
Ethernet Message Passing for
Barrelfish

Distributed Systems Lab

Jonas Hauenstein, David Gerhard, Gerd Zellweger

July 8, 2011

Advisors: Prof. Timothy Roscoe, Akhilesh Singhania

Department of Computer Science, ETH Zürich

Abstract

We introduce Ethernet Message Passing (EMP) for the Barrelfish Op-
erating System. EMP is an interconnect driver (ICD) which is able to
send and receive messages between dispatchers among multiple ma-
chines over an attached network.

i

Contents

Contents iii

1 Introduction 1
1.1 Background . 1

1.1.1 Barrelfish . 1
1.1.2 IDC: Inter Dispatcher Communication 1
1.1.3 LWIP . 1

1.2 Problem and Motivation . 2
1.3 Overview . 2

2 Approach 3
2.1 Target Architecture . 3
2.2 Structure . 3

2.2.1 Library vs. Daemon . 3
2.2.2 Monitor Inter-machine Communication 4
2.2.3 Name Server . 5

3 Implementation 9
3.1 EMP Channel . 9

3.1.1 LWIP . 11
3.1.2 Reliability and Ordering 12

3.2 Flounder Stub Generator . 12
3.2.1 RPC . 13

3.3 Monitor . 13
3.3.1 Machine ID . 13
3.3.2 Interface Reference . 14
3.3.3 Intermachine Communication 14
3.3.4 EMP Bind Process . 15

3.4 Nameservice . 15
3.4.1 Master Slave Replication 16

3.5 Spawn Daemon . 17

iii

Contents

4 Evaluation 19
4.1 Benchmarks emp bench . 19

4.1.1 emp pingpong . 20
4.1.2 emp throughput . 20

5 Known Issues and Limitations 23
5.1 Throughput . 23
5.2 User-Library Limitations . 25
5.3 Hake Integration . 25
5.4 Channel termination . 25
5.5 System Discovery . 26

6 Conclusion 27
6.1 Future Work . 27

A System Setup 29
A.1 Modifications to Haskell . 29

A.1.1 hake/X86 64.hs . 29
A.1.2 build/hake/Config.hs 29

A.2 Modifications to the user process’ Hakefile 30
A.3 Modifications to lib/emp/ip table.c 30
A.4 Modifications to menu.lst . 31

Bibliography 33

iv

Chapter 1

Introduction

1.1 Background

1.1.1 Barrelfish

Barrelfish is a research operating system being developed collaboratively
by researchers in the Systems Group at ETH Zurich in Switzerland and at
Microsoft Research. It is intended as a vehicle for exploring ideas about
the structure of operating systems for hardware of the future. Barrelfish
anticipates the main challenges for operating systems will be scalability as
the number of cores increases, and in dealing with processor and system
heterogeneity [1].

1.1.2 IDC: Inter Dispatcher Communication

In Barrelfish, a dispatcher is a unit of kernel scheduling and responsible
for the management of its threads. The scheduling of these dispatchers
is controlled by upcalls from the kernel. Communication between different
dispatchers (so called Inter Dispatcher Communication or IDC) is performed
over different channels. The two central mechanisms in Barrelfish for X86
hardware are LMP (local message passing) and UMP (inter-core user-level
message passing). While LMP is used for IDC between two dispatchers on
the same core, IDC between different cores uses UMP. Which mechanism is
used is determined at binding time.

1.1.3 LWIP

The LWIP library is used as the Operating System‘s network stack [2]. LWIP
is a independent and lightweight implementation of common network proto-
cols including UDP and TCP/IP. It was originally written by Adam Dunkels

1

1. Introduction

of the Swedish Institute of Computer Science for his master’s thesis [3]. Our
EMP Channel uses LWIP to send and receive messages over UDP.

1.2 Problem and Motivation

Barrelfish is an OS which treats the inside of a multicore machine as a dis-
tributed, networked system. Therefore, the step towards an Interconnect
Driver (ICD) which supports communication not only among multiple cores
within a single machine (as UMP does) but also among cores on multiple
machines is most reasonably and at hand. The main goal of this distributed
systems lab project is to provide a basic solution and a prove of concept for
this need.

1.3 Overview

Chapter 2 provides an overview to basic structure of the EMP message chan-
nel and contains a discussion about the most crucial design decision we took.
Chapter 3 describes our implementation in more detail. While Section 3.1
covers the EMP channel implementation, Section 3.3 describes the modifi-
cations on the monitor to offer inter-machine communication and the corre-
sponding connection setup. Chapter 4 evaluates our implementation using
different benchmarks programs. In Chapter 5 we discuss the known issues
and limitations in the current implementation. Finally, we do a conclusion
of the project and discuss the possibilities for future work in Chapter 6.

2

Chapter 2

Approach

2.1 Target Architecture

We implemented EMP for X86-64 Hardware. However, porting our current
EMP implementation to a different platform should be trivial as long as
LWIP and networking is supported by Barrelfish. The only platform depen-
dent change we made to Barrelfish is an additional system call to get the
machine ID from the kernel (see Section 3.3.1).

2.2 Structure

2.2.1 Library vs. Daemon

Our first decision was about the general architecture of EMP, whether we
should implement the EMP functionality in a daemon like fashion which
runs in its own dispatcher or if we should implement it as a library much
like UMP or LMP.

Pros Cons

Daemon Network connection set-up Additional indirection layer
Allows for more optimization Daemon may become a bottleneck
Can reuse UMP stubs Single point of failure

Library Better performance Marshalling only in flounder
Feels more natural in Barrelfish Requires own flounder back end
More robust More complex channel set-up

Table 2.1: Comparison between daemon and library approach

3

2. Approach

Figure 2.1: Architectural comparison between EMP as a library (on the left) and EMP as a
daemon (right)

After comparison of the two approaches (see Figure 2.1 and Table 2.1) we de-
cided to implement it as a library. The main reasons were that we expected
it to perform better and because the implementation as a daemon would be
kind of unnatural since all existing interconnect drivers are already imple-
mented as part of libbarrelfish.

We started by implementing the EMP channel as a part of libbarrelfish,
mainly because the other ICD drivers (UMP, LMP) also reside there. How-
ever, we soon ran into circular dependency problems because EMP depended
on LWIP which in its turn depends on libbarrelfish. We then moved all the
EMP code from libbarrelfish into a separate user-library. The downside of
this is a less convenient integration with hake (see Section 5.3) and the need
to expose some of the internal waitset functions to the outside of libbar-
relfish.

2.2.2 Monitor Inter-machine Communication

In Barrelfish monitors on different cores exchange messages for various rea-
sons, like exchanging interface references or clock synchronization, but also
to set-up a connection between cores: Whenever a dispatcher wants to com-
municate with another dispatcher on a different core, the connection is set-
up by their respective monitors communicating with each other first. This
implies that we have to support a way for intra-machine message passing
between monitors on different machines.

Before EMP, Barrelfish had support for at most intra-core messaging which
on X86-64 was solved by having UMP channels between each monitor. For
intra-machine messaging we explored two different options:

4

2.2. Structure

• Connect all monitors on all machines together

• Use a distinguished networking monitor per machine and route all
inter-machine requests through this core

The first option means that every monitor needs to have networking capabil-
ity and can directly send messages to a specific monitor on another machine.
The amount of channels to set-up increases with the number of cores across
all connected systems. This would lead finally to(

total number o f cores
2

)
connections. With an increasing amount of systems connected, this could
become a problem. Especially given the expectation that the amount of
cores per machine will increase a lot in the future, resources like the amount
of available ports can become scarce.

On the other hand, this approach would reduce a level of indirection and
some of the code complexity because bind requests and replies must not
be routed. We tried to implement this approach first but it failed when we
wanted to set-up LWIP in a monitor which does not run the networking
processes. The reason for failure is a bug which made it impossible to send
capabilities over the monitor’s loopback binding.

We then chose to implement the second option where we used a distin-
guished monitor on every system to set-up EMP channels to all other ma-
chine. This implies that every inter-machine request has to be routed through
the networking capable monitor using UMP first (see Figure 2.2).

2.2.3 Name Server

The name server (called chips in Barrelfish) provides functions to register
interface references (irefs) with an associated name, which in turn can be
used by clients to look up the reference after registration. This reference
is used to establish a communication channel between two dispatchers later.
Before EMP the name server only contained interface references for the local
machine and it had no ability to communicate with other name servers.
Since EMP enables us to communicate with services on distant machines,
we needed to extend the system to allow lookups of interface references
registered on remote systems as well.

We considered three different ways to do that:

1. Run a single name server across all machines

2. Run one name server per machine

5

2. Approach

Figure 2.2: Architecture of two machines with two cores each communicating over EMP

3. Run one name server on each core

The first option requires only little changes to the name server itself. Be-
cause of EMP, clients could theoretically just establish a connection to a re-
mote name server to store and retrieve interface references. However, some
changes would be necessary in the boot process since chips is started ear-
lier than the net daemon, Ethernet and timer driver which rely on chips for
various service lookups. Although it would be possible to change the boot
sequence, we decided against it since it would require some hacks to make
sure that networking can be started without chips. In addition, this solution
makes it a lot harder to guarantee fault tolerance in future work.

One name server per machine is what we chose to implement. Although it
requires less changes to the initial boot sequence, since chips can be started
before networking, we needed to add communication protocols between
name servers to keep them synchronized (see also Section 3.4). The advan-
tage is that it allows to build a more robust system where machines can
fail without compromising the functionality of other machines in the same
cluster.

The third option would also be a reasonable alternative since it means that

6

2.2. Structure

the name server is fully distributed across all machines and cores. Concep-
tually, it is not a big step from the previous approach to this one. It is rather
a trade off decision between system resources and reliability.

7

Chapter 3

Implementation

3.1 EMP Channel

The initial goal of the project was to do all the message passing using just
Ethernet frames. The idea arised from the vision to be able to run a cluster
of machines in a single rack where all of them would be directly connected
to each other by a switch. Communication using just Ethernet frames would
therefore lead to a minimal amount of overhead.

We decided in the initial phase of the project and after talking to our men-
tors to use UDP instead of plain Ethernet for the communication between
multiple machines. The reasons for this decision were:

• The network driver currently does not allow user-space programs to
install its own packet filters.

• We expect the performance gain using just Ethernet frames over UDP
to be minimal.

Whereas for UMP the key concept behind it is shared memory, for EMP
it’s a network card which enables us to transfer a buffer of bytes from one
location to another. Because changing a memory location in a shared frame
is transparent for 2 processes due to cache coherency, in UMP there is no
need to explicitly send a message. Whereas in EMP, we need to tell the
network card explicitly if we want to send. This also implies that we need
to have a way to allocate a buffer as well as clean up its memory after we
sent it.

The comparison of these differences with the existing ICD backends lead us
to the required guarantees our channel should fulfill:

Reliable message transfer No messages shall be lost during the transfer
from one machine to another

9

3. Implementation

In order message transfer Messages are delivered in the same order as they
are sent

Even tough the handling of reliability and message ordering inside the floun-
der generated stubs (see Section 3.2) would also be a plausible alternative,
we decided to provide theses guarantees by the channel itself. This leads to
a design where an exchange of the underlying network protocol is possible
without the requirement to change the flounder stub generator. Since some
of these properties may already be guaranteed by the underlying network
protocol, one can also take advantage of this circumstance.

Since we need reliable and in order transfer, we also thought about using
just TCP/IP first. But given the previously mentioned scenario (cluster of
machines in a single rack, minimal amount of network hops between them)
and the fact that majority of the flounder messages are expected to be very
short, we estimate our implementation to be faster than TCP/IP due to the
overhead of the TCP protocol. Having our own protocol also integrates
much nicer into flounder and leaves open more flexiblity for future work. It
also means that the switch to just raw Ethernet can be done easier if desired
at a later point in time.

The EMP API is kept very similar to the already present ICD backends. Nev-
ertheless, the conceptual differences of EMP lead to some API differences in
comparison with UMP. Since in a typical usage scenario the EMP API itself
is wrapped by the flounder generated stub API, these differences do not
influence the handling of the channel itself for the user process.

A crucial difference of EMP as compared to UMP is that waitset events are
triggered directly by network events while the normal UMP variant uses
polling. This saves us a certain amount of clock cycles which are otherwise
wasted during polling in UMP. Contrary to UMP, an EMP endpoint uses two
waitset events: One for incoming messages (as UMP does) and a second one
to control the flow of message creation during sending.

The EMP API uses the emp message structure which resembles a single
UDP packet. What is finally sent over the network is wrapped in a emp payload
structure (see Figure 3.1) - which is a member of emp message. emp payload
consists of a 32 bit header structure followed by the actual message data. The
maximum size of the payload is restricted by a defined constant EMP PAYLOAD WORDS
but the actual payload size can vary independently (see Figure 3.1).

The 32 bit emp header structure contains a message type, sequence number
and flounder type field. The type field is used to store the message number
generated by flounder. The ctrl field is used by the underlying network im-
plementation to store sequence numbers and to distinguish between ACKs
and payload messages. These ctrl field values are used for reliability and
ordering.

10

3.1. EMP Channel

Figure 3.1: emp payload - Structure of the messages sent over the network

To ensure those properties (see Section 3.1.2), we introduced two types of
messages: Data and acknowledgement (ACK). To clearly identify and order
the received messages, we attach a sequence number and already mentioned
message type to each message. Therefore the ctrl field is divided into the
message type and the sequence number. The only code-wise dependency
between an emp message and the underlying network implementation is
this ctrl field in the emp header structure.

3.1.1 LWIP

Our EMP Channel uses the LWIP library [2] to send and receive messages
over UDP. We separated LWIP as good as possible from the EMP imple-
mentation so that it would be easy to switch to a different library or use
a different network protocol. Message transmission and reliability are also
independent from the EMP channel and endpoint.

LWIP uses packet buffers (pbufs) which can be allocated, filled with payload
and passed on to the network card. In case of udp send LWIP will prepend
the necessary protocol headers to this buffer and forward it to the network
card. Our emp payload structure directly references the buffers memory
location so we can avoid unnecessary copying. After the creation of the
emp message structure a channel implementation specific function is called
to initialize the LWIP related parts of the message. Aside from setting up
the pbuf, the initializing function also sets implementation specific function
pointers for sending and freeing of messages. The later is necessary since
the pbuf needs to be freed separately from the message.

Sequence numbers and resend timers used for reliability and ordering are
tracked and stored per EMP endpoint in the respective emp endpoint struc-
ture.

11

3. Implementation

3.1.2 Reliability and Ordering

The UDP protocol does not provide ordering or reliability. Messages can get
lost, arrive out of order or appear duplicated. Because all ICD in Barrelfish
are based on ordered and reliable message passing, we had to build our
own reliability protocol on top of UDP. We chose to do a version of Selective
Repeat ARQ [4].

For congestion control we introduced a sliding window with sequence num-
bers. If the sequence number of a message is not in that window, it is
enqueued and as soon as it will become part of the window, it will be sent.
The window starts at the longest not acknowledged message and is of fixed,
but configurable size.

The packet buffer is not discarded after sending, but instead kept with the
complete message structure in a queue until the message is acknowledged
by the receiver. The resending of messages is initiated by a timer which
fires continually in a configurable interval. Whenever the timer expires, all
messages in the sending window are resent.

For message retransmission, a resend decision handler function is called to
check if the message should be resent or if the channel should stop doing
further resending attempts. This resend decision handler function is pro-
vided by the client of the channel. It was introduced to inform clients when
messages stop arriving, because sending a message does not provide the
client with immediate feedback about transmission success or failure.

At the receiver, incoming messages are stored in a priority queue and are
passed in order to the client. After receiving a data message, an ACK mes-
sage containing the received sequence number is sent back to the sender.
Duplicated messages are dropped but still acknowledged.

3.2 Flounder Stub Generator

When we first started writing the channel, we wrote the stubs which floun-
der normally would generate by hand to get a better understanding of how
the stubs work. After the channel implementation was more or less work-
ing and with a stable API, the flounder stub compiler was extended by an
EMP backend to generate EMP headers and stubs. The four standard con-
trol functions (can send, register send, change waitset, control) as well as
the rest of the flounder stub api are implemented according to the specifica-
tion in the Barrelfish Technical Note 011 (”Inter-dispatcher communication
in Barrelfish”).

We basically adapted the UMP flounder backend and had to modify most of
the function interfaces according to our needs. Every interface defined with

12

3.3. Monitor

the flounder IDL can be used to generate the corresponding EMP headers
and stubs. The IDL (Interface Definition Language) was not extended or
changed in any way.

3.2.1 RPC

Besides standard asynchronous messaging, Flounder has support for syn-
chronous messaging in the form of Remote Procedure Call (RPC) calls. RPC
calls are implemented on top of asynchronous messaging. If a client wants
to use RPC, he has to set-up an RPC client for a given service binding. When
doing an RPC call the client will change the waitset for the binding to its
own internal waitset and send a message to the server. Then it will handle
incoming events on its own waitset and wait for a reply from the server
before the RPC call returns in the client. The problem with EMP is that an
incoming message will trigger a receive event on the waitset where LWIP
is registered. By changing only the binding of our EMP channel we are no
longer able to receive any messages since the binding between LWIP and
the Ethernet card is registered on the default waitset.

We did not really come up with a good solution for this problem other than
changing the waitset of LWIP internal bindings as well as the bindings used
by the timer library (to make sure resend events continue to happen) every
time we change a waitset for an EMP binding. This does not break RPC
semantics as long as only the EMP channel uses the timer and LWIP library
in the dispatcher. But as soon as they are used for other purposes, those
events will be handled as well during an RPC call.

3.3 Monitor

3.3.1 Machine ID

Because there are multiple machines communicating with EMP we now
needed a way to distinguish them. We added a unique number, called ma-
chine id, to the Barrelfish kernel. The number is set in the menu.lst file as an
argument to the CPU module. Programs can do a system call in the kernel
to obtain the ID.

The ID is used to encode the machine location in the interface reference
(Section 3.3.2), for static channel set-up in the name server (Section 3.4) and
for clients to tag service names (Section 3.4.1) to make them unique across
multiple machines.

13

3. Implementation

3.3.2 Interface Reference

Once a service has registered itself in the local monitor, it is ready to accept
incoming connections. The monitor will provide the dispatcher exporting
the service with an interface reference (iref) which uniquely identifies the
service in the Barrelfish instance. If a client wants to connect to a service
a decision is made by the monitor which ICD driver should be used. This
decision is based on the iref because it encodes information on which core
the service is registered and where the monitor can find the information
it stores about the service. We extended the iref to encode the ID of the
machine as well. This makes the irefs unique among all machines.

Figure 3.2: Interface reference distribution with multiple machines

3.3.3 Intermachine Communication

As mentioned in the previous chapter, a connection between two endpoints
is always initialized by their respective monitors talking to each other first.
The only exception for this is the communication between monitors and
name servers. For the inter-monitor communication we obviously needed
a static channel set-up. At the moment this is done by a table which maps
machine IDs to IP addresses. The local bind and remote port are chosen
based on the machine ID as well. For future work it would be nice to have
support for dynamic detection of available machines. Then it would also be
possible to transfer the interface reference of the remote name server over
the existing monitor communication channel to get rid of the static setup in
chips.

As discussed in Section 2.2.2 we connect only one designated monitor in a
machine with every other machine using EMP channels. Having networking
available in the monitor means that the network driver, the timer driver and
the net daemon (netd) have to be started at boot time (prefixed with boot
in menu.lst). Since the name server might not be ready at the time, we had
to change some of the networking code to send the monitor the necessary
interface references directly.

14

3.4. Nameservice

3.3.4 EMP Bind Process

Once we were able to use EMP in the monitor we started writing the interac-
tion protocol (as defined in the intermachine.if interface) between monitors
on different machines. Currently we only exchange messages for EMP chan-
nel construction. The binding process looks a lot like a UMP bind process
but with an additional level of indirection.

Figure 3.3 shows the steps and the involved actors during the EMP bind
phase:

1. A client sends the iref and its listening port to its monitor. A free port
is chosen at random by netd.

2. The monitor will extend this information with its core and machine id
and forwards the request to the EMP capable monitor.

3. The EMP capable monitor can figure out the remote server location
based on the iref and forward the request to the remote server using
an EMP communication channel.

4. The receiving monitor will forward the request to the correct local
monitor based on the core ID which is also read from the interface
reference.

5. The local monitor will store the remote machine and core id and send
a bind service request to the server.

6. The server will construct an EMP channel and connect it to the remote
server based on the machine ID and the port passed on by the local
monitor. The server then sends an error value and its local bind port
(in case of successful channel creation) back to the his monitor.

7-9. The error value and the servers listening port are sent back to the client
monitor.

10. The client monitor forwards the error value and the remote port to the
client.

In case the client and/or server runs on core with the networking capable
monitor, the additional routing steps are skipped.

3.4 Nameservice

In Barrelfish the name server (chips) is implemented on top of a hash table
which maps strings to interface references. As mentioned in Section 2.2.3
we use one name server per machine. Having multiple name servers leads
to some additional problems:

15

3. Implementation

First, name servers need some way to communicate with each other to ex-
change information about newly registered interface references or removed
references to make it possible to lookup irefs registered on distant machines.

And secondly, their state needs to be kept consistent among all name servers.
This is especially difficult in case we have two dispatchers on different ma-
chines, which register a service with the same name simultaneously. In that
case at least one of them should return an error to the user. More gener-
ally speaking, we want the hash table to be consistent (i.e. never have two
entries with same name but a different reference over all machines). Before
Barrelfish allowed registrations of the same name with different irefs and
would always return the latest registered iref for a particular name. After
talking to our mentor we decided to change this policy and do not allow it
anymore.

3.4.1 Master Slave Replication

We implemented the name server using a master/slave pattern. In combi-
nation with EMP, chips can operate in three different modes: Standalone,
Slave and Master. After booting, chips starts running in standalone mode
where the behavior is no different from the existing implementation in Bar-
relfish. This allows all programs spawned before networking to do lookups
or registrations before networking is available. These registrations will later
be replicated across all machines.

After networking is available we decide based on the machine id (see Sec-
tion 3.3.1) what mode the name server will operate in. For convenience, we
defined the name server running on machine 0 to be the master and all other
machines to be slaves.

A slave will subsequently try to contact its master as soon as networking
is up. If the master comes on-line, he will send a merge request to the
slave. During the merge phase, the master and slave will try to merge their
respective hash tables to bring them in a consistent state which means that
both hash tables will contain the entries of all machines currently being
connected including the ones of the newly accepted slave. A conflict during
this phase (i.e. master and slave both having an interface reference with the
same name) will result in a rollback on the master and an abort on the slave.

We changed the service names of daemons like spawnd and device drivers
to always include the core id (if necessary) and machine id at the end of
their name. This way we can avoid conflicts during the merge phase. Once
the merging is complete, service registrations and removals on slaves need
to be accepted by the master which will broadcast the request to all other
slaves to keep them consistent or return with an error if a service is already

16

3.5. Spawn Daemon

registered under the same name. This avoids future conflicts, since a regis-
tration or removal request on any of the name servers is now coordinated
by the master.

3.5 Spawn Daemon

One goal of the project was to implement spawning of dispatchers across
two different machines (i.e. one machine creates and starts a dispatcher on
another machine). Once we had the EMP channel, the distributed name
server and the Flounder stub generator for EMP, we enabled EMP in the
spawn daemon and used the existing interface to communicate with the
daemon across machines. Because the library functions for spawning new
dispatchers reside in libbarrelfish, we could not extend them. As a user-
library, EMP can not be used in libbarrelfish (see Section 2.2.1). Instead
we wrote a demonstration program called remote spawn which allows to
spawn a dispatcher on any remote machine in the cluster. A perhaps better
approach would be to enable EMP in a dedicated spawn daemon on every
machine and route local spawn requests for remote machines through this
daemon (similar to the approach used in the monitor).

17

3. Implementation

Figure 3.3: Exchanged messages for EMP connection setup between client and server running
on core 1 and EMP capable monitors running on core 0

18

Chapter 4

Evaluation

4.1 Benchmarks emp bench

Since the message transport of EMP is quite different from UMP’s exchange
of messages over shared memory, we implemented some new benchmark ap-
plications for EMP. Those benchmarks all use the flounder generated stubs
for message passing and can therefore be executed between different cores
on a single machine using UMP as well as with EMP between two seperated,
phyiscal machines.

When comparing with UMP, one should keep in mind that some of the
performance wise disadvantages of EMP are due to the overhead caused
to guarantee reliability on UDP. The presented measurements are all done
between two directly connected machines in a single rack. We did not en-
countered any loss of UDP packets during the benchmarking process, so no
message retransmissions influence the measured times.

Every emp bench benchmark has a client and a server side. The measure-
ments are always taken at the client side. The server side basically just acts
as mirror (emp pingpong) or as a receiver which sends back a single mes-
sage answer on completion (emp throughput).

The presented values were measured between the two Systems Group rack-
servers ”nos5” and ”nos6” at ETH Zurich. Both of them are running on
two AMD Santa Rosa (Opteron 2200) and are equiped with an Intel Corpo-
ration 82572EI Gigabit Ethernet Card. The two servers are connected to a
HP ProCurve 2510G-48 rackmount switch. The machine ”nos5” always took
the server role while ”nos6” was acting as the client for our benchmarks.

19

4. Evaluation

mean mean std deviation std deviation
(ns) (cycles) (ns) (cycles)

emp pingpong (EMP) 130.0 365456.3 0.991 2711.2
emp pingpong (UMP) - 1106.0 - 60.4
linux ping 124.0 - 2.5 -

Table 4.1: emp pingpong benchmark results

4.1.1 emp pingpong

This benchmark exchanges basic massages (a single integer) between the
client and the server. The clients sends a ”ping” message to the server and
waits for the server’s ”pong” message. The measured value equals the times-
pan between the call of the flounder send handler for the ”ping” message
and the occurrence of the receive callback for the ”pong” message. In other
words: The round-trip time. The measurement included 1100 ping-pongs.
For the resulting values, the first 100 measurements were discarded.

This measurement was also done using UMP. For this purpose, the client
and server process were spawned on two different cores on a single machine.

For comparison, we measured the time of an ICMP ping request between the
client and server. For this purpose, we booted the client machine (”nos6”)
with a linux kernel and used linux’s ”ping” command against the server
machine (”nos5”) running Barrelfish to measure the round-trip time of an
ICMP ping pong.

As the comparison between the emp pingpong benchmark results using
EMP and the linux ping time shows, the overhead of the EMP channel does
not have a significant impact on the networking performance. Since the
measured times are extremely similar, we come to the conclusion that the
determining factor for the response time of our EMP channel implementa-
tion is the performance provided by the networking infrastructure.

Running the same benchmark over a UMP channel (on the same machine) re-
sults in significant smaller cycles counts below any reasonable nanoseconds
scale. Given the profound differences between the two channel types (see
Section 3.1) and the simple fact, that benchmarking with the use of UMP on
a single machine does not cause any buffer allocation or networking over-
head to message passing, this performance gap is no surprise.

4.1.2 emp throughput

This benchmark sends a buffer of configurable size from the client to the
server. As soon as the buffer is completely received, the server sends back

20

4.1. Benchmarks emp bench

Buffers size mean throughput std deviation measurments
(MB) (MB/s) (MB/s)
1 MB 5.545 0.046 110
10 MB 5.570 0.014 110
20 MB 5.569 0.008 55
50 MB 5.576 0.004 55
100 MB 5.572 0.005 55

Table 4.2: emp throughput benchmark results

an empty ”pong” message to the client. The measured value equals the
timespan between the call of the flounder send handler for the buffer mes-
sage and the occurrence of the receive callback for the ”pong” message. For
the calculations, the first 10% of all measurements were discarded.

Independent of the buffer size, the throughput value is constant. This clearly
fulfills our requirements on the EMP channel. But given the network in-
frastructure (single rack with directly connected machines), the throughput
values we achieved are without any doubt below our expectation. We ran
out of time to fix it but we managed to pinpoint the problem. A detailed
discussion can be found in Section 5.1.

21

Chapter 5

Known Issues and Limitations

5.1 Throughput

As described in Section 3.1.2, we implemented reliability and ordering on
top of UDP with a sliding window protocol. This was expected to provide
a significant performance gain over simpler protocols without a sliding win-
dow.

Our emp throughput benchmarks (see Section 4.1.2) resulted in significant
lower throughput compared to TCP/IP. Further investigations, debugging
and the use of barrelfish’s tracing framework lead us to the conclusion that
LWIP’s udp send function does not behave as expected.

Without going into further detail, the sliding window basically ensures (or
should insure) that the event of receiving an acknowledgement immediately
causes the sending of a new message / another UDP packet to the network
card driver (if there are any unsent messages left in the send queue). This is
what should happen when calling LWIP‘s udp send function when receiv-
ing an acknowledgement.

Unfortunately the call to udp send does not trigger an immediate UMP mes-
sage to the network driver. Instead, the UMP messages directed to the net-
work driver are sent as a bulk in sporadic time intervals. The visualized
trace of an emp throughput process clearly emphasizes this fact. (see Fig-
ure 5.1).

This behavior sooths any potential performance gain using a sliding window
down. As Figure 5.2 illustrates, the intended behavior (left side) has a signif-
icant advantage over the current behavior (right side). The red dots on the
side mark the actual time, when udp send is called in our implementation.

These circumstances make it impossible to achieve higher throughput values.
As already mentioned we ran out of time to find the cause for this send delay.

23

5. Known Issues and Limitations

Figure 5.1: Aquarium visualization of emp throughput trace

At the moment we suspect either LWIP deferring the sending on purpose or
some blocking due to issues with the waitset. We suppose that our sliding
window implementation will perform significantly better if UDP packets
would be delivered immediately to the network driver.

24

5.2. User-Library Limitations

Figure 5.2: Sliding window with window size 3 - intended vs. current behavior

5.2 User-Library Limitations

Since EMP is implemented as a user-library (see Section 2.2.1), EMP can
not be used from within libbarrelfish. This is especially limiting for remote
spawning (as explained in Section 3.5) since the spawn client code currently
resides in libbarrelfish.

5.3 Hake Integration

The integration of EMP in hake is not very straightforward at the moment.
As explained in Appendix A, the use of EMP in a user program needs some
modification to the Hakefile.

The EMP flounder stubs are generated for all present interface definitions
but not compiled because hake is modified not to set the corresponding
precompiler flags ”CONFIG INTERCONNECT DRIVER EMP” and ”CON-
FIG FLOUNDER BACKEND EMP”. In order to use EMP in a user program,
these two flags needs to be added within the user program’s Hakefile.

A cleaner integration of EMP to hake and flounder would probably involve
some dedicated configuration syntax for the Hakefile and would only gen-
erate the EMP flounder stubs where actually needed.

5.4 Channel termination

A lot of issues remain for proper cleanup of a communication channel after
the channel is terminated. As this is currently not addressed in UMP and

25

5. Known Issues and Limitations

involves a lot of additional problems, we did not worry about it as well in
this project.

5.5 System Discovery

At the moment, every machine which is part of the cluster needs to be setup
with its machine ID and IP address in a static list. The list of participating
machines is fixed at compile time.

This clearly could be improved to support some form of discovery of partic-
ipating machines inside a given subnet or range of IP addresses. One solu-
tion could be the implementation of a dedicated daemon which announces
a booting system to an existing set of cluster machines using broadcasting
and registering of EMP channels for its monitor & name server on discovery.
This would remove the static setup we have at the moment.

26

Chapter 6

Conclusion

With EMP we provide a new ICD for Barrelfish which is able to exchange
messages over the network. Our current implementation uses the LWIP li-
brary for the network stack. The dependencies on LWIP are minimal which
means that EMP could easily be changed to use a different library. We
extended Flounder to generate stubs for EMP which enables us to use all
the existing interfaces or newly written ones across multiple machines. The
performance evaluation of EMP has shown the latency differences between
cross machine and cross core messaging as well as the current achievable
throughput of our system. We discussed different architectures for the inter-
monitor and inter-name server communication, described our implementa-
tion and changes to Barrelfish which makes it possible to run multiple Bar-
relfish machines and have their dispatchers communicate not only cross core
but also across machines. We enabled EMP in the spawn daemon which al-
lows to spawn programs from a remote Barrelfish instance. We managed to
point out some problems which would need to be addressed by future work
to make the system more viable.

6.1 Future Work

As we pointed out in the Evaluation (Chapter 4) and the Known Issues
(Chapter 5) the biggest flaw in EMP itself currently is the throughput which
should be a lot higher.

Other than that we did not address any security issues that can arise from
different monitors communicating with each other over a network. Also,
we don’t have any protocols that deal with failure of machines. This would
require some additions to the current master slave implementation of the
name server and monitor inter-machine communication. We decided to ig-
nore capability transfer over EMP. Flounder will generate the stubs for this
but as soon as the monitor is called to transfer the capability, we abort.

27

Appendix A

System Setup

To use EMP in a user program, some modifications to the barrelfish toolchain
and a few configuration changes have to be made. This is due to the fact that
EMP is not (yet) fully integrated into Barrelfish and it has some dependen-
cies on other user-space libraries. Those modifications are already present
in the corresponding files on our barrelfish branch.

A.1 Modifications to Haskell

A.1.1 hake/X86 64.hs

Replace
op t In terc onn ec t Dr i ver s = [” lmp” , ”ump”] ,
optFlounderBackends = [” lmp” , ”ump”] ,

with
op t In terc onn ec t Dr i ver s = [” lmp” , ”ump” , ”emp”] ,
optFlounderBackends = [” lmp” , ”ump” , ”emp”] ,

A.1.2 build/hake/Config.hs

Add the following lines
−− Maximum supported number of machines (used f o r EMP)
max s e r v e r s : : I n t e g e r
max s e r v e r s = 2

Replace
”MAX CPUS=” ++ show max cpus

with

29

A. System Setup

”MAX CPUS=” ++ show max cpus ,
”MAX SERVERS=” ++ show max s e r v e r s

Replace

−− enable conf ig f l a g s f o r i n t e r c o n n e c t d r i v e r s in use f o r t h i s arch
= [S t r (”−D” ++ d)

| d <− [”CONFIG INTERCONNECT DRIVER ” ++ (map toUpper n)
| n <− op t In terc onn ec t Dr i ver s opts]

]
−− enable conf ig f l a g s f o r f lounder backends in use f o r t h i s arch
++ [S t r (”−D” ++ d)

| d <− [”CONFIG FLOUNDER BACKEND ” ++ (map toUpper n)
| n <− optFlounderBackends opts]

]

with
−− enable conf ig f l a g s f o r i n t e r c o n n e c t d r i v e r s in use f o r t h i s arch
= [S t r (”−D” ++ d)

| d <− [”CONFIG INTERCONNECT DRIVER ” ++ (map toUpper n)
| n <− f i l t e r (\x −> x /= ”emp”) $ o pt I n te rco nnec tDr ive rs opts]

]
−− enable conf ig f l a g s f o r f lounder backends in use f o r t h i s arch
++ [S t r (”−D” ++ d)

| d <− [”CONFIG FLOUNDER BACKEND ” ++ (map toUpper n)
| n <− f i l t e r (\x −> x /= ”emp”) $ optFlounderBackends opts]

]

With this modification, the flounder stubs for EMP will be generated but the
corresponding compile and linker flags will not be set. A cleaner integration
of EMP to hake and flounder would specify some dedicated configuration
syntax for the Hakefile.

A.2 Modifications to the user process’ Hakefile

For any user process which wants to use EMP, the following must be present
in its Hakefile
addLibrar ies = [”emp” , ” lwip ” , ”contmng ” , ” t imer ”] ,
addCFlags = [”−DCONFIG INTERCONNECT DRIVER EMP” , ”−DCONFIG FLOUNDER BACKEND EMP”]

A.3 Modifications to lib/emp/ip table.c

To add machines, just modify the following part at the end of ip table.c
according to your needs.

// S t a t i c setup , add machines here . . .
// use emp add machine ip ([machine id] , [system IP address]) ;
IP 4 ADDR(&address , 10 , 0 , 2 , 1 1) ;
emp add machine ip (0 , &address) ;

30

A.4. Modifications to menu.lst

IP 4 ADDR(&address , 10 , 0 , 2 , 1 2) ;
emp add machine ip (1 , &address) ;

A.4 Modifications to menu.lst

An example menu.lst configuration to use EMP
t imeout 0
t i t l e B a r r e l f i s h
root (nd)
kernel /x 86 64/ sbin/ e l v e r l o g l e v e l =4 machineid=0
module /x 86 64/ sbin/cpu l o g l e v e l =4 machineid=0
module /x 86 64/ sbin/ i n i t

Domains spawned by i n i t
module /x 86 64/ sbin/mem serv
module /x 86 64/ sbin/monitor

S p e c i a l boot time domains spawned by monitor
module /x 86 64/ sbin/chips boot
module /x 86 64/ sbin/ramfsd boot
module /x 86 64/ sbin/skb boot
modulenounzip /skb ramfs . cpio . gz nospawn
module /x 86 64/ sbin/pci boot
module /x 86 64/ sbin/spawnd boot
bootapic−x86 64=1−15
module /x 86 64/ sbin/ s t a r t d boot

For networking
module /x 86 64/ sbin/lpc t imer boot
For qemu , enable r t l 8029
module /x 86 64/ sbin/ r t l 8029 boot
For r e a l hardware , enable e 1000n
module /x 86 64/ sbin/e 1000n boot
module /x 86 64/ sbin/netd boot

General user domains
module /x 86 64/ sbin/ s e r i a l
module /x 86 64/ sbin/ f i s h

The important parts are

machineid=X This sets the machine ID of the current system. This ID
is used to identify the system for cross-machine communication and
must be unique within a group of communicating machines.

Some ”boot” additions lpc timer, the network card driver (rtl8029 for Qemu,
e1000n for real hardware) and netd must have the ”boot” argument
added because of EMP’s dependencies on these services.

31

Bibliography

[1] Barrelfish frequently asked questions. http://www.barrelfish.org/

bffaq.html.

[2] lwip - a lightweight tcp/ip stack. http://savannah.nongnu.org/

projects/lwip/.

[3] Adam Dunkels. Minimal TCP/IP implementation with proxy support.
Technical Report T2001:20, SICS – Swedish Institute of Computer Science,
February 2001. Master’s thesis.

[4] Andrew S. Tanenbaum. Computer networks. Prentice Hall, 2003.

33

http://www.barrelfish.org/bffaq.html
http://www.barrelfish.org/bffaq.html
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/

	Contents
	Introduction
	Background
	Barrelfish
	IDC: Inter Dispatcher Communication
	LWIP

	Problem and Motivation
	Overview

	Approach
	Target Architecture
	Structure
	Library vs. Daemon
	Monitor Inter-machine Communication
	Name Server

	Implementation
	EMP Channel
	LWIP
	Reliability and Ordering

	Flounder Stub Generator
	RPC

	Monitor
	Machine ID
	Interface Reference
	Intermachine Communication
	EMP Bind Process

	Nameservice
	Master Slave Replication

	Spawn Daemon

	Evaluation
	Benchmarks emp_bench
	emp_pingpong
	emp_throughput

	Known Issues and Limitations
	Throughput
	User-Library Limitations
	Hake Integration
	Channel termination
	System Discovery

	Conclusion
	Future Work

	System Setup
	Modifications to Haskell
	hake/X86_64.hs
	build/hake/Config.hs

	Modifications to the user process' Hakefile
	Modifications to lib/emp/ip_table.c
	Modifications to menu.lst

	Bibliography

