
Distributed Systems Lab Report

Systems Group, Department of Computer Science, ETH Zurich

Using virtualization for PCI device drivers

by

Reto Lindegger, Lukas Humbel, Daniela Meier

Supervised by

Simon Peter

September 19, 2012

Abstract
A major obstacle when introducing a new operating system is device sup-
port. We analyze the possibility of using a virtualized Linux to provide
driver support for PCI devices, by extending the Barrelfish virtual machine
VMKit. As it turns out to be impossible to create a generic PCI passthrough
without any hardware support (IOMMU), we focus our work on one spe-
cific network card. For allowing DMA to work correctly, we translate the
physical addresses in software. To access the device from Barrelfish we pro-
vide a virtual network adapter and use the Linux Ethernet bridging to pass
packets. Our measurements show an order of magnitude smaller throughput
than a native driver solution, but still there’s room for improvement left.

1

Contents
1 Introduction 3

2 Design 3
2.1 Overview . 3
2.2 Hardware access for the device driver 4
2.3 Communication with Linux 4
2.4 DMA Implementation Alternatives 4

2.4.1 Paravirtualization . 5
2.4.2 Translation . 5
2.4.3 IOMMU . 5
2.4.4 Discussion . 5

3 Related Work 6
3.1 PCI Passthrough . 6
3.2 Guest - Host Communication 6

4 Implementation 6
4.1 Overview . 6
4.2 Map real PCI hardware into the VM 6

4.2.1 PCI Subsystem . 7
4.2.2 PCI Configuration Space 7
4.2.3 Device registers and interrupts 8
4.2.4 Handling DMA . 8

4.3 Guest - Host communication 9
4.3.1 Setup . 9
4.3.2 Transmit and Receive Descriptor Tables 11
4.3.3 Packet transfer from Linux to Barrelfish 11
4.3.4 Packet transfer from Barrelfish to Linux 11

4.4 Bridging . 12

5 Performance Evaluation 12
5.1 Throughput . 12
5.2 Latency . 12
5.3 Discussion . 13

6 Known Issues 15

7 Summary and Further Work 15

A System Setup 17

B PCI configuration space 17

2

Figure 1: Setup and message flow overview

1 Introduction
Barrelfish is a research operating system mainly developed at ETH Zurich.
This circumstance allows great freedom in design and implementation. How-
ever, this also has a disadvantage. Since everything has to be written from
scratch, a new device driver has to be written for every piece of hardware
one wants to use. On the other hand, Linux has a large collection of drivers
and a global developer community constantly writing and improving device
drivers. It would be really convenient, if these Linux drivers could be used
with Barrelfish. The idea is to use a virtual machine to run Linux and
use it’s device drivers. The good news is that there is already a virtual
machine available. For his master thesis, Raffaele Sandrini wrote a virtual
machine for Barrelfish called VMKit [1] and already got Linux running in
it. Nevertheless, it does not include a PCI subsystem nor direct access to
any hardware. It provides only the minimal functionality necessary to allow
Linux to run. What we need is a way to grant Linux access to PCI devices.
To do this, we need to emulate a PCI system and provide a pass-through
PCI device over which Linux communicates with the real hardware. But
allowing the virtualized Linux to access the physical hardware doesn’t au-
tomatically allow the Barrelfish host to access the device. There has to be
a communication channel from Barrelfish into the virtual system.

2 Design

2.1 Overview

There are several necessary steps to use a standard Linux device driver with
Barrelfish. The design can basically be split into two different parts. On one
side, there is the Linux driver (ixgbe) which interacts with the real hardware.
Furthermore, Barrelfish needs to be able to communicate with this driver
to use the functionality of the hardware device. Therefore a communication
channel from Barrelfish into the virtual machine is needed: The vm driver.
This design layout is shown in Figure 1.

3

2.2 Hardware access for the device driver

As already mentioned, the Linux driver needs access to the real hardware.
Since we are talking about PCI devices, this means the Linux driver must
be able to access the PCI configuration space of the said device, access
device registers which are usually memory mapped and receive the correct
interrupts. First, the virtual machine monitor has to get control over the
PCI device. To achieve this, it registers a driver for the device in Barrelfish.
As a next step, the VM has to emulate a PCI subsystem and a virtual
PCI device which imitates the desired hardware. The Linux inside the VM
sees the virtual PCI device and can load a module for it. Read and write
access from the Linux driver to the virtual device can now be intersected
and redirected to the real hardware.

2.3 Communication with Linux

A working Linux driver inside a virtual machine which can access the real
hardware is nice, but it isn’t of much use for the host system. Barrelfish
has to be able to control the Linux driver from outside the virtual ma-
chine, allowing it to use the functionality of the hardware without really
implementing a specific device driver. In the case of a network card, the
desired functionality would be that we can send packets from Barrelfish
(host system) to the Linux (guest system) which then sends them over the
real network card to the connected network. Of course the inverse direction
should also be supported. To achieve a connection between Barrelfish and
Linux, we introduce a new virtual network device for the VM and a Linux
driver for this virtual device. Inside the VM, the driver can register itself as
a network driver, therefore this virtual device and the real network device
can be bridged using the Linux bridging functionality. The new virtual net-
work device on the other side can register itself with Barrelfish as network
driver. This leads to a connection from Barrelfish over the virtual network
device inside the VM, through the bridge and the original Linux network
driver to the real network card and therefore to the connected network.

2.4 DMA Implementation Alternatives

Amajor problem is getting the Direct Memory Access to work correctly. The
virtualized guest operating system only runs in a virtualized address space
and usually doesn’t know about it. Hence it writes virtual addresses into
the device memory. Even worse, not only contain the pointers from device
memory wrong physical addresses but they may also point to (in principle)
arbitrarily linked structures. How this structure is actually organized is
device dependent. There exist a couple of solutions to this problem which
we explain in the following sections.

4

2.4.1 Paravirtualization

A paravirtualized (modified) guest operating system could calculate cor-
rect physical addresses. Paravirtualization would not only allow to map the
memory directly but also get rid of VM exits completely, removing a consid-
erable amount of virtualization overhead. The guest can misuse the DMA
to gain access to the whole system memory, but arguably, a modified guest
is also a trusted one.

2.4.2 Translation

It is possible to intercept the device memory access from the virtual guest
system, inspect the write and if necessary translate the written address.
Problematic are nested structures: It must be taken care of the guest having
set up the complete nested structure before translation begins. However, at
some point the device must be told that it can now use the structure. At this
point it is safe to translate the structure, but figuring out the correct moment
is device dependent. Performance is hit considerably, because intercepting
the write means that the memory region cannot be mapped directly. So
every guest write/read access causes a VM exit. Security can be guaranteed
by checking if the translated address is valid for the guest.

2.4.3 IOMMU

Chipset manufacturer have recently begun to include a hardware unit which
performs address translation between the PCI bus and the main memory,
called the IOMMU. The host simply has to set up the unit as it does for nor-
mal virtualized memory. As an extra hardware unit performs the translation
when needed, it is not device specific. Performance should be very good as
everything can be mapped directly. Also the IOMMU allows to restrict the
area of memory which gets accessed, therefore maintaining encapsulation of
the guest.

2.4.4 Discussion

The IOMMU is considerably the best option, providing high performance
and security. In addition, there is no need to modify the guest. The only
drawback is that it must physically exist and not all systems do have one.
We wanted our solution to work on computers without an IOMMU, hence
leaving the choice to either go with a modified guest (paravirtualization) or
let the implementation become device specific. We opted for the later.

5

3 Related Work

3.1 PCI Passthrough

• XEN [6] is able to passthrough PCI devices to either a paravirtualized
guest or to an unmodified guest using an IOMMU.

• VirtualBox supports PCI passthrough with an experimental additional
module. It makes use of the IOMMU, which also is a limiting fac-
tor since this only works on systems which contain and support an
IOMMU [4].

3.2 Guest - Host Communication

• VMWare supports a special socket API for guest host communication
[3].

• VirtualBox provides the VirtualBox Guest Additions which can be in-
stalled in the guest operating system. This packet contains drivers and
applications for improving the performance and usability of the guest
operating system. Furthermore, it establishes a generic host/guest
communication channel for exchanging data between the guest and
the host system. [5]

4 Implementation

4.1 Overview

Figure 2 shows the memory situation. First there is the host-physical mem-
ory in Barrelfish H Ph of which two Gbyte are allocated as guest-physical
memory for Linux. In the same space, there is the memory mapped device
memory of the Intel card shown as ixgbe. These two regions are also mapped
into the host-virtual memory H VM of the process vmkitmon. Vmkitmon’s
task is to control the virtual machine’s process and handle any instruction
that traps (actually causes a VM exit). In the same memory region, the
ixgbe and our virtual network adapter VM driver are accessible, although
they are not directly mapped but its access is managed by vmkitmon.

4.2 Map real PCI hardware into the VM

As mentioned before, our implementation is device specific. More precisely,
it is written for a PCI Express Intel 82599 10Gbe Controller. The network
driver in Linux for this device is called ixgbe.

6

Figure 2: Memory Layout Overview

4.2.1 PCI Subsystem

On the x86 architecture the PCI bus is usually accessed over a Host-Bridge
which is made available in the I/O port space. An access to this space
within the VM leads to a VM exit, which is basically a context switch
from the guest system to the host system or more specifically to the VM
monitor which controls the virtual machine [1]. We catch these VM exits
and perform corresponding actions, for example PCI configuration space
read or write calls.

4.2.2 PCI Configuration Space

In order for Linux to detect the connected PCI hardware, it has to scan
the PCI bus and access the PCI configuration space header of the devices.
Since Barrelfish supports PCI devices, there are already procedures that
access the configuration space of a PCI device given its bus and device
number. However, this functions were only accessible inside the PCI module
and therefore not much use for us. So we exported this functionality by
introducing two new calls for the PCI service, one for read and one for
write access to the configuration space. This allows any device driver that
connects to the PCI service to access the configuration space of its assigned

7

device. Since there is a VM exit for every read and write call to the virtual
PCI bus, we can intercept this action whenever the Linux inside the virtual
machine tries to read from or write to the configuration space and we can
call these new access procedures from the PCI library. With this method,
read calls to the PCI configuration space from inside the VM are directed
to the actual PCI bus and return the real value from the hardware device.
Also, write calls to the PCI configuration space are directed to the actual
PCI bus and the values on the hardware devices are modified.

4.2.3 Device registers and interrupts

Inside the PCI configuration header different memory mapped regions may
be found. The operating system activates the memory mapped region by
setting the corresponding bit in the configuration header. We don’t perform
any configuration of regions but rely on Barrelfish (or the BIOS) to do the
work. We also don’t translate anything at this level. This means that the
guest operating system sees the device at its real physical location. However,
the memory is not mapped into the address space of the guest but we let the
access cause a VM exit and handle it there, allowing us to modify write and
read operations. As we register ourselves at the Barrelfish PCI server, we
get interrupts caused by the card, no matter by which mechanism they are
passed (for example MSI - Message signaled interrupts). We simply pass
them on to the guest. VMKit emulates a legacy programmable interrupt
controller (PIC) (Section 6.7.1, [1]), but Linux is permissive enough and
forwards the interrupt correctly to the driver.

4.2.4 Handling DMA

As mentioned earlier, handling DMA requires some device specific knowl-
edge: Where are pointers to main memory stored and how does the memory
structure look like? We find the answers in the datasheet [2]. The card com-
municates with the operating systems over two ringbuffers, one for trans-
mitting packets and one for receiving. The base address of each is stored
in device memory. For the head and tail of the buffer, only relative datums
are used. Hence it is enough to translate the base address when it is written
by the guest. Unfortunately, the ringbuffer entries do not point directly to
the packet data, but point to receive/transmit descriptors. These consists
of status flags and pointers to data/headers. The situation is depicted in
Figure 3.

Therefore we must find the instant at which the structure, which is writ-
ten by the guest, is valid. This is at the latest the case when the ringbuffer’s
tail is incremented. So whenever we detect a write to a ringbuffer tail, we
translate every entry between the old value (which we read from device
memory) and the new value (which we get as an argument of the page fault

8

Figure 3: Intel 82599 Memory Layout

handler). This way it is guaranteed that we never miss a translation and
that a translation occurs only once. The translation happens before step
two in Figure 4.

4.3 Guest - Host communication

4.3.1 Setup

To establish a connection from Barrelfish into Linux (and back) we added a
new virtual PCI device to the VM. It is used to transfer data between the
Linux inside the VM and Barrelfish. The PCI configuration space header
is preconfigured with a fictional vendor and device ID and a base address
for the device registers. The counterpart of this virtual PCI device is a
driver inside Linux. This driver registers itself with Barrelfish as a network
driver for the specific device ID and as soon as Linux finds the PCI device,
its initialization method is called. In this method the normal initialization
stuff for Linux drivers happens. A data structure for the driver specific
data is allocated, a network device is registered and the device registers
are mapped into the address space. The interesting part begins when the
device is activated (by ifconfig eth1 up in Linux). Then another initialization
procedure is called to prepare the device for transferring data. The memory
for the transfer is allocated and a special data structure is set up. More
to this structure later. Since the counterpart in Barrelfish needs to read
this memory region too, we need its guest-physical address. For this reason

9

I nline Functions — Intel® 82599 10 GbE Controller

261

Software inserts receive descriptors by advancing the tail pointer(s) to refer to the address of the entry
just beyond the last valid descriptor. This is accomplished by writing the descriptor tail register(s) with
the offset of the entry beyond the last valid descriptor. The 82599 adjusts its internal tail pointer(s)
accordingly. As packets arrive, they are stored in memory and the internal head pointer(s) is
incremented by the 82599.

When RSC is not enabled, the visible (external) head pointer(s) reflect the internal ones. On any
receive queue that enables RSC, updating the external head pointer might be delayed until interrupt
assertion. When the head pointer(s) is equal to the tail pointer(s), the queue(s) is empty. The 82599
stops storing packets in system memory until software advances the tail pointer(s), making more
receive buffers available.

The 82599 writes back used descriptors just prior to advancing the head pointer(s). Head and tail
pointers wrap back to base when the number of descriptors corresponding to the size of the descriptor
ring have been processed.

Figure 7.12. Descriptors and Memory Rings

Head

Tail
Head &Tail
Together

Software writes a
descriptor to the
memory ring and

moves the tail

Software writes another
descriptor to the memory ring

Head

Tail
Tail

Head and
Tail

Together

Base

Base +1
Base +2

Base + size

Head

Tail

 oldest first to
be added

 newest latest
to be added

The tail moves down after the newest
descriptor was inserted between the old tail

location and the new tail location

Head

Tail

 oldest first to
be added

 newest latest
to be added

Second
descriptor to

be added

Head moves towards the tail and
frees-up the buffer to the SW.

Head moves towards the tail and
frees-up the buffer to the SW

Tail

1 2

3 4

5 6

7 8

Previous Head
location

Previous Head location
Original Head location

First Descriptor added

Data from the packet represented by
this descriptor is stored in memory

Data from the packet represented by
this descriptor is stored in memory

Figure 4: Operating system - Intel card communication

10

we allocate DMA memory which gives us the virtual as well as the guest-
physical address. The guest-physical address is written to a device register,
so the virtual device in Barrelfish can read the value from there. Now the
virtual hardware has to be informed that the driver is ready and prepared.
This happens by writing the ready bit to the control register. Now the
communication channel from Barrelfish to Linux is almost complete. After
the Linux driver requests the interrupts from the virtual network device, the
Linux driver is ready to receive and send packets.

The idea is that this construction with VM and Linux is completely
transparent for the Barrelfish network stack. Barrelfish should only see a
network interface. For this reason we have to register a network driver.
This driver is a normal Barrelfish network driver, gets packets to send and
delivers received packets to the network stack. Under the surface there is
of course no actual networking hardware but only our virtual PCI device,
which exchanges data with Linux.

4.3.2 Transmit and Receive Descriptor Tables

For transmitting data from Barrelfish to Linux and vice versa, two shared
data structures are used. One of them is the Transmit Descriptor Table
(TX Desc Table). An entry in this table contains of two 32 Bit values. The
first one is an address to the transmit buffer containing the data to send,
the second one is the length of this packet. A length of zero indicates an
empty and therefore free buffer. The table’s purpose is the transmission of
Ethernet frames from Linux to Barrelfish. The Receive Descriptor Table
(RX Desc Table) looks exactly the same, but it’s purpose is the opposite
direction (Barrelfish to Linux).

4.3.3 Packet transfer from Linux to Barrelfish

When the Linux network driver gets a packet to send, it first searches for
a free slot in the transmit descriptor table (TX Desc Table) by looking for
the first table entry with length equals 0. The packet is then copied to
the corresponding transmit buffer and the length is set to the length of the
packet. Afterward, the virtual network device is informed about the new
packet by setting the transmission bit in the control register to one.

The Barrelfish counterpart on the other side scans the Transmit Descrip-
tor Table for any valid packets (where length not 0) and delivers the found
packets to Barrelfish using the Barrelfish network driver interface. It then
sets the length of the delivered packets to 0, so that the slot can be reused.

4.3.4 Packet transfer from Barrelfish to Linux

The inverse direction works very similarly. The Barrelfish network driver
gets a packet to send and finds the first free receive descriptor by scanning

11

the Receive Descriptor Table. As before, free descriptors can be found by
looking for any entries with length equals 0. The driver then copies the
Ethernet frame to the receive buffer corresponding to the first available
table entry and sets the length according to the packet length. To inform
the Linux driver about the pending packets, an interrupt in the virtual
machine is triggered. In the interrupt service routine of the Linux network
driver, the Receive Descriptor Table is scanned for any valid entries and the
packets are copied into Linux socket buffers (SKB). These buffers are then
passed to the Linux network stack to be processed and in our case to be sent
through the bridge to other network driver.

4.4 Bridging

Finally, to connect these two network devices in Linux, we use the Linux
bridging functionality [7]. It connects two Ethernet devices on Layer two,
so it is similar to a switch and hence invisible to Barrelfish.

5 Performance Evaluation
We compared our implementation to a native driver solution using two dif-
ferent measurements: Throughput and Latency.

5.1 Throughput

We measured the time which is necessary to fetch a file over the LAN
via NFS. Figure 5 shows that our implementation is able to reach about
8 MBit/s while the native driver gets close to 100 MBit/s. Interestingly, our
implementation reaches its top speed not at the largest filesize, but on files
around 64 Kbyte. We don’t exactly know why this happens, but we guess
that at this point the NFS client divides the file read requests into more
than one batch and that this somehow slows down the total throughput.

5.2 Latency

To measure the latency we set up a remote host to ping Barrelfish and
recorded the time at four different steps. The first point is where an in-
terrupt from the physical card arrives in our pass-through code, indicating
that a packet has arrived. The second step is when we actually deliver the
packet to Barrelfish. This timespan defines the Net to BF time. The third
point is when Barrelfish asks our virtual device to transmit a packet. Fi-
nally, the fourth point is when the guest operating system tries to increment
the transmit descriptor tail (TDT). This defines the timespan BF to Net.
The total latency is taken from the output of ping. Figure 6 shows how that

12

Figure 5: NFS throughput with different file sizes

the overhead our implementation adds is about 0.3ms per direction (Bar-
relfish to the network or from the network to Barrelfish). The size of the
blue boxes should be comparable, as they measure basically the same thing.
Nonetheless, the time the same step takes when routed through Linux and
our implementation is considerably larger. We see three possible explana-
tions for this behavior: First, the VM may soak up CPU usage when the
ping request is processed inside Barrelfish. Second, functions from our driver
may get called outside of measurement time (for example when the network
stack tells us that a slot is now free again). And finally, the additional
context switches into the VM may invalidate the cache so that forthcoming
operations are performed more slowly.

5.3 Discussion

One fact which influences performance badly is that we copy each packet
multiple times. For an incoming packet several copies happen: The Linux
driver copies the data into its own DMA space, and in Barrelfish we copy
again the data into a Barrelfish descriptor. Additionally, Linux (or the
Bridge implementation) may perform copies. We could bring down the
number of copies in our code. The Linux driver could get rid of it, if it could
figure out the physical address of the packet. On the Barrelfish side, the
network stack must provide an interface to fetch a packet from an arbitrary
location instead of only from the network stack provided slots. Another

13

Figure 6: Latency

possibility would be to map the memory which contains the network stack
provided slots into the virtual Linux memory. Then the Linux driver could
perform the only copy necessary.

As we need to have control over the device memory access, we cannot
map it directly. Hence for every write and read an additional (in compari-
son with direct memory mapping) VM exit is caused. As the Linux driver
currently only increases the buffer by one element, one extra VM exit is
caused for sending a packet. Also for receiving one is caused, because the
buffer needs to be allocated at some point, but at least, the VM exit doesn’t
necessarily happen during the latency critical time between packet arrival
and packet-to-Barrelfish delivery.

A more generic problem with virtualized I/O is the need for additional
context switches into the virtual machine and back.

Another possible performance issue arises from the nature of bridging.
Linux simply forwards all packets it receives on one of its bridge interfaces
and forwards it to the other, leaving the MAC Address unchanged. To make
this work, both interfaces must receive all packets, not only those for their
own MAC address, so they both have to be put in promiscuous mode. Hence
we perform the pass-through work not only for packets we are interested in,
but on all packets which come from the wire.

14

6 Known Issues
Basically our implementation is tailored to the Linux driver we used. This
has some consequences as our implementation left out features of the card
that the driver makes no use of. These include:

• It works only with the advanced receive descriptor (the card supports
two different formats, the advanced and the legacy receive descriptor)

• It works only when the Intel driver uses no more than one receive
buffer and one transmit buffer

• Reading back an address is not supported (the guest sees the translated
addresses)

• Although VMKit supports only 32 bit guests, the PCI card must sup-
port 64 bit addressing, as the translated address may go above the 32
bit boundary.

There are some points which work fine for the current setup, but may
be problematic if one tries to run this on a different machine. Namely, the
device memory address of the virtual adapter is hardcoded and there exists
no mechanism to prohibit any address conflicts. Also, when trying to fetch
large files over NFS, the pbuf pool gets exhausted. Furthermore, the bad
performance may limit the usefulness.

7 Summary and Further Work
We have shown that in principle it is possible to use a virtualized guest
operating system to provide device driver support without any additional
hardware. Unfortunately the approach has some serious drawbacks: First,
the implementation requires in-depth knowledge of the device to be passed
through. At first we hoped that it is sufficent to provide some kind of bitmap
indicating the words of the device memory which require translation. But
deeply linked structures render this impossible. Secondly, the performance
is not acceptable for anything except the occasional IRC conversation. Al-
though there is room in our setting for improving the performance, we don’t
think it is worth the effort. It may be possible to reduce the number of
packets copied in our code, but most likely the Linux kernel or the bridge
performs more copies. Cutting these down would mean to modify Linux
and then we’d better go with a completly paravirtualized Linux. But even
more worthy than trying to improve performance by using a paravirtual-
ization may be creating a generic passthrough with help from an IOMMU.
This may not only lead to a generic implementation but may also improve
performance and security. It is also questionable if driver virtualization is a

15

good idea at all, at least as long as we are using an open source guest op-
erating system. Then it may be easier to just port the driver to Barrelfish.
This may be simplified by providing a similar (if not completly compatible)
interface to the network driver. A nice byproduct of our work is that we
now have a network communication channel into the virtual machine. Also
passing a device into the virtual machine may be of worth by itself. Another
use case worth investigating is using the virtual machine as firewall for the
host operating system.

16

Appendices
A System Setup
For development and testing we used a machine from the Systems Group
rack with the name sbrinz1. Here is a short overview of its hardware speci-
fication and the used software.

Hardware

• CPU: 4x Quad-Core AMD Opteron(tm) Processor 8380 (Shanghai)

• RAM: 16 GB

• Network: Intel Corporation 82599EB 10-Gigabit Network Connection
(and more)

Software

• Linux Kernel 2.6.37

• Linux network driver ixgbe

• bridge-utils for Linux

• Barrelfish revision 526 from 22.3.2012

B PCI configuration space
The PCI configuration space is small standardized memory region on each
PCI device which can be used to identify the device, get information about
it and do some configurations. It’s use and structure will be briefly discussed
here. The configuration space is addressed over the PCI bus and consists
of a standardized header and device specific data. The header contains a
class, a vendor and a device ID to uniquely identify a device. The operating
system can inspect these fields and load for each device the corresponding
driver. Other than that there are also some registers called Base Address
Registers (short BAR) which specify how the device can be addressed and (if
it supports MMIO) where the device memory is mapped. Furthermore the
configuration space header tells us what interrupt line the device is connected
to and many other fields, which will not be addressed here and are not very
relevant for this project. The detailed structure of the configuration space
header can be found in figure 7.

17

Figure 7: PCI Configuration Space

References
[1] Raffaele Sandrini, VMkit, A lightweight hypervisor library for Barrelfish,

Masters Thesis, Systems Group ETH Zürich, 2009

[2] Intel® 82599 10 GbE Controller Datasheet

[3] http://www.vmware.com/support/developer/vmci-sdk/

[4] http://www.virtualbox.org/manual/ch09.html#pcipassthrough

[5] http://www.virtualbox.org/manual/ch04.html

[6] http://wiki.xen.org/wiki/XenPCIpassthrough

[7] http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge

18

