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Abstract

Process management is a core responsibility of every operating system. This thesis describes a pro-
cess state machine for the Barrelfish operating system. The pre- and post-conditions of every state
are formally checked using temporal logic formulation. Based on the model, a process subsystem is
designed and implemented on top of the distributed, capability-based Barrelfish infrastructure. An
authentication protocol between the parties involved in process management is formally specified.
Performance of the subsystem is modeled mathematically using queuing theory and compared to
empirical measurements. The main benefit of our approach consists in providing a model-checked
theoretical basis and a capability-constrained interface for process operations.
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Chapter 1

Introduction

1.1 Motivation

All operating system flavors feature the notion of a program in execution, abstracted into some sort
of actor which uses system resources to perform its tasks. Conventionally, this actor is referred
to as a process. Despite the fact that the exact definition of a process varies from one system
or specification to another, it universally holds that process creation, destruction and resource
accounting should be implicitly abstracted away from the user writing the program code. It thus
follows that process management falls under the list of fundamental roles any operating system
must play. This thesis aims at conceptualizing a formal model for process management in the
Barrelfish operating system. Based on the model, we present a distributed process interface, which
we implement on top of the current Barrelfish infrastructure.

1.1.1 A process subsystem for Barrelfish

Barrelfish is a capability-based multikernel[1] operating system, designed for the purpose of joining
many heterogeneous pieces of hardware. Implicitly, the challenge arising from tailoring a process
management subsystem to the likes of Barrelfish is threefold. Firstly, the subsystem should be
reasonably well distributed across the arbitrary number of cores running the OS, in order to
achieve good balance with respect to the consistency-availability-partition tolerance (CAP) triad.
Secondly as much of the implementation as possible should be pushed above the kernel, into the
user space. Lastly, the system should make use of the capability infrastructure in Barrelfish –
anything that can be implemented using capabilities should be implemented using capabilities.

1.2 Objectives

Documenting the Barrelfish approach to processes has so far equated to describing dispatchers,
the resources they encapsulate via capabilities and the scheduling policies that bring them into
execution. Therefore, while the model behind a Barrelfish dispatcher is fairly well understood, we
have yet to thoroughly formalize the requirements and implications of how multiple dispatchers
come together to form a domain1.

From the perspective of a conceptual Barrelfish process model formally merging the abstractions
of dispatcher and domain, this thesis will provide answers to the following questions:

• What is a process?

• What can a process do?

• What actions can be performed on a process and who can perform them?

• What is the life cycle of a process?

1Over the course of this thesis, the terms domain and process shall be used interchangeably in the context of
Barrelfish. The words hold separate meanings when describing other operating systems in chapters 2 and 3.
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• Can a process subsystem benefit from the TTY subsystem?

1.3 Contributions

The first contribution of the thesis consists in an abstract process model for Barrelfish, which will
establish what a process is. The model will also allow to formally specify and model-check pre-
and post-conditions for every state that processes can be in. The specification will mathematically
guarantee that the operating system controls when a process starts running, stops running and
releases its capabilities.

Based on the abstract model, the thesis will present the design and implementation of a pro-
cess management subsystem for Barrelfish. The subsystem will provide a universal, capability-
constrained interface to process operations. In addition, it will facilitate keeping track of past and
current processes and their state.

The main contribution of the subsystem resides in a complete authorization model for processes
based on capabilities. Specifically, the subsystem will use capabilities to identify the principals
involved in process-related operations and to assess what rights they hold. To this end, a formal
authentication protocol will be designed and implemented. The protocol will serve two security
purposes. Firstly, it will establish secure channels for exchanging process management messages.
Secondly, it will help conceal spawnd servers from client domains by eliminating their need of
registering with the nameserver.

The thesis will then provide a means of comparing the performance of process-related operations
on the bsp core and on an app core. Additionally, we will describe a strategy for bottleneck analysis
based on queuing theory.

1.4 Thesis structure

In chapter 2 we will briefly describe processes and process creation techniques in UNIX-based
operating systems (mainly FreeBSD), as well as the closest Barrelfish equivalents. We will attempt
to answer the thesis questions stated in section 1.2 from the perspective of UNIX processes. The
same chapter will introduce two frameworks for formal system modeling, which we will later use
to check fundamental properties of our process management solution. Some of the work related to
processes in capability-based operating systems will then be surveyed in chapter 3.

We will introduce our process model in chapter 4 and use formal logic to specify and model-
check its properties. Subsequently, we will present the process management interface and the
authentication protocol in chapter 5. This is also where we will discuss the decisions that shaped
the process management subsystem, comparing them to relevant alternatives.

The interface implementation will then be detailed in chapter 6, where we will describe several
techniques for improving the system’s performance. We will also provide an example use case to
help demonstrate how the process management subsystem works.

In chapter 7 we will analyze empirical run time measurements obtained from benchmarking.
We will also present the queuing theory models used to investigate the subsystem’s bottlenecks.

Finally, chapter 8 will present the thesis conclusions and vectors for future work.
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Chapter 2

Background

2.1 UNIX processes

This section describes several fundamental details of the process management model used in UNIX
systems. We focus on defining a process and discussing the actions that processes can be sub-
jected to. In addition, we analyze how the rights to perform those actions on a process can be
acquired. Exploring these details is important for highlighting the differences between UNIX and
the capability-based approach presented later for Barrelfish.

2.1.1 What is a process?

UNIX-based operating systems use processes as the design abstraction of a program in execution.
The Open Group Base Specifications Issue 7[2] defines a live process as an address space with one
or more threads executing within that address space and the required system resources for those
threads. The FreeBSD operating system gives a thinner definition of the kernel’s low-level view of
a process as a task or thread in execution[3] (below the higher level of POSIX threads), while the
address space and resources of a process are referred to as the process context.

2.1.2 Creating processes via fork-and-exec

The traditional approach to creating new processes in UNIX systems consists in fork-and-exec,
wherein firstly the state of the parent process is duplicated and secondly the identical copy is
replaced by a newly created child process. Although the fork-and-exec paradigm is implemented
in many a popular operating system nowadays, such as Linux or Mac OS X, it incurs inherent
overhead in copying the parent’s pages during fork(), only to have them dropped and replaced
by new pages following the coupled call to exec().

2.1.3 Creating processes via spawning

To improve performance, modern implementations of fork() do not copy pages by default, but
instead mark them as read-only and lazily copy them later on when the child process attempts
a write. This is known as copy-on-write. However, copy-on-write implies that virtual addresses
of different processes need to be translated to the same physical address, meaning the underlying
hardware needs to be capable of performing dynamic address translation. In order to work around
this limitation, the 6th issue of the specification at [2] introduced the optional posix spawn() ex-
tension.

Spawning is another approach to starting new processes, one which differs from the UNIX
fork-and-exec model in that it creates a child process directly, without forking an identical copy
of the parent first. The paradigm was used by the DOS family of operating systems and has been
inherited by Microsoft Windows, where it is implemented as a family of functions which create and
execute a new process[4]. Spawning is not a perfect stand-in for the more complex fork-and-exec,
in which the user has programmatic control over arbitrary operations between the moment when
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a copy of the current process is created and when the new image is executed. The technique
also lacks the fork-and-exec feature of inherently creating a hierarchical process structure in the
system. The specification mentions however that fully duplicating fork-and-exec functionality is
not expected in a simple, fast function with no special hardware requirements[2].

2.1.4 What can a process do?

At the highest level of abstraction, a UNIX process executes the code of the program it was created
to run. More granularly, a process executes one or more threads, using system resources allocated
to it by the operating system (e.g. CPU time, memory, files). A process’s threads make use
of its address space to perform computation and communication. In UNIX, the most important
implementation building blocks of IPC (inter-process communication) consist of signals, pipes,
message queues, semaphores, shared memory segments etc, using which processes can exchange
data and control information during their lifetime.

Furthermore, UNIX processes can perform actions that potentially result in changing the be-
havior of other processes’ execution. We have already seen that new processes can be created using
fork-and-exec (or spawn), wherein the initiator of the process creation action becomes the parent
and the recipient of the action becomes the child. Other relevant actions include:

• voluntarily exiting execution: typically performed through an exit syscall, exiting always
returns a termination status to the parent process;

• waiting for a descendant or group of descendants to exit execution – the initiator can request
resource usage and exit status codes;

• killing a process, thereby forcefully causing it to exit execution; killing is done via the kill
syscall, which posts SIGKILL to the victim process.

2.1.5 Who can affect the normal execution of a process?

First and foremost, the operating system itself can choose to forcefully terminate a process. In
FreeBSD this is normally the case when the victim has caused a hardware event, such as an illegal
instruction[3].

Secondly, other processes can post kill signals via the kill syscall, as long as either the sending
and receiving processes have the same effective user identifier, or the sender is superuser. It thus
follows that in UNIX, killing a process is tightly coupled with the concept of user credentials.
Credentials are an access control tool and are assigned to processes by an external authority,
e.g. by the filesystem at user login in FreeBSD[3]. Moreover, processes inherit their parent’s
credentials when they are forked. Credentials can be temporarily augmented (i.e. via setuid),
thus introducing the aforementioned notion of an effective user identifier, which is checked when
attempting to kill another process.

2.1.6 What is the life cycle of a process?

In FreeBSD, the first state a process exists in is NEW, which indicates that the process has been
created following a fork call and is currently pending resource allocation. When enough resources
have been allocated, the process transitions to state NORMAL, which it will remain in after it
begins executions and until it terminates. A process can terminate either of its own accord, or
following an external signal. Once execution has ended, the state changes to ZOMBIE, indicating
that the process is waiting for its resources to be cleaned up and its exit code to be communicated
to the parent. When this has happened, the resources have been recycled and the process virtually
stops existing. A diagram depicting the process life cycle is presented in Figure 2.1.

Moreover, McKusick et al state that while a process is in state NORMAL, its threads fluc-
tuate between states RUNNABLE (preparing to be executed, or actually executing), SLEEPING
(waiting for an event) and STOPPED (by a signal or the parent process)[3].

Lastly, it is important to mention that in FreeBSD (and, largely speaking, in UNIX) the
convention is that once a process has finished execution – i.e. it has entered state ZOMBIE –
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Figure 2.1: Life cycle of a FreeBSD process. Here, state DEAD means that the process has had its
resources cleaned up and its exit code communicated to the parent; as far as the OS is concerned,
the process has ceased to exist.

its resources will be cleaned up by its parent. However, if some process finishes execution before
its children, the responsibility for cleaning up said children’s resources is passed to the special
init process. Among other responsibilities such as helping boot up the system, init reaps zombie
processes without parents. This constitutes the strategy for ensuring that process resources are
not leaked when execution is complete.

2.1.7 Processes and the TTY subsystem

Before talking about the TTY subsystem in UNIX, let us survey a few relevant concepts from the
FreeBSD perspective, as presented by McKusick et al[3]:

1. Process groups (sometimes referred to as jobs) are a means of combining multiple processes
for control reasons, such as sending all of them a signal. When created, processes inherit the
group of their parent, however the system provides mechanisms using which processes can
branch out and create their own groups.

2. Sessions are collections of process groups. Like the name suggests, sessions are used to
create isolated environments for processes (and groups). An outstanding example is a user’s
login shell, which allows interfacing with the user and which is implemented as the process
at the root of a user-dedicated session. The root process is also called the session leader.

A TTY commonly refers to a (physical or virtual) terminal device. In FreeBSD, a session leader
can set up a connection to a TTY driver, action which is referred to as allocating a controlling
terminal. This way, a user session such as the one started by the login shell can grant its user
access to input/output facilities through the terminal device.

The relation between processes and the TTY subsystem can be summed up as follows:

1. Processes are collected into groups;

2. Groups are collected into sessions;

3. Sessions are linked with terminal devices via controlling terminals.
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2.2 Barrelfish domains and dispatchers

The Barrelfish Architecture Overview technical note[5] refers to user level applications and servers
as domains, implemented using one or more dispatchers. In Barrelfish, a dispatcher is a scheduler
activation implementation, being the closest correspondent to a UNIX process. Every instance of
the CPU driver schedules and runs its own dispatchers. Every dispatcher then schedules and runs
its own userspace threads for the domain it represents.

Domains can span across multiple cores, e.g. in OpenMP applications, by giving the CPU
driver instance on each target core a dispatcher for the respective domain. Dispatchers, however,
do not migrate between cores.

2.2.1 Spawning in Barrelfish

Barrelfish as a whole is designed with the goal of being highly compatible with a multitude of
interconnected heterogeneous devices. This includes commodity hardware many instances of which
can be joined together to achieve fast, scale-out architectures. Any implementation decision must
try to incur as few hardware requirements as possible. Barrelfish hence prefers the spawn paradigm
to fork-and-exec since it is simpler, faster and has no particular hardware requirements.

In addition, implementing fork would raise questions regarding the relation between the child
and parent cspaces. The implementation would have to establish which of the parent’s capabilities
should be copied into the child’s cspace and what security implications sharing those capabilities
would incur. For instance, if the forked process keeps running the same program as its parent
then sharing capabilities might be acceptable. However if a new program is to be run instead
(like in the case of fork-and-exec in UNIX), then it might be unsafe to allow it to access the
parent’s capabilities. Lastly, there the question of when it would be best to replicate the cspace,
i.e. immediately after forking or later on, through copy-on-write.

2.2.2 Spawning as a service

Leveraging the distributed, message-passing nature of Barrelfish, spawning is offered to user do-
mains as a service, as opposed to as a library. Furthermore, since in Barrelfish every core runs its
own instance of the CPU driver and various services in the user space on top of that, the spawning
service is provided at a per-core level, i.e. every core runs its own server implementing the spawn
interface. We refer to such as server as spawnd (from spawn daemon). Consequently, the spawn
subsystem as of when research for this thesis had begun required that if one wanted to spawn a
domain on some arbitrary core in the system, they must do so using the spawnd instance on that
core, through remote procedure calls (RPCs). Such an RPC is sketched in Figure 2.2.

It is worth pointing out that this strategy of communicating directly with the spawnd on the
core we want to run the new program, albeit simple and fast, implies that every individual spawnd
instance will only possess knowledge of the programs it has been personally asked to spawn. In
other words, unless some consensus strategy is designed, every spawnd server will know the state
of the dispatchers it is running, but not that of any overarching domain.

In addition, as of when research for the thesis had started, a spawnd instance would assign
any new program it spawned a numeric core-local ID, so far called a domain ID for convenience
(dispatcher ID would be more appropriate semantically). The problem with assigning such an ID
is twofold: firstly, when core A and core B each spawn their first program, they will both assign it
the same initial ID. On propagating this ID to some other core C , the latter will find it non-trivial
to distinguish between the program spawned by A and that spawned by B . Secondly, the ID
returned is numeric, which makes it trivial for an attacker to forge it and hence impersonate the
newly spawned domain. Both these issues will be addressed by the process management solution
presented in this thesis.

2.3 Capabilities

Described briefly in the technical note[5], Barrelfish capabilities are the building block of the
operating system’s access control mechanism. In contrast to the access control lists primarily
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centering

Figure 2.2: Flow of a spawn RPC (from top to bottom). Here, libspawndomain refers to the
Barrelfish library that offers functionality for spawning, such as setting up a dispatcher’s capability,
virtual address space, dispatcher frame etc; domainID is a core-local numeric identifier returned
for the newly spawned domain.

used in UNIX systems, which, given an object, answer the question of which entities can access
the object, capabilities shift focus to the subject, answering the question of what objects a given
entity can access. Capabilities are paramount to implementing a process subsystem in Barrelfish,
being used for various purposes such as referencing dispatchers and their resources, as well as
inter-dispatcher communication.

2.3.1 Inter-dispatcher communication using capabilities

In Barrelfish, core-local messages and RPCs use endpoint capabilities to identify the receiver of a
message, or the server implementing the remote procedure. The interconnect infrastructure for
messages sent to recipients on the same core as the sender is called local message passing (LMP).
Abstractly speaking, given two dispatchers A and B running on the same core, an LMP channel
between the two is a unidirectional channel oriented as either A→ B (only B can receive messages
on the channel), or B → A (only A can receive messages on the channel). Consequently, in order
for A to send messages to B via some A → B channel, A needs to hold an endpoint capability
for B . On the other hand, B can allocate multiple endpoint capabilities, which can be created by
retyping from B ’s dispatcher control block (DCB) capability, and which B can give to arbitrary
dispatchers to act as clients in communicating with it.

For messages sent between dispatchers running on different yet cache-coherent cores, the in-
terconnect driver used is called user-level message passing (UMP). While in the case of UMP the
implementation is not based on endpoint capabilities, the two protocols share the abstraction that
arbitrary dispatchers A and B can be bound through unidirectional channels A→ B and B → A.
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2.4 Temporal Logic of Actions

Temporal Logic of Actions (TLA+)[6] is a specification framework for behavioral properties. It
can be used to model real-time systems and describe essential conditions and behaviors over the
systems’ state space, using formal mathematical and logical notation. For example, given two
states A and B of some arbitrary system, TLA+ can be applied to formally check whether once
in state A, the system will ever (or always) eventually reach state B .

2.4.1 TLA+ models

A TLA+ model consists of variables and states. Variables are defined on arbitrary mathematical
spaces, such as booleans or natural numbers. A state is a particular assignment of values to
variables, i.e. a mapping (v1, v2, ...) 7→ (val1, val2, ...), where val1 and val2 are of the types on
which v1 and v2 are respectively defined.

A model transitions between states when at least one variable changes its value. Any transition
from any state A depends only on the values of variables in A (i.e. does not depend on values of
past states). A behavior is a (potentially infinite) sequence of states S1,S2, ..., starting with a
user-defined initial state.

2.4.2 Behavior operators

TLA+ includes the following temporal logic operators, described in [6]:

Globally. A formula 2P , where P is a state predicate, is true of a behavior iff P is true in
every state of the behavior.
Eventually. 3F is defined to equal ¬2¬F . It asserts that F is not always false, which means
that F is true at some point in time.

2.4.3 PlusCal

PlusCal is an algorithm language based on TLA+[7]. A PlusCal algorithm can be translated to
a TLA+ specification, which is useful when modeling systems that are difficult to formalize using
sheer mathematics. PlusCal has a C-based syntax and a Pascal-based one; in this thesis, the
C-syntax will be used to describe the domain state model.

2.4.4 TLC model checker

Specifications written in TLA+ or translated from PlusCal can be subjected to model checking
using the TLC model checker[8]. TLC will be used to prove fundamental properties of the domain
model presented later in the thesis.

2.5 BAN logic

Burrows-Abadi-Needham (BAN) logic[9] is a language for formally specifying authentication proto-
cols. BAN logic focuses on what the participants in a protocol say, see and believe to infer whether
consensus is reached with regards to information held by the principles and their communication
keys or channels.

2.5.1 Notation

The paper by Burrows, Abadi and Needham[9] presents a set of specification formulae, of which
the following are of interest to this thesis:

• P believes X : the principal P may act as though X is true;

• P sees X : someone has sent a message containing X to P ; P can read and repeat X ;
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• P said X : the principal P at some point in time sent a message including the statement X ;

• P controls X : P has jurisdiction over X , meaning it is an authority over X and should
be trusted on the matter of X ; for example, in Barrelfish the memory server is trusted with
providing clients with valid RAM;

• fresh(X ): the formula X is fresh, i.e. it is still valid during the current run of the authenti-
cation protocol;

• P
K↔ Q : P and Q may use the shared key K to communicate; in addition, K will never be

discovered by a principal other than P , Q , or a principal trusted by P or Q .

2.5.2 Deduction rules

Based on the rules mentioned above, the paper[9] states the following deduction rules:

The message-meaning rule:

P believes Q
K↔ P , P sees {X }K

P believes Q said X
,

reading if P believes it can communicate with Q through the shared key K and P sees message X
encrypted with key K , then P believes that Q said X .

The nonce-verification rule:

P believes fresh(X ), P believes Q said X

P believes Q believes X
,

reading if P believes X is currently valid and P believes that Q said X , then P believes that Q
believes X .

The jurisdiction rule:

P believes Q controls X , P believes Q believes X

P believes X
,

reading if P believes that Q has jurisdiction over X and P believes that Q believes X , then P itself
believes X .
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Chapter 3

Related Work

This chapter surveys process models used in other capability-based operating systems. We inves-
tigate how processes are created, as well as what the closest equivalents to Barrelfish domains and
dispatchers might be. Additionally, we assess whether other operating systems feature means of
collectively managing threads or processes that run on different cores and share the same virtual
address space.

3.1 KeyKOS

KeyKOS is a capability-based, object-oriented, nano-kernel operating system that was first used
in production in 1983[10]. Originally designed to solve security, sharing, pricing, reliability and
extensibility requirements of commercial computer services in network environments[11], KeyKOS
treats every interacting system component as an object which uses keys (i.e. capabilities) to send
messages to other objects.

3.1.1 KeyKOS domains

The KeyKOS Architecture paper by Hardy calls the actors of KeyKOS domains[11], stating that
all events in KeyKOS are the result of an action performed by some domain. Domains are said
to interpret programs, whereby they provide the context that a program needs in order to run,
including general-purpose registers, the program’s address space and several key slots. KeyKOS
key slots are much like Barrelfish capability slots in cnodes. This implies that in spite of the naming
confusion KeyKOS domains correspond in fact best to Barrelfish dispatchers.

3.1.2 Process creation

KeyKOS creates processes by building the address space segment, obtaining a fresh domain and
inserting the key (capability) to the address segment into the domain’s special address segment
slot[10]. It is also stated that if two or more domains are to share the same address space in a
thread-like paradigm, a key to the same address segment should be given to them all, similarly to
how Barrelfish dispatchers within a domain share the same vspace.

The architecture papers by Hardy et al[10][11] mention that the system provides domain fac-
tories, which are special domains that instantiate other domains of a given type. Factories are
described in a publishing patent by Hardy[12]: a factory can provide a requester domain with the
ability to install a program in the factory. Having installed the program, the factory provides the
requester with a special key, the invocation of which causes a special domain to be created for the
program. This domain allows the requester to use the desired program to process data, without
being able to inspect the program itself. Consequently, a factory-created domain acts like a black
box which the requesting domain can wait for to process data.
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3.1.3 Domain state model

There are three mutually exclusive domain states:

• running is the state in which domains execute instructions;

• available and waiting are states in which domains do not execute instructions.

Transitioning between a domain’s states is done through one of the three available invocations
– FORK, CALL or RETURN – as follows:

• FORK leaves the domain running ;

• CALL leaves the domain waiting, generating a special resume key the invocation of which
will put the domain that originally issued the CALL back into the running state; basically,
CALLs yield execution and wait until the recipient domain has invoked the resume key;

• RETURN leaves the domain in state available.

The three inter-domain invocations presented above can be called on two types of keys: start
and resume keys. Invoking a start key queues the invoker until the target domain is in state
available. This implies that if a domain RETURNs, all domains which were queued up following
an invocation of a start key to this domain when it was not available are restarted. Resume keys,
on the other hand, only exist for domains which are in the waiting state. A diagram of the state
machine described so far is presented in Figure 3.1.

The KeyKOS domain state machine resembles a scheduling algorithm, which reinforces the
similarity between KeyKOS domains and Barrelfish dispatchers. Although multiple KeyKOS do-
mains can be combined to simulate a multithreaded environment – much like multiple Barrelfish
dispatchers are collected into a domain – there is no mentioning of how the global state of such an
environment is modeled based on the state of every individual component.

Figure 3.1: KeyKOS domain states and transitions.
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3.2 seL4

seL4 is a microkernel operating system designed to be a secure, safe, and reliable foundation for
systems in a wide variety of application domains[13]. It features a capability-based access control
model similar to that of Barrelfish. The technical note mentions that Barrelfish has a considerably
larger type system and extensions for distributed capability management between cores[5] than that
of seL4.

3.2.1 Threads

In seL4, programs are run by single threads. Like Barrelfish dispatchers, seL4 threads have an
associated cspace and vspace which may be shared with other threads[13]. Both seL4 threads
and Barrelfish dispatchers are scheduled by the systems’ respective kernels. However Barrelfish
dispatchers further encapsulate their own set of threads for execution. In seL4, different threads
can also be scheduled together by means of grouping them into the same domain.

3.2.2 Domains

A seL4 domain is a collection of threads which are always scheduled together. A thread belongs
to exactly one domain, and will only run when that domain is active[13]. Domains in seL4 are
significantly different from Barrelfish in that:

• different threads belonging to the same seL4 domain can run different programs;

• threads in a seL4 domain do not implicitly share their vspace;

• threads in a seL4 domain are always scheduled together, whereas Barrelfish dispatchers are
scheduled independently, even if they belong to the same domain.

Aside from scheduling decisions, seL4 does not manage threads assembled into a domain to-
gether. Moreover, there is no means of collectively managing different threads which share the
same vspace (whether part of the same domain or not).
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Chapter 4

The Process Model

4.1 Defining a domain

We define a domain to be a uniquely identifiable set of dispatchers which share the same vspace
with the purpose of running a single program, using one or more cores. For the most part, it will
be assumed that the dispatcher set is non-empty, at least while the domain is said to be running,
as we will see shortly. The words uniquely identifiable refer to the requirement that any entity
should be able to tell the difference between any two domains running in the system, e.g. even if
they both run the same program, on the same set of cores.

Among all dispatchers running under a given domain, we single out the chronologically first
dispatcher, which we call the main or root dispatcher. Specifically, the main dispatcher is the one
that runs the program which the domain was created for. Subsequent dispatchers share the role
of providing the root with easy access to resources only available to their cores. This decision
follows the Barrelfish requirement that any dispatcher can only use capabilities referred to in its
own cspace, on its own core. Normally, if a dispatcher wants to obtain a capability referenced
in another cspace on a different core, it needs to obtain a copy of that capability via message-
passing. However, dispatchers running under the same domain have the advantage of sharing the
same vspace, making it easier for the root dispatcher to access capabilities in non-root dispatchers’
cspaces by writing them to and reading them from the same pages.

4.1.1 Comparison to UNIX

We have previously mentioned in chapter 2 that UNIX processes are characterized by an address
space, one or more threads executing within that address space, as well as the resources the threads
require[2]. Based on the definition outlined above, Barrelfish domains and UNIX processes could
be equated in the following way:

• a Barrelfish domain’s dispatchers correspond to a UNIX process’s threads;

• the vspace that all dispatchers in a domain share corresponds to the address space of a UNIX
process;

• the union over the capability space of all of a domain’s dispatchers corresponds to the re-
sources UNIX threads need to execute.

However, abiding by such a perspective incurs confusion. As previously mentioned, the most
natural Barrelfish equivalent to a UNIX process is a dispatcher, as it is the minimal entity en-
capsulating threads and an address space for running a program. We therefore choose to view a
domain as a level of abstraction that UNIX lacks and define it solely based on the dispatchers that
constitute it.
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4.2 Domain properties and operations

We define the following core properties regarding the relation between domains and their dispatch-
ers:

1. Upon creation, any dispatcher belongs to exactly one domain. Thereafter, during its
existence the dispatcher will belong to the same domain, i.e. dispatchers cannot transcend
domains.

2. Any running domain has at least one dispatcher, the root. When it has no dispatchers
left, a domain stops running; based on this, we define the stronger property described in
point 3:

3. When a domain’s root dispatcher stops running, the domain as a whole stops running. In
other words, the root dispatcher’s running is a necessary condition for the domain’s running.
This also goes to say that non-root dispatchers depend on the root in the sense that they
can only be running for as long as the root is.

4. Destroying a dispatcher other than the root will remove it from the corresponding domain’s
set of dispatchers. However, the state of the domain as a whole will be unaffected.

These properties help shape what a domain is in terms of its dispatchers. Furthermore, they
hint at what can be done to a domain and it dispatchers. We thus define the following domain
operations:

• creating a domain amounts to creating at least its main dispatcher;

• in order to destroy a domain, it is necessary to destroy its main dispatcher and it is sufficient
to destroy all of its dispatchers.

Once created, the following dispatcher operations can be performed within the boundaries of a
single domain:

• creating a new dispatcher; the new dispatcher will be considered non-root;

• destroying a non-root dispatcher, which will not affect the state of the domain;

• destroying the root dispatcher, which will cause all the other dispatchers and the effective
domain to be destroyed as well.

4.3 Domain state machine

A dispatcher’s state machine is a well understood concept in Barrelfish, however, for the scope
of our model, we will only be interested in two simplified dispatcher states: whether it is in the
kernel’s run queue on its given core or not1. These states will be used to describe what makes a
domain run or stop. We are not interested in what threads the dispatcher is currently scheduling,
or even if it is in enabled or disabled mode.

Using the simplified dispatcher state, an aggregated domain state machine can be built. How-
ever, since each of a domain’s dispatchers can be in a different state at the same time, we present
a projection of the aggregated domain state to an arbitrary core in the system. Any given domain
will be in exactly one state per core in the system, yet in one single state globally. For a fixed
domain and a fixed core, the resulting states are:

• nil is the initial state: the core has no knowledge of the domain, meaning that either the
domain has not been created yet, or it has been created but it is running on other cores in
the system;

• run is the state which says that the domain is currently running on this core;

1When a dispatcher is in the kernel’s run queue, it is vouched to be eventually brought into execution.
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• stop pending is the state in which this core has removed its dispatcher for the domain from
its run queue;

• stop is the state in which all cores have removed their dispatcher for the domain from their
run queues;

• cleanup is the state which says that the domain’s resources have been freed; the domain
can persist in this state for historical reasons, i.e. if any entity in the system should inquire
whether this particular domain has ever existed.

These individual per-core states compose the global domain state as follows:

• global state nil means that all cores are in state nil ;

• global state run means that at least one core is in state run and all other cores are either in
state run or nil ;

• global state stop pending means that at least one core is in state stop pending, but no core
is in state stop yet;

• state stop is always global by definition;

• global state cleanup means that all cores are in state cleanup.

In order to transition between states, cores need to decide to either run, stop or clean up their
dispatcher for some domain. For simplicity, the model was devised with the assumption that some
third party is instructing every core to perform transitions through a simple protocol comprised
of the following messages:

• span instructs the core to run a dispatcher for the given domain; if the domain has not run
on any cores yet, this message can be thought of as spawn;

• stop instructs the core to stop running its dispatcher for the given domain;

• allstop informs a core that all cores in the system have stopped running their dispatchers
for the given domain;

• free resources instructs the core to clean up the resources the domain used locally.

Two alternatives to the third party-based message-passing protocol were considered when de-
signing the model: the first one involved cores sending messages to other cores asking whether they
should run or stop a dispatcher for some domain. However, this option was not pursued because it
would have incurred many more messages flying around the system. The second alternative con-
sisted in all cores’ writing and reading information concerning domains to and from central storage.
Central storage would have been an unnecessary single point of failure and it would have required
synchronization, therefore this strategy was dropped too. In addition, it seems unnecessary for
cores to go out of their way and inquire what to do for a given domain, when it is the domain that
wants to use their resources.

Figure 4.1 shows the domain state machine diagram. Table 4.1 then describes the pre- and post-
conditions for each state, from the perspective of a fixed core. The state machine must guarantee
that once it has reached its final state, the domain is no longer running on any core and it has
released resources on all cores.

4.3.1 Outracing malicious domains

A particularly interesting problem that arose while devising the domain state model focused on
malicious domains trying to persist in the system, even if some relevant authority decides they
should be stopped. For example, imagine that a domain runs on core 0 and the monitor on core 0
decides it should be stopped. However, before the dispatcher can be dequeued from core 0’s run
queue, the domain spans onto core 1. Then, before the dispatcher on core 1 can be dequeued, the
domain spans onto core 2 and so forth. The domain is hence essentially racing the system trying
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Figure 4.1: The per-core domain state machine. The diagram assumes that once a domain’s
resources have been freed, it will exist in state cleanup for historical reasons; if resource freeing
amounted to the domain’s been fully erased from the system and its identity recycled, then there
would be a cleanup to nil transition.

State Requires Ensures

nil
no message regarding the domain has
been received

domain has no dispatcher in this core’s
run queue, nor is it using the core’s re-
sources

run
span message has been received from
state nil or run

dispatcher has been added to the core’s
run queue and it is using its resources

stop pend-
ing

stop message has been received
domain’s dispatcher has been removed
from this core’s run queue

stop
all other cores in the system are either
in state stop pending or stop

domain’s dispatchers have been re-
moved from all cores’ run queues

cleanup
free resources message has been re-
ceived from state stop

domain’s resources have been freed
from all cores

Table 4.1: Pre- and post-conditions for domain states, from the perspective of an arbitrary domain
and an arbitrary core in the system. Requirements are stated in terms of messages received from a
trusted third party. Guarantees refer to whether the domain has a dispatcher running on the core
and whether it is using the core’s resources.
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to stop and clean it up. This can be a serious issue, since not only can the domain keep using
system resources such as memory and CPU time, it can also carry on manifesting its adversarial
behavior (e.g. impersonating another principal in the system).

In order to solve this problem, a stop message will cause the domain’s state to change to stop
pending even on cores where the domain is not running any dispatchers. In other words, a stop
message is meant to tell a core that the domain is in the process of being stopped, so the core
must remove its dispatcher for the domain if it is currently running one and no dispatchers for
this domain should be run at any point in the future. This way, when a malicious domain tries to
outrun its killing process, it will be denied new dispatchers on any core in the system.

4.4 TLA+ specification

This section presents a TLA+ specification for the domain model, simulating a system running on
N > 0 cores. An arbitrary domain was fixed for which the simulation walked through all the domain
model states. The specification was automatically translated from a PlusCal algorithm. The
PlusCal algorithm, the resulting specification and its invariants are given completely in appendix
A. We begin by presenting the algorithm and continue by listing the main properties for which
the specification was model-checked using TLC.

4.4.1 Variables

The PlusCal algorithm declares the following variables:

• st : {1, 2, ...,N } → {nil, run, stop pend, stop, cleanup} is the domain state projected onto
each of the N cores. Initially, st [i ] = nil ∀i ∈ {1, 2, ...,N }.

• dcb rq : {1, 2, ...,N } → {0, 1}, where ∀i ∈ {1, 2, ...,N }

dcb rq [i ] =

{
1, if core i has a dispatcher for the domain in its run queue,

0, otherwise.

Initially, dcb rq [i ] = 0 ∀i ∈ {1, 2, ...,N }.

• res : {1, 2, ...,N } → {0, 1}, where ∀i ∈ {1, 2, ...,N }

res[i ] =

{
1, if the domain is using resources on core i ,

0, otherwise.

Initially, res[i ] = 0 ∀i ∈ {1, 2, ...,N }.

• msg in : {1, 2, ...,N } → {nil, span, stop, allstop, free res} is the message received by core i
from the authoritative third party. Initially, msg in[i ] = nil ∀i ∈ {1, 2, ...,N }.

• msg out : {1, 2, ...,N } → {nil, run, stop pend, stop, cleanup} is the message with which
core i responds to the msg in sent by the authoritative third party. Initially, msg out [i ] =
nil ∀i ∈ {1, 2, ...,N }.

• old st : {1, 2, ...,N } → {nil, run, stop pend, stop} is the previous state, i.e. the state that ev-
ery core transitions from upon receiving a message. Initially, old st [i ] = nil ∀i ∈ {1, 2, ...,N }.

• turn ∈ {0, 1, ...,N } denotes the entity which acts in the current round of the simulation,
where ∀i ∈ {1, 2, ...,N } core i acts according to the value of msg in[i ] and st [i ] when turn =
i . The value turn = 0 is reserved for the authoritative third party.

• last proc ∈ {0, 1, ...,N } denotes the entity which acted in the previous round of the simula-
tion.

• domain state ∈ {nil, run, stop pend, stop, cleanup} is the global domain state, aggregated
from st [i ] for i ∈ {1, 2, ...,N }. Initially, domain state = nil .
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4.4.2 The Manager process

The PlusCal algorithm first defines the Manager process, which corresponds to the authoritative
third party sending messages to cores 1, 2, ...,N instructing them what to do with the domain
under modeling. The manager acts when the variable turn is set to 0. It infers the local state st [i ]
of every core i based on the response msg out [i ] which the core provided to the manager’s last
message. Based on the inferred st [i ], the manager sends a new message to every core i triggering a
transition to the next state as per the machine presented in Figure 4.1. Although the process loops
indefinitely, once it learns that the domain has reached state cleanup, it stops sending messages
about it. PlusCal pseudo-code for the process is given in algorithm 1.

1 while true do
2 await turn = 0 ;
3 with i ∈ {1, 2, ...,N } do
4 if msg out[i] = nil ∨ msg out[i] = run then
5 with action ∈ {span, stop} do
6 msg in[i] := action;
7 end

8 else if msg out[i] = stop pend then
9 if ∀i ∈ {1, 2, ...,N }: msg out[i] = stop pend ∨ msg out[i] = stop then

10 msg in[i] := allstop;
11 end

12 else
13 if ∀i ∈ {1, 2, ...,N }: msg out[i] = stop ∨ msg out[i] = cleanup then
14 msg in[i] := free res;
15 end

16 end

17 end
18 if ∀i ∈ {1, 2, ...,N }: msg out[i] = nil ∨ msg out[i] = run then
19 if ∃i ∈ {1, 2, ...,N }: msg out[i] = run then
20 domain state := run;
21 end

22 else
23 if ∀i ∈ {1, 2, ...,N }: msg out[i] = cleanup then
24 domain state := cleanup;
25 else if ∃i ∈ {1, 2, ...,N }: msg out[i] = stop then
26 domain state := stop;
27 else
28 domain state := stop pend;
29 end

30 end
31 last proc := 0;
32 turn := 1;

33 end
Algorithm 1: The PlusCal manager process. The await instruction on line 2 blocks the process
until turn = 0. The with instruction on lines 3 and 5 causes the simulation to run a separate
step for each value specified as parameter. Lines 3-17 infer the local state for every core i from
the message it last responded to with msg out [i ]; based on this state, the manager will instruct
the core to transition to the next state. Lines 18-30 then aggregate the individual core states
into the global domain state.

4.4.3 The Worker process

Similarly to the Manager process, we define a Worker process which has N instances, each corre-
sponding to a core the domain can run on. Every worker i acts when the variable turn is set to
i : it reads the message msg in[i ] received from the manager and its own state st [i ], it decides on
the next state to transition to and it communicates this state via msg out [i ] back to the manager.
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The Worker process is described in algorithm 2.

1 while true do
2 await turn = self ;
3 old st[self] := st[self];
4 if msg in[self ] = span then
5 if st[self ] = nil ∨ st[self ] = run then
6 st[self] := run;
7 dcb rq[self] := 1;
8 res[self] := 1;
9 msg out[self] := run;

10 end

11 else if msg in[self ] = stop then
12 if st[self ] = nil ∨ st[self ] = run then
13 st[self] := stop pend;
14 dcb rq[self] := 0;
15 msg out[self] := stop pend;

16 end

17 else if msg in[self ] = allstop then
18 if st[self ] = stop pend then
19 st[self] := stop;
20 msg out[self] := stop;

21 end

22 else
23 if st[self ] = stop then
24 st[self] := cleanup;
25 res[self] := 0;
26 msg out[self] = cleanup;

27 end

28 end
29 last proc := self;
30 turn := (self + 1)mod(N + 1);

31 end
Algorithm 2: The PlusCal worker process. An instance of the algorithm is run for every worker
i for i ∈ {1, 2, ...,N }. The variable self denotes the index of the currently running worker.

4.4.4 Specifying pre- and post-conditions

The PlusCal code was compiled into a TLA+ specification on top of which several invariants were
defined. The invariants formally restated the pre- and post-conditions mentioned in Table 4.1.
Model checking was run over them in order to guarantee that the conditions hold. We continue by
listing the invariant formulae and explaining them and why they hold:

State nil

1. Pre-condition:

(last proc > 0 ∧ st [last proc] = nil)⇒ msg in[last proc] = nil ,

reading if the last process to act is a worker and its local state is nil, then it must have not
received any (non-nil) message. Therefore, the right-hand side is a necessary condition for
the left-hand side.

2. Post-condition:

(last proc > 0 ∧ st [last proc] = nil)⇒ dcb rq [last proc] = 0,

reading if the last process to act is a worker and its local state is nil, then it has no dispatcher
on its run queue. Therefore, the left-hand side is a sufficient condition for the right-hand
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side. Of course, if the left-hand side member was always false, the implication would always
be true. To formally check that the left-hand side does actually happen, an additional check
was performed, presented below:

3. Validation:
(last proc > 0 ∧ st [last proc] = nil)⇒ FALSE ,

the failure of which proves that the left-hand side does indeed happen, thus the pre- and
post-conditions for state nil hold for every individual core. Finally, let us now aggregate the
individual core states into the domain state:

4. Aggregate domain state:

last proc = 0⇒ (domain state = nil ⇔ ∀i ∈ 1..N : st [i ] = nil),

reading if the last process to act is the manager, then the domain is in state nil iff all cores
are in state nil. The left-hand side is required here because the domain state will only be
accurately updated straight after the manager acts.

State run

1. Pre-condition:

(last proc > 0 ∧ st [last proc] = run)⇒ msg in[last proc] = span

∧ (old st [last proc] = nil ∨ old st [last proc] = run),

reading if the last process was a worker and its state is run, then it must have received a
span message and its previous state must have been either nil or run; the right-hand side is
a necessary condition for the left-hand side.

2. Post-condition:

(last proc > 0 ∧ st [last proc] = run)⇒ dcb rq [last proc] = 1,

reading if the last process was a worker and its state is run, then its dispatcher is on the run
queue; the left-hand side is a sufficient condition for the right-hand side.

3. Validation:
(last proc > 0 ∧ st [last proc] = run)⇒ FALSE

4. Aggregate domain state:

last proc = 0⇒ (domain state = run ⇔ ((∃i ∈ 1..N : st [i ] = run)

∧ (∀i ∈ 1..N : st [i ] = nil ∨ st [i ] = run))),

reading if the last process was the manager, then the domain is in state run iff at least one
core is in state run and all other cores are in state nil.

State stop pending

1. Pre-condition:

(last proc > 0 ∧ st [last proc] = stop pend)⇒ msg in[last proc] = stop,

reading if the last process was a worker and its state is stop pending, then it must have
received a stop message; the right-hand side is a necessary condition for the left-hand side.

2. Post-condition:

(last proc > 0 ∧ st [last proc] = stop pend)⇒ dcb rq [last proc] = 0,

reading if the last process was a worker and its state is stop pending, then its dispatcher is
not on the run queue; the left-hand side is a sufficient condition for the right-hand side.
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3. Validation:
(last proc > 0 ∧ st [last proc] = stop pend)⇒ FALSE

4. Aggregate domain state:

last proc = 0⇒ (domain state = stop pend ⇔ (∃i ∈ 1..N : st [i ] = stop pend)

∧ ¬(∃i ∈ 1..N : st [i ] = stop)),

reading if the last process was the manager, then the domain is in state stop pending iff at
least one core is in state stop pending and no core has reached state stop. The statement
follows from the requirement of state stop that all cores reach stop pending.

State stop

1. Pre-condition:

(∃i ∈ 1..N st [i ] = stop)⇒ (∀i ∈ 1..N ¬(st [i ] = nil ∨ st [i ] = run)),

reading if there is a worker in state stop, then all workers are neither in state nil nor run;
the right-hand side is a necessary condition for the left-hand side. The right-hand side is
equivalent to saying that all workers are in one of three states: stop pending, stop or cleanup.
The reason for including state cleanup too is that the manager sends the free resources
message when all workers have reached state stop, hence if a worker is in state stop, some
others might have already transitioned to cleanup.

2. Post-condition:

(∃i ∈ 1..N st [i ] = stop)⇒ (∀i ∈ 1..N dcb rq [i ] = 0),

reading if there is a worker in state stop, then no workers have dispatchers on their run
queues; the left-hand side is a sufficient condition for the right-hand side.

3. Validation:
(∃i ∈ 1..N st [i ] = stop)⇒ FALSE

4. Aggregate domain state:

last proc = 0⇒ (domain state = stop ⇔ (∃i ∈ 1..N : st [i ] = stop)),

reading if the last process was the manager, then the domain is in state stop iff at least one
core is in state stop. Note that one core’s being in state stop is sufficient for the whole domain
to be in state stop since any given core will only enter stop when all cores have reached stop
pending, i.e. all dispatchers have been dequeued.

State cleanup

1. Pre-condition:

(∃i ∈ 1..N st [i ] = cleanup)⇒ (∀i ∈ 1..N st [i ] = stop ∨ st [i ] = cleanup),

reading if there is a worker in state cleanup, then all workers are either in state stop or
cleanup; the right-hand side is a necessary condition for the left-hand side.

2. Post-condition:

(∀i ∈ 1..N st [i ] = cleanup)⇒ (∀i ∈ 1..N res[i ] = 0),

reading if all workers are in state cleanup, then the domain is not using resources on any
core anymore; the left-hand side is a sufficient condition for the right-hand side.

3. Validation:
(∀i ∈ 1..N st [i ] = cleanup)⇒ FALSE

4. Aggregate domain state:

last proc = 0⇒ (domain state = cleanup ⇔ (∀i ∈ 1..N : st [i ] = cleanup)),

reading if the last process was the manager, then the domain is in state cleanup iff all cores
are in state cleanup.
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4.4.5 Specifying the race guard

The transition from nil to stop pending meant to prevent rogue domains from outracing the killing
process was also formally written in TLA+. Specifically, we will analyze the following statement: ”a
core will eventually leave state nil without ever adding a dispatcher to its run queue iff it eventually
transitions from nil to stop pending through a stop message”. Since it might be hard to grasp at
first, let us isolate each member of the equivalence:

1. a core will eventually leave state nil without ever adding a dispatcher to its run queue means
that no matter what messages the core receives, it will never run a dispatcher for the do-
main. In other words, the core will discard span messages from the malicious domain. In
TLA+ notation and for a fixed core i , the statement is a conjunction between the formulae
3¬(st [i ] = nil) (eventually, the state will not be nil) and 2(dcb rq [i ] = 0) (globally, no
dispatcher is in the run queue), yielding:

3¬(st [i ] = nil) ∧2(dcb rq [i ] = 0) (4.1)

2. a core eventually transitions from nil to stop pending through a stop message describes the
state machine transition and can be written in TLA+ using the variables old st [i ], st [i ] and
msg in[i ] as:

3(old st [i ] = nil ∧ st [i ] = stop pend ∧msg in[i ] = stop) (4.2)

From Equation 4.1 and Equation 4.2 we derive the race guard formula:

∀i ∈ 1..N : 3¬(st [i ] = nil) ∧2(dcb rq [i ] = 0)

⇔ 3(old st [i ] = nil ∧ st [i ] = stop pend ∧msg in[i ] = stop)
(4.3)

Equation 4.3 can be checked with TLC by breaking the equivalence into a double implication,
namely:

∀i ∈ 1..N : 3¬(st [i ] = nil) ∧2(dcb rq [i ] = 0)

⇒ 3(old st [i ] = nil ∧ st [i ] = stop pend ∧msg in[i ] = stop)
(4.4)

and:

∀i ∈ 1..N : 3(old st [i ] = nil ∧ st [i ] = stop pend ∧msg in[i ] = stop)

⇒ 3¬(st [i ] = nil) ∧2(dcb rq [i ] = 0)
(4.5)

Lastly, a sanity check is performed to ensure that the left-hand side members are not always
false. For Equation 4.4 we check for the failure of:

∀i ∈ 1..N : 3¬(st [i ] = nil) ∧2(dcb rq [i ] = 0)⇒ FALSE

and for Equation 4.5:

∀i ∈ 1..N : 3(old st [i ] = nil ∧ st [i ] = stop pend ∧msg in[i ] = stop)⇒ FALSE
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Chapter 5

System Design

This chapter focuses on building a process management subsystem for Barrelfish based on the
formal model presented in chapter 4. We describe the system components, their interface and
interaction. Design decisions and their implications are motivated in terms of the formal model.
An authentication protocol between the principals in the system is devised and formalized using
BAN logic.

5.1 Functional requirements

Firstly, let us look back at the domain definition and core properties established by the model in
chapter 4. Applying those properties in the context of a Barrelfish subsystem yields the require-
ments listed in Table 5.1.

Moreover, based on the domain and dispatcher operations formulated by the model, the process
management subsystem should provide means for:

• Creating a domain, which produces a new uniquely identifiable capability. It suffices to create
one dispatcher (the main one), which should be given a program to run.

• Creating a new dispatcher for a domain, i.e. spanning. The new dispatcher will not run a
new program, but persist only to serve the main dispatcher by providing capabilities using
the shared virtual address space.

• Destroying a dispatcher, which requires performing at least two steps:

1. Revoking and destroying the DCB, thereby de-scheduling it;

Domain model property Design requirement

Domains are uniquely identifiable.
Every domain instance in the system should
be identified by a unique capability.

Any domain has at least the root dispatcher ;
creating a domain amounts to creating its root
dispatcher.

The domain capability should be assigned no
sooner than the first dispatcher control block
(DCB) is created.

Any dispatcher belongs to exactly one domain.
Spanning to a new core needs to link the new
dispatcher to exactly one domain capability.

Any domain stops running when its root dis-
patcher stops running.

When the main dispatcher exits or is killed,
all dispatchers belonging to the domain must
be dequeued from the run queues on all cores.

Table 5.1: Process management requirements based on the model properties presented in chapter 4.
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2. Revoking and destroying the dispatcher’s cspace, releasing all capabilities it references
and thus freeing all memory it privately holds.

• Destroying a domain, which implies destroying all its dispatchers.

In addition, inspired from UNIX process management, the system should be able to achieve
the following:

• Allowing domains to voluntarily exit execution, e.g. when they reach the end of their main()
function.

• Allowing domains to wait for the termination of other domains.

• Subject to certain restrictions, allowing domains to kill other domains.

5.1.1 Security implications of killing a domain

Killing domains is a sensitive matter due to its security implications. The process management
system needs to ensure that domains cannot kill arbitrary domains without having the right to do
so. In UNIX, this is controlled through user credentials by means of sessions, namely processes
can kill other processes if they belong in the same session. Intuitively, this approach is based on
the assumption that it is fine for a user to kill their own processes, as long as they do not interfere
with those of other users.

Barrelfish possesses a similar concept of sessions, denoting a hierarchy of domains started by
the same terminal shell. While the process management subsystem could adopt and adapt sessions
to control domain operations, we have chosen not to pursue this path for the scope of this thesis
for two reasons. Firstly, in Barrelfish sessions are more closely dependent on the TTY subsystem.
Sessions are created by the program angler specifically for launching the fish shell. Consequently,
they do not hold meaning outside the scope of a TTY shell (for example, domains started by the
monitor have no concept of session).

Secondly, it has been established that domains need to be uniquely identifiable across the
system and that a suitable way to achieve this consists in using capabilities. We can hence devise
a different kill protocol: a domain can kill any domain for which it has a capability. For a given
domain, the set of domains which can kill it is thus more tightly under its supervision, since it can
choose whom to share its capability with. This approach provides more control over a domain’s
descendants compared to UNIX, as a domain will not be killable by domains it creates. However,
a domain will be granted identifying capabilities for all domains which it spawns.

We can now state a partial answer to the thesis questions defined in chapter 1: a domain can
be killed by the domain that spawned it, as well as any other domain that holds its identifying
capability.

5.2 Implementing as a service versus as a library

The next step towards designing a process management solution consists in choosing the most
suitable implementation manner. In terms of interfacing with the user, two paradigms were of
interest: process management as a service or as a library. We continue by discussing the advantages
and disadvantages of each approach.

5.2.1 Process management as a service

Among the benefits provided by a service-based solution, we list:

• The domain or domains implementing the service can act as the trusted third party sending
domain-related messages to all cores in the system, as assumed by the model in chapter 4.

• The domain or domains implementing the service can control domain-related operations by
requiring clients to provide capabilities with their requests (e.g. for killing other domains).
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• Spawning is currently offered as a service; a process management server could leverage this
by acting as an intermediary between spawnd and its clients. The advantage of such an
interposition is twofold: firstly, the process manager can assess whether a client is allowed
to be served by a specific spawnd instance, which is something required when domains are
to be restricted from spanning to new cores as per the race problem presented in chapter 4.
Additionally, registering spawnd instances with the process manager eliminates their need to
register with the nameserver, meaning they cannot be reached by any domain in the system
following a simple lookup. If spawnd could be reached following a name lookup, then it would
need to personally inquire about the client domain and establish whether its request is valid
(e.g. if the domain is not currently being killed elsewhere in the system). Such an inquiry
could be made either by asking all other spawnds if they believe the domain should be served,
or by reading from some authorized location. The former option would be computationally
expensive due to the high number of messages, while the latter would be more cumbersome
than having the process manager simply forward valid requests to spawnd.

• The process management server or servers can act as storage for domain metadata. For
a given domain, such metadata includes its global state and the cores it runs on. This
information can be useful for resource accounting, as well as facilitating an implementation
of wait.

• The process manager can ensure that cleanup is performed after domains are stopped. In
addition, it can hold a reference to the identifying capability of every domain it creates (or
intermediates the creation of), which can be used to stop the domain prematurely and clean
up after it should the system ever demand it.

Conversely, implementing as a service could have the following shortcomings:

• The consistency-availability-partitioning (CAP) problem. On one hand, if there is only one
server implementing the process management service in the system, then some availability
concerns need be addressed, such as how many different clients it can serve at once and
what happens if the server domain exits unexpectedly. On the other hand, if the system
runs multiple instances of the process manager, then a coherence protocol will be necessary
to guarantee consistency. Lastly there is the problem of partitioning : if there are multiple
servers then how do they relate to each other, say, if one or more of them should fail?

• A server implementing the process management interface would be an essential principal in
the system, therefore its identity needs to be verifiable. The system should hence provide an
authentication protocol to ensure that the process manager is not impersonated by malicious
domains.

5.2.2 Process management as a library

The advantages of a purely library-based approach include:

• If domains did not need to engage in RPCs for domain-related operations, then availability
might not be a problem (ideally, any domain could call library functions independently of
other domains). The problem of partitioning would not apply either, since there would be
no network of process management servers to partition in the first place.

• Library calls can still include capability checks even when there is no server dedicated to
sanitize them.

Lastly, the library-based solution would have the following disadvantages:

• Consistency would be difficult to achieve, since library calls do not implicitly involve any
sentient entity that could track the state of different domains (like a server would). For
example, if a domain wished to run a dispatcher on a new core, in order to make sure it can
proceed to do so the library would need to read the domain state from somewhere, such as
the SKB. However, involving the SKB incurs communication overhead and potentially even
availability problems.
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• There would be no trusted authority to hold identifying capabilities for spawned domains.
That is, the spawner would be the one responsible for killing the spawnee and cleaning
up after it (or a UNIX-like domain hierarchy could be established for killing and cleanup).
This would make it easier for rogue domains to conceal their spawnees’ capabilities thereby
making them difficult to kill. A potential solution consists in having spawnd hold identifying
capabilities so that it could be instructed by the system to kill specific domains when deemed
necessary.

Weighing in the benefits and shortcomings of each option, the service approach was deemed
more suitable for the scope of this thesis. The remainder of this chapter will describe how the re-
sulting process management service leverages the advantages presented and attempts to circumvent
the disadvantages.

5.3 Survey of service implementation options

With the process management as-a-service concept in mind, the next step consisted in narrowing
down the available service implementation options. Two main overarching questions motivated the
research presented in this section: where should the global domain state be stored? and what are
the implications with respect to the consistency-availability-partitioning problem?

5.3.1 Single dedicated server

The first solution consists in implementing the process management service through one single
dedicated server (i.e. in a single domain). In this context, dedicated means that the server should
implement one single interface and that interface should only be implemented by this server.
Such a solution is appealing because it is the simplest and least cumbersome, making it the most
suitable for testing the formal model devised in chapter 4. The global domain state question can
be answered by using the server domain’s address space as storage. However, there are two main
drawbacks:

1. The single server is a single point of failure. This is particularly troublesome if the process
management service is interposed between clients and the spawn service, since if the server
domain fails no user space entity will be able to perform domain-related operations.

2. The server needs to be given some degree of privilege, i.e. trust with regards to managing
domain state for all (or most) domains in the system. Most importantly, it needs to be
trusted to properly clean up or initiate the cleanup of domain resources.

The first point could be circumvented to some extent if the service is carefully designed so
that it could eventually scale out to multiple instances. The second point could be addressed by
leveraging on the Barrelfish capability system so that the service contract reads along the lines of
you can do this if you hold the capability for it, rather than you can do this if I decide that you
can.

5.3.2 Multiple dedicated servers

The previous approach can be naturally extended by distributing the process management service
to multiple servers running on different cores. On one hand, this solves the single point of failure
problem and improves service availability. On the other though, a distributed service poses the
following questions:

• Where do the servers store the global domain state?

• How should they achieve consistency with respect to the global domain state?

• How should they perform load balancing between multiple clients?
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A primitive solution would rely on storing domain state for all domains every process manage-
ment server. Servers could engage in an all-to-all message passing protocol: whenever the state
of a domain is modified on a server, that server sends a message with the updated state to every
other server. The receiver of such a message would update its version of the domain state, thereby
achieving consistency. Of course, such a solution is undesirably complex in terms of messages
exchanged. In addition, it does not tackle the load balancing problem.

A more elegant solution could be built on top of a leader election protocol. Assuming the process
management servers can elect a leader, the leader can provide storage for the global domain state
either in its own address space, or by delegating some other entity which it trusts. Load balancing
can also be performed by the leader, either statically (e.g. round-robin) or dynamically (e.g.
by choosing the server with the fewest requests assigned). This way, both the availability and
consistency problems would be addressed. Tolerance to partitioning can then be achieved by
designing a heartbeat protocol, where servers occasionally check if other servers are still online: if
a non-leader server fails, the leader can remove it from its load balancing policy; if the leader fails,
the other servers can run a new round of the election algorithm to designate a new leader.

5.3.3 Implementing in spawnd

An alternative to the dedicated server approach is having the existing spawnd servers implement
the process management service interface in addition to the spawn interface. As Barrelfish runs
one spawnd instance per core, this strategy could also benefit from a leader election protocol for
load balancing and storing the global domain state.

The advantage of this solution amounts to potentially fewer message passes being necessary
for domain-related operations. Specifically, client requests would not need to go through a dedi-
cated process management gateway before reaching spawnd servers, as these would act as gateway
themselves.

The disadvantages concentrate around two main ideas: firstly, every spawnd instance would
have to perform considerably more work by itself – it might be desirable to offload the extra process
management tasks to a separate domain. Secondly, the question of how many spawnd servers should
actually implement the process management interface arises. It might not be necessary that all
of them do: for a system running N cores it could be experimentally determined that K < N
process management instances can efficiently handle requests coming from all N cores. However,
the follow-up question is if not all spawnd instances offer process management services, then which
of them do? A subset of cores could be chosen, for example, based on how much work every core’s
spawnd – or even the core as a whole – does.

5.3.4 Implementing in the monitor

Based on the idea elaborated above, a similar solution can be devised where the process manage-
ment interface is implemented by the monitors. This approach differs from the spawnd-based one
in that:

1. The monitors already naturally communicate with each other via the URPC-based intermon
channels. In practice, this could be an advantage because the monitors on two different
cores already need to communicate when arbitrary user space domains on those cores want
to establish a channel.

2. Instead of adding to the workload of spawnd, the monitor would now have to perform the
additional process management tasks. Such a change is arguably even less desirable, as the
monitor is perhaps the most critical user space domain in Barrelfish, offering the richest
interface already.

5.3.5 Other approaches

Two other notable perspectives on storing global domain state have been considered for this thesis.
The first one would require every domain to hold its state in its first dispatcher. For example, the
DCB can be extended to encapsulate the overarching domain’s state. The main difference from
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all of the previously mentioned options is that whichever server domain implements the process
management interface, that domain only forwards messages between the client and the spawn
backend, without tracking the client’s state. Instead, computing the state is offloaded to the client
domain, which needs to achieve coherence between its dispatchers. On one hand, this results in
a lighter process management interface. However, concerns arise when domains are trusted with
managing their own state, as a malicious domain could conceal running dispatchers and prevent
them from being killed, or pretend to perform cleanup while still leaking system resources.

Building on top of the previous idea, the Barrelfish capability mechanisms can be leveraged to
achieve domain state coherence, instead of asking the domain to cohere with all its dispatchers.
An example of such an existing mechanism is cap revoke, which deletes all copies of a capability
in the system but the one held by the caller. In theory, the capability system could be extended to
ensure the propagation of domain state updates, as well as killing and cleanup. For instance, when
the first DCB of some domain is destroyed, the capability system could equate that DCB to all
other DCBs in the system belonging to the same domain and destroy them all, thereby stopping
the domain on all cores. The solution is conceptually elegant, although in practice it would likely
result in extra functionality added both to the monitor and the kernel. This might be more difficult
to implement and debug. In addition, having no dedicated entity to track domain state means
the state machine presented in chapter 4 can be more difficult to implement and prove correct in
practice.

Comparing what the different options presented throughout this section have to offer, the
multiple dedicated servers approach was deemed most suitable in theory. However, for the first
iteration of the process management subsystem presented in this thesis, we decided to implement
the single dedicated server solution instead. The motivation was that the extra layer of complexity
added by the multiple-server coherence protocol would distract from the goal of implementing the
model devised in chapter 4, given the research time frame for the thesis. The single-server option
can eventually be out-scaled to the multiple-server one, however we will not focus on that for the
remainder of this chapter.

Summing up the design choices made so far, the process management subsystem will:

• provide functionality for creating new domains (spawning), creating new dispatchers for ex-
isting domains (spanning), killing domains, exiting voluntarily and waiting for other domains
to finish execution;

• be offered as a service interposed between clients and the spawnd backend;

• store state for domains it manages in a single server, which will be run on the bootstrap core
for convenience and without loss of generality.

5.4 A matter of authentication

We have stated that the process manager will forward requests to spawnd servers so that they can
avoid publicly registering with the nameservice. A bidirectional authentication problem follows:

1. How can the process manager discover all spawnd servers?

2. How can spawnd tell when requests are coming from the process manager?

5.4.1 The spawnd discovery protocol

To answer the first question, we present an authentication protocol that allows the process manager
to discover spawnd servers running in the system. In this context, discovering a spawnd amounts
to discovering its iref.

For simplicity, let us first investigate the case where the system only runs on one core – that
is, everything is on core 0. The protocol makes the following assumptions (the domain X on core
Y will be referred to as X.Y ):

1. the monitor on core 0 starts proc mgmt.0 before it starts spawnd.0;
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2. monitor.0 provides proc mgmt.0 with an LMP endpoint to itself; both domains know that
proc mgmt.0 can thus send messages to monitor.0;

3. monitor.0 provides spawnd.0 with an LMP endpoint to itself; both domains know that
spawnd.0 can thus send messages to monitor.0;

4. proc mgmt.0 trusts that everything monitor.0 says is true; in particular, it trusts that mon-
itor.0 can provide it with the correct iref for spawnd.0.

To satisfy assumption 1, the monitor simply chooses to launch the process manager before
spawnd. Assumptions 2 and 3 hold because the monitor allocates a channel to itself for every
domain it spawns. Assumption 4 is reasonable because user space domains generally trust the
monitor. The protocol then executes the following steps:

1. At startup, the process manager allocates a special endpoint for the monitor, then sends
the endpoint capability to the monitor using the monitor endpoint it has been created with.
Consequently, any message received on this endpoint will be treated as if it is coming from
the monitor.

2. The monitor establishes a channel to the process manager using the endpoint it received in
step 1.

3. At startup, spawnd sends its iref to the monitor privately using the monitor endpoint it has
been created with.

4. The monitor receives the iref from spawnd and sends it to the process manager using the
channel it created in step 2.

5. The process manager receives the iref on the endpoint it allocated for the monitor in step 1.
The process manager knows the message is coming from the monitor and, since it trusts the
monitor on the matter, it now believes it holds the correct iref for spawnd.0.

The result at the end of the protocol run is that the process manager holds an iref to something
which claims to be spawnd. Since the process manager trusts the monitor, it believes that the
server the iref is for is indeed spawnd, hence it proceeds to open a client connection to it. In
other words, spawnd has successfully authenticated with the process manager. The protocol is
illustrated in Figure 5.1.

5.4.2 Multi-core extension

To extend the discovery protocol to a multi-core scenario, let us identify the step which makes it
inherently single-core. So far, after monitor.0 launched spawnd.0, it sent its iref to proc mgmt.0
through the dedicated LMP endpoint the latter had allocated. Suppose the system boots another
core; let it be core 1. Like in the case of core 0, monitor.1 is responsible for starting spawnd.1 and
providing it with a monitor binding. However, monitor.1 can not use a special LMP endpoint to
communicate the iref for spawnd.1 to proc mgmt.0, since the two domains run on different cores.

In order to circumvent this, we leverage the intermon channel between monitor.1 and moni-
tor.0, together with the fact that monitor.0 is already authenticated with proc mgmt.0 using the
dedicated LMP endpoint. All that needs to be done is send the iref for spawnd.1 through the
intermon channel, resulting in the following steps:

1. On core 0, proc mgmt.0 and monitor.0 authenticate like in the single-core case.

2. At startup, spawnd.1 sends its iref to monitor.1 privately using the monitor endpoint it has
been created with.

3. The iref is received by monitor.1 and forwarded to monitor.0 using the intermon channel.

4. The iref is further received by monitor.0, which sends it to proc mgmt.0 through the channel
created in step 1.
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Figure 5.1: Single-core discovery protocol. Time flows vertically from top to bottom. Dotted lines
mark the moments when the monitor spawns the process manager and spawnd respectively. At
the end of the protocol run, the process manager holds a client channel to spawnd.

5. The process manager receives the iref and believes it is for spawnd.1, since it trusts monitor.0.
The process manager hence opens a client connection to spawnd.1.

An additional assumption necessary for the extension is that the monitors trust each other,
which is normally the case with all inter-core functionality in Barrelfish. The protocol extension
is illustrated in Figure 5.2.

Figure 5.2: Multi-core extension for the discovery protocol. Time flows vertically from top to
bottom. The dotted line marks the launching of spawnd.1, which is assumed to happen after
monitor.0 and proc mgmt.0 have already run the local authentication steps presented in Figure 5.1.
At the end of the protocol run, the process manager holds a client channel for spawnd.1 in addition
to that for spawnd.0.

35



5.4.3 Formalization

The discovery protocol can be formally stated using BAN logic. For brevity, we only give equations
for the single-core version – the multi-core extension builds on top of it trivially.

We first bring two minor changes to the standard deduction rules presented in chapter 2, which
cater better to the Barrelfish architecture:

1. Based on the shared key notation, we write that two dispatchers P and Q can engage in

one-directional communication through an LMP or UMP channel as P
K→ Q , K is a P → Q

channel. The message-meaning rule becomes

P believes Q
K→ P , P sees {X }K

P believes Q said X
,

reading if P believes it can receive messages from Q through the Q → P channel K and P
sees message X on channel K , then P believes that Q said X .

2. Since Barrelfish endpoints and capabilities in general do not have an implicit time-to-live,
the formula fresh(X ) is tautological in the context of our protocol. Therefore, the nonce-
verification rule becomes

P believes Q said X

P believes Q believes X
,

reading if P believes that Q said X , then P believes that Q believes X .

Next, let us analyze the protocol assumptions in BAN logic notation. It has been established
that monitor.0 provides proc mgmt.0 with an LMP endpoint to itself; both domains know that
proc mgmt.0 can thus send messages to monitor.0. Writing P for the process manager, M for the
monitor and KPM for the spawnd-to-monitor binding, we obtain:

P believes P
KPM→ M (5.1)

M believes P
KPM→ M (5.2)

The next assumption was that monitor.0 provides spawnd.0 with an LMP endpoint to itself;
both domains know that spawnd.0 can thus send messages to monitor.0. Writing S for spawnd and
KSM for the monitor binding that it holds, it follows that:

S believes S
KSM→ M (5.3)

M believes S
KSM→ M (5.4)

We have also said that proc mgmt.0 trusts that monitor.0 can provide it with the correct iref for
spawnd.0. Writing KPS for the channel which the process manager can open on that iref1 yields:

P believes M controls P
KPS→ S (5.5)

There are two more assumptions hidden in the protocol flow. Firstly, the monitor actually
expects the process manager to provide it with a trusted endpoint for establishing a channel to
communicate the iref for spawnd. Such a channel can be written as KMP , yielding:

M believes P controls M
KMP→ P (5.6)

Secondly, the monitor also expects spawnd to provide it with its iref for the process manager.
Similarly to Equation 5.6, we can write:

M believes S controls P
KPS→ S (5.7)

The first step of the protocol consists in the process manager’s allocating an LMP endpoint for
the monitor. Let the channel eventually established using that endpoint be KMP . It follows that:

1An A → B LMP channel can be established using either an LMP endpoint or an iref for B . Therefore, in our
formal notation both an endpoint and an iref equate to the same KAB channel.
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P believes M
KMP→ P (5.8)

The process manager sends the newly allocated endpoint to the monitor through its monitor
binding as per Equation 5.1, resulting in:

M sees {M KMP→ P}KPM (5.9)

Applying the message-meaning rule using Equation 5.9 and Equation 5.2 yields:

M believes P said M
KMP→ P (5.10)

Which, under the nonce-verification rule for fresh(X ) = true, gives:

M believes P believes M
KMP→ P (5.11)

Applying the jurisdiction rule using Equation 5.11 and Equation 5.6, we have that:

M believes M
KMP→ P (5.12)

Equation 5.12 states that the process manager is authenticated with the monitor through the
channel built on top of the dedicated LMP endpoint. Together with Equation 5.8, we have so far
formally proven that the process manager and the monitor believe they are talking to each other.

The next step amounts to spawnd’s sending its iref to the monitor via its monitor binding, as
per Equation 5.3:

M sees {P KPS→ S}KSM (5.13)

The message-meaning rule for Equation 5.13 and Equation 5.4 yields:

M believes S said P
KPS→ S (5.14)

Which, under nonce-verification, results in:

M believes S believes P
KPS→ S (5.15)

Applying the jurisdiction rule for Equation 5.15 and Equation 5.7, we have that:

M believes P
KPS→ S (5.16)

Since the monitor now believes it has an iref which the process manager can use to send messages

to spawnd, it can use the M
KMP→ P channel given by Equation 5.12 to inform the process manager

of the iref:
P sees {P KPS→ S}KMP (5.17)

Using the message-meaning rule for Equation 5.17 and Equation 5.8, it follows that:

P believes M said P
KPS→ S (5.18)

Applying the nonce-verification rule, Equation 5.18 becomes:

P believes M believes P
KPS→ S (5.19)

Finally, the jurisdiction rule for Equation 5.19 and Equation 5.5 gives:

P believes P
KPS→ S (5.20)

Hence the proof that the process manager has discovered an authentic spawnd server is com-
plete. Appendix B gives an Isabelle[14][15] implementation of a set theory-based version of this
proof.
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5.4.4 Brute-force vulnerability

The fact that spawnd expects requests from the process manager on the iref which it passes to the
monitor during the discovery protocol can be written as:

S believes P
KPS→ S (5.21)

Together, Equation 5.20 and Equation 5.21 formally state that the process manager and spawnd
believe they are talking to each other. However, in practice, there is a problem with this conclusion:
KPS denotes an iref, which is actually a number2. The security implication is that a malicious
domain could theoretically brute-force attack the iref space to guess where spawnd is and establish
a connection. Since spawnd trusts that the monitor will forward its iref to the process manager,
when it sees an incoming connection request it will assume it is coming from the process manager.
This would lead to the latter’s being impersonated. Therefore, the discovery protocol does not
guarantee that requests received by spawnd actually originate in the process manager – only that
it is likely this is the case.

It is worth mentioning that the aforementioned problem does not apply to the authentication
phase between the process manager and the monitor on core 0, because those principals use LMP
endpoints to establish a connection. LMP endpoints are capabilities, thus they cannot be forged,
however they cannot be used with UMP for multi-core discovery3.

5.4.5 The ProcessManager capability

The persisting question is how can spawnd tell when requests are coming from the process manager?
One solution consists in having the latter sign the messages it sends. A Barrelfish-friendly way
to accomplish this is to have the process manager include a capability with its requests. Such a
capability needs to uniquely identify an entity which equates either to the process manager or to
a domain which the process manager delegates.

The capability can be of two types among the existing ones. The first is the ID capability,
which encapsulates the index of the core where it was created, alongside a unique core-local index.
It is guaranteed that every two ID capabilities in the system are different. However, since any
domain can create ID capabilities at will, it would be impossible to identify the one denoting the
process manager.

The second existing type that could be used is the endpoint capability. Specifically, spawnd
could allocate a special endpoint for the process manager, assume that the process manager even-
tually gets hold of that endpoint and treat all subsequent requests received on that endpoint with
the certainty they originate in the process manager. However, this scenario only holds when the
interconnect driver between spawnd and the process manager is LMP. This is not always the case,
as the process manager and spawnd need to communicate via UMP when they run on different
cores.

All of the above stand as reason for introducing a new capability type, the ProcessManager
capability. A single instance of this capability is given to the CPU driver on core 0 to init, where
it is stored in the task cnode in slot TASKCN SLOT PROCMNG. When init.0 boots monitor.0, it copies
the process manager capability into the latter’s cspace. The monitor then starts the process
manager domain on core 0 and passes on the capability. Thereafter, when spawnd receives a
process management request, it inspects the enclosed capability’s type: if it is ProcessManager,
then the request is considered valid. The flow of the ProcessManager capability from the CPU
driver to proc mgmt.0 is illustrated in Figure 5.3. This design requires that init and the monitor
can be trusted to deliver the capability to the process manager and only to the process manager,
which is a fair assumption given they are both privileged domains.

232-bit unsigned, as of when this thesis was written.
3Connecting to servers running on different cores is exactly the problem irefs solve.
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Figure 5.3: A single instance of the ProcessManager capability is created by the CPU driver on the
bootstrap core. The capability is delivered to the process manager through init and the monitor.
Slot TASKCN SLOT PROCMNG of the task cnode is used to store it.
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Chapter 6

Implementation

Everything presented in the previous chapters helped consolidate the interface for the process
management service. Since it was designed to act as middleware between clients and the spawnd
backend, the process manager implements an interface for the former and one for the latter, as
depicted in Figure 6.1.

Figure 6.1: The process manager acts as middleware between outside clients and the spawnd
backend.

6.1 The process management client interface

The client interface definition can be found in if/proc mgmt.if. Due to the fact that the process
manager expects special messages from the monitor for the spawnd discovery protocol, the client
calls it exposes are separated in two categories: general-purpose and monitor-only.

6.1.1 The general-purpose interface

All general-purpose calls can be used by any domain which establishes a client connection to the
process manager. All calls cause the client to block. Below, we list the API calls in the Flounder
language used by Barrelfish.

The spawn call. The spawn call creates and runs a new domain. It expects similar arguments
to the corresponding call offered by the old spawn service interface. It takes the target core ID,
the program name, an argument and an environment buffers and flags as input parameters; it
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returns an error code and a domain capability as output parameters. The key point is the output
capability used to identify the newly spawned domain, which contrasts with the numerical identifier
traditionally returned by the spawn interface. The motivation was that it is easier to guarantee a
capability’s system-wide uniqueness, as well as the fact that a numerical ID can be easily forged in
a man-in-the-middle attack. The domain capability is also copied into the newly spawned domain’s
cspace, in slot TASKCN SLOT DOMAINID of the task cnode. Domain capabilities will be described in
more detail in the following sections.

rpc spawn ( in c o r e i d core ,
in S t r ing path [ 2 0 4 8 ] ,
in char argvbuf [ argvbytes , 2048 ] ,
in char envbuf [ envbytes , 2048 ] ,
in u int8 f l a g s ,
out e r r v a l err ,
out cap domain cap ) ;

The spawn with caps call. The spawn with caps call is identical to the plain spawn one with the
exception of two input parameters: a capability for a cnode to be inherited by the spawnee and a
capability for an argument cnode. These parameters exist for compliance with the spawn domain

with caps call exposed by the old spawn interface and are meant to be used by the spawner to
provide the spawnee with additional capabilities.

rpc spawn with caps ( in c o r e i d core ,
in S t r ing path [ 2 0 4 8 ] ,
in char argvbuf [ argvbytes , 2048 ] ,
in char envbuf [ envbytes , 2048 ] ,
in cap inhe r i t cn cap ,
in cap argcn cap ,
in u int8 f l a g s ,
out e r r v a l err ,
out cap domain cap ) ;

The span call. The span call creates and runs a new dispatcher under the requesting domain.
It expects a capability identifying the caller, the target core ID, a capability for the root of the
caller’s virtual address space, memory for the new dispatcher’s frame and an error code. The first
argument is used to associate the new dispatcher with the caller domain. The third argument is
used to share the caller’s virtual address space with the new dispatcher.

rpc span ( in cap domain cap , in c o r e i d core , in cap vroot ,
in cap dispframe , out e r r v a l e r r ) ;

The kill call. The kill call stops and cleans up after all dispatchers belonging to a domain
identified by the capability passed as argument, returning an error code.

rpc k i l l ( in cap domain cap , out e r r v a l e r r ) ;

The exit message. The exit message allows the domain identified by the capability to exit
execution with the provided exit code. It is not implemented as an RPC, as the requester is not
expected to run after the call completes.

message e x i t ( cap domain cap , u int8 s t a t u s ) ;

The wait call. The wait call blocks the requesting domain until the domain identified by the
capability passed as argument has finished execution, returning an error code and the requested
domain’s exit status.

rpc wait ( in cap domain cap , out e r r v a l err , out u int8 s t a t u s ) ;
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6.1.2 The monitor-only interface

In addition to the calls listed above, the monitor has access to the add spawnd message:

message add spawnd ( c o r e i d core , i r e f i r e f ) ;

which expects the core where the new spawnd runs and its iref. The message is used to implement
the discovery protocol and does not block the caller. In order to guarantee that only the monitor
can trigger the discovery of a new spawnd, the process manager only assigns a handler for this type
of message to the binding initiated on the monitor-dedicated endpoint which it allocates during
the first step of the authentication protocol. If an add spawnd message is received on any binding
other than the monitor one, the process manager disregards it, doing nothing.

6.2 The Domain capability

The domain identifier returned by spawn and spawn with caps and required by the other general-
purpose interface calls is implemented as a capability, motivation being that the said identifier
must:

• uniquely reference exactly one domain;

• be non-forgeable (only the process manager can create it).

Following a train of reasoning similar to the one explaining the ProcessManager capability
in the previous chapter, the domain capability could not be of any of the existing system types.
Firstly, the capability could not be of type ID because any entity in the system can create arbitrary
ID capabilities, potentially allowing domains to be impersonated. Secondly, if the capability was
an endpoint, then it could uniquely reference exactly one domain by, say, retyping it from the
domain’s main dispatcher. However, any domain in the system would be able to retype such a
capability if it held a reference to the originating dispatcher.

Instead, stemming from the restriction that the process manager should be the only one that
can create domain identifiers, a new capability type was introduced: the Domain type, which
can only be created by retyping from the ProcessManager capability. Similarly to the ID type,
a Domain capability encapsulates the index of the core where it was created alongside a unique
core-local index. Consequently, whenever the process manager receives a spawn request, it will
assign the newly spawned domain a Domain capability, which will be copied into the spawnee’s
cspace and returned to the caller. That capability is required for any subsequent requests targeting
the newly spawned domain.

6.2.1 Preallocating domain capabilities

A potential problem with this approach is that retyping capabilities is an expensive operation in
so far as it requires switching to kernel space for checks that only the CPU driver is allowed to
perform. Retyping the ProcessManager capability into a new Domain one every time a domain is
to be spawned might hence be undesirable from the performance perspective. Instead, similarly to
the slab and slot refill mechanisms in Barrelfish, the process manager preallocates a level 2 cnode
and fills it with 256 capabilities of type Domain at startup. When subsequent spawn calls use
up all the preallocated identifiers, a new level 2 cnode will be allocated and filled with 256 more
capabilities. The process manager stores pointers to the domain capabilities in a list residing in its
address space. The algorithm for allocating Domain capabilities is presented in algorithm 3 and
implemented in usr/proc mgmt/domain.c.

6.2.2 Identification and retrieval

In the Barrelfish user space, capabilities act like black boxes. A domain can hold a reference to
a capability which it can show to the CPU driver to prove it is entitled to use the resource it
denotes, however the actual capability is only held by the CPU driver. When the process manager
is presented with a capability which is claimed to represent a domain, it needs to acquire two
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1 new cnode := create l2();
2 retype(cap procmng, new cnode.0, 256);
3 for i from 0 to 256 do
4 cap list add(new cnode.i);
5 end

6 while spawn call do
7 if cap list freecount() = 0 then
8 new cnode := create l2();
9 retype(cap procmng, new cnode.0, 256);

10 for i from 0 to 256 do
11 cap list add(new cnode.i);
12 end

13 end
14 domain cap := cap list get first();

/* Do the rest of the spawning work. */

15 end
Algorithm 3: Pseudo-code for the domain capability allocation algorithm. Lines 1-4 represent
the initial preallocation phase. Lines 5-14 correspond to acting on a new spawn call. The variable
cap procmng holds the ProcessManager capability; new cnode.i represents the capref in slot i of
new cnode. The resulting identifying capability for the new spawnee is denoted as domain cap.

pieces of information about it: whether it is actually a capability of type Domain and if so, which
exactly is the identified domain. This is done through the capability identifying RPC provided by
the monitor:

rpc c a p i d e n t i f y ( in cap cap , out e r r v a l err , out caprep caprep ) ;

which takes a capability reference of type struct capref and returns an error code and a struct

capability object. The latter is the internal representation of a capability in the kernel and
contains a field marking the object type. For capabilities of type Domain, the encapsulated core
number and core-local ID are also present in the returned capability object.

Once the domain’s originating core and local ID have been inferred from the capability, the
process manager needs to store this information in a manner which facilitates future identification.
Specifically, when the process manager is subsequently presented with a reference to the same
domain capability, it needs to associate it with the same domain structure. To this end, domain
capabilities are hashed using the function:

h : {0, 1, ..., lmax} × {0, 1, ..., cmax} → {0, 1, ..., 264 − 1}, h(l , c) = (1 + lmax ) · ld + cd ,

where lmax is the maximum value of a core-local id, cmax is the maximum core index, ld is the
domain’s core-local id and cd is the originating core. The core-local id field of a capability is
of type uint32 t, therefore lmax = 232 − 1; the index of a core is of type uint8 t, therefore
cmax = 28 − 1 = 255.

In order to correctly map capabilities to the domains they represent, the function h as defined
above needs to be injective, which we prove below:

Claim. ∀(l1, c1) 6= (l2, c2) ∈ {0, 1, ..., lmax} × {0, 1, ..., cmax} h(l1, c1) 6= h(l2, c2)

Proof.

Assume ∃(l1, c1) 6= (l2, c2) ∈ {0, 1, ..., lmax} × {0, 1, ..., cmax} s.t . h(l1, c1) = h(l2, c2)

⇒ (1 + lmax ) · l1 + c1 = (1 + lmax ) · l2 + c2

⇒ (1 + lmax ) · l1 + c1 − c2 = (1 + lmax ) · l2
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Case c1 6= c2 ⇒ c1 − c2 = k > 0, assuming w.l.o.g. c1 > c2

⇒ (1 + lmax ) · l1 + k = (1 + lmax ) · l2
⇒ (1 + lmax ) · l1 + k ≡ (1 + lmax ) · l2 (mod 1 + lmax )

⇒ k ≡ 0 (mod 1 + lmax ) contradiction since k > 0 and k < 1 + lmax

Case c1 = c2 ⇒ (1 + lmax ) · l1 = (1 + lmax ) · l2
⇒ l1 = l2 contradiction since (l1, c1) 6= (l2, c2) and c1 6= c2

�

The key computed by the hash function h maps to a struct domain entry object in a
hashtable residing in the process manager’s address space. The table uses chaining for solving
conflicts and is instantiated with 6151 buckets. The domain entry structure collects domain
metadata such as the identifying capability, list of cores which the domain has dispatchers on, list
of waiters and exit status. The complete definition can be found in usr/proc mgmt/domain.h and
is illustrated in Listing 6.1.

struct domain entry {
struct domain cap node ∗ cap node ;
enum domain status s t a t u s ;

struct spawnd state ∗spawnds [MAX COREID ] ;
c o r e i d t num spawnds running ;
c o r e i d t num spawnds resources ;

struct domain waiter ∗wa i t e r s ;

u i n t 8 t e x i t s t a t u s ;
} ;

Listing 6.1: The domain entry structure, containing, in order: corresponding node in list of domain
caps; current domain status (state as per the formal model); set of cores that run a dispatcher;
number of cores that run a dispatcher; number of cores where resources are still in use; list of
waiters; exit status.

6.3 The spawn service backend

After it has assigned a domain capability (in the case of spawn calls) or inspected the capability
presented with to verify that the request is valid (for other API calls), the process manager sends a
request to the spawn service backend implemented by a spawnd server on the target core or cores.
The target core equates to the one the client passes if the request is a spawn or span one, or all
cores which the domain has a dispatcher on if the request is of type kill or exit.

6.3.1 Interfacing spawnd with the process manager

The spawn service interface implemented by spawnd was extended for the purpose of communi-
cating with the process manager. Several process manager-only requests were added, implemented
asynchronously as messages, instead of RPCs. The need for asynchronicity derived from the fact
that a single process manager server needs to overview as many spawnd servers as there are cores
in the system. Consequently, if the process manager blocked waiting for a given spawnd to com-
plete the backend call, then all cores would effectively be serialized with respect to domain-related
operations. Although the process manager does not block during backend calls, spawnd does.

The extended spawn interface can be found in if/spawn.if and contains the messages de-
scribed below. All process-manager only requests need to by signed with a capability of type
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ProcessManager to enforce authenticity, as described in the previous chapter. In order for spawnd
to assess whether the passed capability truly identifies the process manager, a cap identify RPC
is used to tell the capability type, similarly with the case of the process manager identifying re-
questing domains.

The spawn request. The spawn request expects the process manager capability, an identifying
capability for the new domain, the program path, argument and environment buffers and flags.
The first two arguments constitute the process manager’s guarantee that the request is authentic
and valid. The last four arguments are simply forwarded to spawnd as they have been received
from the process management client. The request creates, sets up and runs a main dispatcher
for the given domain. This is the backend correspondent of rpc spawn exposed by the client-side
process management interface.

message spawn request ( cap procmng cap ,
cap domain cap ,
S t r ing path [ 2 0 4 8 ] ,
char argvbuf [ argvbytes , 2048 ] ,
char envbuf [ envbytes , 2048 ] ,
u int8 f l a g s ) ;

The spawn with caps request. The spawn with caps request is similar to the simple spawn
one, with the exception of the two additional capabilities for cnodes to be passed to the spawnee.
It is the backend correspondent of rpc spawn with caps in the client-side interface.

message spawn with caps reques t ( cap procmng cap ,
cap domain cap ,
S t r ing path [ 2 0 4 8 ] ,
char argvbuf [ argvbytes , 2048 ] ,
char envbuf [ envbytes , 2048 ] ,
cap inhe r i t cn cap ,
cap argcn cap ,
u int8 f l a g s ) ;

The span request. The span request expects the process manager capability, an identifying
capability for the domain to span, as well as the vspace root and dispatcher frame capabilities as
passed to the process manager. The last two capabilities must be already allocated and set up.
The request causes a new dispatcher to be run for the given core. It is the backend correspondent
of rpc span in the client-side interface.

message span reques t ( cap procmng cap , cap domain cap , cap vroot ,
cap dispframe ) ;

The kill request. The kill request expects the process manager capability and an identifying
capability for the victim domain. It removes the victim domain’s local dispatcher from the core’s
run queue by revoking the DCB capref and then destroying it. It is the backend correspondent of
both rpc kill and message exit in the client-side interface. Both client-side calls generate the
same backend since the exit status is only stored in the process manager.

message k i l l r e q u e s t ( cap procmng cap , cap domain cap ) ;

The cleanup request. The cleanup request expects the process manager capability and an
identifying capability for the domain to clean up. It releases the given domain’s capabilities by
revoking its root cnode capref and then destroying it. It is meant to succeed the kill request.

message c l eanup reque s t ( cap procmng cap , cap domain cap ) ;

The spawn reply. The spawn reply is a general-purpose message which spawnd sends back to
the process manager to communicate the error status of one of the requests listed above.

message spawn reply ( e r r v a l e r r ) ;
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The spawn, spawn with caps and span requests implement the span message part of the model
presented in chapter 4. In addition, the kill and cleanup requests implement the stop and free
resources messages respectively. There is no equivalent to allstop, as this message does not trigger
any physical action. The purpose of allstop in the model was only to highlight that all the victim
domain’s DCBs have been removed from the run queues, hence implementing it in practice would
mean an extra round-trip with no effect. Instead, the process manager updates the aggregated
domain state to stop when all spawnd instances have replied to its kill requests.

In order to correctly identify the domain referred by the requests received from the process
manager, spawnd performs the same steps described in subsection 6.2.2. Firstly, an RPC is made
for retrieving the contents encapsulated in the domain capability. Secondly, a hashtable is used
for storing domain structures. The hashing function is the same h defined in subsection 6.2.2.
The object mapped to the resulting hash code is a representation of the domain on the local core,
containing the domain capability, the DCB for the local dispatcher, as well as a reference to its root
cnode. The mapping is created when either a span or span call is received. Subsequently, when
a kill or cleanup call arrives, the DCB or, respectively, the rootcn is retrieved from the mapping,
revoked and destroyed.

6.3.2 Asynchronous message queues

It has been mentioned that the process manager does not block when communicating with the
spawnd backend, by sending and receiving asynchronous messages. However, spawnd does block,
i.e. it only acts on one request from the process manager at the time. Two questions stemmed
from this implementation decision:

1. What happens if the process manager receives two or more simultaneous requests intended
for the same spawnd instance?

2. How does the process manager resolve the client to respond to when it receives an asyn-
chronous message from spawnd?

The first question is partially answered by the Barrelfish message-passing infrastructure. As-
sume two clients running on two different cores send simultaneous requests to the process manager.
Flounder, the RPC mechanism, will serialize the requests and deliver them sequentially to the pro-
cess manager, which will thus forward them to spawnd. Similarly, if the two requests arrive at
the spawnd server in quick succession, then the message-passing infrastructure will enqueue the
request which arrived second until spawnd has finished serving the first one.

The interconnect driver hence handles the case of multiple requests arriving simultaneously or
in quick succession. However, before sending requests through a binding, Flounder first enqueues
the requests in the sender’s transmit (TX) buffer, to be popped and sent when the binding is ready.
If the process manager attempts to send too many requests to spawnd too quickly, its TX buffer
might therefore become full and unable to enqueue more messages, returning an error. The buffer
could be polled until there is room to add another request, but this would block the executing
thread.

One possible approach to solving this problem is having the process manager delegate a new
thread for attempting to enqueue in the TX buffer. However, Barrelfish traditionally prefers
event-based design to threaded concurrency. A cleaner solution hence consists in storing to-be-
sent requests in event queues on top of every spawnd binding that the process manager holds.
The process manager has one send queue per spawnd it is bound with, to which it adds requests
instead of sending them right away. For every queue, an event is scheduled that will pop the next
request and send it. On encountering a TX buffer full error, the request is re-added to the front of
the queue1. This strategy is similar to the one used by monitors to perform capability operations
through the intermon channels. Pseudo-code is given in algorithm 4.

Registering send events from request queues is an elegant solution to the TX buffer problem,
as it is single-threaded and does not block the process manager. However, it reiterates the second

1If the process manager only sends requests to spawnd by registering for send events, then it should never receive
a TX BUSY error. Testing for this error and adding requests to the front of the queue is only done as a safeguard, in
case the process manager will ever need to call a tx send function directly, bypassing the queue.
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1 Function handle request(request)
2 enqueue(request);
3 if queue size = 1 then
4 register send(send from queue);
5 end

6 Function send from queue()
7 request := dequeue();
8 err := send(request);
9 if err = FLOUNDER ERR TX BUSY then

10 enqueue front(request);
11 end
12 if queue size > 0 then
13 register send(send from queue);
14 end

Algorithm 4: Pseudo-code for managing the send queue for a given spawnd instance. Function
handle request (lines 1-5) is called for every new request that the process manager needs to send
to spawnd. The request is added to the send queue; if the queue was empty before, a send event
is registered on the send from queue handler (lines 6-14). The handler is called by the standard
Barrelfish dispatch mechanism. It pops the next request from the queue and tries to send it; if
the TX buffer is full, the request is added back to the front of the queue. The handler re-registers
itself if the send queue is not empty.

question stated before, that of telling what requests an asynchronous reply from spawnd corre-
sponds to. One of the investigated options involved the process manager’s sending a token to
spawnd identifying the client which the request originated in. On replying, spawnd would include
the same token, thereby letting the process manager know what client the response is for. Such a
token could be the domain capability of the client.

A lighter approach relies on the fact that every spawnd instance serves requests from the process
manager sequentially. Since Flounder guarantees FIFO delivery of messages, it is safe to expect
that the replies from spawnd will arrive at the process manager in the same order as the requests
were sent. For example, if the process manager sends requests x and y to a spawnd server in this
order, then that server must reply to x before it replies to y . This conclusion is proven formally
below, using the following notation:

• x is a request from the process manager to spawnd and x ′ the corresponding reply from
spawnd;

• Tdeparture(m) ∈ (0,∞) is the timestamp when message m (either request or reply) leaves the
sender; requests depart from the process manager, whereas replies depart from spawnd;

• Tarrival(m) ∈ (0,∞) is the timestamp when message m (either request or reply) arrives at
the recipient; requests arrive at spawnd, whereas replies arrive at the process manager;

• Dservice(x ) ∈ (0,∞) is the time required for spawnd to serve the request x ;

• B(x ) = {y : Tarrival(y) < Tarrival(x )} is the set of requests which arrived at spawnd before
x ;

• Tqueue(x ) =
∑

y ∈ B(x) max{Dservice(y)−Tarrival(x ) + Tarrival(y), 0} is the time spent by x
in queue before spawnd starts serving it;

The time when spawnd sends a reply can be expressed as:

Tdeparture(x ′) = Tarrival(x ) + Tqueue(x ) + Dservice(x ) (6.1)

Furthermore, the guarantee that messages arrive in-order can be expressed as:

Tdeparture(x ) < Tdeparture(y)⇔ Tarrival(x ) < Tarrival(y),∀x , y (6.2)
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The proof then proceeds as follows:

Claim. Let x , y requests s.t. Tdeparture(x ) < Tdeparture(y). Then Tarrival(x
′) < Tarrival(y

′).

Proof.

Tdeparture(x ) < Tdeparture(y)⇒ Tarrival(x ) < Tarrival(y) (using Equation 6.2)

⇒ B(x ) = ∅ ⇒ Tqueue(x ) = 0

⇒ Tdeparture(x ′) = Tarrival(x ) + Dservice(x ) (using Equation 6.1)

B(y) = {x} ⇒ Tqueue(y) = max{Dservice(x )− Tarrival(y) + Tarrival(x ), 0}
Let Tarrival(y)− Tarrival(x ) = t > 0⇒ Tarrival(y) = Tarrival(x ) + t

⇒ Tqueue(y) = max{Dservice(x )− t , 0}

Case Dservice(x )− t ≤ 0⇒ Tqueue(y) = 0

⇒ Tdeparture(y ′) = Tarrival(y) + Dservice(y) (using Equation 6.1)

= Tarrival(x ) + t + Dservice(y)

⇒ Tdeparture(y ′)− Tdeparture(x ′) = Tarrival(x ) + t + Dservice(y)

− Tarrival(x )−Dservice(x )

= t −Dservice(x ) + Dservice(y)

⇒ Tdeparture(y)− Tdeparture(x ′) > 0 (using t ≥ Dservice(x ) and Dservice(y) > 0)

⇒ Tdeparture(x ′) < Tdeparture(y ′)⇒ Tarrival(x ′) < Tarrival(y ′) (using Equation 6.2)

Case Dservice(x )− t > 0⇒ Tqueue(y) = Dservice(x )− t

⇒ Tdeparture(y ′) = Tarrival(y) + Dservice(y) + Dservice(x )− t (using Equation 6.1)

= Tarrival(x ) + t + Dservice(y) + Dservice(x )− t

= Tarrival(x ) + Dservice(x ) + Dservice(y)

⇒ Tdeparture(y ′)− Tdeparture(x ′) = Tarrival(x ) + Dservice(x ) + Dservice(y)

− Tarrival(x )−Dservice(x )

= Dservice(y) > 0

⇒ Tdeparture(x ′) < Tdeparture(y ′)⇒ Tarrival(x ′) < Tarrival(y ′) (using Equation 6.2)

�

This result inspired the implementation of receive queues in the process manager. Similarly
with send queues, the process manager has one receive queue per spawnd instance it is bound with.
Every receive queue stores bindings for the clients that have sent requests for the corresponding
spawnd, in the order the requests were forwarded by the process manager. When a spawnd
server sends a reply, the process manager dequeues the next client binding from the receive queue
associated with that spawnd, performs any necessary post-processing and finally responds back
to said client. The flow of a request through one of the process manager’s send queues and its
corresponding receive queue is illustrated in Figure 6.2.

6.4 Example scenario

Suppose there are two cores in the system, 0 and 1. Each of them runs an instance of spawnd and
core 0 also runs the process manager. Suppose a is an arbitrary client domain running on core
0, which wants to spawn the program ”b” on core 0. Figure 6.3 illustrates the flow of messages
between a and the process manager, as well as those between the process manager and spawnd.0.

The result of the previous operation is a new domain, b, running a single dispatcher on core
0. The identifying domain capability for b has been added to its cspace, as well as returned to
a.0. Figure 6.4 shows what happens if b.0 wants to run a dispatcher on core 1. Finally, Figure 6.5
illustrates what happens if a requests that the process manager kill b.

48



Figure 6.2: Flow of a request through one of the process manager’s send queues. The initial
state corresponds to receiving a new request from a client. The state machine proceeds as per
algorithm 4. On successfully sending the request to spawnd, the originating client is added to the
receive queue, where it will be popped from and responded to when spawnd sends the matching
reply. States with outwards-pointing arrows are final.

Figure 6.3: A spawn request. Time flows from top to bottom. Client a running on core 0 asks to
spawn program ”b” on the same core. The process manager (proc mgmt.0) allocates an identifying
capability for the new domain b.0 and it instructs spawnd.0 to run program ”b” in that domain.
When spawnd.0 replies with a success message, proc mgmt.0 sets the domain state of b.0 to
RUNNING, before responding back to a.0. Time slices during which the dispatchers are blocked
are marked in gray. Owing to asynchronous message-passing, the process manager does not need
to wait while spawnd finishes running the new domain.
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Figure 6.4: A span request. Time flows from top to bottom. Client b.0 asks to run a dispatcher
on core 1. The process manager checks the client’s domain state. If the state were not RUNNING,
proc mgmt.0 would stop immediately and respond with an error. Since b’s state is RUNNING, its
request is forwarded to spawnd.1, which runs the new dispatcher and replies back to the process
manager. The latter then updates the set of cores which b is running on and informs b.0 the
spanning was successful. Time slices during which the dispatchers are blocked are marked in gray.

Figure 6.5: A kill request. Time flows from top to bottom. Client a.0 shows proc mgmt.0 the
identifying capability for b, asking that it be stopped. The process manager marks the pending
stop for b, so that it will not be able to span any more dispatchers. An asynchronous kill request
is then sent to each of the two cores running dispatchers for b. When both spawnd servers confirm
that they have removed their dispatcher, proc mgmt.0 marks b as STOPPED, informs the client
and all waiters of the successful kill and starts cleaning up. An asynchronous cleanup request is
hence sent to each spawnd. When both requests have been replied to, b is marked as CLEANED.
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Chapter 7

Experiments

Performance of the process management subsystem was tested by comparing empirical run times
with queuing theory models. This chapter describes what was measured and why measuring it
was important. It then presents the strategy behind building theoretical models used to predict
what the measurements should be. The objective is to analyze how the system handles multiple
client connections, as well as how much overhead the process manager service adds to spawning
operations.

7.1 Experimental setup

Experiments were run on the rack-mounted x86 machines in the Systems Group at ETH Zürich.
The machine used for the most part was Babybel1, which has 20 hyperthreading-enabled Intel R©
Xeon R© CPU E5-2670 v2 cores at 2.50 GHz and 256 GB of RAM. It is connected to Infiniband
and 10 Gigabit Ethernet.

Throughout all tests, the process management server was run on core 0. The spawnd backend
was run on all cores, however only cores 0 and 7 were targeted with requests. The client domains
ran on core 3.

Deploying Barrelfish to the rack machines and benchmarking were achieved using Harness[16].

7.2 Measuring response time

The first question we sought to provide an answer to by means of benchmarking was how long
does it take to spawn a domain? To this end, the round-trip response time of spawn requests was
measured on the client side. A Harness test launched from 1 to 5 client domains on core 3 and
connected them to the process manager on core 0. The clients sent a total of 150 requests of type
spawn on core X, where X was either 0 or 7 for different runs.

The domains spawned following client requests exited execution as soon as they entered the
main function, performing no operations. Instrumentation was achieved through the bench library
implemented in lib/bench/bench.c. The test can be found under usr/tests/proc mgmt test

and the Harness script is tools/harness/tests/proc mgmt test.py.
Among all process management API calls, rpc spawn was chosen for instrumenting due to its

complexity in terms of steps performed. Killing and cleaning up could potentially be more complex
in sophisticated setups due to revoking the DCB and rootcn capabilities, operations which can
expand system-wide. However, in order to kill and clean up domains it is necessary to spawn them
in the first place, hence the experiment design.

7.2.1 Spawning on core 0

For the first experiment, the clients running on core 3 spawned domains on core 0. This meant
that the process manager, the spawnd server doing all the spawning work and the newly created
domains all ran on the same core. Most system services are also offered on core 0, e.g. the memory
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and ramfsd servers. Therefore, the expectation was that spawning on core 0 would be hindered
by all system services’ competing for scheduling. Average response time, standard deviation and
coefficient of variation measured for this experiment are given in Table 7.1. The values are also
illustrated in Figure 7.1.

The response time varied from 231 ms when there was only 1 client in the system to 1300
ms when there were 5. However, the coefficient of variation calculated as stdev

mean decreased with
the number of clients. In terms of response time, the difference between two successive cases is
greater than the base 1 client case, which can be explained from the perspective of two factors.
Firstly, the more clients core 3 runs, the smaller the fraction of time every one of them is allocated
becomes. Secondly, the clients communicated with the process manager via UMP, which relies on
cache coherence to send messages. It is hence possible that delivering a message to one client could
impact another’s optimal cache layout.

Load 1 client 2 clients 3 clients 4 clients 5 clients

Average response
time (µs)

231,266.500 471,773.125 740,489.188 1,012,757.875 1,300,052.250

Standard deviation 36,040.464 56,870.260 81,281.411 106,100.757 113,415.016

Coefficient of varia-
tion

0.156 0.121 0.110 0.105 0.087

Table 7.1: Average response time and standard deviation in microseconds, as well as coefficient of
variation for up to 6 clients spawning domains on core 0. All values are rounded to three decimal
places.

Figure 7.1: Average response time and standard deviation (in milliseconds) for 1 to 5 clients
spawning domains on core 0.

7.2.2 Spawning on core 7

The second experiment had clients spawn domains on core 7. The aim was to compare the per-
formance of spawning on the bsp core to that achieved when spawning on an app core. On one
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hand, spawning on an app core means that communication between the targeted spawnd and other
servers, e.g. the process manager and the memory server, is done through UMP rather than LMP,
which might hint at worse performance. On the other hand, targeting a spawnd on an app core
might lead to lower response times due to its not competing for scheduling with all the system
services provided on core 0.

Results for this experiment are given in Table 7.2 and illustrated in Figure 7.2. The conclusion
is that both hypotheses were true to some degree. Mean response times were approximately 1.2
to 1.4 times lower than when spawning on core 0, however the system was more unstable as the
standard deviation to mean ratios were considerably higher. The speedup can be attributed to the
activity of spawnd.7 being more seamless due to the domain’s not competing for CPU time with
the process manager and the memory server. The drop in stability can be blamed on switching over
to UMP as the interconnect driver used by spawnd.7 to exchange messages and ask for resources.

Load 1 client 2 clients 3 clients 4 clients 5 clients

Average response
time (µs)

170,941.453 382,508.219 586,136.563 780,862.250 936,249.625

Standard deviation 71,615.853 162,426.578 237,445.443 138,870.097 178,352.671

Coefficient of varia-
tion

0.419 0.425 0.405 0.178 0.190

Relative average
speedup

1.353 1.233 1.263 1.297 1.389

Table 7.2: Average response time and standard deviation in microseconds, as well as coefficient of
variation for up to 6 clients spawning domains on core 7. Relative speedup is given compared to
the average response time recorded in Table 7.1. All values are rounded to three decimal places.

Figure 7.2: Average response time and standard deviation (in milliseconds) for 1 to 5 clients
spawning domains on core 7.

Lastly, Figure 7.3 below depicts the comparison between the response times measured when
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Figure 7.3: Comparison between response times measured when spawning on core 0 and core 7.

spawning on core 0 and core 7.

7.3 System as a network of queues

Although we have discussed the relative performance of spawning on two different cores, there
has so far been no indication of how good or poor the response times were in absolute terms.
We also do not know how strongly the process management middleware impacted these values.
In order to tackle these problems, we present an approach at modeling the system by means of
queuing theory. Queuing theory is useful for analyzing how systems behave under stress and can
be conveniently applied to the event-oriented message-passing infrastructure in Barrelfish. The
process management as-a-service implementation and the request queues described in the previous
chapter further render the system suitable to be modeled using queuing theory. This section
therefore aims at accomplishing two objectives:

1. Assessing how much of the response time of a spawn RPC is spent in the process management
server;

2. Providing theoretical estimates for the performance of the whole process management sub-
system.

7.3.1 The model

All valid domain-related requests arrive at spawnd through the process manager and all responses
travel back to clients through the process manager. Consequently, the process management sub-
system can be thought of as a linear queuing network of three nodes. The first node maps to
the validation and preprocessing done by the process manager, such as checking the domain ca-
pability and state. From there, clients queue up to be served by the second node, the spawnd
backend. When the latter’s job is done, clients move forward to the third node, which corresponds
to the process manager’s postprocessing and resolving of where to send the reply. The network is
illustrated in Figure 7.4.
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Figure 7.4: The basic process management queuing network. Clients enter the system through
the queue for the first process manager node and must proceed though all queues in succession.
Leaving the system means being served by the second process manager node.

7.3.2 Microbenchmarking

Analyzing the network of queues required knowledge of base service rates for every node. To this
extent, the process manager and spawnd servers were instrumented to also collect statistics from
the experiments described in section 7.2. The initial case of a single client spawning domains was
used to determine base service time for the network’s nodes, which are presented in Table 7.3
alongside the resulting service rates (calculated as µ = 1

ts
, where µ is the service rate and ts is the

service time). The first insight is that the process management nodes serve clients tremendously
faster – the front and back nodes put together are about 3000 times faster than the spawnd node.
This result is intuitive, as spawning a domain is considerably more complex than the routing
and bookkeeping jobs of the process manager. The spawnd backend scored a throughput of only
approximately 15.3 queries per second, which strongly suggests spawnd is the bottleneck of the
process management subsystem performance-wise.

Node Average service time Service rate

proc mgmt front 1.014039 µs 986,155.364833 q/s

spawnd.0 65,323.699219 µs 15.308379837 q/s

proc mgmt back 20.545126 µs 48,673.3447145 q/s

Table 7.3: Average service time and resulting service rates for the network nodes, using requests
of type spawn on core 0. Time is measured in microseconds. Service rates are measured in queries
per second.

The same microbenchmarking technique was applied to the experiment targeting the app core.
Data collected by the process manager and spawnd servers showed the first process management
node and the spawnd node to be 2.72 and 1.12 times slower than their first experiment counterparts.
In the case of spawnd, the slight increase in service time could be due to the fact that core 7
exchanges messages through UMP instead of LMP. All capability transfers are slower through
UMP, since the capabilities travel through the monitors on both cores. As for the process manager
front node, while the relative increase in service time seems high, the absolute difference is only
about 1.75 µs, which can be attributed to arbitrary noise in the system. A similar argument
can be made for the process manager back node, which measured a 242% speedup, but was only
absolutely faster by 12 µs. Service rates are presented in Table 7.4.
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Node Average service time Service rate

proc mgmt front 2.762133 µs 362,039.047359 q/s

spawnd.7 73,448.007812 µs 13.6150731625 q/s

proc mgmt back 8.476534 µs 117,972.74688 q/s

Table 7.4: Average service time and resulting service rates for the network nodes, using requests
of type spawn on core 7. Time is measured in microseconds. Service rates are measured in queries
per second.

7.3.3 Mean value analysis

The results obtained from microbenchmarking were fed into an implementation of the mean value
algorithm (MVA)[17][18][19]. The algorithm uses base service rates of the network’s nodes to
estimate performance in terms of queue lengths and waiting times when there are multiple clients
in the system.

Table 7.5 presents the waiting time at every node and resulting queue lengths when there is
only 1 client in the system spawning domains on core 0. For this base case, every node’s waiting
time is equal to its service time. For every node k , the length of its queue is given by vk ·Wk · λ,
where vk is the node’s visit ratio (vk = 1 since the network is linear), Wk is its waiting time and
λ is the system throughput. For a given number of clients m, the throughput is calculated using
Little’s law[20] as λ = m∑

k vk ·Wk
.

Node Waiting time Queue length

proc mgmt front 1.014039 µs 1.551817 ·10−5

spawnd.0 65,323.699219 µs 0.999670

proc mgmt back 20.545126 µs 0.000314

Table 7.5: Waiting time and queue lengths for every node, as calculated by the MVA algorithm.
Values are based on microbenchmarking with 1 client spawning domains on core 0. The waiting
time is the same as the service time in Table 7.3. Queue lengths mark how saturated the nodes
are, i.e. clients need to queue up for a node when its queue length hits 1. Additionally, for a
single-client case, queue lengths add up to 1, suggesting how large of a fraction of the overall
response time every node is responsible for.

Running further iterations of the MVA algorithm produced estimates of the system response
time if multiple clients connected simultaneously. Table 7.6 lists values for 1 up to 6 clients. The
response time in the base n = 1 client case is equal to the sum of all nodes’ service times. The
difference between n + 1 and n clients amounts to the service time of the spawnd node, as it is the
slowest in the network.

Load 1 client 2 clients 3 clients 4 clients 5 clients 6 clients

Response
time (µs)

65,345.258 130,647.412 195,971.098 261,294.797 326,618.496 391,942.195

Table 7.6: System response time predictions for 1 to 6 clients, according to MVA based on the
data in Table 7.5. All values are in microseconds and are rounded to three decimal places.

Glancing at the numbers in Table 7.6 reveals that they are considerably lower than the actual
measured values given in Table 7.1. One explanation is that model devised so far only takes into
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account the work done by spawnd and the process manager in function calls which implement the
spawn API call. Consequently, the model fails to encompass a few items, such as:

• other domains being scheduled into execution on the bsp core, most notably the monitor and
memory server;

• the time needed by the interconnect driver to deliver messages between dispatchers (UMP
to and from clients, LMP between the process manager and spawnd);

• the fact that domains spawned as part of the experiment exit execution as soon as they
enter main, meaning they trigger kill and cleanup calls back and forth between the process
manager and spawnd.

To correct for these shortcomings, a second version of the queuing model was designed to include
an extra black box node representing all the work undetectable by the instrumented code. The base
service time of the additional node was set to the difference between the response time measured by
the client and the total service time of the other three nodes, equaling to approximately 165921.242
µs. The first iteration of the MVA algorithm on the revised network produced the values listed in
Table 7.7.

Node Waiting time Queue length

proc mgmt front 1.014039 µs 4.384721 ·10−6

spawnd.0 65,323.699219 µs 0.282461

proc mgmt back 20.545126 µs 8.883745 ·10−5

black box 165,921.241616 µs 0.717446

Table 7.7: Waiting time and queue lengths for the extended network. Values are based on mi-
crobenchmarking with 1 client spawning domains on core 0, with the service time for the black
box node calculated as the difference between the response time measured by the client and the
sum of the other nodes’ service time.

Adding the extra node reduced the queue length of spawnd from 0.999670 to 0.282461. Con-
sequently, while spawnd still accounted for roughly 28% of the total response time, it is clear that
more time is spent in the intrinsic corners of the system. Proceeding with the additional iterations
of the MVA algorithm resulted in the system response time estimates presented in Table 7.8. It is
apparent that the extended model predicts values closer to the ones measured in section 7.2.

Load 1 client 2 clients 3 clients 4 clients 5 clients 6 clients

Response
time (µs)

231,266.500 368,757.423 517,381.666 673,592.673 834,410.358 997,784.072

Table 7.8: System response time predictions for 1 to 6 clients, according to MVA based on the
extended queuing network. All values are in microseconds and are rounded to three decimal places.

Together, the MVA values shown in Table 7.6 and Table 7.8 give two upper bounds on the
performance of the system when spawning domains on core 0. The first bound is looser and can
be interpreted as giving the performance of spawning a domain according only to spawnd and the
process manager’s service implementation code. The second one is tighter, since it also tries to
predict the work done by the operating system under the hood. Figure 7.5 illustrates the two
bounds together with the empirical values measured in section 7.2.
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Figure 7.5: Comparison between measured response time and MVA-predicted values for spawning
on core 0. The blue and green dots are connected by lines to highlight the bounds.

The same modeling steps were applied to the experiment involving spawning on core 7. Table 7.9
shows the waiting time and queue lengths for the three nodes of the original queuing network, based
on the microbenchmarking results presented in Table 7.4. Furthermore, Table 7.10 lists response
times estimated by further MVA iterations.

Node Waiting time Queue length

proc mgmt front 2.762133 µs 3.760088 ·10−5

spawnd.7 73,448.007812 µs 0.999847

proc mgmt back 8.476534 µs 0.000115

Table 7.9: Waiting time and queue lengths for every node, as calculated by the MVA algorithm.
Values are based on microbenchmarking with 1 client spawning domains on core 7. The waiting
time is the same as service time in Table 7.4

Load 1 client 2 clients 3 clients 4 clients 5 clients 6 clients

Response
time (µs)

73,459.246 146,896.018 220,344.023 293,792.031 367,240.039 440,688.040

Table 7.10: System response time predictions for 1 to 6 clients, according to MVA based on the
data in Table 7.9. All values are in microseconds and are rounded to three decimal places.

Since once again the 3-node queuing model seemed to overestimate the previously calculated
system response times, the additional black box node accounting for the difference was added.
Updated queue lengths for the 4-node model are given in Table 7.11. This time, spawnd accounts
for slightly less than 42% of the system response time, which is more than when spawning on core
0. The black box node is responsible for 53% of the response time, down from 71.7% in the core
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0 experiment. These observations suggest a few conclusions paramount to the implementation of
the process management subsystem:

• the actual spawning work done by spawnd takes longer on app cores – potentially because
spawnd needs to transfer capabilities via UMP instead of LMP;

• the overall spawn domain RPC is faster on app cores, implying that messages might be
delivered faster on average owing to scheduling: spawnd does not compete with the process
manager, the memory and ramfsd servers etc;

• although faster on average, spawning on app cores is also more unstable compared to the bsp
core; this is likely also due to communicating through UMP, which relies on memory to send
messages.

Using this data, response time predictions for 1 to 6 clients were again computed using MVA
and are shown in Table 7.12. Finally, a graphical comparison of the MVA-generated bounds and
measured response time is illustrated in Figure 7.6.

Node Waiting time Queue length

proc mgmt front 1.014039 µs 1.615836 ·10−5

spawnd.0 65,323.699219 µs 0.429668

proc mgmt back 20.545126 µs 4.958735 ·10−5

black box 97,482.206646 µs 0.570267

Table 7.11: Waiting time and queue lengths for the extended queuing network based on the app
core experiment.

Figure 7.6: Comparison between measured response time and MVA-predicted values for spawning
on core 7. The blue and green dots are connected by lines to highlight the bounds.
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Load 1 client 2 clients 3 clients 4 clients 5 clients 6 clients

Response
time (µs)

231,266.500 368,757.423 517,381.666 673,592.673 834,410.358 997,784.072

Table 7.12: System response time predictions for 1 to 6 clients, according to MVA based on the
extended queuing network for the app core experiment. All values are in microseconds and are
rounded to three decimal places.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

To conclude, we reiterate through the main research objectives, stating brief answers to the ques-
tions presented in chapter 1:

• What is a process? The closest equivalent to a UNIX process is a dispatcher; however,
Barrelfish features an additional layer of abstraction on top of dispatchers: domains. A
domain is set of dispatchers uniquely identified by a domain capability, which share the same
vspace and have the purpose of running a single program using one or more cores. Every
domain has at least one dispatcher, the main one; conversely, every dispatcher belongs to
exactly one domain.

• What can a process do? A domain exists to run the program which the main dispatcher
was created for. Among a domain’s dispatchers, the main one executes the program code,
while subsequent ones exist to grant it access to other cores’ resources by leveraging on
their shared virtual address space. Another way to answer this question is: a domain can
perform any action for which it is authorized by a capability held by one of its dispatchers.
From the process management perspective, such actions include adding spanning to a new
core, spawning new domains, killing or waiting for domains for which a domain capability is
referable and requesting to exit execution.

• What actions can be performed on a process and who can perform them? Firstly,
a domain can be spawned by another domain with a client connection to the process manager
– which is how domains come into existence. Once running, a domain can be killed or waited
on by any other domain that holds its identifying capability. Once killed, all of the domain’s
dispatchers are removed from the run queues of all cores and the capabilities held by the
dispatchers are released. If a domain is waited on however, its course will not be impacted.

• What is the life cycle of a process? The life cycle is presented in chapter 4 and features
five distinct states: nil, run, stop pending, stop and cleanup. The first three states exist both
globally across the system and locally, projected on every core. Globally, state nil means
the domain has not been created yet, run means at least one core is running a dispatcher for
the domain and stop pending means that an authoritative entity has requested the domain
be killed. Locally for a fixed core, nil means the core has no knowledge of the domain, run
means the core is running a dispatcher for the domain, while stop pending means the core
has removed its local dispatcher from the run queue. Finally, state stop means all cores have
removed their dispatchers for the domain from their run queues and state cleanup means
that the domain’s capabilities have also been released from all cores.

• Can a process subsystem benefit from the TTY subsystem? In its current iteration,
the process management system is not tied to the TTY subsystem in Barrelfish. One question
that was investigated while the system was being designed is whether Angler-created sessions
should be used to control for which domains are allowed to kill other domains. In the end, the
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path taken was that of using identifying domain capabilities to validate all domain operations,
as it offered more granular control. However, a potential direction for merging the process
management and TTY subsystems consists in assigning one process manager instance per
session. If this were the case, the process manager could share the identifying capabilities of
all the domains it controlled with all its clients, as they all belonged to the same user session.
The result would be functionality similar to the session-based process control in UNIX.

The questions stated above were first approached by devising a domain model. The model
aggregated the state of each of the domain’s dispatchers into one domain state machine. Pre- and
post-conditions were formally validated for every state using TLA+ and the TLC model checker.

Based on the formal model, we presented a process management subsystem for Barrelfish. The
system was designed as a service. The main advantages of such a solution include providing a
trusted authority for keeping track of domain state, validating domain operations and ensuring
killing and cleanup. Furthermore, the process manager was designed as a gateway between clients
and spawnd, allowing the latter to be privately registered with it instead of publicly available
through the nameserver.

Although concealing spawnd from clients offered more control over domain-related operations,
it also generated a need for authenticating spawnd and the process manager. To this end, an
authentication protocol was designed to formally guarantee that the two parties believe they are
talking to each other, with the help of the monitor. The protocol was reinforced against brute-
force discovery of spawnd irefs by having the process manager enclose a special capability with its
requests to facilitate validation.

Domains created through the process manager were marked with a special domain capability,
which served to account for their state and validate subsequent message exchanges they partake
in. To ensure the domain capability’s uniqueness and authenticity, creating it was only allowed
by retyping from the process manager capability itself. Instead of performing a retype operation
every time a new domain is created, the process manager preallocated an L2 cnode and filled
it with domain capabilities to amortize complexity, similarly to the slab and slot reallocation
techniques. Moreover, to ease identification and lookup, spawnd and the process manager stored
domain capabilities in a hashtable under keys computed using an injective function.

Saturating the process manager’s TX buffer for spawnd bindings was avoided by adding out-
going requests to higher-level queues instead of attempting to send them straight away. Requests
were dequeued and sent to spawnd in an event-based manner. For every send queue, the pro-
cess manager held a receive queue where it stored clients to respond to on receiving replies from
spawnd. The correlation between the send and receive queues was based on the guarantee provided
by Barrelfish that messages are transmitted in a FIFO manner and proven correct mathematically.

Finally, the system’s performance was measured in terms of response time for spawn requests.
Values obtained when spawning on the bsp core were compared to those measured when spawning
on an app core. Results determined experimentally were compared against theoretical models
computed using queuing theory and mean value analysis, generating two upper bounds on the
system’s performance. The insight drawn consisted of the following:

• the process management middleware is about three orders of magnitude faster than the
spawnd backend;

• the spawnd backend has higher service time on an app core than on the bsp core, resulting
in approximately 43% of the total response time compared to 28%;

• the overall spawn RPCs completed faster on average when spawning on the app core, however
their completion times varied consistently more.

8.2 Future work

This section lists the shortcomings of the process management subsystem in its current form, as
well as techniques for addressing them in the future.

Firstly, a general vector for improvement amounts to distributing the process management
system to multiple cores, matter on which a discussion was made in chapter 5. The distribution
strategy could be linked to the TTY subsystem in Barrelfish, as mentioned in the previous section.
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A second design detail to consider is that the process manager does not currently recycle
identifying capabilities once the designated domains have been stopped and cleaned up after.
Domain entries persist in the process manager’s address space holding the list of cores the domain
was run on. In the future, it might be desirable that domain capabilities include a time-to-live
field so that they can be reused and the domain entries freed.

8.2.1 Flaws in the process management interface

Spawn requests do not require domain capabilities. The motivation was to keep the spawn API call
compatible with domains that were not created by the process manager (e.g. started by the monitor
before the process manager). However, this implies that a malicious domain can keep spawning
other domains even after an authorized kill request has been received for it. This problem could
be circumvented by having the monitor create identifying capabilities for itself and the domains it
spawns before the process manager.

Another problem in the process management interface is that the exit message expects the
domain capability of the sender so that the process manager can know which domain to stop.
However, a requesting domain could pass in the identifying capability for another domain instead.
The effect would be that of a kill call, but with a custom exit status provided by the requester. In
order to avoid this, instead of expecting a domain capability, the process manager should resolve
the identity of domains issuing exit messages. The resolution could be performed using the process
management client binding, which could be mapped to the domain capability when the client
establishes a connection.

8.2.2 Rights for revoking and invoking capabilities

Since domains hold references to their own identifying capability, a malicious domain could prevent
others from killing it by calling cap revoke on their own capref. What would happen is that all
other copies of the rogue domain’s identifying capability would be deleted from the system, thereby
the process manager would have no means of requesting that spawnd dequeue the domain’s DCB.
A potential solution is to introduce a new is revokable capability right which would be set to 0 for
all domain capabilities created by the process manager.

Lastly, dispatchers are added to a core’s run queue by invoking the DCB capability, which
is currently done by spawnd. The process management system assumes that spanning happens
strictly under the supervision of the process manager and spawnd, however there currently is no
explicit way to enforce that only spawnd can invoke DCBs. One consequence is that a malicious
domain a running on core X could bypass the process manager and spawnd to add a dispatcher
to core Y , if it had an accomplice b on core Y . Together, a and b could set up a new DCB for a
and have b invoke it, thus adding it to the run queue on core Y . This scenario could be prevented
by implementing extra checks for cap invoke on DCBs, such as requiring an additional capability
that only spawnd possesses.
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Appendix A

TLA+ Specification for the
Formal Process Model

The specification starts with the PlusCal code implementing the algorithm 1 and algorithm 2 given
in chapter 4.

The first part of the code declares the variables:
module SpanStopCleanup

extends Integers, Sequences, TLC
constant N
assume (N ∈ Nat) ∧ (N > 0)

--algorithm ProcSpec{
ProcSpec uses one manager process and N worker processes to simulate N cores

running concurrently in the system, responding to external messages.

For a simplified single-core scenario, set N ← 1 in the TLC model checker.

variables st is the state array for each of the worker processes.

It has N elements, one for worker/worker. Initially set

to ”nil” for the starting state, the values any state element can take are

”nil”, ”run”, ”stop pend”, ”stop”, ”cleanup”.

st = [i ∈ 1 . . N 7→ “nil”],
dcb rq is a boolean mapping from every worker instance, where

dcb rq[inst] = 1 if that instance’s DCB is in the run queue and 0 otherwise.

dcb rq = [i ∈ 1 . . N 7→ 0],
res is a boolean mapping from every worker instance, where res[inst] = 1

if that instance still uses resources (e.g. memory) and 0 otherwise.

res = [i ∈ 1 . . N 7→ 0],
turn denotes who acts next, initially set to 0 for manager; subsequently,

worker[i] will act when turn = i, for i ¿ 0.

turn = 0,
old st denotes the state the machine transitions FROM in every iteration

of the simulation.

old st = [i ∈ 1 . . N 7→ “nil”],
msg in is the incoming message, i.e. what caused this state transition.

It is initially set to ”nil”, corresponding to the initial ”nil” state of

the machine.

msg in = [i ∈ 1 . . N 7→ “nil”],
msg out is the outgoing message, i.e. what the worker instance replies

to the manager (the entity sending it messages).

msg out = [i ∈ 1 . . N 7→ “nil”],
last proc identifies the last process which actioned on a message.
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last proc = 0,
domain state identifies the global state of the single domain,

aggregated from the individual state of all the dispatchers.

domain state = “nil” ;

The manager process is then defined. This is what the process management server implemen-
tation is based on.

Simulates the manager, sending messages to all worker instances and tracking the

global domain state by aggregating individual spanwd instance (dispatcher) states.

process ( Manager = 0 ) {
mon : while ( true ) {

await turn = 0 ;

with ( proc ∈ 1 . . N ) {
if ( msg out [proc] = “nil” ∨msg out [proc] = “run” ) {

Process is either in state ”nil”, or ”run” =¿ send ”span” and ”stop”.

”span” should cause it to transition to ”run”, while ”stop” should

cause it to transition to ”stop pend”.

with ( action ∈ {“span”, “stop”} ) {
msg in[proc] := action ;
}

} else if ( msg out [proc] = “stop pend” ) {
Process is in state ”stop pend”.

if ( ∀ i ∈ 1 . . N : msg out [i ] = “stop pend” ∨msg out [i ] = “stop” ) {
All processes have received the ”stop” message =¿ proceed with

global transition to ”stop”.

msg in[proc] := “allstop” ;
}

} else if ( msg out [proc] = “stop” ) {
if ( ∀ i ∈ 1 . . N : msg out [i ] = “stop” ∨msg out [i ] = “cleanup” ) {

Send ”cleanup” message”.

msg in[proc] := “free res” ;
}

}
} ;

if ( ∀ proc ∈ 1 . . N : msg out [proc] = “nil” ∨msg out [proc] = “run” ) {
All dispatchers are either in state ”nil” or ”run”. Note that the

initial domain state value is ”nil”.

if ( ∃ proc ∈ 1 . . N : msg out [proc] = “run” ) {
Some dispatcher is running, hence the domain is running.

domain state := “run” ;
}

} else {
if ( ∀ proc ∈ 1 . . N : msg out [proc] = “cleanup” ) {

All dispatchers have performed cleanup.

domain state := “cleanup” ;
} else if ( ∃ proc ∈ 1 . . N : msg out [proc] = “stop” ) {

Cleanup has not been performed yet, but all workers have stopped

running their local dispatcher.

domain state := “stop” ;
} else {

Stopping the domain has been initiated, but not all workers have

stopped their local dispatcher.

domain state := “stop pend” ;
}
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} ;

last proc := 0 ;
turn := 1 ;
}

} ;

The worker process then follows, modeling the spawnd backend:

Simulates a worker instance, acting on messages from the manager.

process ( Worker ∈ 1 . . N ) {
spn : while ( true ) {

await turn = self ;

old st [self ] := st [self ] ;

if ( msg in[self ] = “span” ) {
Received ”span” message.

if ( st [self ] = “nil” ∨ st [self ] = “run” ) {
Only action on it if current state is ”nil” or ”run”.

st [self ] := “run” ;
dcb rq [self ] := 1 ;
res[self ] := 1 ;
msg out [self ] := “run” ;
}

} else if ( msg in[self ] = “stop” ) {
Received ”stop” message.

if ( st [self ] = “nil” ∨ st [self ] = “run” ) {
Only action on it if current state is ”nil” or ”run”.

st [self ] := “stop pend” ;
dcb rq [self ] := 0 ;
msg out [self ] := “stop pend” ;
}

} else if ( msg in[self ] = “allstop” ) {
Received ”allstop” message.

if ( st [self ] = “stop pend” ) {
Transition to ”stop” if current state is still ”stop pend”.

st [self ] := “stop” ;
msg out [self ] := “stop” ;
}

} else if ( msg in[self ] = “free res” ) {
Received ”cleanup” message.

if ( st [self ] = “stop” ) {
Free resources if current state is ”stop”.

st [self ] := “cleanup” ;
res[self ] := 0 ;
msg out [self ] := “cleanup” ;
}

} ;

last proc := self ;
turn := (self + 1)%(N + 1) ;
}

}
}

The PlusCal algorithm is translated into a TLA+ spec modeling the behavior of the manager
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and worker processes:

BEGIN TRANSLATION

variables st , dcb rq , res, turn, old st , msg in, msg out , last proc,
domain state

vars
∆
= 〈st , dcb rq , res, turn, old st , msg in, msg out , last proc,

domain state〉

ProcSet
∆
= {0} ∪ (1 . . N )

Init
∆
= Global variables

∧ st = [i ∈ 1 . . N 7→ “nil”]
∧ dcb rq = [i ∈ 1 . . N 7→ 0]
∧ res = [i ∈ 1 . . N 7→ 0]
∧ turn = 0
∧ old st = [i ∈ 1 . . N 7→ “nil”]
∧msg in = [i ∈ 1 . . N 7→ “nil”]
∧msg out = [i ∈ 1 . . N 7→ “nil”]
∧ last proc = 0
∧ domain state = “nil”

Manager
∆
= ∧ turn = 0

∧ ∃ proc ∈ 1 . . N :
if msg out [proc] = “nil” ∨msg out [proc] = “run”

then ∧ ∃ action ∈ {“span”, “stop”} :
msg in ′ = [msg in except ! [proc] = action]

else ∧ if msg out [proc] = “stop pend”
then ∧ if ∀ i ∈ 1 . . N : msg out [i ] = “stop pend” ∨msg out [i ] = “stop”

then ∧msg in ′ = [msg in except ! [proc] = “allstop”]
else ∧ true

∧ unchanged msg in
else ∧ if msg out [proc] = “stop”

then ∧ if ∀ i ∈ 1 . . N : msg out [i ] = “stop” ∨msg out [i ] = “cleanup”
then ∧msg in ′ = [msg in except ! [proc] = “free res”]
else ∧ true

∧ unchanged msg in
else ∧ true

∧ unchanged msg in
∧ if ∀ proc ∈ 1 . . N : msg out [proc] = “nil” ∨msg out [proc] = “run”

then ∧ if ∃ proc ∈ 1 . . N : msg out [proc] = “run”
then ∧ domain state ′ = “run”
else ∧ true

∧ unchanged domain state
else ∧ if ∀ proc ∈ 1 . . N : msg out [proc] = “cleanup”

then ∧ domain state ′ = “cleanup”
else ∧ if ∃ proc ∈ 1 . . N : msg out [proc] = “stop”

then ∧ domain state ′ = “stop”
else ∧ domain state ′ = “stop pend”

∧ last proc′ = 0
∧ turn ′ = 1
∧ unchanged 〈st , dcb rq , res, old st , msg out〉

Worker(self )
∆
= ∧ turn = self

∧ old st ′ = [old st except ! [self ] = st [self ]]
∧ if msg in[self ] = “span”

then ∧ if st [self ] = “nil” ∨ st [self ] = “run”
then ∧ st ′ = [st except ! [self ] = “run”]
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∧ dcb rq ′ = [dcb rq except ! [self ] = 1]
∧ res ′ = [res except ! [self ] = 1]
∧msg out ′ = [msg out except ! [self ] = “run”]

else ∧ true
∧ unchanged 〈st , dcb rq , res, msg out〉

else ∧ if msg in[self ] = “stop”
then ∧ if st [self ] = “nil” ∨ st [self ] = “run”

then ∧ st ′ = [st except ! [self ] = “stop pend”]
∧ dcb rq ′ = [dcb rq except ! [self ] = 0]
∧msg out ′ = [msg out except ! [self ] = “stop pend”]

else ∧ true
∧ unchanged 〈st , dcb rq ,

msg out〉
∧ res ′ = res

else ∧ if msg in[self ] = “allstop”
then ∧ if st [self ] = “stop pend”

then ∧ st ′ = [st except ! [self ] = “stop”]
∧msg out ′ = [msg out except ! [self ] = “stop”]

else ∧ true
∧ unchanged 〈st ,

msg out〉
∧ res ′ = res

else ∧ if msg in[self ] = “free res”
then ∧ if st [self ] = “stop”

then ∧ st ′ = [st except ! [self ] = “cleanup”]
∧ res ′ = [res except ! [self ] = 0]
∧msg out ′ = [msg out except ! [self ] = “cleanup”]

else ∧ true
∧ unchanged 〈st ,

res,
msg out〉

else ∧ true
∧ unchanged 〈st ,

res,
msg out〉

∧ unchanged dcb rq
∧ last proc′ = self
∧ turn ′ = (self + 1)%(N + 1)
∧ unchanged 〈msg in, domain state〉

Next
∆
= Manager

∨ (∃ self ∈ 1 . . N : Worker(self ))

Spec
∆
= Init ∧2[Next ]vars

END TRANSLATION

Invariants check the pre-and post-conditions of every state of the original domain state machine:

Invariants

1. Transitioning to state ”run” REQUIRES that the msg received be ”span”

and the previous state be ”nil” or ”run”.

RunReqsSpanMsgFromNilOrRun
∆
= last proc > 0 ∧ st [last proc] = “run”⇒

msg in[last proc] = “span” ∧ (old st [last proc] = “nil”
∨ old st [last proc] = “run”)

RunReqsHappens
∆
= last proc > 0 ∧ st [last proc] = “run”⇒ false
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2. If a process is in state ”run”, then its DCB is in the run queue.

In other words, state ”run” ENSURES that the local DCB is in the run queue.

RunEnsDcbEnq
∆
= last proc > 0 ∧ st [last proc] = “run”⇒ dcb rq [last proc] = 1

3. Transitioning to state ”stop pend” REQUIRES that the msg received be ”stop”.

StopPendReqsStopMsg
∆
= last proc > 0 ∧ st [last proc] = “stop pend”⇒

msg in[last proc] = “stop”
StopPendingReqsHappens

∆
= last proc > 0 ∧ st [last proc] = “stop pend”⇒ false

4. If a process is in state ”stop pend”, then its DCB is not on the run queue.

In other words, state ”stop pend” ENSURES that the local DCB is NOT on the run queue.

StopPendEnsDcbDeq
∆
= last proc > 0 ∧ st [last proc] = “stop pend”⇒ dcb rq [last proc] = 0

5. State ”stop” REQUIRES that no process be in ”nil” or ”run”..

StopReqsAllInStopPendOrStop
∆
= (∃ p ∈ 1 . . N : st [p] = “stop”)⇒

(∀ p ∈ 1 . . N : ¬(st [p] = “nil” ∨ st [p] = “run”))
StopReqsHappens

∆
= (∃ p ∈ 1 . . N : st [p] = “stop”)⇒ false

6. State ”stop” ENSURES that all DCBs have been removed from their processes’ run queues.

StopEnsAllDcbsDeqd
∆
= (∃ p ∈ 1 . . N : st [p] = “stop”)⇒ (∀ p ∈ 1 . . N : dcb rq [p] = 0)

7. State ”nil” REQUIRES that no domain-related messages have been received.

NilReqsNoMsg
∆
= last proc > 0 ∧ st [last proc] = “nil”⇒ msg in[last proc] = “nil”

NilReqsNoMsgHappens
∆
= last proc > 0 ∧ st [last proc] = “nil”⇒ false

8. State ”nil” ENSURES that there is no DCB in the run queue.

NilEnsNoDcb
∆
= last proc > 0 ∧ st [last proc] = “nil”⇒ dcb rq [last proc] = 0

9. State ”cleanup” REQUIRES all worker instances transitioning from state ”stop”.

CleanupReqsTransFromStop
∆
= (∃ p ∈ 1 . . N : st [p] = “cleanup”)⇒

(∀ p ∈ 1 . . N : st [p] = “cleanup” ∨ st [p] = “stop”)
CleanupReqsHappens

∆
= (∃ p ∈ 1 . . N : st [p] = “cleanup”)⇒ false

10. State ”cleanup” ENSURES all domain resources have been freed.

CleanupEnsNoRes
∆
= (∀ p ∈ 1 . . N : st [p] = “cleanup”)⇒ (∀ p ∈ 1 . . N : res[p] = 0)

11. Domain state ”nil” is equivalent to all dispatcher states being ”nil”.

DomainStateNil
∆
= last proc = 0⇒

(domain state = “nil”⇒ (∀ p ∈ 1 . . N : st [p] = “nil”))
∧ ((∀ p ∈ 1 . . N : st [p] = “nil”)⇒ domain state = “nil”)

12. Domain state ”run” is equivalent to at least one dispatcher state being ”nil”

and all other dispatcher states being either ”nil” or ”run”.

DomainStateRun
∆
= last proc = 0⇒

(domain state = “run”⇒
((∃ p ∈ 1 . . N : st [p] = “run”) ∧ (∀ p ∈ 1 . . N : st [p] = “nil” ∨ st [p] = “run”)))
∧ (((∃ p ∈ 1 . . N : st [p] = “run”) ∧ (∀ p ∈ 1 . . N : st [p] = “nil” ∨ st [p] = “run”))⇒
domain state = “run”)

13. Domain state ”stop pend” is equivalent to at least one dispatcher being in state

”stop pend”, but no dispatcher being in state ”stop”.

DomainStateStopPend
∆
= last proc = 0⇒

(domain state = “stop pend”⇒
(∃ p ∈ 1 . . N : st [p] = “stop pend”) ∧ ¬(∃ p ∈ 1 . . N : st [p] = “stop”))
∧ ((∃ p ∈ 1 . . N : st [p] = “stop pend”) ∧ ¬(∃ p ∈ 1 . . N : st [p] = “stop”)⇒

domain state = “stop pend”)

14. Domain state ”stop” is equivalent to at least one dispatcher being in ”stop”.

DomainStateStop
∆
= last proc = 0⇒

(domain state = “stop”⇒ (∃ p ∈ 1 . . N : st [p] = “stop”))
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∧ ((∃ p ∈ 1 . . N : st [p] = “stop”)⇒ domain state = “stop”)

15. Domain state ”cleanup” is equivalent to all dispatchers being in state ”cleanup”.

DomainStateCleanup
∆
= last proc = 0⇒

(domain state = “cleanup”⇒ (∀ p ∈ 1 . . N : st [p] = “cleanup”))
∧ ((∀ p ∈ 1 . . N : st [p] = “cleanup”)⇒ domain state = “cleanup”)

Lastly, temporal properties model the necessity of the transition between the states nil and
stop pending in order to ensure that malicious domains cannot outrace the cleanup process.

Temporal properties

1. Given:

i) a domain D which is to be completely stopped and removed from the system,

ii) a worker instance W on some core where D has not run yet, which is informed

via a ”stop” message that D is to NEVER span on its worker,

the transition ”nil” -¿ ”stop pend” (through the ”stop” message) is mandatory to

ensuring that W will never allow D to span to its worker.

The property reads: if there is a ”stop” message eventually and there is never a local dispatcher,

then eventually the transition ”nil” -¿ ”stop pend” (via msg ”stop”) MUST happen.

MustHaveNilStopPend
∆
= ∀ p ∈ 1 . . N :

3¬(st [p] = “nil”) ∧2(dcb rq [p] = 0)⇒
3(old st [p] = “nil” ∧ st [p] = “stop pend” ∧msg in[p] = “stop”)

MustHaveNilStopPendHappens
∆
= ∀ p ∈ 1 . . N :

3¬(st [p] = “nil”) ∧2(dcb rq [p] = 0)⇒ false

NilStopPendIsSuff
∆
= ∀ p ∈ 1 . . N :

3(old st [p] = “nil” ∧ st [p] = “stop pend” ∧msg in[p] = “stop”)⇒
3¬(st [p] = “nil”) ∧2(dcb rq [p] = 0)

NilStopPendIsSuffHappens
∆
= ∀ p ∈ 1 . . N :

3(old st [p] = “nil” ∧ st [p] = “stop pend” ∧msg in[p] = “stop”)⇒ false

Modification History

Last modified Wed Aug 09 14:50:02 CEST 2017 by razvan

Last modified Mon May 22 13:22:06 CEST 2017 by damachir

Created Thu May 11 15:35:45 CEST 2017 by razvan
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Appendix B

Isabelle Implementation of the
BAN Logic Authentication Proof

Implementation of the BAN logic proof of the single-core process manager - spawnd
authentication protocol. For every principal, sets are used to implement:

• what messages it sees;

• what channels it believes it can use to communicate;

• what entities it believes control channels.

datatype princ =

ProcMngr

| Monitor

| Spawnd

An LMP or UMP channel.

type synonym chan = "char list"

Connection: a principal sending messages through a channel to another principal. In
classic BAN logic terms, this says that two principals can communicate through a public
or private key. In Barrelfish, keys are replaced by LMP or UMP channels.

Connections are the main belief held by principals in our BAN logic implementation.

type synonym conn = "princ * chan * princ"

A message (k, c) where c is the channel the message is received on and k is the enclosed
connection. For example, a message can read as: ”I received (P, c1, Q) on channel c2”,
that is ”I received that P can use channel c1 to send messages to Q, on channel c2.”

type synonym msg = "conn * chan"

A ”said” statement, e.g.: ”P said that (Q, c, P)”, that is ”P said that Q can send
messages to P through channel c”.

This is the second type of belief held by principals in our implementation.

type synonym said = "princ * conn"

A set of seen messages.

type synonym seen = "msg set"

A set of connections held as beliefs.

type synonym bel_conn = "conn set"
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A set of ”said” statements held as beliefs.

type synonym bel_said = "said set"

The message-meaning rule, in set formulation for a fixed principal. Given:

• a set of believed connections to this principal,

• a set of seen messages,

this function matches believed channels to those through which messages where re-
ceived, to deduce what the principals at the other end of the channels said.

definition msg_mean :: "bel_conn ⇒ seen ⇒ bel_said" where
"msg_mean Bc S = {(q2, k2). ∃ (q1, c1, p) ∈ Bc. ∃ (k1, c2) ∈ S.

q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

A set of connection beliefs held by other principals, e.g. I believe principal X holds
beliefs k1 and k2.

type synonym bel_other_bel = "(princ * conn) set"

The simplified nonce-verification rule, in set formulation. It reads: ”if we believe another
principal said X, then we believe that it believes X”.

definition nonce_ver :: "bel_said ⇒ bel_other_bel" where
"nonce_ver s_bel = s_bel"

The ”control” belief, e.g. (Q, (P, c, Q)) means that principal Q controls the connec-
tion(s) which P can use to communicate with Q .

type synonym controls = "princ * conn"

A set of control beliefs.

type synonym bel_ctrl = "controls set"

The jurisdiction deduction rule, in set formulation for a fixed principal. Given:

• the control beliefs of the principal, e.g. I believe that Q controls k,

• what the principal believes other principals believe, e.g. I believe that Q believes
k,

this function returns what this principal should believe based on other principals’ au-
thority and beliefs, e.g. I believe k.

definition jurisd :: "bel_ctrl ⇒ bel_other_bel ⇒ bel_conn" where
"jurisd Ctrl Bob = {k3. ∃ (q1, k1) ∈ Ctrl. ∃ (q2, k2) ∈ Bob.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

The authentication lemma, in set formulation.

lemma auth:

fixes p :: princ

and p_bel :: bel_conn

and p_bel_ctrl :: bel_ctrl

and p_seen :: seen

and s :: princ

and m :: princ

and m_bel :: bel_conn

and m_bel_ctrl :: bel_ctrl

and m_seen :: seen
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and c_pm :: chan

and c_mp :: chan

and c_sm :: chan

and c_ps :: chan

and m_nonce_ver :: bel_other_bel

and m_bel’ :: bel_conn

and p_nonce_ver :: bel_other_bel

and p_bel’ :: bel_conn

assumes i1: "(m, c_mp, p) ∈ p_bel"

and i2: "(p, c_pm, m) ∈ m_bel"

and i3: "(s, c_sm, m) ∈ m_bel"

and i4: "(m, (p, c_ps, s)) ∈ p_bel_ctrl"

and i5: "(s, (p, c_ps, s)) ∈ m_bel_ctrl"

and i6: "(p, (m, c_mp, p)) ∈ m_bel_ctrl"

and m1: "((m, c_mp, p), c_pm) ∈ m_seen"

and m2: "((p, c_ps, s), c_sm) ∈ m_seen"

and m3: "((p, c_ps, s), c_mp) ∈ p_seen"

and d1: "m_nonce_ver = nonce_ver(msg_mean m_bel m_seen)"

and d2: "m_bel’ = m_bel ∪ jurisd m_bel_ctrl m_nonce_ver"

and d3: "p_nonce_ver = nonce_ver(msg_mean p_bel p_seen)"

and d4: "p_bel’ = p_bel ∪ jurisd p_bel_ctrl p_nonce_ver"

shows "(p, c_ps, s) ∈ (m_bel’ ∩ p_bel’)"

proof -

1.1) M believes P said M
KPM→ P

have 1: "(p, (m, c_mp, p)) ∈ {(q2, k2). ∃ (q1, c1, p) ∈ m_bel.

∃ (k1, c2) ∈ m_seen.

q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

using i2 m1 by blast

have 2: "msg_mean m_bel m_seen = {(q2, k2). ∃ (q1, c1, p) ∈ m_bel.

∃ (k1, c2) ∈ m_seen.

q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

by(auto simp: msg_mean_def)

from 1 2 have 3: "(p, (m, c_mp, p)) ∈ msg_mean m_bel m_seen" by simp

1.2) M believes M
KPM→ P

hence 4: "(p, (m, c_mp, p)) ∈ m_nonce_ver" using d1 by(auto simp: nonce_ver_def)

hence 5: "(m, c_mp, p) ∈ {k3. ∃ (q1, k1) ∈ m_bel_ctrl.

∃ (q2, k2) ∈ m_nonce_ver.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

using i6 by auto

have 6: "jurisd m_bel_ctrl m_nonce_ver = {k3. ∃ (q1, k1) ∈ m_bel_ctrl.

∃ (q2, k2) ∈ m_nonce_ver.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

by(auto simp: jurisd_def)

from 5 6 have 7: "(m, c_mp, p) ∈ jurisd m_bel_ctrl m_nonce_ver" by simp

hence 8: "(m, c_mp, p) ∈ m_bel’" using d2 by simp

2.1) M believes S said P
KPS→ S

have 9: "(s, (p, c_ps, s)) ∈ {(q2, k2). ∃ (q1, c1, p) ∈ m_bel.

∃ (k1, c2) ∈ m_seen.
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q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

using i3 m2 by blast

from 9 2 have 10: "(s, (p, c_ps, s)) ∈ msg_mean m_bel m_seen" by simp

2.2) M believes P
KPS→ S

hence 11: "(s, (p, c_ps, s)) ∈ m_nonce_ver" using d1 by(auto simp: nonce_ver_def)

hence 12: "(p, c_ps, s) ∈ {k3. ∃ (q1, k1) ∈ m_bel_ctrl.

∃ (q2, k2) ∈ m_nonce_ver.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

using i5 by auto

from 12 6 have 13: "(p, c_ps, s) ∈ jurisd m_bel_ctrl m_nonce_ver" by simp

hence 14: "(p, c_ps, s) ∈ m_bel’" using d2 by simp

3.1) P believes M said P
KPS→ S

have 15: "(m, (p, c_ps, s)) ∈ {(q2, k2). ∃ (q1, c1, p) ∈ p_bel.

∃ (k1, c2) ∈ p_seen.

q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

using i1 m3 by blast

have 16: "msg_mean p_bel p_seen = {(q2, k2). ∃ (q1, c1, p) ∈ p_bel.

∃ (k1, c2) ∈ p_seen.

q1 = q2 ∧ k1 = k2 ∧ c1 = c2}"

by(auto simp: msg_mean_def)

from 15 16 have 17: "(m, (p, c_ps, s)) ∈ msg_mean p_bel p_seen" by simp

3.2) P believes P
KPS→ S

hence 18: "(m, (p, c_ps, s)) ∈ p_nonce_ver" using d3 by(auto simp: nonce_ver_def)

hence 19: "(p, c_ps, s) ∈ {k3. ∃ (q1, k1) ∈ p_bel_ctrl.

∃ (q2, k2) ∈ p_nonce_ver.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

using i4 by auto

have 20: "jurisd p_bel_ctrl p_nonce_ver = {k3. ∃ (q1, k1) ∈ p_bel_ctrl.

∃ (q2, k2) ∈ p_nonce_ver.

q1 = q2 ∧ k1 = k2 ∧ k1 = k3}"

by(auto simp: jurisd_def)

from 19 20 have 21: "(p, c_ps, s) ∈ jurisd p_bel_ctrl p_nonce_ver" by simp

hence 22: "(p, c_ps, s) ∈ p_bel’" using d4 by simp

from 14 22 show "(p, c_ps, s) ∈ (m_bel’ ∩ p_bel’)" by simp

qed
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