
Master’s Thesis Nr. 146

Systems Group, Department of Computer Science, ETH Zurich

OS Development in Rust

by

Claudio Foellmi

Supervised by

Timothy Roscoe
David Cock

November 2015 – May 2016



Abstract

Different programming languages are suited for different needs. Rust is a new
programming language that has received a lot of attention for its potential in
the realm of systems programming. In this work, we take a closer look at
Rust in the context of systems code. We compare it to other languages that
have been used in the field, most notably C. We port Rust to Barrelfish, a
research operating system, and show how it can be used to write both regular
applications and well-integrated system services.
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1 Introduction

At the core of any computer system, there is code that manages and controls
the hardware resources. This code is special, as it provides clean abstractions
that the rest of the system can then use. To implement these abstractions,
this code may need to do many things that a normal program would not,
such as constructing objects from raw memory, writing to specific registers or
executing specialized machine instructions.

Bugs in such code cannot only crash a program, but possibly take other
parts of the system down with it, as the abstractions that other code relies on
break down.

This suggests that systems code could benefit greatly from modern pro-
gramming languages with strong safety guarantees and debugging facilities.
But many of these languages come at a great cost, as they restrict the low-
level machine access that systems code needs. Today, much systems code is
still written in C, a language that is notorious for its many subtle opportunities
for writing faulty code, and has been criticized for decades[8].

In this thesis, we take a closer look at Rust, a new programming language
that tries to combine high-level guarantees and expressibility with the ability
to opt in to low-level access where necessary. In section 2 we compare the
features of Rust to other languages used for systems code, most notably C.
In section 3 we report how we ported Rust to Barrelfish, a research operating
system that makes heavy use of systems code in libraries. In section 4 we
document how we integrated Rust into the Barrelfish ecosystem. In section 5
we discuss what applications we were able to run.
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2 Background

2.1 System Programming Languages
There are many programming languages, and new ones are being developed
all the time. While there is no exact definition of the term systems code, it is
generally recognized to include operating systems, language runtime systems,
compilers and databases. From the end user’s perspective, systems code is
simply all code that is not application code. All time spent executing systems
code is therefore a form of overhead.

One of the most important requirements for writing operating systems is
the ability to interface with different ABIs1. Interrupt handlers, system calls
and context switching are all conceptually similar to functions, but do not
follow the regular calling conventions or stack layout.

Hardware interfaces, such as page tables or memory-mapped device regis-
ters, are defined in terms of a bitwise representation in memory. To properly
access this memory, we need to be able to manipulate individual bits, such
as setting a flag in a page table entry. Buffers allocated to interact with hard-
ware have to satisfy alignment constraints, making the ability to control align-
ment a matter of correctness rather than just optimization[39]. Controlling
memory-mapped devices requires the ability to read and write to the device’s
addresses in a way that will not be reordered, cached, or otherwise optimized
away by the compiler. Because the hardware interfaces are all specified in
the same low-level model, systems programmers are used to thinking at that
level. Having data types and operations that represent operations at that level
is therefore advantageous.

In systems code, performance matters. A network stack that unnecessar-
ily copies packets because of language constraints will perform much worse
than one that can add or remove headers without copying the payload. Home
users’ machines are currently much more powerful than necessary, with plenty
of cycles to spare. But systems code also runs in data centers, where a decrease
in performance directly corresponds to an increase in cost.

As Kernighan argued in a critique of Pascal[22], one of the most practically
useful features of a systems language is the ability to escape it. Being able
to access a layer below the abstractions normally provided by the language
in a consistent way allows the programmer to implement functionality not
expressible in the language itself. In principle, any language with the ability
to interact with lower-level code can be used to write operating systems. It
is therefore not surprising that there have been operating systems written in
many different languages[37].

1Application binary interface: the specifications for the interaction of code at the machine
level, such as stack frame layout and calling conventions

5



2.1.1 Assembly

In the early days of computing, systems code was written in assembly —
as was much of the application code. As compilers and language designs
improved, the realm of assembly shrank down to small snippets of code that
simply could not be expressed in other languages.

The main benefit of programming in assembly is the unparalleled level of
control available. The code directly corresponds to machine instructions, and
can use the entire range of hardware operations. The programmer manages
all registers and memory accesses, allowing them to implement any ABI. But
assembly code is inherently non-portable, as it is always written for a specific
hardware architecture. Assembly code is hard to read and maintain, as even
very simple programs require many lines of code. Memory locations can be
referenced symbolically through labels, but all computations have to be done
on the raw representation of data.

While there are few projects entirely written in assembly nowadays, small
snippets of code are still used whenever the programmer needs access to
specialized machine instructions, such as for reading performance counters
or saving a stack frame. A notable example of a modern operating system
written in assembly is the original L4 microkernel[27]. It was designed to
provide the fastest possible inter-process-communication (IPC) mechanism,
using hand-crafted assembly code to drastically reduce the number of costly
cache misses. Its success demonstrated that the poor performance of previous
microkernels such as Mach was not an inherent problem of the microkernel
approach[20].

2.1.2 Managed Environments

On the other end of the spectrum are programming languages with managed
environments. The benefit of using very abstract languages, such as Lisp or
Haskell, is their expressiveness. The ability to write algorithms in fewer lines
of code leads to a system that is easier to inspect and maintain. Strong type
systems force the programmer to be explicit about their design choices.

Examples of kernels written almost entirely in Haskell are House and Os-
ker [18, 12]. These represent low-level operations using a monad, similar to
the IO monad commonly used in functional contexts.

However, the problem domain of operating systems consists not so much
of inherently complex algorithms, but rather of many small decisions that are
expected to be made often and quickly. Any additional time that a scheduler
uses to decide what task to run next is time that could have been spent doing
actual work. The representation of state in purely functional languages has
traditionally been rather complex, yet the main task of operating systems is
that of machine state management.

Because these languages require runtime support such as garbage collec-
tion, the design space of the resulting operating system is inherently limited.
Any language with garbage collection will have variance in its execution time.

In the 1970s and ’80s, the Lisp Machine was an attempt to build language
support for Lisp into the hardware itself[17]. Tagged memory and dedicated
microcode was used to speed up common operations by resolving dynamic
types in hardware.
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While functional languages can model the behaviour of a system, they are
not suitable for the implementation if either resource constraints or perfor-
mance are important. The seL4 kernel, the first formally verified operating
system, used Haskell to model the kernel design[23, 29]. With the help of a
hardware simulator, this model could be executed to run applications on the
prototyped kernel design. The finalized design was then implemented using
C. This dual-layered approach to system design is a great example of how a
very abstract language can be useful even for systems with requirements the
language cannot provide. The seL4 kernel is designed to never allocate heap
memory. Haskell is able to express that constraint in the model, using its type
system, but it is unable to implement it in its own simulations — the language
uses heap allocation for all objects[11].

A different approach to using a managed environment is that of languages
like Oberon[41]. Oberon belongs to a whole family of conceptually similar
languages that are successors to Pascal. Its main design goal is simplicity:
a single programmer can comprehend and implement the entire system, in-
cluding the file system, interrupt handlers, a graphical user interface and even
the associated compiler. The price for this simplicity is incompatibility: the
custom file system and object file formats, which are tailored to the modular
approach of the language, are not compatible with other, more widely used
formats.

Oberon applications are structured as a collection of interdependent mod-
ules that are all run in a single process. When loading a new module, the
runtime system first recursively loads all its dependencies. As all modules are
executed within the same context, modern process separation techniques like
virtual address spaces are not available. Therefore these systems are better
suited for the development of special-purpose devices rather than general-
purpose operating systems.

Low level operations, such as raw memory access, are encapsulated in a
special system module, which is the only code not itself written in Oberon.

This approach of making an operating system out of the language runtime
system, blurring the line between the two, is actually quite common. Many
systems have been developed together with the language used to implement
them[31, 9, 19, 16].
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2.1.3 C

C is the lingua franca of systems programming. It was first developed in the
early 1970s to rewrite the Unix operating system, which was up to that point
written in assembly[34]. C was heavily influenced by BCPL[33], but added
a static type system and support for byte-addressable memory. From the
beginning, C was designed to be easily translatable to machine code. The
operators on primitive types correspond directly to machine instructions on
registers.

It should be noted that the dialect of C that is used for systems pro-
gramming is actually quite different from the portable C specified in the ISO
standards[15]. The standards mostly concern strictly conforming programs,
and define the language in terms of an abstract machine. But much of sys-
tems programming concerns code that is inherently non-portable. This code
is described by the standard as conforming, and relies on knowledge about the
target machine, such as the representation of data types. For example, while
the standard does not guarantee that signed integer types follow two’s com-
plement, it has been the norm for multiple decades, and in practice systems
programmers can rely on that assumption.

The appeal of C for systems programming comes from the direct mapping
of language constructs to machine constructs. The language has deliberately
been kept small in scope. Interfacing with external services, such as for read-
ing files, is done through libraries rather than keywords or built in types.
Systems programmers are used to reasoning on the machine level, as this is
how interfaces to the hardware are defined.

From the beginning, C has always been a language that is easy to escape[34].
Compilers have never been very strict about type safety, and much systems
code uses the integer types just as a way to operate on the memory represen-
tation. The focus on pragmatism and hackability is what allows C to be used
in many ways as a more high-level assembler. For embedded systems, the
minimalism of C is crucial.

There are C compilers for basically any hardware and a variety of output
formats, supporting many ABIs and interfacing with other languages in very
transparent ways. Not only are many widely used operating systems (such as
various Unix derivatives) written in C, but their officially-supported interfaces
are C libraries, making it their primary language.

2.1.3.1 Memory Model

The memory model of C is based on statically typed objects and pointers. An
object is defined entirely by its static type and representation in memory. In
contrast to languages like Java, C pointers are value types themselves, and can
be used in computations.

The C standard only makes guarantees about pointer arithmetic within
objects, such as addressing individual elements of an array. Moreover, the
representation of fundamental data types in memory is only guaranteed to
follow one of several allowed formats, so any strictly conforming C code can-
not use bitwise operations for arithmetic computations. In systems C code,
pointers can be constructed by any computation, as they directly correspond
to the addresses used in machine code. The representation of data types is
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part of the machine’s architecture specification, and systems code makes lib-
eral use of the knowledge of how a given data structure will be laid out in
memory.

The language itself provides only two lifetimes for objects: Global and
static variables are valid for the entire duration of a program’s execution.
Local variables are tied to the encompassing scope, and stored on the stack.
When a function returns, its local variables can no longer be safely used, as
the underlying memory may be used by another stack frame (see Listing 1). It
is the programmer’s responsibility to ensure that pointers do not outlive the
objects they point to.

// This function is dangerous: the pointer it returns

// has already been invalidated, so it cannot be safely

// used by the caller.

int *foo() {

int a = 4;

return &a;

}

Listing 1: An example of a dangling pointer.

Objects that do not fit within these two models can be stored in dynamically-
allocated memory on the heap. Dynamic allocation is not part of the language
core (i.e. it does not use special keywords or data types), but implemented in
libraries, such as the functions malloc and free (Listing 2). This makes it easy
to use custom allocators, which is valuable to systems code.

// Here, the object will outlive the function.

// It is the caller’s responsibility to call ’free’ on the

// pointer when the object’s lifetime ends.

int *foo(){

int *a = malloc(sizeof(int));

if (a) *a = 4;

return a;

}

Listing 2: Dynamic memory allocation in C.
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2.1.3.2 Undefined Behaviour

The C language definition contains many instances of undefined behaviour, such
as reading from uninitialized memory or a signed integer overflowing 2. A
program execution that exhibits undefined behaviour is considered invalid,
and there are no restrictions on its side effects3. This is different from im-
plementation defined behaviour, where the compiler writer is allowed to choose
the effect of a statement, but must consistently translate all instances of that
statement the same way.

When optimizing C code, the compiler is allowed to assume that no unde-
fined behaviour will ever happen. Any execution path containing undefined
behaviour can therefore be ignored when generating code, which allows it to
be optimized away. This is a very powerful concept — by leaving out edge
cases from the specification of strictly conforming C, the standard can define a
portable language core, while also allowing compilers to directly map C op-
erators to the corresponding machine instructions on many different targets.

Any bug in the program that actually leads to undefined behaviour has
enormous destructive potential. Because the compiler does not have to gen-
erate any code handling the path that was assumed to be impossible, the
program might just continue the normal execution path, but with violated
assumptions. Such a program may not just crash, but corrupt any data it can
access along the way. Ironically, a common issue with undefined behaviour is
the deletion of security checks[40]. Not only are there many ways to introduce
subtle bugs in C code, but they may not even manifest until a new compiler
version translates the code differently.

The biggest problem of undefined behaviour is that it is very difficult to
warn the programmer about it. While some simple cases can easily be caught
— like a function that provably always reads uninitialized memory — after
just a few simple transformations by the compiler, any ordinary C program
may contain many places with potential for undefined behaviour[24]. If the
optimizer were to warn the programmer of every assumption it is allowed to
infer, it would likely have to spew out so many warnings about ultimately
harmless cases as to be unhelpful. Many of these would even be about code
in system header files and transformed code that does not look anything like
the original input, so the programmer would not be able to use that feedback
effectively.

2A formalization effort counted 221 separate instances of undefined behaviour in the C stan-
dard, over half which are only detectable at runtime[13].

3In principle, undefined behaviour is therefore allowed to delete all the user’s files, crash or
just continue execution as if nothing happened.
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2.2 Rust
Rust is a new programming language designed to provide strong safety guar-
antees by default, but with the option to access lower-level semantics where
necessary. It incorporates many high-level concepts from other languages,
such as generic functions, algebraic types and closures, but emphasizes easy
ABI compatibility with C. Rust guarantees the absence of dangling pointers
and data races by strictly enforcing rules that have been recommended as
best practices in other languages such as C++. The prospect of a systems pro-
gramming language with strong safety guarantees lead to Rust getting much
attention long before its first stable release in 2015. A fundamental design
principle of Rust is that of the zero-cost abstraction. Whenever possible, ab-
stractions make use of compile-time knowledge, rather than make decisions
at runtime.

2.2.1 Memory Model

The Rust memory model can be seen as a stricter version of the one used by
C. Like C, variables can live for the entire duration of the program (static), or
be limited to a scope (local). Unlike C, dynamically allocated memory is not
explicitly managed by the programmer, but implicit in the use of container
objects.

In Rust, lifetimes are part of the type system and statically checked by the
compiler. This prevents all use-after-free bugs[32]: the compiler requires all
code to be written so that objects provably outlive any references to them.

The main mechanism of memory management is ownership. All memory
is owned by the variable that is bound to it. When the variable goes out of
scope, the owned memory is deallocated automatically. If a variable’s value
is assigned to another variable, ownership is moved: the old variable cannot
be used anymore, and the memory will be deallocated when the new variable
goes out of scope instead. Listing 3 shows a simple example of an object’s
ownership being moved.

{

// bind a value to a variable

let x = Foo::new();

// move ownership to a different variable

let y = x;

// illegal: x is no longer bound,

// because the value has been moved to y

x.foo();

}

// x and y leave scope

// (only y is still bound)

// the owned memory is freed up

Listing 3: Movement of ownership.
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Types can implement the special ’Copy’ trait, which marks them as being
safe to copy: this replaces moves with value copying, as shown in listing 4.

// integer types implement ’Copy’, so ownership is not moved

{

let x = 4;

let y = x;

// x can still be used,

// because the value has been copied rather than moved

println!("{}", x);

}

Listing 4: Copy semantics.

To use a variable’s value without moving ownership, functions can take
arguments by reference. This pattern, as shown in listing 5 is called borrowing.

// function moving ownership back after use

fn foo_moving(x: Foo) -> Foo {

// do something with x

// return x to move ownership back to caller

x

}

//function doing the same operations without moving

fn foo_borrowing(&x: Foo) {

// do something with x

}

Listing 5: Borrowing arguments instead of moving both ways.

At any point, there may be either one mutable reference or any number
of immutable references to a value, and the compiler statically checks that
the value outlives all references to it. For many common cases, this is trivial
because of the LIFO nature of function calls. A function that takes a refer-
ence will return before the caller returns, so any memory owned by the caller
outlive the references given to the callee. The restriction to at most one mu-
table reference at any time is Rust’s way to deal with the problem of aliasing.
Because multiple mutable references never refer to the same object, the gener-
ated code does not need to handle that case.

Like in C, objects in Rust are allocated on the stack by default. Dynam-
ically allocated memory is managed through container objects. Instead of
the explicit allocation and deallocation of malloc/free in C, Rust uses container
types like Box that abstract pointers to heap-allocated memory. When the Box
is deallocated, it also automatically reclaims the memory on the heap (list-
ing 6).

While the ownership and borrowing rules prevent use-after-free bugs, they
are very restrictive, especially with regards to data structure layouts and op-
timized algorithms. As a simple example, a doubly-linked list is a very basic
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{

// allocate a new Foo object on the heap

let x = Box::new(Foo::new());

// do something with x

}

// x goes out of scope -> owned memory is deallocated

// when Box is deallocated, it frees up the heap memory as well

Listing 6: Boxed values.

data structure that requires two mutable references to the same node, one for
each direction. In safe Rust, this is strictly forbidden. To allow programmers
to still implement such data structures, Rust also has raw pointers, which be-
have more like their C counterparts. Listing 7 shows the two struct layouts,
only one of which will work. Raw pointers can point to invalid addresses, be

// naive layout of a doubly linked list

// this will not work, as there can only be one

// mutable reference to any object at a time

struct Node {

next: &mut Node,

previous: &mut Node,

data: Foo,

}

// same layout using raw pointers instead of references

// this will work, but requires unsafe code

struct Node_raw {

next: *mut Node_raw,

previous: *mut Node_raw,

data: Foo,

}

Listing 7: Raw pointers allow mutable aliasing.

used for pointer arithmetic, and are allowed to alias other pointers, so they are
not safe to use. To separate this unsafe code from the rest, there is a special
unsafe keyword, that allows a block to violate the memory safety rules. This
allows programmers to write data structures that use unsafe code internally,
but provide a safe interface to the user4.

The single-owner-restriction allows Rust to enforce memory safety without
a garbage collector. Objects have a statically known lifetime with a very clear
end, at which point they can be deallocated safely. The only way to get a
dangling pointer is through code that has to be explicitly marked as unsafe,
narrowing down the search space when debugging.

4 It is the responsibility of the programmer to ensure that unsafe blocks comply with the
invariants of the language[4].
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2.2.2 C Compatibility

Rust provides compatibility with C through a well-integrated foreign-function
interface (FFI). While the default ABI is different from C, each function can
have its ABI made explicit through the extern keyword. This allows for both
the declaration of external C function prototypes and the definition of Rust
functions that can be called from C. Most C types can trivially be expressed as
Rust types, and Rust structs and enumerations can be declared to use the C
representation, so moving data across the FFI does not require conversions5.
Because C functions do not enforce the memory safety rules of Rust, calling a
C function is considered unsafe and can only be done in an unsafe block.

As all Rust functions have their symbol names mangled by the compiler
(to implement namespacing), in order to call a Rust function from C code, one
either needs to provide the C code with a function pointer, or deactivate the
name mangling for that function to give it a fixed symbol name, as shown in
listing 8.

// The attribute ensures that the object file

// contains a symbol ’foo’,

// so it can be linked to from other languages.

// The ’extern’ keyword forces this function to follow the C ABI.

#[no_mangle]

extern pub fn foo(i: u64) -> u64 {

i * 7

}

// the corresponding function prototype in C code that uses it

extern uint64_t foo(i: uint64_t);

Listing 8: A simple extern function callable from C.

As we will discuss in section 4.1, the interactions between C and Rust are
not always that straightforward. This is mostly because many C libraries have
their own constraints on object lifetimes and the proper ways of managing
memory.

5 The exception are unions, as Rust uses tagged unions to represent sum types. In isolation, C
unions can be dealt with using the transmutation functions of Rust, but there currently is no clean
way to represent unions embedded in structs. We expect official support for untagged unions to
be implemented soon after the publication of our work, as a corresponding language extension
has already been approved[3].
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2.2.3 Type System

Rust is statically typed, but much like in C, a value is entirely defined by
its type and representation in memory. Objects in Rust can implement traits,
which are similar to Haskell typeclasses. A single type can implement any
number of traits, with some like Default or Copy having special semantics built
into the language. This many-to-many relationship between traits and imple-
menting types allows programmers to express interface inheritance. Notably,
traits are not types themselves. One can therefore neither declare an object of
type Default, nor define a new type to be an alias of Default. However, one can
declare an object to be of type &Default, meaning “reference to an object im-
plementing the Default trait”. This is called a trait object, and is the idiomatic
way to achieve dynamic dispatch in Rust. The compiler will implicitly gener-
ate a set of Vtables6 for this trait, which is used to find the correct methods at
runtime.

2.2.4 Macros

Rust code can be transformed at compile time using either macros or compiler
plugins. Macros are declared as a list of patterns and expansions. When a
macro is used, the patterns are matched against the arguments given, and the
corresponding expansions used as substitutions for the invocation.

//simple macro with only a single pattern

macro_rules! max {

($a:expr, $b:expr) => (if $a > $b {$a} else {$b});

}

max!(4, 7); // evaluates to 7

max!(4.2, 7.2); // evaluates to 7.2

max!(4, 7.2); // compile time error: mismatched types

Listing 9: A macro definition and usage.

Listing 9 shows a simple macro definition consisting of a single pattern. It
transforms two comma-separated expressions a and b into a new expression
that computes the maximum of the two.

In contrast to C, Rust Macros are applied on the abstract syntax tree (AST)
rather than on the source code, and can therefore not be used to construct new
tokens from parts. Macros are only allowed to transform AST subtrees into
other AST subtrees, but they support recursion and have their own naming
scope, making them very similar to functions and much less error-prone than
raw textual substitution.

The Rust standard library uses macros in very prominent places, such as
for printing text and initializing vectors. This is because macros allow for a
variable number of arguments of any combination of types, whereas functions
are limited to a fixed number of arguments of predefined types.

6Virtual method table, a table of function pointers. Every type implementing the trait will have
its own copy, filled in with function pointers to its own implementation of the trait’s methods.
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Compiler plugins are more powerful, as they can change even the parser
(e.g. by introducing new keywords), but they do not have a stable API yet and
are harder to write. It is unclear if compiler plugins will ever have a stable
API, since they interact with compiler internals in ways that are difficult to
abstract away.

In the current design of Rust, macros do not follow the same namespac-
ing as the rest of the code, because they are not actually items and therefore
resolved in a separate compilation step before name resolution. As we will
discuss in section 4.2, this special treatment of macros is actually a hindrance
to writing modular code. There are efforts to solve this problem in future
releases[1], which will make it much easier to write and use macro libraries.
But until then, we generally recommend against the use of macros as APIs
wherever possible.

2.2.5 Error Handling

Rust has two mechanisms for dealing with errors: return values and stack
unwinding. The standard library contains a generic Result sum type, that is
used throughout the library as the return type of functions that can fail. A
Result<T, E> value can either be Ok(t) or Err(e), where t is of type T and
e of type E. This is essentially the type safe equivalent of the return codes
commonly used in C. Much like Haskell’s Maybe monad, it enforces a clear
distinction between the result of the function and the computed value (in case
of success), by making them different types.

For more unexpected failures, there is also an exception handling system
based on stack unwinding. When an exception is raised, such as through
the ’panic!’ macro or assertion failure, a panic handler aborts the current
operation in a memory-safe way. The stack is unwound one stack frame at
a time, by executing special code that releases any resources that the aborted
functions owned. This code (called a landing pad) is generated by the compiler
for each function.

This stack unwinding mechanism is similar to the exception handling of
C++ and common C extensions, but in Rust it is not intended as the default
mechanism for handling errors. There are no objects to represent the context
of an exception, and while there is a mechanism for catching exceptions in a
user’s code, it is a new addition to the language and highly discouraged.

The stack unwinding system is a remnant of earlier Rust designs, when
there were execution contexts much smaller than native threads. Even though
the stack unwinding provides memory safety by correctly reclaiming only
out-of-scope objects, writing code that is exception safe is far from trivial, as
listing 10 shows. Exception safety is the property that all the logical invariants
of a program hold after an exception has been handled. In general, the only
way to reliably write exception safe code is by structuring all functions as
transactions, so they can be aborted cleanly.
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// Example of a function that is not exception safe.

// If ’add’ panics, the accounts will be in an inconsistent state,

// even though memory safety has not been violated

fn transfer_money(&sender: Account, &receiver: Account,

amount: u64) -> Bool {

if sender.can_afford(amount) {

sender.remove(amount);

receiver.add(amount);

true

} else {

false

}

}

Listing 10: Exception-unsafe code.

The course-grained nature of Rust’s exception handling severely limits its
usefulness. To properly handle an exception, the programmer typically needs
to know what failed, but finding all the possible points of failure in a given
block of code is actually very hard. Because of the difficulty of handling
exceptions correctly, and the complexity associated with having implicit exit
points all over the code, the future of the entire exception mechanism is a
regular topic for discussion in the Rust community[2]. One important plan
is a compiler option to turn all exceptions into simple aborts, shutting down
the whole program instead of trying to recover. This would be especially
interesting for systems code, as we will discuss in section 4.1.

Writing exception-safe Rust code is in many ways similar to writing memory-
safe C code: There are many ways to get it wrong, some of them very subtle,
and the compiler is not much help. For failure states that the systems pro-
grammer anticipated, using return values works very well. This way, not only
can errors be handled by the code that called the failing function, but it allows
us to reserve panics for truly unrecoverable problems. And in that case we do
not actually need the stack unwinding and object deallocation that Rust uses
by default.

17



2.2.6 Compiler

There is currently only one Rust compiler, called rustc. It is the reference
implementation, as there is no formalized language standard at this point.
Rustc uses LLVM[25] as its backend, which allows it to be used for many
target machines.

The compilation unit of Rust is called a crate. A crate is either a library
or an application, and consists of a hierarchy of modules organized in a tree
structure. At the top level of that hierarchy is the crate root, which is also
the root of the namespace. Namespaces are hierarchical and follow the same
layout as the modules, but names can be reexported from any module. This is
in contrast to languages like C++, where namespaces are orthogonal to source
layout and can be spread across any number of locations.

By default, all symbol names are mangled, to prevent conflicts between
namespaces. This also allows a single application to link to multiple different
versions of a dependency.

Rust is still a very young language, and developing at a rapid pace. Version
1.0 was released on May 15, 2015. Minor releases are made every six weeks,
each expanding the set of stable library APIs. When we started this work, we
used the then cutting-edge version 1.5, but despite updating to version 1.7 in
between, we will already be out of date again by the time of publication.

During its very early development, Rust went through several major de-
sign changes. There used to be a runtime system, multiple levels of threading,
several different kinds of pointers, optional garbage collection and a notion
of purity. Much of the literature on Rust therefore concerns versions of the
language that are quite different from the current one. But even when it still
contained a garbage collector, it was already interesting to many systems pro-
grammers. Since the release of version 1.0, changes have been much smaller
in scope, and mostly related to the finalization of API designs.

2.2.7 Related Work

Even though Rust is still a very young language, it has already attracted much
attention from the systems programming community. Rust has already been
used to implement an embedded operating system called Tock[26]. A very
important insight from that effort was that the strict rules on sharing state
between threads do not match well with the traditional design of embedded
systems. Embedded systems are typically very resource-constrained, both in
terms of memory and processing power. Their hardware usually does not
provide isolation mechanisms such as virtual memory. As a consequence,
many embedded operating systems are designed to run all applications in the
same context, using lightweight threads, often implemented with cooperative
scheduling. Any isolation between applications is restricted to the source-code
level. In such a system, much information is shared between subsystems. But
Rust places heavy restrictions on mutable shared state, because its rules are
designed to prevent race conditions in a more general threading model. The
authors propose an extension to the type system that would allow multiple
mutable references to the same object within a thread, but forbid the sharing
of those references across execution contexts.
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Shortly before the first stable release of Rust, it was used in a student
project[28] to implement a Unix-like operating system called Reenix. In that
effort, the restrictions on shared state were also highlighted as a problem. The
greatest advantage in expressiveness came from the use of traits and algebraic
data types. As Reenix is a monolithic operating system, with drivers and
buffer caching in kernel space, the heap allocation mechanism was identified
as a serious problem. All heap-allocated object types of the standard library
such as Box and Vec use an allocation mechanism that is assumed not to fail.
In user space, this assumption is not all that unrealistic, since page swapping,
copy-on-write and on-demand paging can give the illusion of an abundance of
available memory. The point of failure, where the available physical memory
has actually run out, may only be discovered long after the system call used
to allocate it. In kernel space however, there is little memory that can safely
be swapped out to persistent storage, and there is no system further down in
the chain to delegate dealing with allocation failures to. Using the standard
container types inside the kernel is therefore dangerous. The proposed solu-
tion was to make the possibility of allocation failures explicit. Changing the
various container types to cope with failures requires serious changes to the
way Rust code is written, but it may be feasible to simply extend the current
implementations to provide an additional constructor, which returns an error
if an allocation fails.

In 2015, Rust was ported to the distributed research operating system
DIOS[38]. This work was done shortly before the first stable release of Rust, at
a time of great changes to numerous APIs, making the port more difficult. The
performance of IO-bound programs in Rust was observed to be comparable
to that of C code using the DIOS APIs directly.

In 2013, LLVM released a compiler back-end for PTX, a virtual instruction
set for GPUs 7. Holk et al used this back-end to program GPU algorithms
in Rust, by adding extensions for GPU-specific operations[21]. One of the
challenges they faced was the conflicting semantics of LLVM address spaces
between PTX and Rust. This was when Rust still had optional garbage col-
lection, and used address spaces to separate collectable regions from other
memory.

7Graphics processing unit. A specialized processor for high-throughput parallel data process-
ing.
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2.3 Barrelfish
Barrelfish is a research operating system developed at ETH Zurich. It ex-
plores a machine model that treats the set of processors similarly to a network
of machines[7]. Processes communicate using message passing through clear
interfaces instead of implicitly shared state. In Barrelfish, much of the func-
tionality traditionally associated with operating systems is implemented in
user space libraries and services, rather than kernel space.

Each processor runs its own independent copy of the kernel, which is
called the CPU driver as it only handles bootstrapping, process scheduling,
capability management and interrupt forwarding, all of which require opera-
tions exclusive to kernel space. Memory allocators, device drivers, file systems
and even network stacks all run in user space, either as libraries that applica-
tions can link to, or as services that communicate with client processes.

The scheduling of threads is done by the applications themselves, using
scheduler activations[5]. Applications are responsible for all their own re-
sources, including the memory used to represent them in the kernel, using a
capability system modeled after seL4[23].

Barrelfish is written almost entirely in C, but also uses several domain spe-
cific languages (DSL). These languages compile to C stubs, which are then
called from the C code. The main purpose of these DSLs is to translate declar-
ative specifications, such as the memory layout of a device, into procedural
code. These DSLs are a great way to combine expressibility with efficiency,
but they are by their very nature restricted in scope and require a lot of initial
work to develop.

We were interested to find out if Rust could provide benefits similar to
those of the DSLs, but to a larger fraction of the codebase. The zero-cost
abstractions of Rust are a different way to achieve expressibility without sacri-
ficing efficiency. We were curious to see how well Rust was suited to replacing
system services written in a combination of C and DSLs.

There have been previous projects to integrate other languages into Bar-
relfish. Most notably Go[30], which was used to explore how the different
message passing designs of the language and the operating system interact.
In December 2014, Zaheer Chothia implemented a proof-of-concept port of
Rust to Barrelfish. The insights into the structure of Rust gained in that project
were a great help in our own porting efforts.
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3 Porting Rust to Barrelfish

In this section, we describe the work that was necessary to compile Rust pro-
grams for Barrelfish. The Rust compiler itself did not require any changes,
but merely the definition of a new target (x86 64-pc-barrelfish).

3.1 Standard Libraries
By default, all Rust code links against libstd, the standard Rust library. It pro-
vides definitions for important types like Result and Option, standard traits
like Copy and Iterator, container types like Vec, methods for string manipula-
tion and bindings for system-specific functionality like files and sockets.

As most Rust code depends on this library8, porting it is essential in the
effort to support a new platform.

Many of the definitions it exports are not actually implemented in libstd
itself. Instead, it merely reexports definitions from other libraries in a unified,
well-structured namespace. The most important of these libraries that libstd
depends on is libcore, which contains the definitions for all the primitive types
(e.g. u64), as well as many other essential types such as Option. As all Rust
code ultimately depends on libcore9, it is designed to be entirely portable.
Porting it to Barrelfish did not require a single line to be changed.

The various container types are all part of libcollections, which also did not
require any changes. This is because the target-specific aspect of containers —
heap allocation — is the subject of its own library. All heap allocations in Rust
are internally based on calling a C library function that provides aligned allo-
cations, such as memalign. Because the standard C library used in Barrelfish
does not yet provide such a function, we use a different memory allocation
library.

Commonly used C bindings are collected in a library called liblibc. These
include correctly-sized aliases for the various C integer types, but also system-
specific definitions such as the socket interface of Unix-like systems. For Bar-
relfish, we decided to gather system-specific C bindings in its separate library,
which will be the topic of the next section. This left the Barrelfish port of
liblibc small, mainly consisting of mappings of symbol names for C library
functions.

Many of the modules implemented in libstd itself are concerned with
system-specific functionality. Some of the features libstd expects from the
host system, like a Unix timestamp counter or pipes, are not available on
Barrelfish. Applications that rely on such system-specific functionality will
therefore require additional work in order to be ported to Barrelfish — either
modifying the application or adding the necessary features to Barrelfish.

One of the biggest challenges with porting libstd is its sheer scope. Much
of the functionality it wants to expose is actually not part of the main Barrelfish
library (libbarrelfish). The network stack and file system for example are their
own separate libraries, and not linked with by default. To reduce the scope of
our porting effort, we decided to exclude the std::net module, which is easily

8It is possible to disable the automatic inclusion of libstd into every crate, and directly use
libcore instead. But until recently, this was not possible on the stable release build of Rust.

9The attribute that is used to opt-out of importing libstd implicitly imports libcore instead.
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decoupled from the rest of libstd. As Barrelfish does not use dynamically
linked libraries yet, we did not port the corresponding module.

Porting the std::sys::* modules largely consisted of adapting the mutex
and thread implementations to use Barrelfish-specific memory representations
and operations. One assumption that libstd makes is that all threads share
their address space. The communication modules in std::sync all assume that
communication channels can be implemented by atomically accessing shared
buffers that are allocated somewhere on the heap. In Barrelfish, this assump-
tion does not hold in the general case, but is valid if all threads are running on
the same core, which is the default. The difference between multicore appli-
cations and multithreaded applications is very explicit on Barrelfish, and the
std::thread interface implicitly relies on guarantees only the latter provides.

While the higher-level abstractions of libstd are written entirely in Rust,
much of the system-specific code relies on C libraries. In Barrelfish, we use
a different set of libraries to what Unix-like systems use. To ensure all nec-
essary symbols are defined, we link Rust programs on Barrelfish against the
following libraries:

libbarrelfish for many definitions related to threading and mutexes

libdmalloc for memalign

libnewlib as the C standard library

libcxx for the stack unwinding routines to handle panics

libvfs for file descriptor support

22



3.2 Liblibbarrelfish
In Barrelfish, much of the functionality often associated with operating sys-
tems is provided through user space libraries instead. The most important one
is libbarrelfish, which contains code to do system calls, use capabilities, spawn
new processes, schedule threads, and interact with the service processes (like
the memory server or the monitor). Naturally, we want to be able to do these
things from Rust code as well. Notably, libstd requires interfaces to manage
threads and locks.

Using a C function from Rust code is as simple as declaring it in an extern
block, which can be done at any point where you can declare functions. But
declaring the C functions in every piece of code that use them is error-prone,
especially in a system with a large code base. To interface with libbarrelfish
from Rust more cleanly, we therefore wrote a simple wrapper library called
liblibbarrelfish10. It contains common type and function definitions for inter-
acting with libbarrelfish, as well as a few functions written in Rust.

One problem we faced when writing this library is the structure of the
Barrelfish project. Much of the functionality is in header files, and makes
heavy use of inline functions. Inline functions are very useful in C, as they
are a way to combine the inlining of macros with the scoping and syntax of
functions. However, they are bound to the language in a way that regular
functions are not.

There exist automatic tools for generating Rust code from C header files.
But these tools are limited by the fact that Rust is much stricter than C, es-
pecially with regard to the type system. In C, constants are often written us-
ing the preprocessor, which simply performs a textual substitution. In Rust,
constants are items just like variables, and therefore require a type in their
declaration. In C, enumerations do not have to be exhaustive — they are es-
sentially just numeric types after all. In Rust, enumeration definitions must be
exhaustive. Assigning a value outside the defined range to an enumeration is
undefined behaviour, and prevented by the compiler in safe code. Converting
idiomatic C code into idiomatic Rust code is therefore not trivial.

On the other hand, writing the adapters by hand allows us to use the
stronger semantics of the Rust type system. We can use the fact that Rust
enumerations are range-checked at compile time, for cases where we know
that the declaration in C is complete. Types that we treat as black boxes11,
such as threads, we represent as empty enumerations. This prevents them
from being instantiated, but ensures that pointers to them are different types,
giving us the ability to typecheck function calls.

One of the most important types in libbarrelfish does not get stronger guar-
antees. Access control and resource management in Barrelfish is implemented
through capabilities, which are implemented in a similar way to seL4[14]. A
capability may represent a region of physical memory, a device, a communi-
cation endpoint or a privileged operation. The actual capabilities are stored
in slots only accessible to the kernel, but they can be referenced in user space.
Capabilities can be used through the invoke system call, by specifying their
slot address and the operation to perform. In principle, the Rust type system
is a great fit for capabilities. The various legal operations can be represented

10Named after liblibc, the wrapper around libc.
11Meaning we do not allocate them nor access their content in Rust.
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by traits, with each capability type implementing the appropriate traits. But
although that approach works for the capabilities themselves, capability ref-
erences are slightly different and cannot be represented the same way. A
capability reference only refers to a slot, which may change its contents com-
pletely, and do so without the user space code’s knowledge. A local copy of
a capability owned by another process may be revoked at any time, at which
point the slot becomes empty. Any user space representation that includes
type information is therefore liable to get out of sync with the actual contents
of a slot. One naive way to repair an out-of-sync reference would be to have
the kernel return the actual type of a capability if it is invoked illegally12. But
because the invocation is a method on an object, we can not change the type
of the invoked capability reference directly. Instead, we have to return a new
capability reference to the user, who then needs to replace their old version
with this up-to-date one13. These complications all arise from the attempt to
model different kinds of capability references as different types. For our port,
we instead kept the model we use in C, where all capability references are a
single type. Invocations can fail for many different reasons, and providing the
wrong type of capability is simply another one.

The system call interface is a great example of the usefulness of recursive
macros. The actual system call is implemented as a function, using inline
assembly to control the contents of all registers, as shown in listing 11. A
system call can involve a command identifier and up to twelve register-sized
arguments, so that has to be the signature of the syscall function. In prac-
tice however, most system calls only require very few arguments, and many
of them are even smaller than a register. To make the use of system calls
cleaner, we wrote a simple macro that recursively pads out the list of argu-
ments, shown in listing 12. This is typical of the way macros are used in Rust.
While functions must have a fixed number of arguments of predefined types,
macros can be defined to take any number of arguments of any type.

12Another way would be to add a synchronize method to all capability reference types, but this
runs into the same problems.

13 Even worse, because the different kinds of capability reference are different types, we can
not return them by value, but have to use trait objects instead.
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/// perform a x86_64 syscall

#[inline]

pub fn syscall(num: Syscall, arg1: usize, arg2: usize,

arg3: usize, arg4: usize, arg5: usize,

arg6: usize, arg7: usize, arg8: usize,

arg9: usize, arg10: usize, arg11: usize,

arg12: usize) -> Result<usize, Errval> {

unsafe {

let result: usize;

let errval: usize;

asm!("pushq %rbp; movq %rcx, %rbp; syscall; popq %rbp"

: "={rax}"(errval), "={rdx}"(result)

: "{rdi}"(num as u64), "{rsi}"(arg1), "{rdx}"(arg2),

"{r10}"(arg3), "{r8}"(arg4), "{r9}"(arg5),

"{r12}"(arg6), "{r13}"(arg7), "{r14}"(arg8),

"{r15}"(arg9), "{rax}"(arg10),

"{rcx}"(arg11), "{rbx}"(arg12)

: "r11"

: "volatile"

);

if err_is_ok(errval) {

Ok(result)

} else {

Err(errval as Errval)

}

}

}

Listing 11: A system call in Rust using inline assembly.
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macro_rules! syscall {

//base case: too many arguments

($num:expr, $a1:expr, $a2:expr, $a3:expr, $a4:expr,

$a5:expr, $a6:expr, $a7:expr, $a8:expr, $a9:expr,

$a10:expr, $a11:expr, $a12:expr, $($a13:expr)+)

=> (panic!{"illegal: syscall with more than 12 arguments"});

//base case: all arguments

($num:expr, $a1:expr, $a2:expr, $a3:expr, $a4:expr,

$a5:expr, $a6:expr, $a7:expr, $a8:expr, $a9:expr,

$a10:expr, $a11:expr, $a12:expr)

=> ($crate::syscall::syscall($num, $a1, $a2, $a3,

$a4, $a5, $a6, $a7, $a8, $a9, $a10, $a11, $a12));

//recursively insert a 0 argument

($($arg:expr),+) => (syscall!{$($arg),+ , 0});

}

Listing 12: A recursive macro to use system calls with any number of argu-
ments.
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3.3 Example Program
The port of libstd is enough to run regular Rust programs on Barrelfish. An
example of such a program is the fibonacci program shown in listing 13, which
makes use of command-line arguments, formatted output and multithreading.
As can be seen from this example, Rust allows us to write very compact code,
leading to a smaller set of lines to debug.

use std::thread;

use std::env;

fn main() {

let n = match env::args().last().unwrap_or_default().parse() {

Ok(i) => i,

_ => 4

};

println!("fibonnacci({}) = {}", n, fibonacci_threaded(n));

}

// naive computation of a fibonacci number using threads

fn fibonacci_threaded (n: u32) -> u32 {

if n < 3 {

return 1;

}

println!("spawning threads to compute fibonnacci({})", n);

let left = thread::spawn(move || fibonacci_threaded(n-1));

let right = thread::spawn(move || fibonacci_threaded(n-2));

let leftres = left.join();

let rightres = right.join();

match (leftres, rightres) {

(Ok(l), Ok(r)) => return l + r,

_ => panic!("fibonacci({}) failed", n),

}

}

Listing 13: A simple program using input, output and multithreading.
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4 Integrating Rust into Barrelfish

While libstd and liblibbarrelfish are enough to run regular Rust programs on
Barrelfish, they do not suffice to write system services or device drivers.
Barrelfish programs make heavy use of subsystems that cannot simply be
wrapped by liblibbarrelfish. Most notably, communication and device access
are implemented using domain-specific languages called Flounder and Mack-
erel, each with their own toolchains. To truly interface with the rest of Bar-
relfish, we need to be able to use these languages from our Rust code.

4.1 Flounder
Flounder is the language for specifying message interfaces in Barrelfish[6]. Be-
cause message passing and RPC are the primary forms of interprocess com-
munication, they are absolutely essential to Barrelfish, and their implementa-
tions are closely coupled with other fundamental aspects like scheduling and
the capability system. Any new interface to this infrastructure therefore has
to be binary-compatible with the underlying implementation that does all the
heavy lifting (such as choosing transport layers14 and triggering events).

A simple example of a Flounder interface is xmplmsg, as shown in list-
ing 14. This short piece of code defines a new message passing interface
called xmplmsg, that consists of two messages. One for transmitting a pair of
integers, the other transmitting a C-style string.

interface xmplmsg "Example message interface" {

message msg_ints(int i, int j);

message msg_string(string s);

};

Listing 14: A Flounder message interface definition.

The Flounder DSL compiler generates multiple C header files from this
definition, which contain functions for sending and receiving such messages
(using CPU registers or shared memory to transmit the message payload).
Conceptually, all messages are transmitted over channels, with each interface
using a separate channel. To create a channel, one process publicly advertises
itself in the system’s nameserver. Another process then binds to that adver-
tised interface reference. Once a channel is created, each process can register
a set of handler functions that should be called to process incoming messages.
Sending and receiving both happen asynchronously. The sender can option-
ally specify a callback that should be executed once the message has been
sent.

14 The two main transport layers of Flounder are local message passing (LMP) and user level
message passing (UMP). LMP uses a system call to transport the message through the kernel, and
can only be used to communicate with processes on the same core. UMP uses shared memory to
transport the message entirely in user space, and can be used across cores.
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4.1.1 Design

To be as compatible as possible, we designed our Rust interface to reuse the
generated C code for sending and receiving, and simply wrap the existing
channels in an adapter that provides a more idiomatic Rust interface to the
end user. This allows us to use regular Rust functions as message handlers,
and method calls for sending. In the underlying C code, each channel contains
two virtual method tables (vtables)15, one for sending messages and one for
receiving. The table for sending is filled in by the underlying transport layer
when the channel is created. The table for receiving is meant to be filled in by
the user.

In Rust, we represent Flounder channels by a Channel object, and operation
on a channel as methods on that object. Sending a message is done by calling
the corresponding send method. The body of this method simply consists of a
lookup in the vtable, and a call to that function pointer. Providing a callback
to be executed after the message has been sent turned out to be much more
complicated than we originally expected. The Flounder internals require any
dynamically allocated memory to be kept alive until the send is complete
and the callback is executed. This is clearly a specification of a lifetime, but
we cannot express it in Rust because the actual time of deallocation is not
statically known and cannot be tied to the sending method. This means that
we cannot expose the asynchronous interface in a memory-safe way. The user
has to make sure that the referenced variables outlive the sending process
without the compiler’s help.

To give the end user a memory-safe alternative for sending messages, we
also define a blocking send method for every message. It first consists of a call
to the nonblocking version, providing a callback that directly sets a variable
on the stack. It then waits until this variable has been set. While this design is
very simple, it relies on unsafe blocks, so it is better suited to be implemented
in the library rather than in user code.

On the receiving side, we want to be able to use regular Rust functions as
message handlers. By default, Rust functions do not use the same ABI as C
functions. This difference is what allows the Rust compiler to optimize ex-
pressions that would naively involve temporary copies, such as the common
pattern shown in listing 4.1.1. To be directly callable from C, functions can be

// The inner function call can be rewritten by the

// compiler to return its value by reference, saving us

// from copying memory around just to put it on the heap.

let b = Box::new(std::time::SystemTime::now());

declared with the extern keyword. This ABI change is part of the type, so it is
possible to have a function that only accepts C-callable functions as its argu-
ment, as in listing 15. In theory, this is enough to write message handlers and
have them be called directly from the underlying transport layer. However,
writing such a message handler correctly requires knowledge of the intricacies
of both Flounder and the Rust foreign-function interface. To help users, we
introduced a small function that sits between the C code that transports the

15A table of function pointers, each index corresponding to a message.
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fn call_fn(f: extern fn()) {

// extern functions can be used from Rust

// just like any other function

f();

}

Listing 15: A function that only accepts functions callable from C.

message and the Rust function that processes it. In Flounder, dynamically-
sized payloads (such as strings) are transmitted using a base pointer and a
length. The backing memory is allocated by the transport code using malloc,
and the programmer is expected to call free once they are finished with it. This
is in contrast to the way memory ownership is handled in Rust. Our helper
functions do the conversion to vectors and Rust strings, which includes allo-
cating new memory for the idiomatic data type and freeing up the received
pointer. This requires copying the data, because all container types manage
their own memory and will deallocate it using their own method, which may
be different than just calling free.

Another big constraint holds for any Rust function called from C code: any
panics16 must be caught before the automatic stack unwinding reaches the C
code. This is because the C functions do not have any unwind information
associated with them, so the panic-handling code does not know how to clean
them up, and aborts the program instead. The officially recommended way
to catch panics is to spawn a new thread that does all the work. Because this
thread does not contain any C stack frames, it can exit cleanly even in the case
of a panic. However, spawning a whole thread for every single message we
receive is clearly not appropriate. While threads in Barrelfish are cheap com-
pared to other systems (as they are managed completely in user space), Rust’s
panic handling is supposed to be a zero-cost abstraction, so we should only
have to pay for it when we actually use it. Luckily, a general panic-catching
function has recently been added to libstd, with the specific intent to let call-
backs from C catch panics within their own thread. If we were to directly
call the user-written handler from C, it would be the user’s responsibility to
explicitly catch panics in all message handlers they write. By moving this step
into the helper function, we can run arbitrary message handlers.

16 See section 2.2.5 for an overview of Rust’s panic mechanism.
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4.1.2 Implementation

We added a new backend to the Flounder compiler. For each Flounder inter-
face, it generates a small Rust library that defines a Channel type with meth-
ods for sending and receiving the corresponding messages. The Flounder
compiler is written in Haskell, and already contains several backends, used to
generate C code for the various transport layers.

One oddity of the internals of Flounder is the way it handles dynamically
sized arrays. While they are represented very straightforwardly as a base
pointer and a length variable, they are not considered a type by the language.
Flounder’s type system contains both a set of built in primitive types (such as
bytes or pointers), and a set of higher-order types (such as arrays or structs),
but dynamic arrays are part of the message specifications instead. While this
does have the nice invariant that all types can be represented by single vari-
ables, it moves much of the logic dealing with arrays into the code that is
dealing with messages — which is already the most complicated part.

In order to insert our helper functions between the C code and the user-
supplied message handlers, we introduced a third vtable, which holds the
actual message handlers. The receiving vtable used by the C code is then
filled in with our helper functions. When a message arrives, the helper func-
tion moves any dynamically allocated memory into the corresponding Rust
container type, looks up the user-supplied handler function in the vtable, and
then executes it in a context that will catch panics before they propagate into
C code. For users who do not want to pay this overhead, the definition of
the Channel type is deliberately exposed, so they can register their own raw
message handlers directly in the vtable used by C17. We expect that any safe
wrapper around an asynchronous C library will need to implement similar
mechanisms for catching panics and managing memory.

17 Measurements on hardware suggest this overhead to increase the round-trip time of each
message by about 10%.
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Based on these experiences, we suggest the following language extensions
to Rust:

nonpropagating functions Similar to how the extern keyword changes the
ABI of a function and is reflected at the type level, the same approach
can be taken to change the panic-handling properties of functions as
well. Being able to specify that a function will not propagate panics
downward would allow system programmers to write callbacks for C
libraries without having to always explicitly catch panics in the function
body. Moreover, it would allow us to specify that a function accepts a
non-panicking callback at the type level. The extern keyword can already
take a parameter to specify the ABI, so this extension would not require
any new syntax. The way stack unwinding works, each function already
has an entry in a table that specifies what action to take when unwinding
into it. Expressing that choice at the type level is therefore natural.

malloc container The various Rust container types all reclaim the memory
they represent when they are destroyed. The mechanism by which they
are allocated and reclaimed is not specified, so transmuting a pointer
into a Box is only allowed if the pointer was originally allocated by the
Box allocator. When dealing with C libraries, one often receives owner-
ship of memory that was allocated by the library, but needs to be freed
by the user. Having a container type to abstract this situation would al-
low us to directly use that memory from Rust, without having to worry
about either use-after-free bugs or memory leaks. The container would
need to use the same representation as the pointer itself (which is al-
ready how boxes work), so it could be used in the declarations of C
functions. As its destructor, it would simply call free (or possibly an-
other reclamation function, depending on the API of the C library) on
the pointer.

Both of these extensions are compatible with the greater Rust design, as they
are merely extending existing mechanisms to cover more use cases. But while
they are modest in scope, they would greatly simplify the efficient interfacing
between complex C libraries and Rust.
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4.2 Mackerel
Managing devices is a very important and common task in systems code,
both in user space and kernel space. Yet it has traditionally received very
little attention and support from language designers and compilers. So much
so that one of the major advantages of C over other languages is not that it
makes device access easy, but just that it allows it to be implemented at all
without resorting to assembly. But directly writing the C code to deal cleanly
with memory-mapped device registers is both tedious and error prone.

Mackerel is the device definition language of Barrelfish. It is used to gen-
erate code for accessing any field of a device in a way that respects special
semantics like read-only, or reserved fields. The devices are specified using a
syntax that is similar to that used in reference manuals[36].

device foo (addr base) "example device with only two registers" {

register first addr(base, 0x0) "a wild mixture of fields" {

a 16 ro "a read-only field";

b 4 rw "a read-write field";

c 4 rw "another read-write field";

_ 3 mbz "a few bits that must always be zero";

d 5 wo "a write-only field";

};

register second add(base, 0x40) "a different size and offset" {

e 1 ro "a single read-only bit";

f 7 rw "most of a byte";

};

}

Listing 16: A simple example of a Mackerel device specification.

Listing 16 shows a simplified device, consisting of two registers of different
sizes. From such descriptions, the Flounder compiler generates a header file
containing a set of inline functions. For each register and each field, Floun-
der generates a function for reading, a function for writing as well as other
functions more useful for debugging purposes than driving devices. In a de-
vice driver, the programmer can then include that header file and use these
functions to read and write individual register fields without having to worry
about accidentally overwriting other parts of the register. Having the details
of the memory access and bit extraction abstracted in a single function call
leads to much cleaner and easier to understand driver code.

It is important to note here that the semantics of Mackerel are actually
much more complicated than they may seem at first glance. Mackerel is prob-
ably the most complex of all the Barrelfish DSLs, simply because the problem
domain is itself rather messy. There is no standard for device register se-
mantics, so manufacturers have used all possible combinations of write-only,
read-only, write-to-clear, preserve-to-write and other constraints.18

18There even are cases of ”write back with two bytes swapped”.
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For each field, we need to consider the following values:

• the offset of the register

• the width of the register

• which bits belong to the field

• how each other bit should be written:

– constant 0

– constant 1

– preserve value by reading

– preserve value without reading

All of this information is necessary to properly write to a field without over-
writing the other fields of the register. In order to preserve values without
reading them, we need to keep track of previously written values. Each bit
in a device register may have different access semantics from the rest. In the
worst case, a single write has to be preceded with a read from the register and
a read from a shadow register, in order to preserve the values we are trying
not to overwrite. In our example device foo of listing 16, this is the case for
the fields b and c. In order to write to b while preserving the other bits in the
register, we first need to read field c, so we know what to write at that place.
To also preserve d, we cannot read the previous value from the register itself,
since d is not a readable field. Instead we have to remember what was last
written to d, which can be done by keeping a shadow copy of that field in
regular memory, which we update every time we write to the register.

Because device access is not tied to any other aspect of the Barrelfish
ecosystem, we had much more freedom in our design of the Mackerel Rust
backend than we had with Flounder, where compatibility with existing code
was crucial. We only had to be compatible with the specification syntax and
semantics (and preferably the compiler frontend), but had no restrictions on
the generated code. We were therefore a bit surprised to find that Rust itself
considerably restricted our design space.

For Rust, we would have liked to make use of language features to model
the device more naturally than just as a collection of functions. After all, the
prospect of high-level language features with low-level access on demand was
one of our big motivations for using Rust in systems code in the first place.
The natural way to model a device would be a data structure that syntacti-
cally shared the same logical layout – a device consisting of registers, which
in turn consist of fields of varying sizes. Logically, each device is a tree,
with the register fields as the leaves. But expressing this tree in an efficient
way is surprisingly hard. Nesting structs would give us the very natural de-
vice.register.field syntax, but not the semantics we would want. The inner fields
cannot reference the parent struct, but it is the topmost layer that will actually
contain important information. The layout of a given device is constant: the
offset of fields within a register and of the registers within the device are all
relative to the base address of the memory-mapped device, which is the only
value not known at compile time. We want a call like device.register.field to use
device.base, but the object device.register.field does not have any way to reference
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its parent. Adding a copy of the base address or a reference to the root into
every layer of the tree is extremely inefficient19. Representing the device by a
data structure that shares its tree-like layout is currently not possible within
the language.

An alternative design we considered is that of a single function for read-
ing all fields, taking a field identifier as its argument. This allows us to use a
nice device.read(field) syntax. In the function body, the field identifier would be
converted into the set of associated constants (offset into device, access width,
bitmasks and shift amounts) through pattern matching, followed by the ac-
tual memory access. Whenever this function is called with a constant field
identifier, which is by far the most common use case, the call would then be
inlined, and the pattern matching resolved at compile time. This approach
also allows us to have a very human-readable representation of the device
layout in the definition of the field identifiers, separate from any implemen-
tation details. However, we run into the problem of what the return type of
such a read function should be. Register fields vary greatly in size, from single
bits to multiple bytes, including everything in between. To be generic over
all registers, this read function would have to return the widest possible type.
But this just moves the burden to the user, requiring explicit casts in every
call. In C, having functions use bigger types than the calling code is fine (and
very common in systems code), but in Rust the casting is not optional, so the
discrepancies between the types is very visible.

With the insight that the return type really is just another constant prop-
erty of a field, we can do what is very common in Rust when the limitations
of functions are too restrictive. A macro has many of the properties of func-
tions, such as scoped names and recursive calls, but is not bound to evalu-
ate to a single type. By replacing the single read function from before with
a read macro, we can have it resolve to an expression with the appropriate
type for each field. We can even use the token matching rules for macros to
choose the calling syntax. For example, we could make all invocations look
like read!(device =>field). As it turns out, while this approach solves the is-
sues we had with the function call design, it also introduces its own problem.
Macros are not language items like variables or functions, so they are not part
of the namespacing system. All macro names are global to a crate, and any
macros imported from external sources must be imported at the crate root20.
This is in strong contrast to the overall design of Rust, which emphasizes
modular code structuring. Using macros for Mackerel would prevent us from
having the read macro be named something simple (like read), because a driver
managing two devices would see a conflict in the two definitions it imported.

19As an example, the comparatively simple pc16550d UART device consists of 39 fields across
13 registers. Storing a redundant address for each of them — either the base of the device or the
root of the nested struct — will therefore require 52 times more memory than necessary

20The base of the module hierarchy of a project. In applications, this is typically where main is
defined.

35



In light of these serious problems with macros, we decided to fall back to
using the same approach as our C code after all. We wrote a new Mackerel
backend that generates one Rust library per device, consisting of a set of ac-
cessor methods for the various hardware registers. While this works just fine,
it was disappointing to have to resort to this old approach. However, once the
cross-library macro support has improved, this design can easily be extended
to also support that model.

It may seem strange that after so many years, there still is no systems lan-
guage with good built-in support for memory-mapped devices. But it should
be remembered that it is actually a complex problem. Partial support, such as
a volatile modifier or a bitfield type simply is not enough to express the actual
semantics we are trying to achieve. A device definition in Mackerel closely
resembles the way devices are described in technical reference manuals and
data sheets. All the complexity of the Mackerel language comes directly from
the fact that real devices are complex. But Mackerel also shows the power
of abstraction for very low-level operations. Having the low-level details of
memory accesses abstracted away makes the actually interesting code (namely
the device driver) easier to read. Adding native support for so much seman-
tic nuance into a general-purpose language is not very attractive to compiler
writers — and understandably so, considering that it is not of much use out-
side the field of device drivers. But having more fine-grained control over
the memory accesses to a data structure would simplify the work of many
systems programmers.
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4.3 Other DSLs
Barrelfish also has domain specific languages for other use cases, such as spec-
ifying the structure of the capability system and error definitions. These are
not as important for our purposes, and we deemed them not necessary to port
to Rust at this point. The exact structure of the capability type system, defined
using the Hamlet language, is very important to the kernel, but in user space
we mostly just need the ability to invoke them through cabability references.
For this use case, the mappings of the various invocation commands to their
representation in system calls is much more important than the size or layout
of the capabilities themselves.

Similarly, the error codes defined using the Fugu language are ubiquitous
in libbarrelfish, but for our purposes we really only need to differentiate be-
tween success and failure. In Rust, the distinction between success and failure
is normally expressed using the Result type. This can hold either a success
value, or an error value, and these can be of different types. Conveniently, the
Barrelfish error value type is a valid choice for the error type in a Result, so
errors returned by libbarrelfish functions can easily be forwarded to the user
in Rust code.

Both Hamlet and Fugu are implemented using a language for specifying
languages called FiletOFish[10] (itself a DSL), which makes heavy use of the as-
sumption that the intended target language is C. While adding a Rust backend
to the languages implemented in pure Haskell was straightforward, adding
Rust to FiletOFish would probably be more work than writing entirely new
compilers for the DSLs we want to use. Since for both languages, we are only
really interested in the enumerations used by the C libraries, we can much
more easily extract those from the generated C code than from the actual
DSLs21.

21Since we want to be compatible with the libraries we link to, writing Rust backends for
these DSLs would not actually be useful if we ended up with different representations for the
enumerations.
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4.4 Build system integration

4.4.1 Compiler Versions

The Rust compiler comes in three flavours: stable, beta and nightly. The beta
and stable releases only allow the use of stable features 22. These are the parts
of the standard library that have been deemed complete, and are very unlikely
to change between releases. Unstable features are only enabled on the nightly
builds, and additionally require an explicit opt-in using the feature attribute in
the code.

Since we are recompiling the standard library, we require unstable fea-
tures. We therefore have no choice but to use a nightly build. While the stable
branch is released in clearly defined steps, there is no such thing as ”the cor-
responding nightly build”. The stable release largely consists of the state of
the nightly build of a few days before, but may contain backported fixes that
entered the nightly build in the intervening days. This is quite inconvenient
for our purposes, as we cannot just use “nightly 1.7”, but rather “nightly a
few days before stable 1.7 was released”. To alleviate this problem, we used a
tool called multirust23, which allowed us to manage multiple Rust installations
in parallel (so we can have both a stable and a nightly compiler on the same
machine). It also allowed us to specify the exact version of the nightly build
to be used.

Some of the features we use for our own libraries, such as inline assem-
bly, will probably be stabilized in the near future. Their API has not actually
changed between versions in a long time. Others features, like linking to
libcore directly without libstd, started out as unstable but have already been
stabilized during the writing of this thesis. But recompiling libstd and its de-
pendencies will always depend on unstable interfaces such as compiler built-
ins24. This means that systems projects that do not use the standard library,
such as OS kernels, will be feasible on the stable release in the future, but
porting the whole language to a new system will always require a nightly
build.

4.4.2 Hake and Cargo

In Barrelfish, the rules for building all programs are managed by a custom
build system called Hake[35]. Its core purpose is to transform a set of Hake
rule definitions into make recipes. Each directory in the Barrelfish source tree
may contain a Hakefile, consisting of a Haskell expression that evaluates to a
set of Hake rules. Hake finds all Hakefiles in the source tree, and evaluates
them in the context of a set of built-in rules, generating as its output one big
Makefile containing all recipes.

Rust uses its own custom build system called Cargo, which is used for
managing dependencies, compiling projects and even executing them. At the
time of writing, Cargo is still in its infancy, and cannot be integrated into other
build systems easily. By invoking the Rust compiler directly instead, we get

22The term ”feature” is used here in a very broad sense. It might simply be a type definition
like Box, or a language mechanism like extensions to the pattern matching syntax.

23 http://github.com/brson/multirust
24And — ironically — the stability attribute used to mark APIs as stable, which is itself an

unstable feature.
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full access to all its options, including partial compilation with a separate link
step.

In the Rust ecosystem, everything is expected to be versioned by default.
Crates can specify the exact versions of their dependencies, and Rust object
files can only be linked against the exact versions of the libraries that were
used during the compilation step. Through the transitive nature of depen-
dencies, a single application may end up being linked against two different
versions of the same library, with name mangling ensuring that the two copies
will not conflict with each other. Barrelfish on the other hand currently does
not use versioning. Building two different versions of the same library and
linking against both is not supported by the default Hake configurations.
However, it can be implemented on top of Hake by adding subdirectories
for each version and then linking against each explicitly.

In order to compile Rust programs for Barrelfish, we extended Hake. We
added additional fields to the Args25 type, so that we can specify source files,
compiler options and library dependencies of Rust programs in the same way
as we do for C. We added basic rules for compiling individual files, and ex-
tended the commonly used application rule to support Rust files. We also
added rules for generating and linking against the Rust libraries from our
new Mackerel and Flounder backends.

4.4.3 Dependency Files

One of the difficulties of integrating Rust into another build system is the
generation of dependency files. These files contain simple make rules, listing
the dependencies between compiler output and source files. They are used to
find out if a given object file needs to be recompiled. These dependency files
are very important when compiling Rust. To compile a crate, only the root
source file is given to the compiler as an argument. The compiler then finds
all module files referenced in the code automatically.

The Rust compiler does have an option to generate a dependency file,
but in stark contrast to other compilers, it will always generate rules for the
current invocation. To generate rules for an object file, we have to actually
generate that object file in the same compiler invocation that we generate the
dependency file. While this is fine for capturing the intent of dependency
files — finding out if a recompile is necessary — it does not integrate well
into Makefiles.

A Makefile can include other files that contain rules, such as these depen-
dency files. If a file to include does not exist, make will try to generate it if
it knows the appropriate recipe. For C files, this means that before the ac-
tual target is built, all included dependency files are read — and, if necessary,
built. For Rust code, the only possible recipe for generating a dependency file
is to compile the corresponding crate. This leads to the unfortunate situation
that the first make invocation will start by compiling every Rust program in
the entire source tree.

Our solution to this problem consists of two parts. All Rust dependency
files are included using the weak include directive instead of the regular in-
clude. This way make will still try to generate them, but skip them if there is

25A list of all files, libraries and options required to compile an application.
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no recipe instead of aborting. Additionally, the recipes that build the depen-
dency files do not list them as part of their output, essentially making them a
byproduct of compiling Rust code. This way, crates will be recompiled when
any of their source files change, but the dependency files will only exist if the
crate has been compiled before. This solution required changes to the core
of Hake. We added a new HRule that translates into the weak include com-
mand. Additionally, the rules for compiling Rust code had to be adapted to
use the compiler flag to emit dependency files, and do so without treating
that dependency file as an output of that rule.

All in all, the problems with integrating Rust into existing build systems all
seem to come from the fact that both rustc and cargo are still very young. As
more people integrate Rust into existing projects, these tools will presumably
be extended to provide the functionality they are currently lacking, especially
since it is largely a matter of adding more compiler flags for simple but niche
use cases.
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4.5 Writing a System Service
In order to evaluate the usefulness of Rust in systems programming, we wrote
a system service. In Barrelfish, much of the functionality that is traditionally
associated with kernels is implemented in user space programs. This notably
includes device drivers. If a program wants to print text on the terminal,
or request user input, it does so by connecting to the terminal server. This
server contains a device driver that manages the serial interface using Mack-
erel bindings. For ease of use, there is a helper library that manages the
multiple Flounder interfaces that the terminal server provides. We wrote a
drop-in replacement for the existing terminal server using Rust. In doing so,
as well as from writing other Rust programs, we noticed practical differences
between C and Rust that we expect to be relevant for many systems program-
ming projects.

Idiomatic Rust code generally encapsulates every resource in an object.
The lifetime of the object represents the duration of access to that resource26.
This is very useful for resources that can actually exist in multiple instances,
such as buffers of memory or files. However, in device drivers and system
services, we often deal with resources that are unique. The C implementation
of the terminal server uses static variables to represent the device and the state
of the active client. In Rust, there are static variables, but mutable shared state
is heavily discouraged by the language. The purpose of these limitations on
mutable shared state is to facilitate multithreaded programming, but they also
affect single-threaded applications.

In C, a very common idiom is that of the initializer function, a function
that needs to be called before the system can be used. In Rust, uninitialized
variables are strictly forbidden. Every declaration also requires an initial as-
signment, and static variables need to be initialized with constant expressions
evaluated at compile time. 27

These factors combined make it surprisingly difficult to adapt a simple C
program into equivalent Rust code. It seemed to be much easier to rewrite the
Rust version from scratch, without following the code layout of the C version.

26This pattern is also commonly known as RAII: resource acquisition is initialization.
27While there is an unsafe function to leave a value uninitialized, it is not a constant expression,

so it cannot be used for the pattern used in C.
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5 Evaluation

We successfully ported Rust to the Barrelfish operating system. Our port
has already been used by another student project to run timely dataflow28 on
Barrelfish. Timely dataflow is a stream processing framework written entirely
in Rust. It has been ported to run on Barrelfish, and is using our Flounder
bindings to communicate between workers in a multiprocessor environment.

We implemented a drop-in replacement for the serial driver and terminal
server using our Mackerel bindings to control the hardware.

Integrating Rust into an existing C project turned out not to be as straight-
forward as the FFI might make it look. Because Rust does not parse C header
files, the interface descriptions therein have to be duplicated in Rust, which
provides new opportunities for errors. While calling C functions from Rust
really is as simple as any other function call, C libraries may have APIs that
are not compatible with Rust’s memory model.

Rust applications are significantly bigger than equivalent C programs. Our
terminal server is 18MB big, whereas the C terminal server it replaces only
takes up 6.5MB29. Part of that difference can be explained by the fact that
we link our Rust programs against more libraries. All Barrelfish applications
are linked against libbarrelfish, which in turn depends on libc. C programs
can use any libc functions used internally by libbarrelfish, without adding
to the set of linked-to functions. Rust programs using equivalent functions
provided by libstd will end up linking to both the C and the Rust version. But
this explanation can not account for a factor of 3 in code size. Inspecting the
object code produced by the Rust compiler, we were able to see two trends:

padded functions Many functions contain conspicuous blocks of nop-instructions.
This is because the compiler puts the cleanup code for the stack un-
winding (the landing pad) inside the corresponding function body. The
nop-instructions serve to align the landing pad to a 16-byte boundary.

inline functions Rust handles inlining differently from C. Functions to be
inlined are marked with the inline attribute, but are still regular items.
It is therefore possible to create a function pointer to an inline function,
for which case the compiler needs to also emit a non-inlined version
of said function. Arithmetic operations for the various numeric types
are implemented as inline functions in libcore, and our binaries seem
to contain non-inlined versions for all of them. A quick search reveals
over 1000 uninlined functions of the num namespace alone, including
such gems as num::i32.Zero::zero. Presumably, the compiler is unable to
prove that these functions will never be used, most likely because of trait
objects.

This shows that so-called zero-cost abstractions are not entirely free. Having
padded functions decreases the locality of the code, leading to more misses
in the instruction cache. The uninlined functions should not incur any per-
formance penalties, provided that they are actually unused. They do however
increase the size of the loaded binary in memory considerably, which may

28 http://github.com/frankmcsherry/timely-dataflow
29 Smaller example programs show very similar sizes — even an empty main function still

leads to 18MB binaries.
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be problematic in very resource-constrained embedded systems. It is unclear
if future versions of the Rust compiler will be able to remove the uninlined
functions, as having primitive types implement traits appears to be a deeply-
ingrained design choice30.

We see one of the biggest dangers to Rust’s future as a systems language in
the difficulty to adapt it. After all, the strictness of the language serves a very
practical purpose: that it should not be possible to write code that violates
memory safety, or exhibits either data races or undefined behaviour, without
explicitly using unsafe blocks. This fundamentally limits the design space of
language extensions. The restrictions on shared state to prevent data races
are especially problematic, as they universally apply to all code, even code
that the systems programmer knows will never be executed in a concurrent
setting.

30 Just the signed 32-bit integer type i32 alone implements 80 traits.
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6 Conclusion

In this thesis, we investigated the suitability of Rust for systems programming.
We ported the standard libraries to the Barrelfish operating system, and

were able to run Rust applications, such as timely dataflow on Barrelfish. We
integrated Rust into the Barrelfish ecosystem, by extending the Hake, Floun-
der and Mackerel languages. This allowed us to use Rust in very Barrelfish-
specific applications, such as system services and device drivers.

We identified several shortcomings in the current design of Rust:

panic handling The panic handling and recovery mechanism is not very use-
ful for systems code, as any anticipated errors are better served with the
Result type. But there is currently no way to opt out of the automatic
stack unwinding, so we must take care to catch all panics at the foreign
function interface.

limited containers The various container types that manage heap memory
are not compatible with pointers to memory allocated by C code. In
order to make use of the automatic memory management of Rust, we
therefore have to copy any heap memory we receive from C code into
new containers.

macro name resolution Because macros are not items, and resolved before
the compiler resolves item names, all macros are part of a single names-
pace, independent of a project’s structure. This leads to macros needing
special treatment from programmers, and severely limits the reusability
this otherwise very useful system.
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