, a user has to
provide a program that starts a replica. In this manner, the user is able to
set the function that should be executed when an agreement is �nished. The
interface to start a replica is shown in listing 5.1.

Listing 5.1: Composability: replica interface

#define CORE_LEVEL 0

#define NODE_LEVEL 1

...

#define ALG_1PAXOS 0

...

#define ALG_NONE 6

void init_consensus_replica(int algo ,

int id ,

37

int num_clients ,

int num_replicas ,

int level ,

int alg_below ,

int node_size ,

int started_from ,

uint16_t* cores ,

void (* exec_fn)(void *),

char* prog_string);

void init_consensus_replica_argv(char** argv ,

void (* exec_fn)(void *));

void set_execution_fn(void (* exec_fn)(void *));

void start_handler_loop(void);

The most complex function is init_consensus_replica(). It initializes a
replica by setting up the internal data structures and opening the communi-
cation channels to all other replicas. In our example replica programs, all of the
arguments for the replica initialization are parsed from the main functions argv
array. The arguments have the following meaning:

� algo: the algorithm or protocol that the replica should run. For each
algorithm/protocol we de�ned an integer value.

� id: the id of the replica is unique, but only within a level of the hierarchy.

� num_clients: only for benchmarking purposes.

� num_replicas: the number of replicas started on this level.

� level: the level on which a replica is started. At the moment only
CORE_LEVEL and NODE_LEVEL.

� alg_below: the algorithm or protocol that should be started on the layer
below.

� node_size: the size of a NUMA node (or cluster).

� started_from: since several instances of a protocol are running on the
lower level, we need to di�erentiate between them by the replica id of the
higher layer.

� cores: the cores of the NUMA node (or cluster) excluding the core of
the higher level replica. If a NUMA node contains the cores 0-5 the cores
array contains the numbers 1-5.

� exec_fn: the function that should be executed after an agreement.

� prog_string: the string of the program that starts a replica. Used to
start replicas on the lower layer.

38

Since a user often may not be interested in any values given to init_consensus
_replica(), we also provide the function init_consensus_replica_argv()

that takes the argv string array from the main function and parses all the re-
quired arguments from it.

After a replica is initialized, it can start handling messages by starting the
blocking message handler loop (start_handler_loop()). We split up the func-
tionality of initializing and handling messages to provide the user a possibility
to start a client in between. A client can only be started after the replicas are
up and running. Otherwise, the client initialization blocks. For best perfor-
mance while starting both a client and a replica on the same core, they should
be started in the same domain. This prevents a kernel context switch per re-
quest and leaves it at a much cheaper user-level thread context switch. Still,
the best way to handle client and replica core allocation is by putting the two
applications onto separate cores.

5.2.2 Internal Interface

The internal interface is not shown to users and abstracts the lower layer to two
functions. One function starts the lower layer within a NUMA node and the
other sends requests to the lower layer. The interface is shown in listing 5.2.

Listing 5.2: Composability: lower layer interface

#define ALG_1PAXOS 0

...

void com_layer_core_init(uint16_t algorithm ,

char* replica_string ,

uint16_t replica_id ,

uint16_t* cores ,

uint16_t num_cores ,

uint16_t cmd_size);

void com_layer_core_send_request(void* addr);

The function com_layer_core_init() initializes a protocol within a NUMA
node. It is normally called in the initialization of a higher layer replica. The
arguments of com_layer_core_init() have the following meaning:

� algorithm: the value decides which algorithm or protocol is started within
a NUMA node.

� replica_string: the string of the replica program.

� replica_id: the id of the higher layer replica. Distinguishes the protocol
instances on the lower layer.

� cores: each element of this array represents a core on which a replica
should be started.

39

� num_cores: the number of cores that are in the array cores.

� cmd_size: the size of the payload (only used for shared memory).

The function to send a request has a void pointer as an argument. Internally
the payload of a protocol is de�ned in the Flounder interface. As a consequence
each protocol has a di�erently named struct. To send the payload further down
to the lower layer, we simply cast these structs to a void pointer.

5.2.3 Client Interface

The client side of the framework does not require a lot to be able to send a
request to the service. A client needs a function to initialize itself as well as a
function to send requests with a �xed size payload to the service.

Listing 5.3: Composability: client interface

struct consensus_payload {

uint64_t arg1;

uint64_t arg2;

uint64_t arg3;

};

errval_t init_consensus_client(void);

errval_t consensus_send_request(struct consensus_payload* payload);

The struct consensus_payload is limited to three uint64_t values to avoid
letting messages grow to sizes larger than a cache line (64 bytes). The usage of
the client side of the agreement service is simple. First, call init_consensus_
client(). Second, assemble the payload and send a request to the service by
calling consensus_send_request().

A client automatically detects which consensus protocol is running and acts
accordingly. A client can only detect the protocol through a uniform Flounder
interface that every replica has to implement. The uniform interface for the
communication between client and replica is shown in listing 5.4.

Listing 5.4: Composability: replica to client communication interface

interface consensus "Interface for Consensus service" {

typedef struct {

uint64 arg1;

uint64 arg2;

uint64 arg3;

} command;

message request(uint16 client_id ,

uint64 request_id ,

command cmd);

message reply();

message new_leader(uint16 new_leader ,

40

uint64 next_rid);

message setup(int32 id);

message setup_response(uint16 client_id ,

uint16 replica_id ,

uint16 num_replicas ,

uint16 algo);

};

The struct command is the same as the consensus_payload. There are two
pairs of message types: request and reply, as well as setup and setup_response.
The message type request is sent to a replica to start an agreement and reply
is received when the agreement ends. With the setup message type a client
requests the information it needs from the replica with id 0: the client's id and
the algorithm/protocol that is running. Further, a client needs to know the
number of replicas to set up a connection to every replica. All these additional
connections are only needed if the leader changes. The channels are preallocated
and the new leader can directly inform clients by sending new_leader messages.

5.2.4 Framework Interface

The framework interface contains two functions. The �rst one lets the user enter
the setup and starts the hierarchy accordingly. The second function tries to �nd
an optimal composition and starts it. The functions are shown in listing 5.5.

Listing 5.5: Composability: framework interface

void consensus_init(uint16_t algorithm ,

char* replica_string ,

uint16_t* cores ,

uint16_t num_cores ,

uint16_t num_clients ,

uint16_t alg_below ,

uint16_t node_size ,

uint16_t* node_cores);

void consensus_init_auto(char* replica_string ,

bool failures ,

bool full_replication);

The arguments to consensus_init have a similar meaning to the ones used
to start a replica. There is only the di�erence of the arguments cores and
node_cores. Cores is an array of core numbers on which the higher level
protocol is started. The node_cores on the other hand is an array of size
number of nodes × node size that contains all the core numbers on which the
lower layer is started (example: two nodes with cores from 0-3 and 4-7. node_
cores looks like 1, 2, 3, 0, 5, 6 , 7, 0 while cores is 0, 4). The zeros in the
node_cores array are padding.

The function consensus_init_auto() requires the program string of the repli-
cas, if failures should be expected (failure domain: NUMA node) and if the

41

composition should replicate on all cores or only between NUMA nodes.

5.3 Policy

We divided the policy from the mechanisms as much as possible. There are two
decisions to make: when to use which protocol and when to use shared memory.

5.3.1 Protocol Choice

We implemented the protocols 2PC, 2PC without leader, 1Paxos as well as sim-
ply broadcasting from a leader. If failures are considered, 1Paxos is the obvious
choice. If we do not expect failures to happen and the weaker consistency model
of causal order is enough, 2PC without leader should o�er a higher throughput
than 1Paxos. If we do not consider failures, sequentializing the requests and
broadcasting them from a leader may be the best choice for performance.

5.3.2 Shared Memory

Within a NUMA node shared memory delivers good performance. Most of
the time, the memory is in the L3 cache. We did an experiment to show the
di�erence between sharing memory within a NUMA node and between nodes.
We allocated a shared memory region and let several cores write into it. To avoid
race conditions, we added a spinlock at the beginning of the shared memory.
Since every core needs to access the spinlock, the cache coherency protocol is
most likely �ooding the bus. The experiment is using a 20 core machine (Intel
Xeon E5-2670 v2 2.5GHz 2×10). The cores try to write into the shared memory
with no sleep time in between writes.

Figure 5.1: Shared memory: performance of writes w.r.t. number of cores

As long as we share memory within a node, the time it takes to write into the
shared memory is dominated by queueing for taking the lock. As soon as we

42

share the memory across NUMA nodes (11 cores), the time to write into the
shared memory jumps up. As part of our policy, we try to avoid writing into
shared memory from di�erent NUMA nodes.

5.3.3 Summary

Our policy is a combination of the results of the previous two subsections. If
there is only a single NUMA node, shared memory should be enough for repli-
cation. If there are several NUMA nodes, we have to choose a protocol between
NUMA nodes depending on the failure model. If we tolerate failures, 1Paxos is
the obvious choice. If there are no failures we choose broadcast replication. 2PC
without a leader may be an option for high throughput, but can only guarantee
causal order. We did not consider 2PC without a leader for our policy.

43

Chapter 6

Implementation

We �rst implemented the consensus protocols of the framework. In this chapter
we focus on the problems that came up when we adapted the protocols to
a multicore environment. More implementation details are described in the
appendix. After implementing the building blocks, we implemented the layer
for composing protocols and an example of how to use the framework.

6.1 2PC

The �rst protocol we implemented is 2PC based on a leader. On a single ma-
chine, the communication channels have two further guarantees that a network
does not provide out of the box. On one hand, there is the First in First out
(FIFO) property that prevents messages from overtaking each other. On the
other hand messages can not be lost or dropped. We made use of the second
additional guarantee and saved the last ack message to the leader. The leader
can directly reply to the client after it sent the commit messages. Further, we
implemented the tree broadcast we explained in section 4.3.

6.1.1 Tree Broadcast

A replica knows where to forward the broadcast by sending along a one-sided
radix 2 k-nomial tree [21]. On a radix 2 k-nomial tree each node has a �xed
number that we can map to a replica id. Since the whole structure of the tree
is static, every replica knows where to forward a received message. An example
of assignments of the replica ids to the tree nodes is shown in �gure 6.1.

44

Figure 6.1: Tree broadcast: example of a one-sided radix 2 k-nomial tree

0

8

12

14

15

13

10

11

9

4

6

7

5

2

3

1

The formulas to construct the tree di�erentiate between the property of a replica
id.

� Id == 0: the root sends to all nodes with an id that is a power of two
and less than the size of the tree i.e.

2x where x = 0, 1, 2 . . . and x < log(size)

� Id == power of two: the nodes with an id that is a power of two send
to all nodes that have a higher id and that are the sum of its own id and
a power of two that is smaller or equal than its own id divided by two.

id = my id + 2x where x = 1, 2, 3 . . . and x < log

(
my id

2

)
� Id % 2 == 0: if the id of the node is even, the formula for the ids to send
to is similar to the previous one.

id = my id + 2x where x = 1, 2, 3 . . . and x < log (my id− parent id)

� Id % 2 == 1: if the id of the node is odd, there is nothing to do.

Since the structure of the tree is static, every replica can be the root. The only
requirement is that the message contains the sender_id of this replica. If the
sender_id is not equal to 0, every other replica can assume that the replica
that started the broadcast switches place with the replica with id 0. If a replica
needs to send to the replica with sender_id, it simply sends to replica with id
0. If the replica with id 0 receives a message with a sender_id unequal to 0, it
just assumes the role of the replica with the sender_id.

45

6.1.2 Removing the Leader

Since a single leader may limit the performance, we implemented a second ver-
sion of 2PC without a leader. The clients directly broadcast their requests to
the replicas. Con�icts of agreements are detected by a key on which the agree-
ment takes place. The order of the values agreed on is no longer a total order
but a causal order. The order of agreements on a certain key are seen the same
on all replicas. We hoped to improve the throughput of 2PC by removing the
leader since the number of messages a replica has to process is smaller.

6.2 Raft

The implementation of Raft required more design decisions than 2PC. Raft re-
quires two RPCs: AppendEntries and RequestVote. To avoid blocking, we split
up the RPCs into two messages (request, reply). Handling blocking RPCs re-
quires that we start the RPC in a thread. Otherwise if a replica fails, an RPC
to this replica blocks the whole agreement. Even more, detecting and aborting
an RPC that timed out requires further mechanisms. We concluded that using
RPCs may not give us the performance we want when running on a multicore
environment. Additional to the asynchronous messages, we had to limit the
number of entries we send per message to one to avoid messages larger than
a cache line. If Raft is used over a network, all these problems do not appear
since computation time is not dominating the cost.

When messages are not handled as RPCs but as two asynchronous messages, it
is enough to detect the failure of a replica (part of the Raft protocol). We tried
the implementation with two asynchronous messages per RPC but some other
problems occurred. Two asynchronous messages weaken the strong coherency
between leader and followers.

First, a small recap of the meaning of di�erent values. The leader updates
the commitIndex when a majority of replicas contains the entry in their log.
The replicas update their commitIndex when they receive messages from the
leader. The lastLogIndex for each replica is the last entry that this replica has
appended to the log. The leader keeps track of the next log index to send to a
follower with the nextIndex[] array. The leader resends entries to a replica if
lastLogIndex ≥ nextIndex[] holds for a follower.

Let us assume that there are two clients and each of them sends a request
to the leader. The leader receives both requests and broadcasts an AppendEn-
try message to all the replicas. The leader's lastLogIndex starts at 0 and after
the two requests it is equal to 2. The commitIndex is still 0 since the leader
has to receive at least a majority of replies to increase the commitIndex. The
leader can not increase the commitIndex after receiving the �rst response to the
AppendEntry message. The leader updates its nextIndex for this follower to 2.

46

Figure 6.2: Raft: problem of additional messages

C
lie

n
t

1

O
th

e
r

R
e

p
lic

a

O
th

e
r

R
e

p
lic

a

Le
ad

e
r

la
st

Lo
gI

n
d

ex
 =

 1
co

m
m

it
In

de
x

=
0

n
ex

tI
n

d
ex

[0
]

=
1

n
ex

tI
n

d
ex

[1
]

=
1

...

..
.

..
.

la
st

Lo
gI

n
d

ex
 =

 2
co

m
m

it
In

de
x

=
0

n
e

xt
In

d
ex

[0
]

=
2

n
ex

tI
n

d
ex

[1
]

=
1

...

la
st

Lo
gI

n
d

ex
 =

 2
co

m
m

it
In

de
x

=
0

n
ex

tI
n

d
ex

[0
]

=
1

n
ex

tI
n

d
ex

[1
]

=
1

...

la
st

Lo
gI

n
d

ex
 =

 2
co

m
m

it
In

de
x

=
0

n
e

xt
In

d
ex

[0
]

=
2

n
ex

tI
n

d
ex

[1
]

=
2

...

R
ep

lic
a

R
ep

lic
a

Le
ad

er

C
lie

n
t

1

C
lie

n
t

2

47

Since lastLogIndex ≥ nextIndex[1] the leader sends an AppendEntry message
for the entry 2. The addition message is redundant since the leader has already
sent an AppendEntry message for this entry.

In �gure 6.2, the red messages are not necessary. The problem gets worse
with more clients since the gap between lastLogIndex and nextIndex[] can
grow larger (up to the number of clients). We did not come up with a solution
for this problem. It does not happen if normal RPCs are used but as explained
before, RPCs in this context present another set of problems to solve e�ciently.
We could not solve the problem in a timely and e�cient fashion and did not
include Raft as a protocol into our framework.

6.3 1Paxos

In contrast to Raft, 1Paxos does not have a lot of implementation details in the
paper [9]. The base case for 1Paxos is straight forward but dealing with failures
is harder. The failure of either acceptor or leader involves detecting the failure
as well as �nding a replacement.

6.3.1 Acceptor Failure

Before starting the procedure to change the acceptor, a replica has to detect that
the acceptor failed. The idea is similar to Raft. The leader detects the acceptor
failure by starting a periodic event that sends a message to the acceptor. If
the acceptor does not respond in a timely fashion, the leader assumes that the
acceptor failed. If an acceptor fails, the protocol takes the steps shown in �gure
6.3.

Figure 6.3: 1Paxos: acceptor failure. Adapted from [9]

48

In the paper they suggest running an instance of Multi-Paxos to decide on an
acceptor. Implementing another failure tolerant protocol to just select a new
acceptor was too much for us. We chose a simpler approach and let the leader
decide on the new acceptor. After �nding a new acceptor, the three steps shown
in �gure 6.3 are executed. To avoid having two leaders that change the acceptor,
a leader has to request the id of the current leader from all replicas. If the leader
receives a majority of messages with its id, the leader can proceed and announce
the change.

6.3.2 Leader Failure

Leader failure has the same issues as acceptor failure: detecting the failure and
choosing a new leader. We solved the problem with a similar mechanism as
used in Raft. The failure of the leader is detected by periodic messages that are
sent to the leader from all the replicas except the acceptor. If a replica does not
receive an answer in a timely fashion, the replica assumes that the leader failed
and the replica tries to become leader. To avoid two replicas trying to become
leader at the same time, we added a random backo� time. The steps taken after
failure detection and �nding a new candidate for the leader are shown in �gure
6.4.

Figure 6.4: 1Paxos: leader failure. Adapted from [9]

In the �rst step the replica trying to become leader contacts all other replicas to
receive the current acceptor id. After a replica sends the acceptor id to the new
leader, it does not respond to other replicas trying to inquire the acceptor id
to avoid having two leaders. In the case of a draw, the replicas reset their vote

49

and after some time, the process begins again. After the three steps shown in
�gure 6.4, the new leader informs the clients to send their requests to it instead
of the old leader.

6.3.3 Flooding Message Channels

1Paxos does not require any acknowledgements from the replicas to the ac-
ceptor. The leader replies to the client as soon as the leader receives a learn
message. Since the broadcast of the learn message from the acceptor to the
replicas is sequential, the leader is often one of the �rst replicas to receive it.
As explained before, in Barrel�sh a communication channel only has a bu�er
for a single message. In the case of 1Paxos, it can happen that the channel
is full. We handle a full channel by allocating some memory and caching the
messages in a queue. If the channel is free, the cached messages are sent one
after another. Since there is no acknowledgement back from the replicas, the
acceptor may send messages at a faster rate than the other replicas are able to
handle. In this scenario, the queue can grow to arbitrary length.

We tried to inform the leader with a learn message as the last replica, but
the problem still occurred. Even if the message to the leader is sent last, it
is not given that it is the last one to �nish processing the message. Since we
are not expecting that our implementation is always running at its maximal
throughput, we send the message to the leader as one of the �rst messages.
The bene�ts of sending the message early to the leader outweigh under normal
execution.

6.4 Single-writer Multiple-reader Queue

To get a general solution for the shared memory part of the framework, we im-
plemented a Single-writer Mutliple-reader (SWMR) queue. The queue consists
of two parts: meta data and data slots. The meta data contains the positions
for the writer and readers within the circular queue of data slots. The layout
within memory is shown in �gure 6.5.

50

Figure 6.5: Shared memory queue: layout in memory

At the end of the queue, there is a synchronization point where the writer does
not proceed until all the readers caught up. The synchronization point prevents
the writer from overwriting data that is not processed by the readers yet. The
writer and reader pointers are all of the size of a cache line to avoid false sharing.

To replicate data, the writer is started on the replica that participates on the
higher level protocol. The readers are started on all other cores within a NUMA
node and are polling for new data. The interface to use the queue is shown in
listing 6.1.

Listing 6.1: Shared memory: single-writer multiple-reader queue interface

void shm_write(void* addr);

void* shm_read(void);

The function shm_write() is only called by the writer and does not require
a lock. The reader polls the queue with shm_read(). If the reader calls
shm_read() and the reader is already at the position of the writer, shm_read()
returns NULL. If the returned slot is unequal to NULL, the reader executes the
function similar to a normal replica.

We generalized our SWMR queue so it can be used between nodes. The writer
of the queue implements the uniform client interface. Any request from any
core is sent to the writer by message passing. The writer and readers each have
their own cache line that only they modify. Only the writer modi�es more than
one cache line by writing into data slots. The only problem when replicating
data should be the queueing of messages at the writer.

51

6.5 Broadcast Replication

Within a node not only shared memory is an option but message passing as well.
We implemented a simple broadcast from a leader to all replicas within a node.
Similar to the shared memory queue, the broadcast replication was intended to
be used within a node and was later generalized that it can be used between
nodes.

To avoid putting more load onto the replica that already participates in the
higher level protocol, the replica on the second core within a NUMA node has a
special role. In the following we call this replica the leader. The leader receives
the requests handed over from the replica of the higher level and broadcasts
them. It replies to the replica after it �nished broadcasting the request. Under
high load, the leader su�ers from the same issue as our 1Paxos implementation.
The leader may try to broadcast before the replicas received and processed the
previous messages.

The broadcast replication can be started on the higher layer. It can be com-
bined with any of the other protocols and algorithms running on the lower layer.
Since the broadcast replication does not handle failures, we implemented both
a sequential as well as a tree broadcast.

6.6 Composability

Composing di�erent protocols presented us with two problems. One is the setup
of all the replicas on the right cores. We do not explain this in detail since most
of it is parsing arguments and spawning the replicas in a new domain. The big-
ger problem is forwarding the agreed values from the higher to the lower layer.

After the higher layer has agreed to a certain value, the lower layer protocol
is started until we reach the bottom of the hierarchy. The interface between
the layers is blocking. When the higher layer forwards the agreed value to a
protocol instance on the lower layer, it waits until the replication on the lower
layer is �nished. To avoid putting more load on the higher level replicas, they do
not participate as a replica in the lower level protocol. The higher level replicas
simply send requests to the lower layer replicas as a client.

We tried di�erent implementations for handling the communication to the lower
layer. From the higher layer to a cluster of the lower layer there is only a single
communication channel (or client). With more than one channel, there is the
possibility that messages may overtake each other. If a message overtakes, it
invalidates the order of agreements of the higher layer and correctness is not
guaranteed. If there is only a single channel, it can be overrun by too many
messages since the higher layer receives requests from several channels. The re-
quests that can not yet be served by the channel have to be queued. We avoided

52

arbitrary growing queues by blocking until the lower layer is �nished with the
replication.

When a lower layer protocol is started, we initialize something similar to a
client. A client is necessary to forward the request from the higher layer to the
lower layer. The code at the moment does not make use of the uniform client
interface as shown in chapter 5. We implemented the layer for composability
before coming up with the idea of a uniform client interface. The time it takes
to change the implementation is not the problem, but validating that all com-
binations of protocols work correctly is time consuming. Out of this reason we
postponed the change since it does not add any functionality.

6.7 Key Value Store

We implemented a key value store to showcase our framework. The keys and
values are both 64 bit integers. The key value store replica can be implemented
in as few lines of code as shown in listing 6.2.

Listing 6.2: Key value store: simple implementation

static void exec_function(void* addr)

{

struct consensus_payload* cmd;

cmd = (struct consensus_payload *) addr;

kv_start[cmd ->arg1] = cmd ->arg2;

}

static int client_loop(void* arg)

{

// wait until replicas are setup

barrelfish_usleep (10*1000*1000);

// requets loop

while (true) {

// put client logic here that puts arguments into

// consensus_payload struct and sends the request

// and reads values

...

}

return 0;

}

int main(int argc , char ** argv)

{

// allocate key value store memory

void* buf = ...

...

...

kv_start = (uint64_t*) buf;

// init replica

53

init_consensus_replica_argv(argv , exec_function);

// init client logic (optional)

init_consensus_client ();

thread_create(client_loop , NULL);

// start handle messages

start_handler_loop ();

}

The whole key value store with a replica and a client on each core can be
started by simply calling consensus_init_auto() with the string of the key
value store's program. The main function of the program just allocates some
memory for the key value store and initializes the replica in this domain. After
the replica is set up, a client to send requests to the replicas is initialized and
the client logic is started.

The simple implementation shown in listing 6.2, is to showcase the usage of
the framework and does not have an interface. The interface to a more complex
key value store is shown in listing 6.3.

Listing 6.3: Key value store: interface for clients

errval_t init_kv_store_client(void);

errval_t kv_store_write(uint64_t key , uint64_t value);

uint64_t kv_store_read(uint64_t key);

The replicas started for the key value store implement a Flounder interface
that lets clients request the capability of the key value store's memory. The
function init_kv_store _client() just requests the capability from the �rst
core of the NUMA node and maps it into its address space. Additionally, the
key value store client initializes a client for the agreement service. The func-
tion kv_store_write() marshals the key and value into a consensus_payload

struct and sends the request to the service while the kv_store_read() function
simply reads from the locally mapped memory.

The capability of the key value store's memory is requested from the �rst core
of a NUMA node. In this manner, the key value store is still functional even if
we decide to reduce the number of replicas to one per NUMA node. The key
value store can be directly replicated within a node by mapping the capability
into the address space.

54

Chapter 7

Evaluation

In this chapter we evaluate how the improvements we found and the composition
of protocols a�ect performance. Finally, we assess our framework with the
implementation of the key value store.

7.1 Setup

In the evaluation chapter we use several machines. The benchmarks on Linux
are run on Magny-cours while the Barrel�sh benchmarks are run on Istanbul
and Ivy-bridge. The speci�cations of these machines are shown in table 7.1.

Table 7.1: Evaluation: benchmark machines
Magny-cours AMD Opteron 6174 4×12 cores 2.2GHz, 128 GB RAM
Istanbul AMD Opteron 8431 4×6 cores 2.4GHz, 16 GB RAM
Ivy Bridge Intel Xeon E5-2670 v2 2×10 2.5GHz, 256 GB RAM

The NUMA node assignment of all the machines is shown below.

Table 7.2: Evaluation: cores assigned to NUMA nodes
Node Number Magny-cours Istanbul Ivy Bridge

Node 0 0,4,8,12,16,20 0-5 0-9
Node 1 24,28,32,36,40,44 6-11 10-19
Node 2 1,5,9,13,17,21 12-17 -
Node 3 25,29,33,37,41,45 18-23 -
Node 4 2,6,10,14,18,22 - -
Node 5 26,30,34,38,42,46 - -
Node 6 3,7,11,15,19,23 - -
Node 7 27,31,35,39,43,47 - -

55

For all the experiments (except stated otherwise) the clients do not sleep between
requests. Each benchmark consist of a 20 second warm-up period and three
measurements over 20 seconds.

7.2 Improvements for Multicore

In a �rst comparison we take the values measured with the QC-libtask frame-
work and their 2PC implementation and compare it to our 2PC implementation.
Our implementation uses a tree broadcast and reduces the message processing
overhead. In a second part, we change the underlying operating system.

7.2.1 Tree Broadcast and Message Processing

The benchmark is run on a Magny-course machine. We started 8 replicas and
a single client for the micro benchmarks. Figure 7.1 shows the time spent in
di�erent code segments of our 2PC with a sequential broadcast.

Figure 7.1: Multicore improvements: cycles per message type 2PC

In our 2PC implementation with a sequential broadcast, the number of cycles
for processing a message reduces from around 1'500-2'000 to a mere 300-400.
The time it takes to receive and send messages dominates (excluding wait time).
The time spent in code segments for a tree broadcast is shown in �gure 7.2.

56

Figure 7.2: Multicore improvements: cycles per message type 2PC using broad-
cast tree

The load from sending messages is more evenly distributed between replicas.
The number of messages a replica forwards changes depending on the position
within the tree. The leader requires around 4'000 cycles less to broadcast a
message.

In �gure 7.3 we compare the throughput of di�erent implementations of 2PC
with 1Paxos.

Figure 7.3: Multicore improvements: throughput of implementations based on
QC-libtask

The maximal throughput of 2PC already increases by almost a factor of three
by removing the overhead from processing the messages. Another 20'000 agree-
ments per second are added to the maximal throughput by broadcasting along

57

a tree. Still, the throughput of 1Paxos is unreachable with our 2PC. The 2PC
protocol, in comparison to 1Paxos, requires too many messages to reach an
agreement.

7.2.2 Barrel�sh Implementations

There is only one problem left to tackle: reducing the time needed for select-
ing the right thread to run. We changed the operating system from Linux to
Barrel�sh. Barrel�sh o�ers a lot of features concerning message passing and
handling messages. The experiments are performed on an Ivy Bridge machine
using 8 replicas and a varying number of clients. The response time of our 2PC
implementation based on QC-libtask varies from 65'000 cycles for 1 client to
268'000 for 8 clients. We did not include these numbers for readability reasons.
The other results are shown in �gure 7.4.

Figure 7.4: Barrel�sh: response time of di�erent protocols w.r.t. number of
clients

The response time of the protocols reduce to reasonable numbers. Most of
the di�erence is accountable to the change to waitsets and their event handling
mechanisms. The time it takes from sending a message to receiving and process-
ing the message on the other core reduces. Additionally, the message passing of
Barrel�sh (UMP) is faster than the QC-libtask framework.

We benchmarked four di�erent 2PC implementations. The basic 2PC with no
improvements, a 2PC using a tree broadcast, 2PC that does not acknowledge
the last message, and a 2PC without a leader. The benchmarks do not consider
con�icts for 2PC without a leader. If there are con�icts, the performance of
2PC without a leader reduces. The adjustments of 2PC to a multicore machine
reduce the response time. Reducing the number of messages by not sending an
ack has the largest impact on the performance of 2PC. The higher the load,
the larger the gap between the improved 2PC to baseline 2PC. The 2PC that

58

does not rely on a leader has a stable response time since the clients execute
the broadcast. The replicas in the best case only receive two messages and send
one message. The response time suggests that the replicas are not fully loaded
yet and there are resources left to handle more clients. 2PC without a leader
is an option if the throughput of the system is of the essence. The lowest re-
sponse time is measured from 1Paxos and shows what adapting a protocol to a
multicore environment can deliver. The throughput shows the same picture.

Figure 7.5: Barrel�sh: throughput of di�erent protocols w.r.t. number of clients

In �gure 7.5 we included the numbers for our 2PC implementation based on QC-
libtask for comparison. For a higher number of clients 2PC without a leader
can rival 1Paxos. The broadcast of 1Paxos is still executed on the acceptor in
contrast to 2PC without a leader. The broadcast on the clients is an advantage
if a high throughput is important.

7.3 Failures

1Paxos is able to recover from non Byzantine failures as long as a majority of
replicas is running. The benchmarks in this section are performed on an Ivy
Bridge machine (2 × 10 cores). In the �rst experiment (�gure 7.6) we monitored
the response time of a single client during a leader failure. The values were
measured after a warm-up of 1'000'000 requests.

59

Figure 7.6: Failures: response time during recovery from a failure

The response time does not change dramatically after the new leader is chosen.
There is a slight increase after the failure but the response time slowly reduces
back to the normal average.

In a next benchmark we show the performance of 1Paxos depending on how
many failures it can tolerate. We increased the number of replicas from 3 (1
failure) to 15 (7 failures). We benchmarked with both the load of 4 clients and
8 clients.

Figure 7.7: Failures: performance w.r.t. number of failures recoverable

The throughput and response time do not change until 1Paxos can recover from
four failures. A di�erent protocol than 1Paxos would have more problem to
scale. As a reminder: 1Paxos responds back to the client as soon as the leader
receives a learn message. The quick reply reduces the response time and 1Paxos
can scale to a higher number of replicas. As soon as 1Paxos can recover from
�ve failures and a replica is running on the 11th core, the acceptor becomes a

60

bottleneck. The requests from the clients are queued at the acceptor while it is
busy sending messages to the replicas.

7.4 Composition

Scaling to a higher number of replicas is a problem that can be solved by a
composition of protocols/algorithms. All the benchmarks of this section are run
on an Istanbul machine (4 × 6 cores). The replicas that communicate between
the nodes, are pinned to the �rst cores of the NUMA nodes (0,6,12,18). The rest
of the cores start another protocol/algorithm except for the last core of each
node (5,11,17,23). The last core of each node is putting load onto the system
by starting a client. Overall, the setup adds up to 20 replicas and up to 4
clients. The graphs in this section have the same scale and a direct comparison
is possible.

7.4.1 2PC

The base line is 2PC on all 20 cores. The rest of the benchmarks combine
2PC with either shared memory (SWMR queue), 2PC itself or the broadcast
replication. The throughput is shown in �gure 7.8.

Figure 7.8: Composition: throughput of compositions of 2PC w.r.t. number of
clients

Any composition that splits up the problem yields better results than solving
the whole problem at once. 2PC on both layers has a higher throughput than
2PC over all 20 cores. At a lower load, broadcast replication has a higher
throughput than the combination with a SWMR queue. Broadcast replication
within a node is a good alternative to shared memory. The response time in
�gure 7.9 shows similar results.

61

Figure 7.9: Composition: response time of compositions of 2PC w.r.t. number
of clients

The slope of the response time of 2PC on all cores is the largest. Here we can see
the problem with 2PC and its leader. Most of the load is on the leader regardless
of using a tree broadcast. The leader has to process most of the messages and
becomes a bottleneck. The problem becomes more clear when looking at 2PC
without a leader.

7.4.2 2PC without Leader

The compositions are the same as before. The throughput of 2PC without a
leader and its combinations are shown in �gure 7.10.

Figure 7.10: Composition: throughput of compositions of 2PC without leader
w.r.t. number of clients

2PC without a leader puts the load of the broadcast on the client. In the
benchmarks we only started 4 clients which is not enough load for 2PC to reach

62

its limit. Running 2PC on all 20 cores performs better as the number of clients
increases since the client performance is the limiting factor. 2PC on both levels
has the problem that from the higher level to the lower level the broadcast is
executed on the core of the replica of the higher level. The highest throughput
is reached by the combinations with either the SWMR queue or the broadcast
replication. The response time of the combinations is shown in �gure 7.11.

Figure 7.11: Composition: response time of compositions of 2PC without leader
w.r.t. number of clients

The response time of all combinations does not get notably worse if the number
of clients increases. The only exception is 2PC without leader on both levels
of the hierarchy because of the increased load on the higher level replicas. The
combination with the broadcast replication has the lowest response time. When
the SWMR queue is not used on the lower layer, sending of requests to the
lower layer does not completely block. Other messages are processed as long
as there is no reply from the lower layer. The �rst round of messages of 2PC
are processed while waiting for the response of the lower layer. We assume that
this is the reason why broadcast replication has a lower response time than the
SWMR queue.

7.4.3 1Paxos

As explained in subsection 6.3.3, 1Paxos su�ers from a problem at high load
(gets worse with more replicas). The problem prevents us from showing rea-
sonable results for more than two clients. The problem does not occur for
compositions since the lower level blocks for some time, letting enough time for
the replicas to process the messages. The throughput results are shown in �gure
7.12.

63

Figure 7.12: Composition: throughput of compositions of 1Paxos w.r.t. number
of clients

The sequential broadcast of 1Paxos on all 20 cores does not scale. The combi-
nation with the broadcast replication is again in second place. Still, the perfor-
mance di�erence to the SWMR queue is larger than with any other protocol.
The most scalable combination is 1Paxos and the SWMR queue reaching over a
million agreements per second. All the protocols show that shared memory on
the lower layer is a good choice but for some protocols the broadcast replication
is an alternative. The response time is shown in (�gure 7.13).

Figure 7.13: Composition: response time of compositions of 1Paxos w.r.t. num-
ber of clients

1Paxos on all 20 cores shows a similar slope as the normal 2PC when increasing
the number of clients. The response time of the compositions not using shared
memory increases after the system is saturated. The only combination that can
stay below 10'000 cycles for 4 clients is 1Paxos with the SWMR queue. The
small increase in response time from 1 to 4 clients suggests that the system is

64

not yet at its limit.

7.4.4 Broadcast Replication

Broadcast replication is the simplest way of replicating by message passing.
Consequently, it is the fastest of our implementations. The throughput of the
compositions of broadcast replication is shown in �gure 7.14.

Figure 7.14: Composition: throughput of compositions of broadcast replication
w.r.t. number of clients

Only the throughput of the combination of broadcast replication and the SWMR
queue increases if there is more than one client. The throughput is higher
than 1Paxos combined with shared memory. The di�erence between broadcast
replication on all 20 cores and the two level broadcast replication is small. The
response time is shown in �gure 7.15.

Figure 7.15: Composition: response time of compositions of broadcast replica-
tion w.r.t. number of clients

65

The response time of broadcast replication combined with the SWMR queue is
around 2'600 cycles for one client. The lowest response time we measured from
the compositions with 1Paxos is around 5'000 cycles. Broadcast replication has
the best performance and strengthens our choice if no failure tolerance is needed.
The response time of the compositions, when increasing the number of clients,
only di�ers in the slope.

7.5 Key Value Store

As a last part of our evaluation we show the performance of our key value store.
We used an Istanbul machine to run the benchmarks. We compare two version
of our key value store to a key value store based on shared memory. In one
of the versions, the key value store is replicated on all cores by a combination
of 1Paxos and the SWMR queue. In the second setup, we only start 1Paxos
between nodes and directly share the memory of the key value store within a
NUMA node.

We compare the two setups to a key value store based on only shared mem-
ory and Compare-and-swap (CAS) for updates. An implementation based on
CAS is possible since there is only a single 64 bit value that changes per update.
The performance of CAS depends on the number of di�erent memory locations
that are written. The less di�erent memory locations, the higher the contention
with CAS. Each key represents a memory location in the key value store. We
benchmarked with a number of keys ranging from 1 to 32. The benchmark
randomizes the writes to the keys. We do not compare the read time since there
is almost no di�erence between the implementations. The clients are running
in the same domain as the replicas but we do not start clients on the cores of
the higher level replicas. The write time is shown in �gure 7.16.

Figure 7.16: Key value store (CAS): write time w.r.t. number of clients

The response time of the CAS based key value store increases as the number

66

of di�erent memory locations reduces. The response time of 1Paxos combined
with the SWMR queue is lower than the response time of 1Paxos (directly
share the memory). 1Paxos combined with the SWMR queue has the problem
of scheduling the replicas besides the clients. Consequently, most of the time is
spent scheduling between requests resulting in a low load on the system. 1Paxos
between nodes and directly sharing the memory within nodes is running at a
much higher load that leads to queueing of requests and an increase in response
time. Nevertheless, CAS has the lowest response time. CAS can make use of
the parallelism of a multicore machine, while any consensus protocol is limited
in this regard. Overall, a consensus protocol provides more guarantees (sequen-
tializability, fault tolerance) that are not strictly needed in a key value store.

CAS can only exchange a single value of 8 byte at a time. Our implementation
based on consensus protocols is less restricted and can write values of 16 bytes
at a time (if required). We implemented a second version of a key value store
based on shared memory that relies on spinlocks rather than CAS. Spinlocks
are necessary since the exchange of two values has to happen atomically. The
second version allocates one spinlock per 10 keys. A lock per 10 keys is a usual
trade-o� for key value stores. Similar to CAS, the performance is dependant on
the number of di�erent memory locations. Since a spinlock is simply a memory
location, the performance is dependant on the number of spinlocks since they
are accessed more frequently. We benchmarked in the range of 1 to 32 spinlocks
(10 to 320 keys) and randomized the writes. The write time is shown in �gure
7.17.

Figure 7.17: Key value store (spinlock): write time w.r.t. number of clients

If the number of spinlocks decreases (or number of memory locations), the re-
sponse time increases. As expected, the response time of the key value store
with spinlocks is higher than the previous implementation based on CAS. The
response time of the implementations based on our framework are more com-
petitive. For a high number of clients combined with a low number of updated

67

keys, we can compete with spinlocks. For a low number of spinlocks, the clients
more often access the same spinlock and the response time can get arbitrary
bad. The throughput re�ects these �ndings (�gure 7.18).

Figure 7.18: Key value store (spinlock): throughput w.r.t. number of clients

The highest throughput of 1Paxos combined with the SWMR queue (20 clients)
is only around 150'000 agreements per second because of the scheduling prob-
lem. By directly sharing the memory within a node and avoiding the scheduling
problem, the throughput with 20 clients is around 1.6 million. The spinlock
based implementation outperforms our framework for a higher number of spin-
locks. If the contention of the spinlocks increases, either because of fewer mem-
ory locations or higher number of clients, the throughput reduces. The highest
throughput we measured is around 22 million for 32 spinlocks (cut o� for read-
ability reasons).

Shared memory can make use of an increased parallelism leading to a higher
throughput. There are cases when shared memory reaches its limit. Because
of synchronization mechanisms the performance under high contention can get
arbitrary bad. Our framework performs reasonable when many clients update
few memory locations.

68

Chapter 8

Related Work

We have already presented the relevant consensus protocols in chapter 3. Other
papers concerning our work are summarised in this chapter.

8.1 Rex

Rex [12] is another approach at optimizing replication to a multicore environ-
ment. The Rex framework introduces a new consistency model called execute-
agree-follow to reach a higher degree of parallelism. In a �rst step, Rex uses
a primary replica that executes requests in parallel and produces a partially
ordered trace of requests. If the primary fails, another replica is promoted to
the primary replica. In a second step, Paxos is run between the replicas to
agree on traces. Paxos prevents inconsistencies if it happens that there are two
primaries. In a last step, the replicas execute the trace they agreed on. After
the execution of the trace, the replicas are consistent with the primary.

8.2 Composing Shared-Memory Algorithms

A single shared-memory algorithm can never guarantee e�ciency under all con-
ditions. Composing di�erent shared-memory algorithms to preserve the best
performance under di�erent circumstances is a solution to this problem. In the
paper "On the Cost of Composing Shared-Memory Algorithms" [1], Dan Alis-
tarh et al. show that di�erent shared-memory algorithms can be composed, if
these algorithms are implemented as safely composable. If an algorithm is no
longer optimal or stalls, the algorithm can be aborted and forward some of its
state to the next safely composable algorithm. The state transferred contains a
sequence of requests (history) that was previously executed. The more optimal
algorithm is initialized using this history.

69

8.3 Optimizing Collective Communication on Mul-
ticores

Rather than optimizing communication patterns by hand to a certain platform,
automatic tuning [21] leads to algorithms that are scalable and deliver good
performance. In the paper of Nishtala et al. [21] mainly the synchronization
patterns Barrier and Reduce are discussed. A call to a Barrier does not exit
until all the threads reach the Barrier. The communication topology of a Barrier
can be implemented as a tree, improving the performance. Another collective
synchronization e�ect can be studied by looking at the Reduce operation. A
Reduce operation lets threads combine their results to a global result. Two
di�erent synchronization modes are considered: loose and strict. In a loose syn-
chronization mode from the �rst thread entering the collective data movement
can begin. When taking a strict approach, all threads have to enter the collec-
tive to start the data movement. By combining the collective tuning and loose
synchronization the best performance is achieved.

70

Chapter 9

Conclusion

In a �rst part, we had a look at what changes from a network environment to a
multicore environment. We de�ned a failure model and failure domain for our
work. Based on these assumptions, we evaluated di�erent consensus protocols
and chose 2PC, 1Paxos and Raft. Moreover, we investigated how consensus
protocols can be improved to better match into a multicore environment by
analysing the framework implemented by Rachid Guerraoui et al. [9]. We found
three problems: the cost of sequential broadcasts, the cost of processing mes-
sages, and the overhead for selecting a thread to run.

In a second part, we presented our consensus framework design. With the
help of the framework we were able to combine di�erent consensus protocols.
Combining protocols has bene�ts for both performance and failure tolerance.
We further presented the interfaces of our framework for both replica and client
as well as the interfaces to add further protocols to our toolbox. Moreover, the
framework provides an automatic detection of the best composition based on
the underlying machine. The policy to select the optimal composition is simple
for now, but can be extended in the future.

The implementation of 2PC, Raft and 1Paxos posed several problems. The
problems of Raft were too grave and it did not become part of our toolbox. To
replicate within a node, we implemented the two simple algorithms based on
shared memory (SWMR queue) and message passing (broadcast replication).
With the building blocks, we assembled the toolbox to a framework that we
showcased by a key value store implementation.

In the last part of this thesis, we evaluated the performance gains from our
improvements for a multicore environment. We showed the bene�ts of changing
to an operating system (Barrel�sh) that is more suited for a multicore environ-
ment. Our framework let us analyse the performance of di�erent compositions
of our toolbox. With the help of our framework and a composition of messages
passing and shared memory, we were able to scale and replicate a key value

71

store to 24 cores while maintaining reasonable performance.

9.1 Future Work

9.1.1 Failure Model

If the hardware fails, the machine (or a part of it) is shut down. Our failure
model does not handle restarts of hardware and we did not consider replicas
rejoining yet. Further, we do not account for software failures that inject false
information an try to crash the system. If we want to handle these failures,
we have to change the underlying failure model to crash-recovery and handle
Byzantine failures.

9.1.2 Protocols

A toolbox can only be as good as its parts. We only implemented 2PC, 1Paxos,
broadcast replication, and shared memory as building blocks. The more building
blocks, the better we can adapt to the underlying machine. There is a multitude
of consensus protocols that are interesting to add to the toolbox. Some examples
are the Zookeper atomic broadcast protocol (Zab) [14], Practical Byzantine
Fault Tolerance (PBFT) [7], and Viewstamped Replication [22].

9.1.3 Improvements for Multicore

In subsection 4.2.5 we discarded, at least for this thesis, the optimization to
adapt the communication topology to the underlying non-uniform message pass-
ing latencies. Taking the non-uniform latencies into account, we could further
improve the performance of consensus on a multicore machine.

9.1.4 Network Layer

For the beginning we only considered consensus within a single machine. In
the future it may be required to not only replicate within a machine but over
several machines. The setup we are most interested in is replication within a
server rack. To expand the framework to such extend, Remote Direct Memory
Access (RDMA) is crucial for a good performance. Unfortunately, Barrel�sh
still needs some work in this area.

9.1.5 Usage within Barrel�sh

There are various examples where our framework could be used within Bar-
rel�sh. A simple example is the the System Knowledge Base (SKB) [24] of
Barrel�sh. The SKB contains information about the system and is centralized
but could be distributed with our framework. A more complex problem to tackle
that would require some adapting of the framework is the capability system. At
the moment, the capability system relies on 2PC. These examples could use our

72

framework, but at the moment we are only able to run a single instance of the
framework. If there is more than one instance, naming collisions can occur and
the two instances may interfere with each other.

9.1.6 Framework Cleanup

The framework grew over time from a more benchmark oriented approach. We
did not always immediately �nd a clean solution for implementing parts of our
framework. Consequently, there is legacy code that can be replaced with a
cleaner solution.

73

Appendix A

Two Phase Commit

We �rst implemented 2PC on top of QC-libtask using the discoveries from chap-
ter 4. On Barrel�sh we did not only implement 2PC based on a leader, but a
more aggressive parallelized version with no leader and the chance of the agree-
ment failing.

A.1 Consensus Inside Message Passing

In section 4.4 we talked about reducing the processing overhead. The main
change was the message format itself. Instead of classes we de�ned the message
struct shown in listing A.1.

Listing A.1: 2PC: message struct de�nition

#define REPLY_TAG 1

#define REQUEST_TAG 2

#define PREPARE_TAG 3

#define READY_TAG 4

#define COMMIT_TAG 7

#define ACK_TAG 8

typedef struct{

uint16_t tag;

uint16_t size;

uint16_t msg_size;

uint16_t client_id;

uint16_t sender_id;

uint64_t request_id;

uint64_t index;

char* payload;

}message_t;

The �elds of the struct have the following meaning:

� Tag: the tag is the message type.

� Size: the size of the message including payload.

74

� Msg_size: only the size of the payload.

� Client_id: the id of the client that sent the request.

� Sender_id: the id of the replica that the messages was sent from.

� Request_id: the request count from the point of view of a client.

� Index: the global request count that enables serializability.

The message struct can represent all the message types and a replica can convert
the message type by changing the tag �eld. To react to a message, a replica
updates its state and changes the tag as well as the sender_id if necessary.
Since we no longer use objects for the messages and removed the C++ library
functions, the replica and the client are now written in C. Further, we imple-
mented the tree broadcast as described in section 6.1.

The state of the leader is simply two arrays of counters. The arrays store
for each client the number of acks and the number of ready messages the leader
received. If an agreement is �nished, the counters are reset.

A.2 Barrel�sh Message Passing

Barrel�sh has a lot of support for communication using messages, foremost
Flounder [3]. Barrel�sh uses waitsets and event handling as basic mechanisms
for messages passing. Most of our implementations of the replicas follow the
same structure. A Part of the code initializes the state of the replica and sets
up the communication channels. The handler functions, which de�ne how the
di�erent types of messages are handled, are entered into a struct that is part of
the binding process when a communication channel is set up. The signatures
of the message handler are de�ned in a Flounder interface. Moreover, Flounder
generates code that simpli�es sending and receiving messages and hides some
of the complexity. Our Flounder interface de�nition for 2PC is shown in listing
A.2

Listing A.2: 2PC: Flounder interface de�nition

interface tpc "Interface for 2PC protocol" {

typedef struct {

uint64 arg1;

uint64 arg2;

uint64 arg3;

} command;

message request(uint16 client_id ,

uint64 request_id ,

command cmd);

message prepare(uint16 client_id ,

75

uint16 sender_id ,

uint64 request_id ,

command cmd);

message ready(uint16 client_id ,

uint16 sender_id ,

uint64 request_id ,

command cmd);

message commit(uint16 client_id ,

uint16 sender_id ,

uint64 request_id ,

uint64 index ,

command cmd);

message ack(uint16 client_id ,

uint16 sender_id ,

uint64 request_id ,

uint64 index ,

command cmd);

message reply(uint64 request_id);

}

The size of the command struct can not exceed a certain limit so that a mes-
sage would be larger than a cache line (for every protocol). The limitation is
necessary since the transfer unit of UMP is a cache line. Flounder supports
uint8_t arrays with unde�ned length, but sending an array requires a call to
malloc() which is slow on Barrel�sh. Fixing the size of the payload solved the
problem. The other message types are according to the 2PC types. There are
two additional message types that are not shown and are used for setting up
the channels as well as verifying the correctness.

The implementation of the broadcast tree was more di�cult than expected
because of the UMP channel. If the channel is full, which happens more of-
ten when broadcasting along a tree, sending a message returns an error called
FLOUNDER_ERR_TX_BUSY. To handle a full channel, we add the message argu-
ments and the message type to a queue. Each channel contains a �eld to store
the state of the sender. We used the �eld to store the state of the message
queue. To prevent the same error on the next send, a replica registers for the
event in that the channel is free. The registration to the event allows to de�ne a
function that should be called when the channel is free as well as the arguments
to the function. We implemented a general queue handler function that takes
an element of the queue, switches on the type of the element and sends the
message accordingly. After successfully sending, the queue handler re-registers
itself if there are still elements left in the queue.

76

A.3 Removing the Leader

In 2PC based on a leader, an agreement can not fail (excluding hardware fail-
ures). The leader enforces a total order on the requests and prevents con�icts.
By removing the leader and letting the clients directly broadcast prepare mes-
sages to the replicas, situations where two messages con�ict can form. We detect
con�icts by treating the �rst uint64_t of the command struct as a key. If two
clients try to send a prepare message for the same key, one of them fails. If a
replica receives a new prepare message it checks if there is any other agreement
ongoing that involves this key. On each replica there is an array that stores the
current ongoing agreement key for each client. If the key is not used yet, the
key is written into the array and any other incoming prepare is aborted. When
a replica receives a commit message, the array element belonging to said client
is reset and can be reused. If a request is aborted, a new message type is needed
(listing A.3).

Listing A.3: 2PC: abort message type

message abort(uint16 client_id ,

uint64 request_id ,

command cmd);

If a client receives a single abort message, it informs all the other replicas of the
failed request. If a replica receives an abort from a client, the replica resets the
stored agreement key of that client.

Under these circumstances sequentializability is no longer guaranteed. Instead
of a total order over all requests, we can only guarantee that the order of requests
that are on the same key are in the same order on all replicas.

A.3.1 Benchmarks

In the main thesis we did not have a look at how 2PC without a leader performs
when there are con�icts. A con�ict can happen if two agreements are running
simultaneously and try to do an operation on the same key. We measured
the probability of a con�ict by counting the number of aborted requests and
compared them to the number of successful requests. The clients send requests
with a randomized key. The maximal possible value of a key increased over
time. The maximal key started at two and was multiplied by two every minute.
The benchmarks are executed on an Ivy Bridge machine with 8 replicas and 10
clients. The result of the benchmark is shown in �gures A.1 and A.2.

77

Figure A.1: 2PC: throughput w.r.t. con�ict probability

As the probability of a con�ict decreases, the response time reduces. At a
collision probability of around 0.55, 2PC without a leader has a lower response
time than 2PC. 2PC without a leader does not reach the response time of
1Paxos.

Figure A.2: 2PC: response time w.r.t. con�ict probability

2PC without a leader seems to function well even with a con�ict probability
of 0.1-0.2. To reach a con�ict probability of 0.1-0.2 in our setting, around 512
di�erent keys are enough.

78

Appendix B

Raft

Raft is the only protocol we implemented that is not part of our framework.
Raft uses the Flounder interface shown in listing B.1.

Listing B.1: Raft: Flounder interface

interface raft "Interface for Raft protocol" {

message request(uint16 client_id ,

uint64 value);

message requestVote_request(

uint64 cand_term ,

uint16 cand_id ,

uint64 last_log_index ,

uint64 last_log_term);

message requestVote_reply(

uint64 term ,

bool granted);

message appendEntry_request(

uint64 term ,

uint16 leader_id ,

uint64 prev_log_index ,

uint64 prev_log_term ,

uint64 value ,

uint64 term_to_value ,

uint64 leader_commit_index ,

bool empty);

message appendEntry_reply(

uint64 term ,

uint64 prev_log_index ,

uint16 replica_id ,

bool success);

message reply();

79

message new_leader(uint16 new_leader);

message setup(uint16 client_id , bool is_replica);

}

Raft is the only Flounder interface that does not have the notion of a command.
We implemented Raft after the basic 2PC and did not think about our frame-
work yet. The code of Raft is looking more like a benchmark than a building
block of our toolbox.

The *_request and *_reply form the two parts of an RPC but are asyn-
chronous. Two asynchronous messages make the implementation for failure
safety easier and we did not have to use thread to prevent RPCs from blocking
the whole agreement. We added the boolean empty to the input parameters of
the request message to prevent reserving a value for Heartbeats. To the reply pa-
rameters we added prev_log_index and replica_id. The requests and replies
are loosely coupled and the leader needs to know from which replica a reply
came from as well as for which log entry the appendEntry_request messages
was sent. The requestVote message pair has the same arguments as described
in the paper [23].

FLOUNDER_ERR_TX_BUSY are handled in the same way as 2PC handles them.
Similar to the 2PC implementation, a client can only have one request in the
system. The leader replies to a request when a majority of replicas responded
to the leader with a successful appendEntry_reply. We did not implement a
broadcast tree since failures within the tree are hard to �x.

The requestVote message pair detects failures of replicas. The frequency of
Heartbeats is 50ms and an election is started after 250-400ms. A lower timeout
time results in false positives and starts a leader election even though the leader
is still responsive. If a new leader is elected it informs all clients that it is the
new leader by broadcasting a new_leader message. Messages are still sent on
the channels to a failed replica. Since the channel is never emptied, the queue
to a failed replica grows. After the queue reaches a length of 10'000 messages,
we assume the replica is dead.

B.1 Problem Benchmarks

We discussed the problem that occurs with our implementation in section 6.2.
The problem forms when there are several clients and the gap between the
commitIndex and the leader's lastLogIndex opens up. The leader tries closing
the gap by sending more appendEntry_request messages to the replicas. Sending
unnecessary messages leads to a decrease in performance. To showcase the
problem, we benchmarked the Raft implementation on an Ivy Bridge machine.
We started 8 replicas and varied the number of clients. Raft uses a log and we

80

did not implement snapshots/checkpoints to reduce the length of the logs. The
log can not grow inde�nitely so we limited the number of requests to 100'000
for all client con�gurations. The throughput as well as the number of additional
messages sent (from the leader to any replica) are shown in �gure B.1.

Figure B.1: Raft: throughput and additional number of messages w.r.t. the
number of clients

A single client can produce a throughput of well over 250'000 agreements per
second. As the number of clients increases to 8, the number of additional mes-
sages increases and the throughput reduces. The processing time for additional
messages eventually dominates and the processing time left for useful messages
reduces leading to a lower throughput.

To prevent the gap between lastLogIndex and commitIndex to open, we added
a sleep time between requests. The e�ect of the sleep time is shown in �gure
B.2.

Figure B.2: Raft: throughput using 1 and 8 clients with a varying sleep time

81

If the sleep time is increased (Note logarithmic scale of sleep time), the
replicas have enough time to keep up with the leader and close the gap to its
lastLogIndex. Even 10ns sleep time between requests is enough to mitigate
the problem so that 8 clients have a higher throughput than a single client. As
the sleep time increases the di�erence between 1 and 8 clients slowly gets to the
point where the throughput of 8 clients equals the throughput of a single client
times eight.

B.2 Response Time

To show how Raft stacked up against the other protocols, we did some bench-
marking. We tested using 8 replicas with a varying number of clients. The setup
is the same as in subsection 7.2.2 (Ivy bridge machine). For Raft we limited
the measurement to 1'000'000 requests instead of the 20 seconds interval. The
results are shown in �gure B.3.

Figure B.3: Raft: response time w.r.t. number of clients

As the load increases, the response time of Raft gets out of hand since the num-
ber of agreements per second Raft can handle decreases. The more interesting
case is when we introduce a sleep time on the clients of around 100 µs. The
coherency of the logs of the leader and the replicas is well maintained since the
number of additional messages is less than 500 for all con�gurations. In the
lower load setting, Raft works better as shown in �gure B.4.

82

Figure B.4: Raft: response time with sleep time between requests w.r.t. number
of clients

The response time suggests that Raft has a similar performance as the standard
2PC. For a protocol that can tolerate failures the response time is acceptable.
Still, the problems at a higher load can only be solved if we rely on normal RPCs
as well as introducing more threads. Changing the implementation certainly
would increase the response time by a large margin.

83

Appendix C

1Paxos

The Flounder interface of 1Paxos is shown in listing C.1.

Listing C.1: 1Paxos: Flounder interface

interface onepaxos "Interface for 1Paxos protocol" {

typedef struct {

uint64 arg1;

uint64 arg2;

uint64 arg3;

} command;

message request(uint16 client_id ,

uint64 request_id ,

command cmd);

message reply();

message prepare(uint16 client_id ,

uint64 request_id ,

uint64 index ,

uint64 n,

command cmd);

message prepare_response(uint16 sender_id ,

uint64 index ,

uint64 n);

message accept(uint16 client_id ,

uint64 request_id ,

uint64 index ,

uint64 n,

command cmd);

message learn(uint16 client_id ,

uint64 request_id ,

uint64 index ,

uint64 n,

command cmd);

84

message abandon(uint16 sender_id ,

uint16 leader_id ,

uint64 n);

// Acceptor fail

message is_current_leader(uint16 sender_id);

message is_current_leader_response(bool success);

// Leader fail

message get_current_acceptor ();

message get_current_acceptor_response(uint16 id);

message new_leader(uint16 new_leader ,

uint64 next_rid);

// Changeing acceptor/leader

message change_key_figure(uint16 new_id ,

uint16 sender_id ,

bool for_leader);

// detection of leader/acceptor fail

message is_alive ();

message is_alive_response(uint16 sender_id);

}

The messages prepare, prepare response, accept, and learn have the same pur-
pose as in basic Paxos. When a client sends a request to the leader, the leader
sends an accept message to the acceptor. The acceptor, depending on the pro-
posal number N (used similar to the term in Raft), broadcasts either a learn
to all replicas or an abandon message to the leader. If the leader receives an
abandon message, it will no longer act in the role of the leader.

A failure is detected by is_alive and is_alive_response messages. The mes-
sages are sent periodically from the leader to the acceptor to detect acceptor
failures. Further, they are sent from all other replicas to the leader. The period
between messages is 250 ms. The periodic events are started by the function
periodic_event_create(). Additionally to sending a message, the code checks
if a response to the previous message was received. If not, a new leader/accep-
tor election is started. The detection of a response contains any learn messages
received to prevent false positives in the case of high load.

Once a failure of the acceptor is detected, the leader broadcasts an is_current
_leader to all other replicas. If the leader receives is_current_leader_response
from a majority of nodes, it proceeds further. In how we choose a new acceptor
we di�er from the implementation proposed in the paper. Instead of using a
"utility" Paxos we let the leader decide on the new acceptor. After choosing
a new acceptor, the leader broadcasts a change_key_�gure message to all the
replicas to announce the change in acceptor. Next, the leader sends a prepare
message to the new acceptor with the last value in the proposal list. The leader
keeps track of the requests that are not yet accepted in a linked list. When
the leader receives a request, it is added to the list. When the leader receives

85

a corresponding learn message, the length of the list is checked. The leader
keeps track of how many requests it received from clients as well as the num-
ber of learn messages it received. If the length of the queue is larger than the
di�erence between the number of requests and the number of learn messages,
it is safe to dequeue the oldest request in the queue. The order of requests is
the same as the order of learn messages since the channels between the replicas
o�er the FIFO property. When the new acceptor receives the prepare message,
it increases its highest proposal number and responds with a prepare response
message. The leader on its turn sends all messages that it has in its request list
as an accept message to the acceptor. By storing all the requests in a list, we do
not have to inform the clients to resend their last request and still maintain con-
sistency of the replicas. If a replica receives a learn message that it has already
committed, it can detect the duplicate by the request_id and the client_id.

A leader failure is detected by the replicas through is_alive messages. Here
the is_alive messages are sent every 350 ms with an additional randomized
backo� of up to 150 ms. When the time between messages exceeds the timeout,
the replica tries to become leader and broadcasts a get_current_acceptor() mes-
sage. When a replica responds with the acceptor id, it is counted as a vote for
the new leader similar to Raft. Any other replica that should try to get a vote
from this replica, does not get it. When the candidate replica receives the same
id from a majority of nodes, it can proceed and send a change_key_�gure mes-
sage. After the change, the new leader sends a prepare message to the acceptor
and the same procedure as previously starts. The old leader may have received
request messages that it did not send further to the acceptor before failing.
To prevent inconsistencies, the clients are informed by new_leader messages to
resend their last request to the new leader.

86

Bibliography

[1] D. Alistarh, R. Guerraoui, P. Kuznetsov, and G. Losa. On the cost of
composing shared-memory algorithms. In Proceedings of the Twenty-fourth
Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA '12, pages 298�307, New York, NY, USA, 2012. ACM.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler
activations: E�ective kernel support for the user-level management of par-
allelism. In Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, SOSP '91, pages 95�109, New York, NY, USA, 1991.
ACM.

[3] A. Baumann. Technical note 011: Inter-dispatcher communication in bar-
rel�sh, 2011.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new os
architecture for scalable multicore systems. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP '09,
pages 29�44, New York, NY, USA, 2009. ACM.

[5] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight remote procedure call. ACM Trans. Comput. Syst., 8(1):37�55,
Feb. 1990.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-
level interprocess communication for shared memory multiprocessors. ACM
Trans. Comput. Syst., 9(2):175�198, May 1991.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398�
461, Nov. 2002.

[8] P.-E. Dagand, A. Baumann, and T. Roscoe. Filet-o-�sh: Practical and
dependable domain-speci�c languages for os development. In Proceedings
of the Fifth Workshop on Programming Languages and Operating Systems,
PLOS '09, pages 5:1�5:5, New York, NY, USA, 2009. ACM.

87

[9] T. David, R. Guerraoui, and M. Yabandeh. Consensus inside. In Pro-
ceedings of the 15th International Middleware Conference, Middleware '14,
pages 145�156, New York, NY, USA, 2014. ACM.

[10] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence
of partial synchrony. J. ACM, 35(2):288�323, 1988.

[11] D. R. Engler, M. F. Kaashoek, and J. O'Toole, Jr. Exokernel: An operating
system architecture for application-level resource management. In Proceed-
ings of the Fifteenth ACM Symposium on Operating Systems Principles,
SOSP '95, pages 251�266, New York, NY, USA, 1995. ACM.

[12] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. Rex: Explaining rela-
tionships between entity pairs. Proc. VLDB Endow., 5(3):241�252, Nov.
2011.

[13] E. Gafni and L. Lamport. Disk paxos. Distrib. Comput., 16(1):1�20, Feb.
2003.

[14] F. P. Junqueira, B. C. Reed, and M. Sera�ni. Zab: High-performance
broadcast for primary-backup systems. In DSN, pages 245�256. IEEE,
2011.

[15] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133�169, May 1998.

[16] L. Lamport. Fast paxos. Distributed Computing, 19(2):79�103, October
2006.

[17] L. Lamport and M. Massa. Cheap paxos. In DSN '04: Proceedings of
the 2004 International Conference on Dependable Systems and Networks
(DSN'04). IEEE Computer Society, 2004.

[18] H. C. Lauer and R. M. Needham. On the duality of operating system
structures. Operating Systems Review, 13(2):3�19, 1979.

[19] H. M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann,
Newton, MA, USA, 1984.

[20] J. Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP '95, pages 237�
250, New York, NY, USA, 1995. ACM.

[21] R. Nishtala and K. A. Yelick. Optimizing collective communication on
multicores. In Proceedings of the First USENIX Conference on Hot Topics
in Parallelism, HotPar'09, pages 18�18, Berkeley, CA, USA, 2009. USENIX
Association.

88

[22] B. Oki and B. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles of Distributed Com-
puting (PODC). ACM, Aug. 1988.

[23] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 305�319, Philadelphia, PA, June 2014. USENIX Association.

[24] A. Schuepbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs. Embracing diversity in the barrel�sh manycore operating
system. In In Proceedings of the Workshop on Managed Many-Core Sys-
tems, 2008.

89

