
Research Collection

Doctoral Thesis

Authorization, Protection, and Allocation of Memory in a Large
System

Author(s):
Gerber, Simon

Publication Date:
2018

Permanent Link:
https://doi.org/10.3929/ethz-b-000296835

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000296835
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DISS. ETH NO. 25300

Authorization, Protection, and
Allocation of Memory in a Large

System

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

SIMON GERBER

Master of Science ETH in Computer Science, ETH Zurich

born on 01.09.1986

citizen of Langnau i.E., Bern

accepted on the recommendation of

Prof. Dr. Timothy Roscoe (ETH Zurich), examiner
Prof. Dr. Gustavo Alonso (ETH Zurich), co-examiner

Dr. Robert N. M. Watson (University of Cambridge), co-examiner

2018

Abstract

In this dissertation, I rethink how an OS supports virtual memory. Classical
virtual memory is an opaque abstraction of RAM, backed by demand paging.
However, most systems today (from phones to data-centers) do not page,
and indeed may require the performance benefits of non-paged physical
memory, precise NUMA allocation, etc. Moreover, MMU hardware is now
useful for other purposes, such as detecting page access or providing large
page translation. Accordingly, the venerable VM abstraction in OSes like
Windows and Linux has acquired a plethora of extra APIs to poke at the
policy behind the illusion of a virtual address space.

Instead, I present Barrelfish’s memory system which inverts this model.
Applications explicitly manage their physical RAM of different types, and
directly (though safely) program the translation hardware. Barrelfish’s mem-
ory system requires no virtualization support, and outperforms VMM-based
approaches for all but the smallest working sets. We show that Barrelfish
enables use-cases for virtual memory not possible in Linux today, and other
use-cases are simple to program and on par with Linux’s performance.

Finally, I show how Barrelfish’s capability system allows our memory model
to scale to multiple cores. We present a set of algorithms which allow
Barrelfish to process capability operations when capabilities exist on multiple
cores without risking that different cores have different views of the global
set of capabilities. The usual capability operations are sufficient to allow

i

our memory model to work on multiple cores, as I implement all the
memory model primitives as capability operations. We demonstrate that
the capability operations retain relatively low-latency in the presence of
capabilities which exist on multiple cores.

ii

Zusammenfassung

In dieser Dissertation überdenke ich die Abstraktionen von virtueller Spe-
icherverwaltung, wie sie vom Betriebssystemen angeboten wird. Klassische
Abstraktionen sind nicht mehr zeitgemäss, da sich die Hardwarelandschaft
stark verändert hat. Virtuelle Speicherverwaltung dient heute nicht mehr
primär zur Auslagerung von Speicher sondern um Performancevorteile
von präzieser NUMA-Allokation auszunutzen und direktem Zugriff auf
physikalischen Speicher zu ermöglichen, wie es von vielen Anwendungen von
Smartphones bis hin zu Rechenzentren benötigt wird. Die Adressüberset-
zungshardware kann heute für viele weitere Zwecke genutzt werden. Zum
Beispiel kann sie Zugriff auf bestimmte Adressen gewähren oder grössere
Übersetzungseinheiten (“Seiten”) anbieten. Klassische Betriebssysteme wie
Windows und Linux bieten eine Vielzahl von Programmierschnittstellen an,
um diese Funktionalität an Applikationen weiterzuleiten, so dass diese ihren
virtuellen Adressraum ihren spezifischen Anforderungen gemäss anpassen
können.

Stattdessen beschreibt diese Dissertation ein neues Modell für Speicherver-
waltung. In diesem neuen Modell können Applikationen direkt Arbeitsspe-
icher allozieren und ihren virtuellen Addressraum verwalten, indem sie
selbständig die Übersetzungshardware direkt programmieren. Das Betrieb-
ssystem stellt sicher, dass Applikationen nur Arbeitsspeicher, auf welchen sie
Zugriff haben, in ihren Addressraum einfügen können. Wir beschreiben die

iii

Implementierung des Modells in Barrelfish und zeigen, dass Applikationen
virtuelle Adressierung für Zwecke brauchen können, welche in einem klassis-
chen Betriebssystem nahezu unmöglich sind. Ferner zeige ich, dass andere
Nutzungsfälle sowohl einfach zu programmieren als auch wettberwerbsfähig
im Vergleich zu Linux sind.

Schliesslich beschreibt diese Dissertation wie das Capability-System von
Barrelfish es erlaubt, mein Speicherverwaltungsmodell auf mehrere Prozes-
sorkerne zu skalieren. Wir beschreiben die Algorithmen, welche es Barrelfish
erlauben, Capability-Operationen auszuführen auch wenn Capabilities auf
mehreren Kernen existieren. Die üblichen Capability-Operationen genügen,
um unser Speicherverwaltungsmodell zu skalieren, da ich alle grundlegenden
Operationen als Capability-Operationen implementiere. Zudem zeige ich,
dass die Operationen eine relativ kleine Latenz beibehalten, auch wenn
Capabilities auf mehreren Kernen existieren.

iv

Acknowledgments

First, I would like to thank my thesis advisor, Timothy Roscoe, for offering
me the opportunity to work on operating system research over the last six
years, and for all the feedback and insightful discussions we have had on
memory and resource management. Next I would like to thank Gustavo
Alonso for agreeing to co-supervise my thesis, and for all the general feedback
on presenting my research throughout my time in the Systems Group. Robert
Watson gets a huge thank you for agreeing to be part of my thesis committee
and for the valuable feedback on the weak spots of my dissertation. For
improving the dissertation contents, special thanks go to Alan Cox, who
has graciously explained the finer details of FreeBSD’s superpage support.

Naturally, I would like to thank the whole Systems Group, past and present,
for their support and great conversations over lunch and coffee. In particular,
I would like to thank Simonetta, Jena, Eva, and Nadia, for the great work in
taking care of us students with regards to the more tedious administrative
issues.

Of course, I am grateful for the support that I was offered by my family
throughout the years. Apart from my family, thanks also go to the current
and past members of my shared flat. Thank you for putting up with me
throughout paper deadlines etc.

v

I would like to specially mention all the Barrelfish team members past and
present and all the students working on Barrelfish over the years without
whom this thesis would not have been possible. In particular, I would
like to thank “my generation” of the Barrelfish team – Kornilios, Stefan,
Pravin, Gerd, Reto, Roni, Moritz, David, and Lukas – for their work and
collaboration on all areas of Barrelfish. Also, of the students who have
worked on Barrelfish, I would particularly like to thank Mark Nevill, who
laid the groundwork for the distributed capability system, and often acted
as a sounding board for the harder-to-debug issues during the time we lived
together.

Last, but not least, I would like to thank Dejan Milojicic for the opportunity
to visit HP labs in Palo Alto (now HPE labs) for an internship, during
which I ended up working on Barrelfish in the context of HPE’s TheMachine
project. I would also like to thank the researchers, staff, and fellow interns
at HP labs for the great time I had there.

Zurich, September 2018.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 6

1.3 Structure of the Dissertation 7

1.4 Related publications . 8

2 Background and related work 11

2.1 Modern Virtual Memory Hardware 12

2.1.1 Intel . 12

2.1.2 ARMv7-A . 19

2.1.3 ARMv8-A . 22

2.1.4 Conclusion . 25

2.2 Classical virtual memory . 26

2.2.1 Modern Linux . 27

2.2.2 Windows NT . 30

2.2.3 FreeBSD . 33

2.2.4 Solaris . 34

vii

Contents

2.2.5 Discussion . 35

2.3 An overview of capability-based systems 40

2.3.1 Kernel supported capabilities 44

2.4 Other types of capabilities 48

2.4.1 Hardware supported capabilities 48

2.4.2 Programming language systems 49

2.5 Non-traditional memory systems 50

2.5.1 Application-level memory management 50

2.5.2 Customizable policies 51

2.5.3 Dune . 52

2.5.4 Mach . 52

2.6 An overview of Barrelfish . 57

2.6.1 Domain specific languages 58

2.6.2 Capabilities in Barrelfish 59

2.6.3 A Barrelfish application’s view of capabilities 60

2.6.4 Message passing . 68

2.6.5 User-space memory management 69

3 Design and implementation on a single core 71

3.1 Physical memory allocation 73

3.2 Securely building page tables 75

3.3 Keeping track of virtual to physical mappings 78

3.4 Page faults and access to status bits 81

3.5 High-level convenience . 82

viii

Contents

3.5.1 User space virtual address space management 82

3.5.2 Shadow page tables 84

3.5.3 Virtual regions and memory objects 86

3.5.4 Comparison with Mach 88

3.6 Evaluation . 90

3.6.1 Appel and Li benchmark 91

3.6.2 Memory operation microbenchmarks 92

3.6.3 HPC Challenge RandomAccess benchmark 94

3.6.4 Mixed page sizes . 96

3.6.5 Page status bits . 99

3.6.6 Nested paging overhead 103

3.6.7 Page coloring . 104

3.6.8 Discussion . 106

4 A protocol for decentralized capabilities 107

4.1 Overall design . 108

4.2 Capability operations . 109

4.3 Delete Cascades and Reachability 113

4.4 Capability transfer . 118

4.5 Implementing a mapping database 120

4.5.1 Review of search data structures 121

4.5.2 Ordering . 125

4.5.3 Range Queries . 128

4.5.4 Augmented AA tree implementation trade-offs 129

ix

Contents

4.5.5 Evaluation of different implementations 131

4.6 Implementation in Barrelfish 145

4.7 Evaluation . 150

4.7.1 Experimental design 150

4.7.2 Invoke . 151

4.7.3 Delete . 152

4.7.4 Revoke . 166

4.7.5 Retype . 176

5 Formalizing the capablity protocol in TLA+ 187

5.1 The model . 187

5.2 Checking the model . 207

5.3 Outlook . 210

6 Conclusions 211

6.1 Summary . 211

6.2 Directions for Future Work 212

6.2.1 Multiple physical address spaces 212

6.2.2 A better capability description language 213

6.2.3 Hardware acceleration for kernel-based capabilities . 214

6.2.4 Multi-threaded shared-memory applications 214

x

1
Introduction

This dissertation presents the design and implementation of a memory
system for the multikernel operating system architecture.

My goal is to provide a memory system that

1. is transparent in regard to translation hardware features, that is, enables
applications to utilize specific features of translation hardware without
compromising on the design in the interest of performance,

2. is scalable with an increasing number of processor cores, and

3. provides a simple and orthogonal interface that avoids feature in-
teractions and performance anomalies stemming from such feature
interactions.

During the research for this dissertation, an implementation of this mem-
ory system has been created in the Barrelfish research operating sys-

1

Chapter 1. Introduction

tem [BBD+09]. In this dissertation, I use that implementation to argue the
following thesis:

An operating system’s memory system can achieve the goals
of scalability and transparency by letting applications directly
manage physical memory, directly (but safely) program avail-
able translation hardware to build the environment in which
they operate, by having the operating system reflecting virtual
memory-related processor exceptions back to the faulting process,
thereby essentially turning the classical virtual memory system
inside out.
Additionally, such an inverted memory system can achieve per-
formance which is competitive with established memory systems,
such as Linux, while avoiding the pitfalls of mechanism redun-
dancy, policy inflexibility and feature interaction in the API
presented to applications.

A very diverse set of applications can benefit from this design. This includes
many server-class applications such as databases, language run-times which
already build their own memory systems on top of the operating system
abstractions, as well as other desktop and server applications that require
specific data placement or translation granularities.

Motivation

As hardware manufacturers have battled with providing exponential in-
creases in single-core performance for the last two decades, but the amount
of transistors on a chip has continued to double every couple years, many
manufacturers have made improvements to the raw processing power of a

2

1.1. Motivation

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
100

101

102

103

104

105

106

107

108

109

1010

Transistors

Frequency

Power Density

Cores

Figure 1.1: Moore’s law illustrated with data from various Intel proces-
sors [Wal]

chip by providing more concurrent threads of execution, or cores, on a single
chip. This is commonly called “multi-core”.

Figure 1.1 illustrates the trend of stagnating single-core performance and
increase in core count by plotting the number of transistors, clock frequency,
power density, and number of cores for various Intel processors starting
from the earliest Intel designs from the 1970s all the way to modern 20-core
Xeon designs from 2015.

Managing and exploiting the available parallelism in current hardware is
one of the main challenges for the development of software systems, as
software needs to be scalable in order to exploit hardware parallelism. In
this context, I define scalability as the ability of software to provide speedups
proportional to the number of available threads of execution.

In particular, as the operating system sits between the hardware and appli-

3

Chapter 1. Introduction

cation software, it is an important piece of software when striving to make
our software stacks scalable. Thus services offered by the OS, such as mem-
ory management, need to be scalable, in order to not prevent application
software from scaling.

Alongside the trend to multi-core CPUs the landscape of memory technolo-
gies has changed significantly over the last few years, becoming significantly
more heterogeneous. Today there are many emerging non-volatile random
access memory (NVM) technologies which promise near DRAM latencies.
One of the more promising NVM technologies is phase-change memory,
which is the technology behind Intel and Micron’s 3D Xpoint memory.

I argue that applications for modern machines should manage physical RAM
explicitly and directly program MMUs according to their needs, rather than
manipulating such hardware implicitly through a virtual address abstraction
as in Linux. Previous work shows that for applications like databases the
performance gains from closely managing the MMU mappings and locations
of physical pages on memory controllers are as important to the end user as
the functional correctness of the program [GARH14, LBKN14].

However, traditional virtual memory (VM) systems present a conceptually
simple view of memory to the application programmer: a single, uniform
virtual address space which the OS transparently backs with physical mem-
ory. In its pure form, applications never see page faults, RAM allocation,
address translation, TLB misses, etc.

Naturally, this simplicity has a price. VM is an illusion — one can exhaust
physical memory, resulting in thrashing, or the OS killing the application.
Moreover, the performance of the VM abstraction is unpredictable, partially
due to the fact that VM hardware is complex, with multiple caches, TLBs,
page sizes, NUMA nodes, etc.

Consequently, the once-simple virtual memory (VM) abstraction in systems

4

1.1. Motivation

such as Linux has become steadily more complex, as application developers
demand more control over the mapping hardware, by piercing the VM
abstraction with features like transparent huge pages, NUMA allocation,
pinned mappings, etc. In section 2.2, I discuss the complexity, redundancy,
and feature interaction in the formerly simple VM interface.

In this dissertation I show that explicit primitives for managing physical
memory and the MMU deliver comparable or better application performance,
greater functionality, and a simpler and orthogonal interface that avoids the
feature interaction and performance anomalies seen in Linux.

For all of these reasons, I argue that classical VM is outdated, and hinders
server-class applications more than it helps them.

Thus, this dissertation tries to answer the question of how to best manage
memory in a modern system without hindering applications from achieving
the best possible performance on a given hardware platform.

In response to the evolving demands of applications, I investigate the
consequences of turning the VM system inside-out: applications (1) directly
manage physical RAM, and (2) directly (but safely) program MMUs to
build the environment in which they operate.

My contribution is a comprehensive memory system design which achieves
these goals, allows applications to take full advantage of the features that
are available in translation hardware, scales to large multicore machines,
and which performs well.

I present an implementation of my design in Barrelfish. Barrelfish’s memory
system adopts a radically inverted view of memory management compared
with a traditional system like Linux. Barrelfish processes use capabilities
to manage physical RAM without requiring that RAM to ever be mapped
in their address space. Nevertheless, Barrelfish processes still run inside
a virtual address space (the MMU is enabled) but this address space is

5

Chapter 1. Introduction

securely constructed by the application itself with the help of a library
which exposes the full functionality of the MMU through the capability
system. Above this, all the functionality of a traditional OS memory system
is provided as a library which applications can link against if they want to
continue using traditional APIs such as the C standard library’s venerable
malloc and free.

Application-level management of the virtual address space is not a new
idea. Earlier systems that provide application-level management of the
virtual address space include the Exokernel system [EKO95], the V++
Cache Kernel [CD94], and more recently seL4 [KEH+09]. I review those
systems and more in section 2.5.

Similarly, allowing applications to directly manage physical RAM has
been previously proposed in the context of capability systems, such as
KeyKOS [RHB+86], Hydra [CJ75, LCC+75, WLH81], and more recently –
and the largest inspiration for Barrlefish’s capability system – seL4 [KEH+09].
I review those systems and others which are pertinent to my design in sec-
tion 2.3.

Contribution

In this dissertation, I make three main contributions:

1. A comprehensive design and implementation of application-level mem-
ory management for modern hardware capable of supporting appli-
cations which exploit its features. I extend the Barrelfish model to
support safe user construction of page tables, arbitrary super-page
mapping, demand paging, and fast access to page status information
without needing virtualization hardware.

6

1.3. Structure of the Dissertation

2. A detailed performance evaluation of Barrelfish’s memory system com-
paring it with a variety of techniques provided by, and different config-
urations of, a modern Linux kernel, showing that useful performance
gains are achieved while greatly simplifying the interface.

3. A rigorous design for decentralized capability management which en-
ables scaling the Barrelfish memory system to multiple cores without
impacting the safety guarantees made by the memory system or the
capability system.

In particular, my personal contributions in the implementation are comprised
of:

1. A mechanism (“mapping capabilities“) which connects Barrelfish’s
memory and capability systems, which is described in chapter 3.

2. Support for advanced MMU features, such as large pages and changing
page protections without deleting and recreating the mappings.

3. A working implementation of the distributed capability system which
was first presented in Mark Nevill’s master’s thesis [Nev12].

Further personal contributions are the concept of turning the memory system
inside out by utilizing various pieces of previous work that have never been
combined in this fashion in a single system, and the evaluation of both the
memory and capability system.

Structure of the Dissertation

The rest of this dissertation is structured as follows: In chapter 2, I give
an overview and critique of the Linux and Windows memory management

7

Chapter 1. Introduction

systems, and discuss previous work in both capabilities and non-traditional
memory systems. In chapter 3, I discuss how my inverted memory manage-
ment system can be implemented for a single core and compare and discuss
my system’s performance with a recent Linux kernel. Then in chapter 4, I
discuss tradeoffs to be made for multi-node capability systems, and discuss
the design, implementation, and performance of my protocol for decentral-
ized capability operations. In chapter 5, I provide a simple formal model
for the capability protocol and discuss the challenges in formally verifying a
protocol of this size. Finally, I draw some conclusions, and give some ideas
for directions of future research in chapter 6.

Related publications

The work presented in this dissertation is part of the Barrelfish research
project, and therefore depends on and supports the work of others.

A full and up-to-date list of publications related to Barrelfish can be
found on the official Barrelfish website, under http://www.barrelfish.
org/documentation#publications.

Some of the work presented in this dissertation is published in various forms,
and is listed here for reference:

[BBD+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüp-
bach, and Akhilesh Singhania. The Multikernel: A new OS architecture
for scalable multicore systems. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles, October 2009.

[Nev12] An Evaluation of Capabilities for a Multikernel. Mark Nevill.
Master’s thesis, ETH Zurich, May 2012.

8

http://www.barrelfish.org/documentation#publications
http://www.barrelfish.org/documentation#publications

1.4. Related publications

[Ger12] Virtual Memory in a Multikernel. Simon Gerber. Master’s thesis,
ETH Zurich, May 2012.

[GZA+15] Not Your Parents’ Physical Address Space. Simon Gerber,
Gerd Zellweger, Reto Achermann, Kornilios Kourtis, Timothy Roscoe,
Dejan Milojicic. In Proceedings of the 15th Workshop on Hot Topics in
Operating Systems, HOTOS XV, 2015.

9

2
Background and related work

In this chapter I give some background on the address translation hardware
in modern processors in section 2.1.

Then I give an overview over the virtual memory systems found in Linux,
FreeBSD and Windows in section 2.2, together with a critique which points
out some undesirable properties that I want to consciously avoid in the
design of my system.

In section 2.3, I provide background on capability systems, some of which
have had a large influence on Barrelfish’s design. Additionally, I briefly
discuss some hardware-supported and programming language capability
systems in 2.4

In section 2.5, I review other systems which proposed non-traditional memory
systems.

Finally, in section 2.6, I provide background on the multikernel model and
its implementation in Barrelfish.

11

Chapter 2. Background and related work

Modern Virtual Memory Hardware

Intel

As described in Intel’s Software Developer’s Manual [Int, Vol. 3, ch. 3],
Intel’s x86 (IA-32 and EM64T) architectures, hardware support for memory
management, address translation, and memory protection is present in two
forms: segmentation and paging. Segmentation provides isolation of code,
data, and stack modules and is not optional. Paging provides a traditional
demand-paged virtual memory system which can be used for isolation as
well. However, unlike segmentation, paging can be disabled completely.
Most operating systems choose not to do so, as it is hard to work with
limited amounts of physical memory and no demand paging.

Segmentation

Memory segmentation works by dividing the processor’s addressable memory
space (the linear address space) into smaller protected address spaces, the
segments. Thus memory addresses in the processor are logical addresses
(also called far pointers) that consist of a segment selector and an offset.
The segment selector is a unique identifier for the segment which contains
an offset into the global descriptor table (GDT). Using that offset, the
processor retrieves a segment descriptor that contains the base and size of
the segment as well as the access rights and privilege level for that segment.
The linear address is then computed by adding the offset of the logical
address to the base of the segment.

If paging is disabled, linear addresses are directly mapped to the physical
address space, i.e. the range of addresses that the processor can generate on
its address bus.

12

2.1. Modern Virtual Memory Hardware

There are several different usage models for segmentation. The most basic
model is called basic flat segmentation and hides most of the segmenta-
tion system from the operating system and applications. In this model,
applications and operating system have access to a contiguous unsegmented
address space.

The next level of usage is called protected flat segmentation and differs
from basic flat segmentation by having segment limits that restrict program
access to the address range that can actually contain physical memory.

The usage model that makes full use of the capabilities of the segmentation
hardware is called multi-segment model. In this model each application has
its own set of segments which – if so desired – can be shared among several
cooperating applications.

Paging

As multitasking systems usually define a linear address space that cannot
be mapped directly to physical memory due to its size, demand paging
(“paging”) virtualizes the linear address space, thus producing the more
familiar “virtual addresses”. The virtualization of the linear address space is
handled by the processor’s paging hardware. Using paging we can simulate
a large linear address space with a small amount of physical memory and
some disk storage. Using paging, each segment is split into pages of 4 KiB
in size that are either stored in physical memory or on disk. The operating
system has to maintain a page directory and a set of page tables to keep
track of all the pages in the system. When a program attempts to access
a linear address, the processor uses the page directory and page tables
to translate the (virtual) linear address into a physical address and uses
the generated physical address to perform the actual memory access (cf.
Figure 2.1).

13

Chapter 2. Background and related work

Segmentation Paging

Segment
Selector Offset

Logical Address

Global Descriptor
Table (GDT)

Segment
Descriptor

segment base
address

Linear Address
Space

Linear Address

Segment

Page

Linear Address

Dir Table Offset

Page Directory

Entry

Page Table

Entry

Physical Address
Space

Physical Address

Page

Figure 2.1: Linear address lookup (from [Int, Vol.3A,p.3-2])

If a page corresponding to a memory access (using a virtual address) is not
in physical memory, the processor generates a page-fault exception, thus
interrupting the program trying to access memory. The operating system
then reads the missing page from disk (or allocates a new region of physical
memory), installs that page in the appropriate page tables and resumes
execution of the program.

As the paging mechanism described above is similar for 32 bit and 64 bit
x86 processors, we have so far ignored the various subtle differences. In fact,
there are three distinct paging models for x86 processors: standard 32-bit
paging, PAE paging, and IA-32e paging.

Standard 32-bit paging uses 32-bit linear addresses and has a page directory

14

2.1. Modern Virtual Memory Hardware

with 1024 entries that point to page tables containing 1024 page entries.
Standard 32-bit paging can support physical page extension (PSE) that
allows the physical addresses to be up to 40 bits wide. Standard 32-bit
paging allows 4KiB and 4MiB pages.

PAE (physical address extension) paging is an extension of 32-bit paging
that allows physical addresses to be 52 bits wide. When PAE is enabled,
the processor maintains a set of four PDPTE registers that are loaded from
a 32 byte page directory pointer table. These PDPTE registers are then
used to translate linear addresses. Using PAE, all page table entries are 64
bits wide, and the system supports page sizes of 4KiB and 2MiB .

IA-32e paging is used on 64-bit processors and translates 48-bit linear
addresses to 52-bit physical addresses. IA32-e uses four levels of page tables
with 64-bit entries to translate addresses. IA32-e mode can support 4KiB ,
2MiB , and 1GiB pages. Of those page sizes, support for 4KiB and 2MiB

pages is mandatory.

Table 2.1 gives an overview of the paging structures and their usage with
the three paging modes.

15

Chapter 2. Background and related work

Paging Structure Paging Mode Physical Address
of Structure

Relevant
Virtual Address
Bits

Page
Mapping1

PML4 Table
32-bit, PAE2 N/A

IA-32e3 CR34 47:39 N/A

Page-directory
Pointer Table
(PDPT)

32-bit N/A

PAE2 CR34 31:30 N/A

IA-32e3 PML4 entry 38:30 1 GB page5

Page directory
32-bit CR34 31:22 4 MB page6

PAE2, IA-32e3 PDPT entry 29:21 2 MB page

Page table
32-bit

PD entry
21:12 4 kB page

PAE2, IA-32e3 20:12 4 kB page

1This column specifies the size of leaf pages (if any) at this level of the page table
tree. 2PAE stands for Physical Address Extension, which extends physical
addresses on a 32 bit processor from 32 to 52 bits. 3IA-32e is short for IA-32 ex-
tended paging, which is the four-level paging mode on Intel 64. 4CR3 is a special
purpose register on x86 that contains the address to the current application’s root
page table. 5Support for 1 GB pages is processor specific. Whether a processor
supports 1 GB pages can be checked with the cpuid instruction. 6Support for
4 MB pages on 32bit is processor specific and must be explicitly enabled in CR4.

Table 2.1: Intel paging structures, from [Int, Vol. 3A, p.4-9]

Caches

The Intel Software Developer’s Manual [Int, Vol. 3, ch. 11] describes the
memory cache and cache control mechanisms in Intel 64 and IA-32 processors.
The sizes and characteristics of individual caches differ on different processor
models and may change in future versions of the processor. Software can

16

2.1. Modern Virtual Memory Hardware

Figure 2.2: Cache structure of the Intel Core i7 Processors [Int, Vol. 3,
Figure 11-2].

use the cpuid instruction to read sizes and characteristics of the caches for
the processor on which the instruction is executed.

Generally speaking, Intel processors may implement four types of cache:
the trace cache, the level 1 (L1) cache , the level 2 (L2) cache, and the level
3 (L3) cache. Whether a processor has these types of cache depends on
the processor’s family. In figure 2.2 the cache structure of the Intel Core
i7 processors is displayed. In these processors, the L1 cache is divided into
two sections: one section is dedicated to caching instructions and the other
caches data. The L2 cache is a unified data and instruction cache. Each
processor core has its own L1 and L2. The L3 caches is a unified data
and instruction cache wihch is shared by all processor cores in a physical
package. These processors do not implement a trace cache. The Intel SDN
describes the cache structure for many processor families starting from the
original Pentium on page 11–4 in volume 3A [Int].

17

Chapter 2. Background and related work

Most modern Intel processors the cache line size for L1, L2, and L3 caches
is 64 bytes. The processor will always reads a cache line from system
memory beginning on a 64 byte boundary. A cache line can be filled from
memory with a 8-transfer burst transaction. As the caches do not support
partially-filled lines, caching any amount of memory requires caching an
entire line.

Intel supports various memory types with different cacheabilities. These
are listed in Table 11–2 in the Intel SDN. Some of the memory types are
only available through the page attribute table (PAT) which extends the
page table format to allow memory types to be assigned past the regular
cache-disable and write-through bits in the page table entries.

Intel’s processors implement the MESI protocol to maintain consistency of
the L1 data and L2/L3 unified caches with caches of other processors.

TLB

The translation lookaside buffer (TLB) is used to cache the most recently
used translation table entries. This speeds up memory accesses when paging
is enabled by reducing the number of memory accesses that are required to
read the page tables in order to complete a virtual to physical translation.
On Intel processors, the TLBs are divided into four groups: instruction
TLBs for 4 kB pages and large pages, and data TLBs for 4 kB and large
pages. Processors based on Intel Core microarchitectures implement one
level of instruction TLB and two levels of data TLB. Processors in the
Core i3,i5, and i7 families provide a second-level unified TLB. Table 11–1 in
the Intel SDN, volume 3 [Int] describes the size and associativity of each
available TLB for each processor family. For our running example, the Core
i7 family, the 4 kB page instruction TLB has 64 entries per hyperthread
and is 4-way set associative, the large page instruction TLB has 7 entries

18

2.1. Modern Virtual Memory Hardware

per thread and is fully associative. The 4 kB page data TLB has 64 entries,
and the large page data TLB has 32 entries. Both first level data TLBs
are 4-way set associative. The second level 4 kB page unified TLB has 512
entries and is 4-way set associative. Note that there is no second level large
page TLB for Intel Core i7 processors.

ARMv7-A

ARMv7 defines its virtual memory architecture in the ARMv7 technical
reference manual [ARM14, B2]. The memory system architecture of ARMv7-
A is the Virtual Memory System Architecture (VMSA). Additionally, ARMv7
defines multiple levels of caches, as well as allowing systems to have levels
of caches beyond the ones defined in the techincal reference manual.

In this section, I will discuss the VMSA and the architecturally defined
caches of ARMv7-A.

Virtual Memory System Architecture (VMSA)

The ARMv7-A Virtual Memory System Architecture (VMSA) supports
translations of different granularities: small pages (4 kB) are the smallest
unit of translation. The larger units of translation are: large pages, which
translate 64 kB of memory, sections, which translate 1 MB of memory, and
supersections which translate 16 MB of memory. Note that support for
supersections is optional. The larger units of translation enable a large
region of memory to be mapped using a single TLB entry.

The ARMv7-A VMSA defines a two level translation table. First-level
tables hold first-level descriptors that contain a base address and either
the translation properties of a section or supersection, or the translation
properties and pointers to a second level table for large pages and small

19

Chapter 2. Background and related work

pages. Second-level tables hold second-level descriptors each containing the
base address and translation properties for a small page or a large page.
Second-level tables are also referred to as page tables.

Large pages and supersections are special, because the top four bits of the
page offset intersect with the bottom four bits of the page number used
to look up the translation entry. Therefore, the VMSA requires that all
sixteen table entries that refer to a single large page or supersection contain
the same information.

ARMv7 is different from x86 paging, because the architecture defines two
distinct translation table base registers (TTBR) and a translation table
base control register (TTBCR) as opposed to the single x86 cr3 register
that holds the address of the current root table.

The normal use of the two TTBRs is that TTBR0 is typically used for
process-specific addresses and TTBR1 is typically used for operating system
and I/O addresses that do not change on a context switch.

The TTBR to use is determined by the most significant bits of the virtual
address and the value of the N field of the TTBCR (TTBCR.N).

If either TTBCR.N is zero or the indicated bits of the virtual address are
zero, TTBR0 is used. Otherwise TTBR1 is used.

The table pointed to by TTBR0 can range in size from 128 B to 16 kB
depending on the value in TTBCR.N. If TTBCR.N is zero, all translations
use TTBR0. The table pointed to by TTBR1 is always 16 kB in size. All
first-level tables must be naturally aligned.

Second-level tables are 1 kB in size and must be naturally aligned. Each
32-bit entry in a table provides translation information for a 4 kB region of
memory.

20

2.1. Modern Virtual Memory Hardware

Caches

The description of architecturally defined caches in the ARMv7-A TRM [ARM14,
A3.9] does not specify how to implement the cache hierarchy, because the
details of such an implementation heavily depend on the microarchitecture.
However, the TRM defines the application level interface to the memory
system, and supports a hierarchical memory system with multiple levels of
cache.

ARMv7-A defines a fairly comprehensive mechanism for managing hardware
coherence of multiple caches, defining multiple different shareability domains.
Additionally, ARMv7 supports both write-through, and write-back cacheable
regions, where write-back regions can be either write-allocate or not.

TLB

The ARMv7 architecture [ARM14, B3.10] does not specify the exact form
of the TLB structures for any design. Similarly to caches, the architecture
only defines some principles for TLBs:

• The architecture has a concept of an entry locked down in the TLB.
Implementations might not support lockdown.

• An unlocked entry in the TLB is not guaranteed to remain in the TLB.

• A locked entry in the TLB is guaranteed to remain in the TLB. However
a locked entry in the TLB might be updated by subsequent updates to
the translation tables.

• A translation table entry that returns a translation or access fault is
guaranteed not to be held in the TLB. However an entry that returns
a domain or permission fault might be held in the TLB.

21

Chapter 2. Background and related work

• Any translation table entry that does not return a translation or access
fault might be allocated to an enabled TLB at any time.

• TLB entries are not corrupted to give incorrect translations between
disabling and re-enabling the MMU.

The ARMv7 VMSA allows the virtual memory map to be divided into global
and non-global regions. Each non-global region has an associated address
space identifier (ASID). ASIDs allow different translation table mappings
to co-exist in a caching structure such as a TLB.

ARMv7 provides TLB maintenance operations which allow software to
invalidate entries from a TLB. This operation is necessary for example when
the operating system removes entries from a page table.

ARMv8-A

Virtual Memory System Architecture (VMSA)

ARMv8-A’s virtual memory system architecture (VMSAv8) [ARM15, D4]
is a evolution of ARMv7-A’s VMSA. The biggest difference between the
two VMSAs is that VMSAv8 has support for both one- and two-stage
translations, that is, designed-in support for nested paging. Additionally,
the VMSAv8 supports different translation granularities, i.e. different sizes
for base pages. VMSAv8-64, the specification for a single-level translation of
64-bit virtual addresses, supports up to four levels of address lookup, input
addresses of up to 48 bits, output addresses of up to 48 bits, and translation
granularities of 4 kB, 16 kB, or 64 kB. For EL0 and EL11, VMSAv8 keeps

1ARMv8 has four exception levels which have decreasing rights. EL3 is the highest exception level
and this is where ARM TrustZone firmware runs. EL2 is the next-highest exception level and designated
for virtual machine monitors. EL1 is the exception level which is designated for the OS kernel, while
applications run in EL0

22

2.1. Modern Virtual Memory Hardware

two distinct TTBRs which are simply selected by inspecting the top bits of
a virtual address. When the top bits are one, TTBR1 is used, otherwise
TTBR0 is used. Notably, on ARMv8, all the registers associated with
VMSAv8 are replicated for each exception level.

Caches

ARMv8 supports complex systems of caches [ARM15, D3.4]. The specifica-
tion does not define exactly how to implement a cache hierarchy, but defines
some features that any cache implementation must support. For example,
the architecture has a concept of entries which are locked down in the cache.
How to achieve cache lockdown is implementation defined, and lockdown
might not be supported by a particular implementation, or some memory
attributes which are supported by an implementation. The architecture
guarantees that a locked entry remains in the cache. However it does not
guarantee that such an entry remains dirty. Conversely, the architecture
gives no guarantees for unlocked entries in the cache. Such entries might
not remain in the cache and software must not assume that an unlocked
item which remains in the cache remains dirty. The architecture has no
mechanism that can guarantee that a memory location which is marked
cacheable at the current or a higher exception level cannot be allocated
to an enabled cache at any time. However, the architecture guarantees
that a memory location that does not have a cacheable attribute cannot be
allocated into the cache, and that memory locations which are not marked
as cacheable in both the translation regime at the current exception level,
and a translation regime at a higher exception level cannot be allocated
to the cache. For data accesses, any memory location that is marked as
“normal inner shareable” or “normal outer shareable” is guaranteed to be
coherent with all masters in its shareability domain. Eviction of a cache
entry from a cache level can overwrite memory that has been written by

23

Chapter 2. Background and related work

another observer only if the entry contains a memory location that has
been written to by an observer in the shareability domain of that memory
location. Finally, the allocation of a memory location into a cache cannot
cause the most recent value of that memory location to become invisible to
an observer if it was previously visible to that observer.

ARMv8 supports memory regions which are non-cacheable, write-through
cacheable, or write-back cacheable. Additionally, ARMv8 defines the cache
allocation hints read-allocate, transient read-allocate, no read-allocate, and
write-allocate, transient write-allocate and no write-allocate. The cache
transient hints provide a hint to the memory system that an access is
non-temporal or streaming and unlikely to be repeated in the near future.
The architecture does not require implementations to make use of cache
allocation hints.

TLB

The ARMv8 architecture reference manual [ARM15] describes the architec-
ture requirements in section D4.7.

The VMSAv8 supports TLB for each of its translation stages.

The principles which the architecture defines for TLBs are mostly identical
with the ones given for ARMv7 TLBs earlier in this section. The changes
are that ARMv8 does not have domain faults, and that TLB consistency is
ensured when disabling and re-enabling a stage of translation rather than
the whole MMU.

ARMv8 supports address space identifiers (ASID) for EL1 and EL0, but not
EL2 or EL3. The architecture requires that ASID values are unique within
any single inner shareable domain, that is each ASID value must have the
same meaning to all processing elements in the system. The ASID size is

24

2.1. Modern Virtual Memory Hardware

an implementation defined choice of 8 bits or 16 bits and can be queried by
reading a memory model feature register.

ARMv8 defines a TLB maintenance instruction each for invalidating all
entries in the TLB, invalidating a single TLB entry by ASID for a non-global
entry, invalidate all TLB entries that match a specified ASID, and invalidate
all TLB entries that match a specified VA regardless of the ASID. Each
maintenance instruction can be specified as applying only to the processing
element that executes the instruction or all processing elements in the same
inner shareable shareability domain as the executing processing element.

Conclusion

Looking at three prominent hardware architectures for general-purpose
processors, we see that the classical notion of virtual memory as an opaque
abstraction of physical memory and the associated complexities has found its
way into the translation hardware of both x86 and ARM-based processors.

The fact that the classical virtual memory model is assisted by hardware
has led to a homogenization of the virtual memory systems of most modern
operating systems, as I will discuss in the next section. However, as briefly
discussed in the motivation, modern applications wish to control the place-
ment and access latencies of their data and thus require controls that simply
are not available in the classical virtual memory model. Thus, in the next
section, I will outline and discuss the various holes that modern operating
systems poke through the VM abstraction to accommodate applications.

25

Chapter 2. Background and related work

Classical virtual memory

Unix was designed when RAM was scarce, and demand paging essential to
system operation. Virtual memory is fully decoupled from backing storage
via paging. Each process sees a uniform virtual address space. All memory
is paged to disk by a single system-wide policy. The basic virtual memory
primitive visible to software is fork(), which creates a complete copy of
the virtual address space. Modern fork() is highly optimized (e.g. using
copy-on-write).

Today, RAM is often plentiful, MMUs are sophisticated and featureful
devices (e.g. supporting superpages), and the memory system is complex,
with multiple controllers and set-associative caches (e.g. which can be
exploited with page coloring).

Workloads have also changed. High-performance multicore code pays careful
attention to locality and memory controller bandwidth. Pinning pages is a
common operation for performance and correctness reasons, and personal
devices like phones are often designed to not page at all.

Instead, the MMU is used for purposes aside from paging. In addition to
protection, remapping, and sharing of physical memory, MMUs are used
to interpose on main memory (e.g. for copy-on-write, or virtualization) or
otherwise record access (such as the use of “dirty” bits in garbage collection).

In particular hardware support for translating larger pages has been tar-
geted by previous research. Navarro et al. first proposed a mechanism for
transparent operating system support for superpages in 2002 [NIDC02].
The key reason for this work was to take advantage of the increased TLB
coverage provided by superpages. Correctly using superpages results in
performance increases of over 30% in many cases. However, inappropriate
use of superpages can result in enlarged application memory footprints, lead-

26

2.2. Classical virtual memory

ing to higher pressure on physical memory and higher paging traffic. The
increase of I/O cost associated with the paging traffic can easily outweigh
any performance gains obtained by avoiding TLB misses.

At a high level, the design proposed by Navarro has the following components.
Available physical memory is classified into contiguous regions of different
sizes and is managed using a buddy allocator. A multi-list reservation scheme
is used to track partially used memory reservations and is also employed
to help choose reservations for preemption. A population map keeps track
of memory allocations in each memory object, e.g. memory mapped files,
and the code, data, stack and heap segments of processes. The system
uses these data structures to implement allocation, preemption, promotion
and demotion policies. External memory fragmentation is controlled by
performing page replacements in a contiguity-aware manner. As the FreeBSD
transparent superpage support was first introduced by this work, I will
describe the implementation of transparent superpages in more detail in
section 2.2.3.

Modern Linux

The need to exploit the memory system fully is evident from the range of
features added to Linux over the years to “poke through” the basic Unix
virtual address abstraction.

The most basic of these creates additional “shared-memory objects” in a
process’ address space, which may or may not be actually shared. Such
segments are referred to by file descriptors and can either be backed by files
or “anonymous”. The basic operation for mapping such an object is mmap(),
which in addition to protection information accepts around 16 different
flags specifying whether the mapping is shared, at a fixed address, contains

27

Chapter 2. Background and related work

pre-zeroed memory, etc. We describe basic usage of mmap() and related
calls in Section 2.2.5; above this are a number of extensions.

Large pages: Modern MMUs support mappings at a coarser granularity
than individual pages, typically by terminating a multi-level page table walk
early. For example, x86 64 supports 2 MB and 1 GB superpages as well as
4 kB pages, and for simplicity we assume this architecture in the discussion
that follows (others are similar).

Today, Linux support for superpage mappings is somewhat complex. Firstly,
mappings can be created for large (2 MB) or huge (1 GB) pages via a
file system, hugetlbfs [Lina, Gor10a] either directly or through libhuge-
tlbfs [Gor10b]. For each supported superpage size, a command-line argu-
ment tells the kernel to allocate a fixed pool of superpages at boot-time.
This pool can be dynamically resized by an administrator. Shrinking a
pool deallocates superpages from applications using a hard-wired balancing
policy. In addition, one superpage size is defined as a system-wide default
which will be used for allocation if not explicitly specified otherwise.

Once an administrator has set up the page pools, users can be authorized
to create memory segments with superpage mappings, either by mapping
files created in the hugetlbfs file system, or mapping anonymous segments
with appropriate flags. Superpages may not be demand-paged [Azi14].

The complexity of configuring different memory pools in Linux at boot
has led to an alternative, transparent huge pages (THP) [Linb, Cor14d].
When configured, the kernel allocates large pages on page faults if possi-
ble according to a single, system-wide policy, while a low-priority kernel
thread scans pages for opportunities to use large pages through defragmen-
tation. Demand-paging is allowed by first splitting the superpage into 4 kB
pages [Azi14]. A typical modern x86 64 kernel is configured for transparent
support of 2 MB pages, but not 1 GB pages. Alternatively, an administrator

28

2.2. Classical virtual memory

can disable system-wide THP at boot or by writing to sysfs and programs
can enable it on a per-region basis at runtime using madvise().

NUMA: The mbind() system call sets a NUMA policy for a specific virtual
memory region. A policy consists of a set of NUMA nodes and a mode: bind
to restrict allocation to the given nodes; preferred to prefer those nodes, but
fall back to others; interleaved to interleave allocations across the nodes,
and default to lazily allocate backing memory on the local node of the first
thread to touch the virtual addresses. This “first touch” policy has proved
problematic for performance [DFF+13].

libNUMA provides an additional numa alloc onnode() call to allocate anonymous
memory on a specific node with mmap() and mbind(). Linux can move pages
between nodes: migrate pages() attempts to move all pages of a process that
reside on a set of given nodes to another set of nodes, while move pages()

moves a set of pages (specified as an array of virtual addresses) to a set
of nodes. Note that policy is expressed in terms of virtual, not physical,
memory.

There are also attempts [Cor12c, Cor12a, Cor12b, Cor13a, DFF+13, Cor14b]
to deal with NUMA performance issues transparently in the kernel, by
migrating threads closer to the nodes containing memory they frequently
access, or conversely migrating pages to threads’ NUMA nodes, based on
periodically revoking access to pages and tracking usage with soft page faults.
A good generic policy, however, may be impossible; highly performance-
dependent applications currently implement custom NUMA policies by
modifying the OS [DFF+13].

User-space faults: Linux signals can be used to reflect page faults to the
application. GNU libsigsegv [HB] provides a portable interface for handling
page faults: a user fault handler is called with the faulting virtual address

29

Chapter 2. Background and related work

and must then be able to distinguish the type of fault, and possibly map new
pages to the faulting address. When used with system calls such as mprotect()

and madvise(), this enables basic user-space page management. The current
limitations of this approach (both in performance and flexibility) have led
to a proposed facility for user-space demand paging [Cor13b, Cor14c].

Windows NT

When Windows NT was first designed in the early 1990s – the first version,
Windows NT 3.1 was released in 1993 – RAM was scarce, and demand
paging essential to system operation. Therefore the NT memory system is
modelled closely after the traditional Unix VM model, where virtual memory
is fully decoupled from backing storage via paging. However, just as modern
Linux VM has various ways to poke holes into the VM abstraction, cf.
section 2.2.1, NT has a number of ways in which application workloads
which are sensitive to memory can tune how their virtual memory regions
get backed.

Basic API and concepts: Memory management in Windows NT [YRSI17,
Mar12] is built around the VirtualAlloc* family of API functions. This is
the “Virtual API“. On top of the Virtual API, Windows provides functions
for small allocations – usually smaller than a page. Those functions are
grouped into the “Heap API“. The Heap API provides all the functions
necessary to instantiate and make use of a memory heap. Alongside the
Virtual API, Windows NT provides specialized functions for mapping files
into an address space or sharing memory between processes. These API
functions are grouped in the “File Mapping API“.

Overall many of these concepts should look familiar. If we take the Virtual
API and File Mapping API and write one API function for everything, we

30

2.2. Classical virtual memory

end up with an API function that looks a lot like POSIX’s mmap while the
Heap API provides the same functionality as brk on a Unix system.

Shared memory: To allow processes to use the File Mapping API create
shared memory regions, the NT kernel internally uses section objects which
are exposed as file-mapping objects to the processes. Section objects are
one of the fundamental primitives in the NT memory manager and are used
to map virtual addresses to main memory, the page file2, or some other
file for which the application wants to create a memory-mapped window.
Additionally, a section can be opened by one process or by many. Therefore,
it would be an oversimplification to say that section objects equate to shared
memory.

However, in the context of this brief overview of Windows memory man-
agement, we focus on how sections are used to provide shared memory to
Windows processes. Section objects can be connected to committed memory
to provide shared memory. Such a section object is called a page-file-backed
section because pages connected to this section are written to the page file
if pages linked to the section are evicted from physical memory. However,
even if Windows is configured to run without a page file, we can still create
page-file-backed sections, which then are backed only by pages in physical
memory.

We can create a shared memory section by calling any of the CreateFileMapping*

functions with INVALID_HANDLE_VALUE as the file handle. Optionally, we can
provide a name and security descriptor for the new section. If we name
the section, other processes can then open it by calling OpenFileMapping or
CreateFileMapping* functions. Otherwise, a process can grant access to a
section through handle inheritance by specifying that the handle to the

2Windows’s terminology for swap space

31

Chapter 2. Background and related work

section is inheritable when opening or creating the handle. Finally, we can
also explicitly duplicate handles to section by calling DuplicateHandle.

Large pages: Before an applications on Windows NT can use large pages,
a system administrator needs to configure the user account under which
the application will run to have the SeMemoryLockPrivilege privilege, and
each process that wishes to use large pages needs to enable the privilege in
its process control block.

NT supports private large page mappings through VirtualAllocEx when
the flAllocationType parameter is set to MEM RESERVE | MEM COMMIT |
MEM LARGE PAGES. Because NT does not support paging out large pages,
regions created with this method are not part of the process’ working set
which is otherwise used to determine which pages may be paged out.

It is also possible to create a “paging file backed section” to create a shareable
memory region backed with large pages. This can be achieved by calling
CreateFileMapping with parameter flCommit set to SEC COMMIT | SEC
LARGE PAGES. Internally, NT creates “virtual” last level page table entries
for sections which are mapped with 2MB ranges in hardware. This is
necessary because NT has two different concepts which are necessary when
mapping a file or section into an address space. The section is the region or
file as represented by one or more leaf tables. The view is the link between
a process’ page tables and the section’s leaf page tables. Notably, views
support an offset into a section, and the only restriction on the offset is that
it is a multiple of 64kB on x64 Windows. This is the reason why NT creates
virtual last level page table entries for sections that are backed with large
pages. However, as soon as such a view with offset is created, the advantage
of large pages is lost, as the large page mapping gets converted to regular
4kB pages, to enable mapping an arbitrary 64kB aligned subregion of the
section.

32

2.2. Classical virtual memory

FreeBSD

FreeBSD has a very standard Unix-style memory system which presents
each process with a virtual address space which is managed by the BSD
kernel. The implementation of the virtual memory system is based on the
Mach 2.0 virtual memory system [Tev87], with updates from Mach 2.5
and 3.0. BSD adopted Mach’s memory system because it features efficient
support for sharing and a clean separation of machine-independent and
machine-dependent features. FreeBSD uses mmap to provide shared memory
both backed by files and anonymous regions backed by files in tmpfs. This
is functionally identical to Linux’s mmap shared memory regions.

Support for large pages: Navarro et al. use FreeBSD to demonstrate
the benefits of using large pages [NIDC02]. The main FreeBSD implemen-
tation gained large page support in 8.0. Internally FreeBSD calls large
pages “superpages”, adopting the terminology used by Navarro. FreeBSD
provides “transparent” support for superpages, where the kernel decides to
use superpages without hints from the application. The kernel decides on
the first page fault to a region of memory whether to create a “superpage
reservation” or not. Anonymous regions, e.g. heap and stack, are always
eligible for superpages because they often grow. However, mapped files
must be at least of superpage size, because they grow much less often. On
the first fault, the kernel may choose to reserve a superpage, but will only
map a single 4 kB page. Additionally, the kernel keeps track of the offset of
objects into a superpage, to allow sharing of superpages between processes.
Finally, superpages have population maps which track used pages in the
superpage.

When a superpage reservation has faulted in every page in its reservation, it
can be promoted to a superpage. At this point, the kernel needs to decide

33

Chapter 2. Background and related work

whether to make the promoted page read-write or read-only. A superpage
is only promoted read-write when every page in the superpage is modified.
Otherwise, the superpage is promoted read-only and split back into small
pages when writes happen. If all small pages of a read-only superpage
are modified, that superpage is promoted to read-write. The kernel keeps
cached and free pages on buddy lists (organized by number of adjacent
pages) which can be used to aggregate small pages back into superpages.

When a superpage is selected for paging (or swapping) out by the page
daemon3, the superpage mapping is demoted and one of the 4 kB page
mappings is destroyed, so that future accesses to the superpage may trigger
promotion again. Individual 4 kB pages of the superpage that are accessed
are moved back to the active queue, the remainder will sit on the inactive
queue. The physical superpage is only broken when one of the 4 kB pages
on the inactive queue is freed.

Apart from the promotion mechanism, FreeBSD will immediately create
superpage mappings when the data is already present in a physical superpage,
e.g. when mapping the text section of an executable a superpage is created
without waiting for an access.

Solaris

Solaris supports large pages for its “intimate shared memory” (ISM), “dy-
namic intimate shared memory” (DISM), and starting in Solaris 11.3 “opti-
mized shared memory” (OSM).

All these mechanisms are built as extensions or options to System V shared
memory segments which are mapped using the shmat call.

3The page daemon is the FreeBSD kernel thread which is responsible for finding and clearing unreferenced
page mappings

34

2.2. Classical virtual memory

The original ISM requires that the full region which should use large pages
is pinned in main memory. DISM relaxes this requirement and allows pages
to be swapped out, but requires that the swap space is large enough to
accommodate the full DISM region. Finally, OSM is a new interface which
is similar to shmget but takes an additional parameter called “granule size”
which is a power of two greater or equal to the system’s configured page
size. The size of the requested region must be a multiple of the granule
size. The granule size is then the unit of operation on the OSM region. The
region must be mapped aligned to the granule size, and any operations on
the region, such as madvise calls, must be made on a granule size aligned
boundary.

Initially an OSM region will not be backed by anything. To back a range
inside an OSM region, the application needs to “lock” the range, after which
any parts of the range that were previously unlocked will be filled with zero
and the whole range will be accessible. If a range is no longer needed, it
can be “unlocked” to relase the backing memory to the system.

Discussion

Based on the simple Unix virtual address space, the Linux VM system
has evolved in response to new demands by accreting new features and
functionality. This has succeeded up to a point, but has resulted in a number
of problems.

The first is mechanism redundancy: there are multiple mechanisms
available to users with different performance characteristics. For example,
Figure 2.3 shows the performance of three different Linux facilities for
creating, destroying, and changing “anonymous mappings”: regions of
virtual address space backed by RAM but not corresponding to a file. These

35

Chapter 2. Background and related work

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

T
im

e
 p

e
r

p
a
g
e
 [

u
s]

Map

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5
Unmap

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

T
im

e
 p

e
r

p
a
g
e
 [

u
s]

Protect

Linux MMAP

Linux SHM

Linux SHMAT

Figure 2.3: Linux large page API comparion (4.2.0)

measurements were obtained using the machine in Table 2.2 using 4k pages
throughout.

MMAP uses an mmap() call with MAP POPULATE and MAP ANONYMOUS to
map and unmap regions, and mprotect() for protection. This forces the
kernel to zero pages being mapped, dominating execution time. Avoiding
this behavior, even when safe, requires kernel reconfiguration at build time –
a global policy aimed at embedded systems.

SHM creates a shared memory object with shm open() and passes it to
mmap() and mprotect(). In this case, mmap() will not zero the memory.
Unmapping is also faster since memory is not immediately reclaimed. The

36

2.2. Classical virtual memory

object can be shared with other processes, but (unlike MMAP mappings)
cannot use large pages.

SHMAT attaches a shared segment with shmat(), and does allow large pages
if the process has the CAP IPC LOCK capability. Internally, the mechanism
is similar to mmap(), with system-wide limits on the number and size of
segments.

For buffers up to 2 MB, the cost per page decreases with size for all operations
due to amortization of the system call overhead. Afterwards, the time stays
constant except for MMAP map operations.

libhugetlbfs provides get hugepage region and get huge pages calls
to directly allocate superpage-backed memory using a malloc-style interface.
The actual page size cannot be specified and depends on a system-wide
default; 4 kB pages may be used transparently unless the GHR STRICT flag
is set. By default, hugetlbfs prefaults pages.

The high-level observation is: No single Linux API is always optimal, even
for very simple VM operations.

A second problem is policy inflexibility. While the appropriate policy for
many memory management operations such as page replacement, NUMA
allocation or handling of superpages depend strongly on individual applica-
tion’s workloads. In Linux, however, they usually either apply system-wide,
require administrator configuration (often at boot), must be enabled at
compile time, or a combination of them.

For example, supporting two superpage sizes in hugetlbfs requires two
different, pre-allocated pools of physical memory, each assigned to a different
file system, precluding a dynamic algorithm that could adapt to changing
workloads.

In addition to the added complexity in the kernel [Cor14a], the system-wide
policies in transparent superpage support have led to a variety of performance

37

Chapter 2. Background and related work

CPU Intel Xeon E5-2670 v2 (Ivy Bridge)
#nodes / #sockets / #cores 2 / 2 / 20 @ 2.5 GHz
L1 / L2 cache 32 kB / 256 kB (per core)
L3 size 25 MB (shared)
dTLB (4 kB pages) 64 entries (4-way)
dTLB (2 MB pages) 32 entries (4-way)
dTLB (1 GB pages) 4 entries (4-way)
L2 TLB (4K) 512 entries (4-way)
RAM 256 GB (128 GB per node)
Linux kernel v.4.2.0 (Ubuntu 15.10)

Table 2.2: Test bed specifications. [Int14]

4.2.0 4.2.0 (Ubuntu 15.10) No large page support
4.2.0-tlbfs 4.2.0 (Ubuntu 15.10) hugetlbfs enabled
4.2.0-thp 4.2.0 (Ubuntu 15.10) Transparent huge pages enabled
3.16 3.16 Stock 3.16 kernel
3.16-dune 3.16 Linux 3.16 with Dune

Table 2.3: Tested Linux configurations

issues: Oracle DB has suffered from I/O performance degradation when
reading large extents from disk [Cas13, Azi14]. Redis incurs unexpected
latency spikes using THP due to copy-on-write overhead for large pages, since
the application periodically uses fork() to persist database snapshots [San].
The jemalloc memory allocator experiences performance anomalies due to
its use of madvise to release small regions of memory inside of bigger chunks
which have been transparently backed by large pages — the resulting holes
preventing later merging of the region back into a large page [Eva15].

These issues are not minor implementation bugs, but arise from the philoso-
phy that memory system complexity should be hidden from applications,

38

2.2. Classical virtual memory

and resource allocation policies should be handled transparently by the
kernel.

The third class of problem is feature interaction. We have seen how
superpages cannot be demand paged (even though modern SSDs can transfer
2MB pages with low latency). Another example is the complex and subtle
interaction between kernel-wide policies for NUMA allocation with superpage
support [Lina]. At one level, this shows up in the inability to control initial
superpage allocation at boot time (superpages are always balanced over all
NUMA nodes). Worse, Gaud et al. [GLD+14] show that treating large pages
and NUMA separately does not work well: large pages hurt the performance
of parallel applications on NUMA machines because hot pages are more
likely, and larger, and false page sharing makes replication or migration less
effective. Accordingly, the Carrefour [DFF+13] system modifies the kernel’s
NUMA-aware page placement to realize its performance gains.

While Windows NT looks somewhat different in the details, it is clearly also
an evolution of the classical VM approach. Mechanism duplication seems to
be less prevalent in the Windows API, as there are no obvious instances of
it in the memory system. However, the Windows NT memory system also
suffers from policy inflexibility and feature interaction, which is most obvious
when creating a section view with an offset: this implicitly disables large
pages for the section backing that view, even though it would be possible
to associate the mappings with each view instead of the section itself. The
underlying problem is that mapping granularity is mostly determined by a
combination of theoretically unrelated policy choices which impact mapping
granularity due to implementation choices.

In contrast to Linux or Windows NT, FreeBSD does not require superpages
to be pinned, and allows paged out when memory demand is high. However,
when a superpage is selected to be paged out it is broken up into its
consistuent 4 kB pages. Additionally, applications on FreeBSD have less

39

Chapter 2. Background and related work

control over page size than applications on both Linux and Windows NT, as
FreeBSD does not offer any way to explicitly select a page size for a virtual
region. The FreeBSD justification for this is that transparently selecting page
size for applications leads to the best performance, which as discussed above
in the context of Linux’s THP is not always true [Cas13, Azi14, San, Eva15].

Collectively, these issues motivate investigating alternative approaches. As
memory hardware diversifies in the future, memory management policies will
become increasingly complicated. We note that none of the Linux memory
APIs actually deal with physical memory directly, but instead select from a
limited number of complex, in-kernel policies for backing traditional virtual
memory.

In contrast, therefore, Barrelfish’s memory system safely exposes to programs
and runtime systems both physical memory and translation hardware, and
allows libraries to build familiar virtual memory abstractions above this.

An overview of capability-based systems

Capability-based systems are one way of addressing the resource manage-
ment problem. In the sixties and seventies, first approaches to address
authorization with a variety of hardware and software techniques were pro-
posed. We show a tabular overview of systems in Table 2.4. Those systems
can be categorized into the three categories: hardware supported capabilities,
kernel supported capabilities, and programming language systems. As this
dissertation focuses on kernel supported capabilities, we further categorize
kernel supported capability systems based on the mechanism they use to
prevent unprivileged actors to gain access to capability metadata.

In abstract terms, we can describe capabilities by the following characteristics
shared by capability systems:

40

2.3. An overview of capability-based systems

• A form of tokens, keys or similar, which we shall refer to as capabilities,
is used to reference objects in the system.

• Without any capabilities, actors do not have access to any objects.

• Capabilities can only be set from other capabilities or via particular
calls into the capability system’s trusted core.

• Capabilities may be dereferenced, invoked or similar. The capability
system checks the validity of the specified capability and if it provides
privileges to perform the action specified.

For example, many Unix-like operating systems use so-called “file descriptors”
to track which processes have gained access to which files. Because these
files may also be wrappers around various hardware devices, the end effect
is that these file descriptors track not just access to storage on a filesystem,
but also which process has gained access to which hardware device, and
what operations may be performed on said devices. In this scenario, the file
descriptor is simply an index into a file descriptor table that the kernel has
associated with each process. Thus, the file descriptor’s value alone carries
no authority, and its meaning is local to the process that has it. Sending a
file descriptor to another process, e.g. by writing its raw value into a socket,
has no useful effect; the other process does not gain access to the resource.
Rather, the kernel must be told to copy the information in the file descriptor
table into another process’ file descriptor table, allowing that process to
access the entry through its own file descriptor which may not match the
descriptor in the original process. In fact, because the file descriptor alone
carries no authority, all operations that use the file descriptor itself must be
performed through the kernel.

Another variant of capabilities can be found in language runtimes im-
plemented as application virtual machines, such as the JVM, to ensure

41

Chapter 2. Background and related work

referential correctness. Here, memory is conceptually split into two types:
data and references. References point to a chunk of metadata that precedes
every data block. All data accesses by running code must be relative to a ref-
erence, with the VM enforcing that the data access is within the reference’s
data region by looking at the region information stored in the metadata
preceding the data block. Global references and the execution stack frame
reference provide entry points from which all other data is reached (a fact
exploited by these systems’ garbage collector for reachability analysis). To
ensure references are valid, each data region’s metadata contains enough
information to determine which areas are references, and operations on such
regions are restricted: they may only be assigned from other references, or
a special “null” value, or the result of a call to the VM that creates new
regions.

A solution similar to that for application virtual machines has also be applied
directly in hardware: every memory word has a bit indicating if it is storing
plain data or a capability. By enforcing that all memory access is based
on a capability, unauthorized memory access is not possible. For example,
Carter et al.[CKD94a] consider a single address-space system with 64-bit
words where pointers are tagged and contain a length and permissions field
in addition to their 54-bit address. All memory access must be performed
through such a pointer, allowing access offsets and permissions to be checked
against the pointer’s information.

Capability implementations can be differentiated by how capabilities are
represented to the client and where the information related to each capability
is stored, both of which are influenced by the system’s ability to restrict a
client’s access to both pieces of information. The following list presents an
overview of common variants:

42

2.3. An overview of capability-based systems

Tagged (with tag bits) Metadata is stored in the capability token di-
rectly, as in the system described by Carter at al[CKD94a], with a tag
bit indicating which memory words are part of capability metadata.
The system must be able to check every instruction for access violations.
No metadata memory is necessary in the target, allowing the whole
object, e.g. a memory frame, to be exposed to the client. Modifying
the object in a way that affects all capabilities is however not possible,
as it might require a scan of the entire memory system.

Tagged (with type system) Metadata is stored in a header preceding
the capability’s target object, with a part of the metadata indicating
which areas of the target object are further capability tokens, e.g. using
an array of tag bits. This also requires that the system can monitor
every instruction for correct access, but allows more metadata to be
stored than can fit in the capability directly. The capability tokens
themselves simply point to the corresponding metadata block, and
modifying the metadata is trivial. This system is commonly used by
application virtual machines like the JVM.

Segregated Metadata is stored in protected space which is not directly
accessible to clients and presented as a separate address space to each
client. Capability tokens in the client are formed as addresses in the
client’s capability space. Special system calls must be used to perform
operations on the capabilities, including copying between clients where
a new copy must also be made in the receiving client’s capability space.
This model is used in systems such as KeyKOS, EROSr, seL4, and
Barrelfish.

Password/Sparse As with a segregated system, capability information
is stored in a protected space. To allow for direct copying of tokens
between clients, all clients share the same capability space. This

43

Chapter 2. Background and related work

however opens up the system to capability forgery, as a client may
guess capability tokens and test each one for validity, eventually gaining
access to capabilities of which it never received a copy. To mitigate this,
tokens are expanded in length so only a very small subset of all possible
token values are valid capabilities, making it difficult to guess valid
tokens. In the Walnut Kernel described by Castro et al.[CPK08], 64-bit
capability identifiers are extended with a 64-bit password that must
match the password stored in the capability’s metadata in protected
space. Introducing a penalty for using invalid tokens further restricts a
client’s ability to enumerate and test token values.

We show a tabular overview of different systems which use capabilities in
some form in table 2.4. In that table we label the systems with one of three
categories: hardware supported capabilities, kernel supported capabilities,
and programming language systems.

Kernel supported capabilities

Even without hardware support, capabilities can still be implemented in
the OS kernel if all operations on capabilities have to be executed by the
kernel on behalf of the applications.

One way to make capabilities unforgeable is to rely on sparsity in the capa-
bility key space or cryptographic methods which are the methods employed
by operating systems such as Chorus [RAA+91] and Amoeba [MvRT+90].

Another way to protect capabilities is to make them kernel objects which
can only be referred to by opaque handles from applications. Example
systems that employ this strategy are KeyKOS [RHB+86], Hydra [CJ75,
LCC+75, WLH81], EROS [SSF99], Mach [ABG+86, Iii91, FFB+88, Seb91]
and Accent [RR81]. There exist some more recently developed systems such

44

2.3. An overview of capability-based systems
C

la
ss System

Capability features
Distribution Persistency Revocation;

Garbage collect
Granularity HW/SW support

H
ar

dw
ar

e,
IS

A
Su

pp
or

t CAP single
process

yes, obj
level

no; no fine ISA OS

Plessey System
250

multi-node yes no; mem
segments & caps

fine ISA support,
segm. VM

StarOS multi-node no no; GC across
clusters

fine OS supported

IBM/38 single-node yes yes; no GC fine microcode OS,
horiz/vert migr

iAPX 432 multi-node yes no; no GC fine substantial ISA
support

Hardbound,
low-fat ptrs hw

single-
process

no no; no GC objs ISA, compiler
support

CODOMs single-node no yes; no GC page +
objs

HW/ISA support

M-Machine single-
process

yes yes; yes, GC
VAS

fine HW/ISA support

CHERI single-
process

no no; no fine ISA, OS compiler

O
pe

ra
tin

g
Sy

st
em

s

Hydra multi-
process

yes, obj
level

no; yes, ref cnts
and GC

fine OS supported

Mach, Chorus multi-node yes, cap to
pager

yes; no GC page MMU, OS

Amoeba multi-node yes, file
system

no; no GC page Cryptography

KeyKOS multi-
process

yes, VAS no; no GC objs TCB/OS

EROS single-node yes, obj
level

yes; no GC page +
objs

MMU, OS

L4 single-node yes, cap to
pager

OS level;
memory + caps

page +
objs

MMU, OS

Barrelfish multi-node no yes, OS level; No page +
objs

MMU, OS

Composite multi-node no yes; reference
counts

page +
objs

MMU, OS

La
ng

ua
ge

s,
fa

t
po

in
te

rs Prog lang: E,
Joe-E, Caja

single-
process

yes, obj
level

no; GC optional objs language runtime

Softbound,
CCured,
low-fat ptrs sw

single-
process

no no; no GC objs compiler
transformation

Cyclone single-
process

no no; GC optional objs compiler

Table 2.4: Survey of related capability-based systems 45

Chapter 2. Background and related work

as some variants of L4 [HHL+97], e.g. seL4 [KEH+09] and L4Re [LW09],
which also adopt kernel supported capabilities. L4Re and seL4 use kernel-
protected capabilities to mediate access for both memory and objects. The
kernel-maintained capability derivation tree allows for recursive revocation.

Kernel capabilities either provide memory protection at page level, or
require kernel invocations for using smaller objects which discourages the
use of kernel capabilities purely for protection reasons. Throughout this
dissertation, we argue that kernel capabilities have benefits other than fine
grained protection which makes them worth exploring in the context of a
modern operating system.

Barrelfish’s [BBD+09] capability system borrows heavily from seL4 and
allows applications to only execute a set of safe operations on capabilities.
The Barrelfish capability system is additionally designed as a distributed
system which maintains the global set of capabilities in a machine across all
Barrelfish CPU drivers running on individual cores in the machine. We give
an overview over Barrelfish’s architecture and the most relevant components
in section 2.6.

However, Barrelfish employs kernel-supported capabilities to implement most
of its kernel programming interface (KPI). This is achieved by extending
the notion of typed capabilities as introduced by seL4 to provide a rich set
of kernel object types with associated invocations. Today the Barrelfish
KPI consists of twelve system calls, but only three of them are intended to
be used in regular operation. These system calls are INVOKE, YIELD, and
LRPC. Notably, the LRPC system call is not required but provides improved
performance and a fast path through the kernel for LRPC-like[BALL90]
inter-process messages where the sender of the message donates the rest
of their scheduling time slice to the recipient. The rest of Barrelfish’s
KPI is implemented as capability invocations which can be thought of as
method calls on a specific kernel object which is identified by a capability.

46

2.3. An overview of capability-based systems

The set of possible invocations for each kernel object is defined by the
object’s capability type. Currently, Barrelfish’s capability system knows
of 50 distinct capability types, and a total of 84 distinct invocations, 34
of which are attached to the special Kernel capability type which is only
held by the “monitor”, which is the user-space component of the Barrelfish
kernel. The Kernel capability grants the holder full access to the capability
system. This is required for the monitor to manage the distributed shards
of the capability derivation database. In chapter 4, we will present the
protocol which is utilized to manage capabilities across cores.

A previous system which used capabilities in a distributed operating system
is Amoeba [MvRT+90]. Amoeba is designed to tie together workstations,
specialized servers, and a processor pool in a single distributed OS. To
address shared resources in that environment, Amoeba uses sparse capa-
bilities that are 128-bit values of which 48 bits are used for cryptographic
protection to prevent users from tampering with the capabilities which
they hold. Notably, Amoeba’s resource management was orchestrated in a
centralized fashion, where one of the specialized servers was responsible for
creating and providing capabilities to all servers and clients in an Amoeba
instance.

47

Chapter 2. Background and related work

Other types of capabilities

We also give a quick overview of some capability systems which address a
different problem, namely application-level pointer safety.

Hardware supported capabilities

Some early capability systems like CAP [NW77], StarOS [JCD+79], and IBM
System/38 [HSH81] extend the processor’s ISA with special instructions and
registers which allow the hardware to enforce protection for even smallest
objects without mediation of a trusted entity.

More recently, a number of systems were proposed that revived hardware
capabilities. The focus of the M-Machine [CKD94b] system was a capability-
system running in a single virtual address space. The M-Machine uses
hardware-based guarded pointers, which allow the system designers to
protect privileged system modules which exist in the single address space.
The hardware support enable efficient checking and dereferencing of the
64-bit guarded pointers. Notably the M-Machine did not focus on being
compatible with code that is not aware of capabilities.

In contrast, CHERI [WWN+15] retains compatibility with capability-unaware
code. CHERI supports two types of capabilities. Regular CHERI capabil-
ities are similar to the M-Machine guarded pointers but much larger, as
the architecture represents capabilities in 256 bits. CHERI also supports
sealed capabilities which allow software to construct an object capability
system. The CHERI ISA includes instructions for hardware-assisted ob-
ject invocations. Notably, CHERI still provides an MMU that supports
traditional paging alongside its hardware-based capabilities. Thus a regular
multi-address space operating system can employ CHERI capabilities to

48

2.4. Other types of capabilities

provide fine-grained protection within a virtual address space, while sealed
capabilities enable a form of inter-address space capability operations.

CODOMs [VBYN+14] is another recent system with hardware support for
isolation between components. The CODOMs work presents a capability
extension for x86 which is based on guarded pointers and provides low
overheads, enables transparent integration, and does not require expensive
memory tagging.

Programming language systems

Another area where capabilities, or capability-like entities, often appear are
programming language run times. Some runtimes for object-oriented lan-
guages such as the JVM use some ideas that are fairly similar to capabilities
to ensure referential correctness of programs by strictly separating memory
areas holding references from areas holding data. Other languages provide
capabilities more directly, for example languages such as E [Mil06], Joe-
E [MW10] and Caja [MSL+08] rely on the compiler and language runtime
to enforce a strict object-capability model.

While providing strong type safety, either using capability ideas or in general,
is fairly straightforward in high-level languages with a rich language runtime,
for lower-level languages this strong type safety is harder to achieve, however
many approaches to prevent accessing data-structures outside of their bounds
exist.

Software-based solutions include Softbound [NZMZ09], CCured [NMW02],
Cyclone [JMG+02] and low-fat pointers (software variant) [DY16]. Apart
from capability-like systems, there is work on hardware supported bounds-
checking techniques like Hardbound [DBMZ08], Intel MPX [Int13] and
low-fat pointers [KDS+13] that try to reduce the software overhead of
supporting bounds checks in lower-level languages.

49

Chapter 2. Background and related work

Non-traditional memory systems

In this section, I discuss previous work which presented non-traditional, i.e.
not classical VM, memory systems.

Application-level memory management

The idea of moving memory management into the application rather than
the kernel or an external paging server had been around for some time.
Prior to Barrelfish and seL4, Engler et al. in 1995 [EGK95] outlined much of
the motivation for moving memory management into the application rather
than the kernel or external paging server, and described AVM, an implemen-
tation of application-level memory management for the Exokernel [EKO95]
based on a software-loaded TLB, presenting a small performance evaluation
on microbenchmarks. AVM referred to physical memory explicitly by ad-
dress, and “secure bindings” conferred authorization to map it. Since then,
software-loaded TLBs have fallen out of favor due to hardware performance
trends. Both seL4 and Barrelfish target modern hardware page tables, and
use capabilities to both name and authorize physical memory access.

The V++ Cache Kernel [CD94] implemented user-level management of
physical memory through page-frame caches [HC92] allowing applications
to monitor and control the physical frames they have, with a focus on better
page-replacement policies. A virtual address space is a segment which is
composed of regions from other segments called bound regions. A segment
manager, associated with each segment, is responsible for keeping track
of the segment to page mappings and hence handling page faults. Pages
are migrated between segments to handle faults. Segment managers can
run separately from the faulting application. It is critical to avoid double

50

2.5. Non-traditional memory systems

faults in the segment manager. Initialization is handled by the kernel which
creates a well-known segment.

Customizable policies

Other systems have also reflected page faults to user space. Microkernels
like L4 [LUE+99], Mach [RTY+88], Chorus [ARS89], and Spring [KN93]
allow server processes to implement custom page management policies. In
contrast, the soft-realtime requirements of continuous media motivated
self-paging in Nemesis [Han99]. In a self-paging system, faults are redirected
to the application itself, to ensure resource accountability. As with AVM,
the target hardware is a uniprocessor with a software-loaded TLB. A similar
upcall mechanism for reflecting page faults was used in K42 [KAR+06].
This style of fault reflection, apart from allowing the system to account
fault handling time to the application which caused the fault, also enables
applications to implement custom page replacement and fault handling
policies.

In contrast, extensible kernels like SPIN [BSP+95] and VINO [ESG+94]
allow downloading of safe policy extensions into the kernel for performance.
For example, SPIN’s kernel interface to memory has some similarity with
Barrelfish’s memory system’s user-space API: PhysAddr allowed allocation,
deallocation, and reclamation of physical memory, VirtAddr managed a
virtual address space, and Translation allowed the installation of mappings
between the two, as well as event handlers to be installed for faults. In
comparison, Barrelfish’s memory system allows applications to define policies
completely in user-space, whereas SPIN has to rely on compiler support to
make sure the extensions are safe for use in kernel-space.

51

Chapter 2. Background and related work

Dune

More recently, Dune [BBM+12] has shown how Linux can be extended to
utilize virtualization hardware in modern processors to provide a process,
instead of a machine abstraction. This enables applications to utilize
processor features that have previously been unavailable to applications
such as ring protection, page tables, and tagged TLBs. In context of this
dissertation, this enables Dune applications to autonomously build their
address space by directly programming the MMU. Dune provides protection
by controlling the guest-to-host mappings which control what “physical”
addresses mean for the application which is running in the same environment
as a virtual machine guest OS kernel.

Mach

The goal of Mach [RTY+88] is to provide a portable multiprocessor operating
system. One of the goals of the project is to explore the relationship between
hardware and software memory architectures and to design a memory
management system that would be readily portable to both multiprocessor
and uniprocessor machines. Mach’s memory system supports five core
features: large and sparse virtual address spaces, copy-on-write virtual
memory operations, copy-on-write and read-write memory sharing between
tasks, memory-mapped files, and user-provided backing store objects and
pagers. While the first four features, which at the time were not available
in UNIX, have found their way into modern Linux, Mach’s user-provided
backing store objects and pagers remain fairly unique, and I will discuss this
feature in more detail here as its influence can be clearly seen in Barrelfish’s
memory system which I describe in chapter 3.

52

2.5. Non-traditional memory systems

Notably Mach achieves all these “modern” memory system features without
making its internal memory representation depend on any specific architec-
ture. Rather the opposite is true: Mach makes relatively few assumptions
about available memory management hardware. The primary hardware
feature which is required by Mach is the ability to handle and recover from
page faults. Mach doesn’t make any restrictions on the system page size
other than requiring it to be a power of two multiple of the hardware page
size and allows setting it as a boot parameter.

Mach has five basic abstractions: tasks, threads, ports, messages and memory
objects. In Mach a task is the execution environment in which threads may
run. A task includes a paged virtual address space and protected access
to system resources. A task’s virtual address space consists of an ordered
collection of mappings to memory objects. A thread is the basic unit of
CPU utilization. All threads within a task share all the resources which are
allocated to that task. A port is a communication channel, i.e. a queue for
messages protected by the kernel. A message is a typed collection of data
objects used in communication between threads. Messages may be of any
size, and may contain pointers and typed capabilities for ports. A Mach
memory object is a collection of data which is provided and managed by a
server and which can be mapped into the virtual address space of a task.

As any operations on objects other than messages have to be performed
by sending messages to ports, Mach permits system services and resources
to be managed by user-space tasks. In fact, the Mach kernel itself can be
considered as a task with multiple threads. The kernel task acts a server
which in turn implements tasks, threads and memory objects. Creating
a task, thread or memory object returns access rights to a port which
represents the new object and can be used to manipulate it.

53

Chapter 2. Background and related work

Basic VM operations

Each mach task has a large address space which is made up of mappings
between ranges of memory addressable to the task and memory objects.
The size of a virtual address space is only limited by the restrictions of the
underlying hardware. A task can modify its address space in different ways,
which include allocating a regions of virtual memory on a page boundary,
deallocating a region of virtual memory, setting the protection status of a
virtual region, specifying the inheritance of a virtual region, and creating
and managing a memory object which can then be mapped into the address
space of another task.

Mach allows both copy-on-write and read-write sharing of memory between
tasks. A virtual page’s inheritance value controls sharing between the task
and its children. The inheritance can be set to shared, copy, or none. Pages
marked as shared are shared for read and write. Pages marked as copy
are logically copied to the child, but internally copy-on-write is employed
for efficiency. Pages marked as none are not available in the child, and
the corresponding virtual region is not allocated. Similarly, protection is
specified on a per-page basis. Each page has two protection values: the
current and the maximum protection. The maximum protection specifies the
maximum permissions that the page may have, and the current protection
controls the actual hardware permissions. The maximum protection cannot
be raised, but it can be lowered. If the maximum protection is lowered below
the current protection, the current protection is set to the new maximum
protection. Each protection is a combination of read, write and execute
permissions. Enforcement of the protection depends on hardware support.

54

2.5. Non-traditional memory systems

Mach virtual memory

Mach’s virtual memory implementation uses four different data structures:
(1) the resident page table, which is used to keep track of information about
machine-independent pages, (2) the address map, which is a doubly linked
list of entries, each of which describes a mapping from a range of addresses
to a region of a memory object, (3) the memory object, which is a unit of
backing storage managed by the kernel or a user task, and (4) the pmap,
which is a machine dependent memory mapping data structure, e.g. the
hardware defined page tables.

Mach maintains all the important virtual memory information in machine
independent code. The machine dependent part only maintains those
mappings which are essential for system operation, such as the kernel map
and frequently referenced task addresses, and is allowed to garbage collect
non-important mapping information. Notably the machine dependent part
is not required to maintain full knowledge of valid mappings from virtual
addresses to hardware pages.

The address map keeps track of mappings from contiguous ranges of virtual
addresses onto contiguous areas of memory objects. Each address map entry
must map to a contiguous area of a single memory object.

Memory objects Address maps do not have to keep track of backing
storage, because Mach implements all backing store as memory objects. A
memory object is a repository for data, indexed by byte, on which operations
such as read and write can be performed. In many respects memory objects
are similar to UNIX files.

Each memory object is reference counted. This allows memory objects to
be garbage collected when all mapped references to them are removed. To
speed up periodical reuse of memory objects, e.g. text sections or other

55

Chapter 2. Background and related work

frequently used files, Mach maintains a cache of frequently used memory
objects which will not be garbage collected when their reference count hits
zero. Any pager may use domain specific knowledge to request that an
object is kept in this cache after it is no longer referenced.

Each memory object is associated with a managing task, which is called
a pager. This association enables the ability to handle page faults and
page-out requests outside the kernel. Access to the pager is represented by a
port to which the kernel can send messages to request data or to notify the
pager about a change in the object’s primary memory cache. In addition to
the pager port, the kernel maintains a unique identifier for each memory
object, which is also represented by a port. The kernel manages the pages
which are currently cached in primary memory through the kernel paging
daemon. All other pages are stored and fetched by the pager. The pager
has another port which it can use to send messages to the kernel to manage
the object or its primary page cache.

A pager may be internal to the Mach kernel, or an external user-state task.
Memory which has no associated pager is automatically zero filled and
page-out is done to a default pager which is provided by the kernel.

Physical address maps The physical address map (pmap) is Mach’s
machine dependent memory management code. Its purpose is to manage
the translation hardware. The pmap implementation is has to provide page
level operations on the translation hardware data structures and has to
ensure that the appropriate hardware translation is operational whenever
the state of the machine needs to change from kernel to user state or vice
versa.

56

2.6. An overview of Barrelfish

An overview of Barrelfish

In this section we provide an overview of Barrelfish. Barrelfish is the
original implementation of the multikernel OS architecture [BBD+09]. In
the multikernel model, the OS is structured as a distributed system of cores
that communicate using messages and share no memory. We show a stylized
figure depicting the multikernel model in figure 2.4. The multikernel model
is guided by three design principles:

1. Make all inter-core communication explicit.

2. Make OS structure hardware-neutral.

3. View state as replicated instead of shared.

These principles allow the OS to gain improved performance by reusing
algorithms designed for distributed systems, seamlessly enables the OS to
support heterogeneous hardware, and improves modularity.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 2.4: The multikernel model

57

Chapter 2. Background and related work

In the rest of this section, we discuss specific parts of Barrelfish that are
relevant in the context of this thesis.

Domain specific languages

Barrelfish makes liberal use of domain specific languages (DSL) to describe
various parts of the system. There are multiple reasons why. First, with
careful use of DSLs, it becomes possible, if not easy, to formally reason about
parts of the system. Second, DSLs eliminate the need to write repetitive bits
of code which are easy to get wrong such as accessing bits in device registers,
and argument marshalling for IPC. Third, as a consequence of the second
point, DSLs it easier to add new IPC interfaces etc, as the amount of tedious
glue code that needs to be written manually is decreased significantly.

The most prominent domain specific languages in Barrelfish deal with inter-
process messages, and access to device registers respectively. However, there
are a number of other DSLs, for purposes such as describing error codes
in a system-wide unique way, defining trace point types for Aquarium, the
Barrelfish trace analysis framework [SG13], and more recently describing
relationships between address spaces etc. in Sockeye [Sch17].

Naturally, given the prevalence of domain specific languages in Barrelfish,
we also use a DSL called Hamlet to define and describe the set of Barrelfish
capability types [DBR09]. While the DSL currently only deals with the types
themselves, and their relationships with each other, there are long-standing
plans to also describe the possible invocations on each type in the DSL and
alleviate the need of writing argument (un)marshalling code by hand when
implementing new capability types and their associated invocations.

58

2.6. An overview of Barrelfish

Capabilities in Barrelfish

Type system

Barrelfish capabilities are strongly typed. This idea was adapted from seL4,
which had a relatively small number of capability types which express all
possibilities in which new capabilities can be derived from existing ones.
Traditionally, capability types are used to specify, at runtime, the purpose
of regions of physical memory. In a simple partitioned capability system,
there might be only two types: either memory is used for capability storage,
or available for general usage. In such a system, the operating system would
then ensure that a region that is reserved for capability storage will never
be directly accessible from a user application.

As mentioned in section 2.6.1, Barrelfish defines its capability types in a
DSL called Hamlet.

Retype

With a capability type system, we need a new operation on capabilities,
retype. Retype is the capability operation that enables users to create new
capabilities from existing ones which they hold. The retype operation will
fail if the requested capability does not match the constraints given the
source capability and the static type system that is defined in the operating
system.

Capability types in Barrelfish

Barrelfish, in May 2018, has 50 distinct capability types. In Barrelfish,
every capability that refers to an addressable region on the memory bus is
derived from the type PhysAddr which simply identifies a range of addresses

59

Chapter 2. Background and related work

on the memory bus. The first distinction is then made between memory-
mapped device registers (DevFrame) and general purpose memory (RAM).
From RAM, all the semantic capability types are then derived. The capability
storage region type in Barrelfish is called CNode, after seL4. RAM that is
mappable by user applications is retyped to Frame. In contrast to seL4
however, Barrelfish distinguishes between data regions and page tables and
has a unique type for each type of page table for each architecture. We
discuss the importance and usefulness of having explicit page table types
in chapter 3 where we present our inverted memory system. There are a
few other specially-typed memory regions which are available in Barrelfish.
The kernel control block (KCB) is a special region which contains all pointers
that might be global variables in another kernel [ZGKR14]. The dispatcher
control block (Dispatcher) type is used for per-process metadata which
has to be shared between the process and the kernel.

For each capability type that can be mapped into an application’s address
space there exists a companion Mapping type. Every time a capability
is mapped into an application’s address space, a mapping capability of
matching type is created to track that particular mapping throughout its
lifetime. Mapping capabilities and alternatives are presented in chapter 3.

Barrelfish also has quite a few capability types that do not refer to re-
gions of physical addresses, but rather convey authority over other system
resources, such as unique identifiers (IDCap), interrupt sources and desti-
nations (IRQSrc and IRQDest), performance monitoring access, IPI access,
and privileged kernel interface access.

A Barrelfish application’s view of capabilities

In this section we discuss how Barrelfish stores the capabilities for a single
application and how the application can use its capabilities.

60

2.6. An overview of Barrelfish

Applications refer to capabilities by capability address. A capability address
is a 32 bit integer. This allows an application to refer to 232 distinct
capabilities.

The capabilities of an application are stored in its capability address space
(CSpace), which is a two-level table stored in regions of memory which the
application cannot map into its virtual address space. Barrelfish enforces
that each second level table is a 16kB memory region. As our capabilities
take up 64 bytes of storage, each such second-level table can hold 256
capabilities. Therefore the least significant eight bits of the capability
address provide the index into a second-level table. The remaining twenty-
four bits represent the index of the slot in the first-level table that is holding
the capability for the second-level table.

Barrelfish uses two distinct capability types for the first and second level
tables: L1CNode and L2CNode. However, throughout this dissertation, we
often use CNode to refer to both types, as the two specific types are mainly
an implementation detail and not required for the high-level design.

Capability addresses and caprefs

Even though the kernel only understands capability addresses, the standard
Barrelfish library OS encapsulates the capability addresses in capability ref-
erences (capref) which are just an alternate representation of the capability’s
location in the application’s CSpace.

A big reason for having a second representation of capability addresses
is to have a layer of abstraction between application code – which uses
caprefs – and the specifics of the layout and construction of the CSpace.
This allowed us to completely restructure the CSpace layout from generic
guarded page tables to the two-level layout discussed above without having

61

Chapter 2. Background and related work

to touch most of the application code that exists in Barrelfish by keeping
the capref structure unchanged.

A capref is made up of a cnoderef and a slot number. The slot number
corresponds to the index of the slot holding the capability in the second-level
table.

struct capref {
struct cnoderef cnode;
cslot_t slot;

};

To allow caprefs to refer to both L1 and L2 CNode slots in the local
capability space, the cnoderef contains enough information to distinguish
L1 and L2 caprefs without needing separate struct definitions.

struct cnoderef {
capaddr_t croot;
capaddr_t cnode;
enum cnode_type level;

};

enum cnode_type {
CNODE_TYPE_ROOT = 0,
CNODE_TYPE_OTHER ,
CNODE_TYPE_COUNT ,

};

For caprefs referring to slots in the application’s CSpace the croot field is
always 0x2. This is the capability address of the application’s root CNode
in its own CSpace.

The level field in a capref’s cnoderef indicates whether a capref refers
to a slot in the root (L1) CNode or a slot in a L2 CNode capability.

The cnode field of caprefs referring to slots in the application’s root (L1)
CNode is ignored, and the value of the caprefs slot field is shifted left by

62

2.6. An overview of Barrelfish

eight bits (remember: L2 CNodes resolve the last eight bits of a capability
address), to create a capability address that can be used by the CPU driver
to find the L2 CNode. The CPU driver also requires the level information
to be able to stop address resolution at the appropriate point. This is
required because L2 CNode capabilities are stored in the memory region
that makes up the L1 CNode capability.

For capability slots in L2 CNodes, the cnode field of the cnoderef is the
index in the L1 CNode in which the L2 CNode is stored, shifted left by
eight bits. This allows easy capability address constructions for L2 slots, by
just performing a bitwise OR on the slot field stored in the capref and
the cnode field stored in the capref’s cnoderef.

Initial CSpace Layout

All Barrelfish applications start with a well-defined initial CSpace layout.
Given the assumption that most applications do not need more than approx-
imately sixty-thousand capabilities at a single point in time, we construct
initial CSpaces with an L1 CNode with 256 slots. In the implementation,
we often use the term root CNode to refer to an application’s L1 CNode.

0 1 2 3 4 5 6 7 8 9 10 11 12

Ta
sk

C
N

od
e

Pa
ge

C
N

od
e

Ba
se

Pa
ge

C
N

od
e

Su
pe

r
C

N
od

e

Se
gm

en
t

C
N

od
e

Ph
ys

A
dd

r
C

N
od

e

M
ul

tib
oo

t
M

od
ul

es
C

N
od

e

Sl
ot

A
llo

ca
to

r
C

N
od

e

Sl
ot

A
llo

ca
to

r
C

N
od

e

Sl
ot

A
llo

ca
to

r
C

N
od

e

A
rg

um
en

t
C

N
od

e

Bo
ot

st
ra

p
co

re
K

C
B

ca
p

. . .

Figure 2.5: Well-defined root CNode slots

63

Chapter 2. Background and related work

Root CNode The root CNode is the top-level CNode of the application’s
CSpace and has to be of type L1CNode. The root CNode is the entry point
for any capability lookup initiated by the domain. Figure 2.5 lists the
well-defined slots in the root CNode.

Task CNode The task CNode holds capabilities which the library OS
requires throughout the application’s life time. The well-defined slots of the
task CNode are shown in figure 2.6. Some of the task CNode’s slots may be
empty for most domains, e.g. only the monitor’s get a copy of the Kernel
capability.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

em
pt

y
to

ca
tc

h
N

U
LL

D
isp

at
ch

er
C

ap
ab

ili
ty

R
oo

t
C

N
od

e

D
isp

at
ch

er
Fr

am
e

C
ap

ab
ili

ty

C
op

y
of

IR
Q

ca
pa

bi
lit

y

C
op

y
of

IO
ca

pa
bi

lit
y

Bo
ot

in
fo

fra
m

e
slo

t

C
op

y
of

K
er

ne
lc

ap
ab

ili
ty

Tr
ac

e
bu

ffe
r

ca
pa

bi
lit

y

Pr
og

ra
m

ar
gu

m
en

ts
Fr

am
e

U
R

PC
Fr

am
e

ca
pa

bi
lit

y

Se
ss

io
n

ID
ca

pa
bi

lit
y

In
he

rit
ed

fil
e

de
sc

rip
to

rs
fr

am
e

ca
pa

bi
lit

y

Pe
rfo

rm
an

ce
m

on
ito

rin
g

ca
p

X
eo

n
Ph

i:
ho

st
sy

st
em

m
em

or
y

ca
p

C
op

y
of

ea
rly

bo
ot

se
ct

io
n

fo
r

C
PU

co
re

bo
ot

st
ra

p

C
op

y
of

IP
Ic

ap
ab

ili
ty

. . .

Figure 2.6: Well-defined task CNode slots

Page CNode The first slot in the page CNode is always the application’s
root page table. Further slots in the page CNode are used to store capabilities
to the application’s initial page tables and mapping capabilities that are
created before the application runs.

We will call the application which builds an application’s initial CSpace and
address space the spawning application.

64

2.6. An overview of Barrelfish

Base Page CNode The base page CNode is filled with 256 4kB RAM
capabilities by the spawning application. These RAM capabilities can be
used by the application for early allocations before it has established a
connection to the memory server.

Super CNode For the memory server, the super CNode is filled with all
the RAM capabilities that it will manage.

Segment CNode The segment CNode contains with the Frame capabili-
ties which store the application’s runtime segments, such as .text, .data
and .bss.

PhysAddr CNode The PhysAddr CNode contains platform-specific data
such as ACPI tables. This CNode only exists for applications that require
these regions.

Multiboot Modules CNode For spawnd, which is the Barrelfish pro-
cess that has the authority to create new dispatchers[Dam17], the multiboot
modules CNode exists, and contains all the multiboot module Frame capa-
bilities. The multiboot module Frame capabilities refer to the regions of
RAM that contain the multiboot module data.

Slot Allocator CNodes Each application gets three empty L2 CNodes
that are used to initialize the default capability slot allocators in the library
OS.

Argument CNode The argument CNode is created by spawnd and can
be used to pass a new application arbitrary capabilities. There is no

65

Chapter 2. Background and related work

predefined behaviour for capabilities in this CNode, but the spawning
application and the spawned application have to agree on the meaning of
each entry.

Slot allocation

Barrelfish provides library code which allows applications to allocate new
capability slots. There are a few different slot allocators which can be used
depending on the application’s needs. A lot of library code uses the default
slot allocator which is composed from a number of single slot allocators. A
single slot allocator manages the slots in a single CNode.

The default slot allocator, which manages slots without special requirements
is composed of a single slot allocator for slots in the root CNode and a
single slot allocator for each L2 CNode that has been allocated over time.
Initially, the default slot allocator is seeded with the CNodes located in
slots 8 and 9 of the root CNode. The default slot allocator is an instance
of the twolevel slot allocator, which can also be instantiated for another
application’s CSpace.

Resizing the root CNode

Even though we split the capability addresses into only two levels of CNode
lookup, we do not want to fully allocate a root CNode with 224 slots when
we create a domain. We instead choose to create root CNodes with 256
slots initially. To address the needs of domains that require many capability
slots, i.e. more than approx. (256 − 8) × 256 = 63488, we need a way to
dynamically resize the root CNode. We implement CNode resizing for L1
CNodes by introducing a new invocation on the L1 CNode. This invocation
takes two capability addresses as arguments. The first capability address

66

2.6. An overview of Barrelfish

has to point to a RAM capability which will be transformed into the new
root CNode. The second capability has to point to an empty slot where
the CPU driver will store the old root CNode capability which the domain
can then safely delete. It is important to note that this invocation needs to
switch out the domain’s CNode atomically from the point of view of the
application.

Referring to other CSpaces

There are situations in which a domain will have to access a CSpace other
than its own. This is most prevalent in the monitor and when creating
the initial CSpace for a new domain. To support these use cases, we
change the invocations that take capability addresses as arguments to
take an extra argument specifying the L1 CNode that should be used to
perform the capability lookup. The exception is the capability on which the
invocation is called, the target capability. The target capability always has
to exist in the calling domain’s CSpace. Where necessary the default library
OS (libbarrelfish) transparently creates invokable copies of capabilities
stored in a CSpace that is not the domain’s.

Using capabilities

In many ways, Barrelfish capabilities are similar to Unix file descriptors
which carry extra information, such as a rich type which identifies the
purpose of the object which the capability refers to.

Barrelfish applications often use capabilities in ways that are not visible to
the application programmer, when the programmer uses features which are
provided by the default Barrelfish library OS. Many of the features provided
by the default library OS are reminiscent of features provided by a typical
Unix-style kernel.

67

Chapter 2. Background and related work

However, applications that care about memory often will not simply use
malloc and free but explicitly request capabilities to physical memory from
a system service called the memory server which is responsible for managing
all the RAM in a machine.

Apart from a selection of capabilities that an application is provided in its
initial CSpace as discussed above, it can get capabilities of type RAM from
the memory server.

Applications can use the retype operation on parts (or all) of a RAM
capability to create specific page table capabilities, or capabilities for data
pages. Whenever an application requests a retype from the Barrelfish CPU
driver it will have to provide a sufficient number of contiguous destination
capability slots for the CPU driver to store the newly created capabilities.

Because applications can receive capabilities over a message channel, each
Barrelfish message channel always holds the capability address of an empty
slot in the receiving side’s CSpace which the CPU driver can use to store a
received capability in the receiver’s CSpace.

An application is free to create copies of any capabilities in its CSpace.
Similarly, an application can at any point delete any capability in its
CSpace. Finally, an application can revoke capabilities in its CSpace. The
revoke operation can be thought of as a series of deletes. Revoke deletes any
copies and descendants of the capability on which the operation is executed.
Descendants in this context are capabilities which were created from the
original capability using the retype operation.

Message passing

According to the first design principle of the multikernel model, “Make all
inter-core communication explicit”, Barrelfish applications communicate

68

2.6. An overview of Barrelfish

using explicit message channels by default. The message passing subsystem
is fairly sophisticated and allows applications to define both asynchronous
and remote procedure call message channels. Accordingly, a native Barrelfish
application is usually designed to be event-driven, as all communication with
operating system services and other native applications will use messages.
This design principle however, does not preclude applications from creating
shared memory regions. Notably, most existing Barrelfish applications that
utilize shared memory regions use the message passing system to bootstrap
their shared memory regions. The message passing system is an attractive
bootstrap medium for shared memory as it allows applications to send
copies of capabilities for which they have sufficient permissions to other
applications.

User-space memory management

User-space memory management is another prominent feature of Barrelfish
and is one of the contributions of this dissertation. We explore and discuss
the design and implementation of the memory system in the next chapter
of this dissertation. In a nutshell, Barrelfish leverages its capability system
to give applications control over their virtual address space in a controlled
manner. This allows applications to tailor their address space to their specific
requirements, such as NUMA placement, mapping granularity, etc. Many
aspects of Barrelfish’s memory system, such as virtual regions, memory
objects and physical maps, are reminiscent of Mach’s virtual memory as
discussed in section 2.5.4.

69

3
Design and implementation on a

single core

Barrelfish adopts a radically inverted view of memory management compared
with classical demand-paged VM. Barrelfish processes run in a virtual address
space (the MMU is enabled) but this address space is constructed by the
application itself, and may vary across cores within the process.

Our key motivation to take this approach to virtual address spaces for
applications is this: the performance, scale, and heterogeneity of hardware
platforms means that application- or workload-specific optimizations of
virtual memory are critical for performance, and this performance is now a
“hard” requirement for many applications.

While Barrelfish allows great flexibility in arranging an address space, it
nevertheless ensures the following key safety property.

Invariant 3.1. No Barrelfish process can issue read or write instructions
for any area of physical memory for which it does not have explicit access
rights.

71

Chapter 3. Design and implementation on a single core

Subject to this requirement, Barrelfish also provides the following complete-
ness property.

Invariant 3.2. A Barrelfish process can create any address space layout
permitted by the MMU for which it has sufficient resources.

In other words, Barrelfish itself poses no restriction on how the memory
hardware can be used.

There are three main challenges in the implementation that Barrelfish’s
memory system must address: Firstly, it must securely name and authorize
access to, and control over, regions of physical memory. In Barrelfish,
we leverage the capability system presented in chapters 2 and 4 of this
dissertation to address the first challenge. Secondly, it must allow safe
control of hardware data structures (such as page tables) by application
programs. This, is achieved by considerably extending the set of memory
types supported by the capability system in Barrelfish (compared to seL4)
to capture memory-management specific meaning in the capability types.
Finally, Barrelfish’s memory system must give applications direct access to
information provided by the MMU (such as access and write-tracking bits
in the page tables). Unlike prior approaches which rely on virtualization
technology, Barrelfish’s memory system allows direct read-only access to
page table entries; we explain below why this is safe.

Barrelfish’s memory system has three main components: First, the kernel
provides capability invocations that allow application processes to install,
modify and remove page table entries and query for the base address and
size of physical regions. Second, the kernel exception handler redirects any
exceptions generated by the MMU to the application process that caused the
exception. Thirdly, a runtime library provides to applications an abstraction
layer over the capability system which exposes a simple, but expressive API
for managing page tables.

72

3.1. Physical memory allocation

Physical memory allocation

Barrelfish applications directly allocate regions of physical memory and pass
around authorization for these regions in the form of capabilities. Regions
can be mapped into a virtual address space by changing a page table, or
used for other purposes such as holding page tables themselves.

For the purpose of expressing constraints on address space construction,
we extend the Barrelfish capability design, itself inspired by seL4 [EDE08,
KEH+09, DEE06].

In seL4, all physical regions are represented by capabilities, which also confer
a particular memory type. As discussed earlier, the integrity of the capability
system itself is ensured by storing capability representations in memory
regions of type CNode, which can never be directly written by user-space
programs. Instead, a region must be of type Frame to be mapped writable
into a virtual address space. Holding both Frame and CNode capabilities to
the same region would enable a process to forge new capabilities by directly
manipulating their bit representations, and so is forbidden. Such a situation
is prevented by having the kernel enforce a type hierarchy for capabilities.

Capabilities to memory regions can be split and retyped according to a set
of rules. At system start-up, all memory is initially of type Untyped, and
physical memory is allocated to processes by splitting the initial untyped
region. Retyping and other operations on capabilities is performed by system
calls to the kernel.

seL4 capabilities are motivated by the desire to prove correctness properties
of the seL4 kernel, in particular, the property that no system call can fail
due to lack of memory. Hence, seL4 and Barrelfish perform no dynamic
memory allocation in the kernel, instead memory for all dynamic kernel data

73

Chapter 3. Design and implementation on a single core

structures is allocated by user-space programs and retyped appropriately,
such as to a kernel thread control block or a CNode, for example.

In the context of providing a rich memory system API, capabilities are
attractive since they export physical memory to applications in a safe
manner: application may not arbitrarily use physical memory; they must
instead “own” the corresponding capability. Furthermore, capabilities can be
passed between applications. Finally, capabilities have some characteristics
of objects: each capability type has a set of operations which can be invoked
on it by a system call. We call these operations invocations.

In Barrelfish, and seL4, the kernel enforces safety using two types of meta-
data: a derivation database, the Barrelfish implementation of which we
discuss at length in chapter 4 and a per-processes capability space. We
have presented a more detailed discussion of Barrelfish’s capability space in
section 2.6. All capability objects managed by a kernel are organized in a
capability derivation tree. This tree enables efficient queries for descendants
(of retype and split operations) and copies. These queries are used to prevent
retype races on separate copies of a capability that might compromise the
system.

User processes refer to capabilities and invoke operations on them using
opaque handles, so-called capability references, as presented in section 2.6.3.
Each process has its own capability address space, which is explicitly main-
tained via a two-level tree in the kernel which functions similar to a regular
two-level page table, but with a dynamically-sized root level table. The
nodes of the tree are also capabilities (retyped from RAM capabilities) and
are allocated by the application.

The root of the capability tree for each process is stored in the process
control block. When a process invokes a capability operation it passes to
the kernel the capability handle with the invocation arguments. To perform

74

3.2. Securely building page tables

the operation, the kernel traverses the process’ capability space to locate
the capability corresponding to the handle and authorizes the invocation.

For the memory system we build on the basic Barrelfish capability mecha-
nisms to allow explicit allocation of different kinds of memory. A memory
region has architectural attributes such as the memory controller it resides
on, whether it is on an external co-processor like a GPGPU or Intel Xeon
Phi, whether it is persistent, etc. Applications explicitly acquire memory
with particular attributes by requesting a capability from an appropriate
memory allocator process, of which there may be many. Furthermore, less
explicit “best effort” policies can be layered on top by implementing further
virtual allocators which can, for example, steal RAM from nearby controllers
if local memory is scarce.

Securely building page tables

Page tables are hardware specific, and at the lowest level, Barrelfish’s
interface (like seL4) reflects the actual hardware. Applications may use
this interface directly, or a high-level API with common abstractions for
different MMUs, to safely build page tables, exchange page tables on a
core, and install mappings for any physical memory regions for which the
application is authorized. The choice of virtual memory layout, and its
representation in page tables, is fully controlled by the application. Cores
can share sub-page-tables between different page-table hierarchies to alias
a region of memory at a different address or to share memory between
different cores as in Corey [BWCC+08].

The work done for this dissertation adds support for multiple page sizes
(2 MB and 1 GB superpages in x86 64, and 16 MB, 1 MB, and 64 kB pages
in ARMv7-a [ARM]) to the original Barrelfish memory management sys-

75

Chapter 3. Design and implementation on a single core

tem [BBD+09]. Barrelfish’s memory system decouples the physical memory
allocation from programming the MMU. Therefore the API allows for a
clean way to explicitly select the page size for individual mappings, map
pages from a mixture of different page sizes, and change the virtual page
sizes for mappings of contiguous physical memory regions all directly from
the applications itself instead of relying on the kernel to implement the
correct policy for all cases.

To do this, Barrelfish’s memory system seL4’s set of capability types by
introducing a new capability type for every level of page table for every
architecture supported by the OS. This is facilitated by the Hamlet domain-
specific language for specifying capability types [DBR09].

For example, for an MMU in x86 64 long-mode there are four different types
of page table capability, corresponding to the 4 levels of a 64-bit x86 page
table (PML4, PDPT, PD, and PT). A PT (last-level page table) capability can
only refer to a 4k page-aligned region of RAM and has a map operation
which takes an additional capability plus an entry number as arguments.
This capability in turn must be of type Frame and refer to another 4k page.
The operation installs the appropriate page table entry in the PT to map
the specified frame. The kernel imposes no policy on this mapping, other
than restricting the type and size of capabilities.

Similarly, a map on a PD (a 2nd-level “page directory”) capability only
accepts a capability argument which is of size 4 kB and type PT, or of type
Frame and size 2 MB (signifying a large page mapping).

A small set of rules therefore captures all possible valid and authorized
page table operations for a process, while excluding any that would violate
the safety property. Moreover, checking these rules is fast and is partly
responsible for Barrelfish’s memory system’s superior performance described
in section 3.6.2. This type system allows user-space Barrelfish programs to

76

3.2. Securely building page tables

construct flexible page tables while enforcing the safety property stated at
the start of this section.

Barrelfish’s full kernel interface contains the following capability invocations
on page table types: identify, map, unmap, modify flags (protect), and
clear dirty bits.

Memory regions represented by capabilities and associated rights allow
user-level applications to safely construct page tables; they allocate physical
memory regions and retype them to hold a page table and install the entries
as needed.

Typed capabilities ensure a process cannot successfully map a physical
region for which it does not have authorization. The process of mapping
itself is still a privileged operation handled by the kernel, but the kernel
must only validate the references and capability types before installing the
mapping. Safety is guaranteed based on the type system: page tables have
a specific type which cannot be mapped writable.

Care must be taken in Barrelfish to handle capability revocation. In partic-
ular, when a Frame capability, or any other mappable capability, is revoked,
all page table entries for that frame must be quickly identified and removed.
Barrelfish handles this by creating mapping capabilities whenever a mapping
is installed. The caller must supply an empty capability slot in every map
invocation. The kernel stores the newly created mapping capability in
that slot. These mapping capabilities can then be used to (i) manage the
mapping which they refer to and (ii) give the kernel a way to efficiently
find all the mappings for a given Frame capability. We will discuss mapping
capabilities and alternate strategies of keeping track of mappings in more
detail in section 3.3 of this dissertation.

As described so far, each operation requires a separate system call per page
table entry we wish to modify. Barrelfish optimizes this in a straightforward

77

Chapter 3. Design and implementation on a single core

way by allowing batching of requests, amortizing system call cost for large
region operations. The map, unmap, and modify flags operations all take
multiple consecutive entries for a given page table as arguments.

In section 3.6.3 we confirm existing work on the effect of page size on
performance of particular workloads, and in section 3.6.4 we show that the
choice of the page size is highly dynamic and depends on the program’s
configuration such as the number of threads and where memory is allocated.

In contrast, having the OS transparently select a page size is an old
idea [NIDC02] and is the default in many Linux distributions today, but
finding a policy that satisfies a diverse set of different workloads is difficult
in practice and leads to inherent complexity with questionable performance
benefits [GLD+14, GH12, Cas13, San].

Keeping track of virtual to physical mappings

As the basic method of authorization in Barrelfish is a capability, it is only
natural that we would like to keep track of virtual to physical mappings
using capabilities. The most natural way of doing so would be to make the
page tables be CNodes, and the act of copying a Frame (or other mappable)
capability into a page table CNode would install the corresponding virtual
to physical mapping. However, while this works great on systems without a
hardware page table walker, the presence of a hardware page table walker
usually defines a page table format that is not compatible with 64 byte
capabilities. Another downside of the CNode approach is that mapping
parts of a Frame capability, or mapping Frame capabilities larger than
the base translation granularity is non-trivial, and can have considerable
overhead in the number of capabilities required. Therefore we need to come

78

3.3. Keeping track of virtual to physical mappings

up with a method of keeping track of how page table entries and Frame
capabilities correspond to each other.

Throughout the research for this dissertation we have considered a number
of methods to keep track of this correspondence. The first method we discuss
is keeping shadow page tables alongside the page tables that have the correct
format for the hardware page table walker. This method, however, suffers
from the same drawbacks as discussed previously for the “CNode” style
approach, namely, there is a proliferation of capabilities when creating large
mappings, and the memory overhead for mostly empty page tables is not
insignificant, as we would reserve an extra 32 kB per 4 kB x86 64 hardware
page table, equating to a memory overhead of 8x.

The second approach is to store alongside each Frame capability where it is
mapped. This approach has the problem that now each copy of a capability
can be mapped at most once, which is a shift in semantics from the capability
model discussed earlier where we say that if you hold a copy of a capability
you can map the memory it refers to arbitrarily often. Apart from that
semantic shift, this approach also leads to situations where an application
has to create many copies of a capability just for the purpose of creating the
mappings it requires. Additionally, in the prototype implementation for this
approach, we chose to store the mapping reference outside the type-specific
part of the capability representation, which produces a system where a lot of
capabilities have up to 24 bytes of metadata that is never used, and in fact
cannot be used because there are a number of capability types that cannot
be mapped into an application’s virtual address space. This approach has
been discussed in depth in my master’s thesis [Ger12].

The final option we consider is to create new capability types, Mapping
capabilities, which are created whenever a mapping is inserted into a page
table. Mapping capabilities appear as descendants of the mapped capability
in the capability derivation tree and store both a pointer to the capability

79

Chapter 3. Design and implementation on a single core

that is mapped, the page table in which the Frame is mapped, the first
entry in the page table which belongs to the mapping, and the number of
entries the mapping occupies in the page table. Before settling on these
elements, the mapping capability used to contain the offset into the mapped
capability, but that information can be computed from the first page table
entry of the mapping and the base address of the mapped capability. This
method restores the semantics of being able to map the same capability
multiple times, and only consumes space proportional to the number of
mappings rather than the number of allocated page table entries or number
of capabilities in the system.

Barrelfish currently uses Mapping capabilities to keep track of mappings.
The implementation provides one distinct mapping capability type for each
type that is mappable. Each mapping capability is situated as a child of
the corresponding mappable type in the derivation tree. However, mapping
capabilities cannot be created by calling retype on the mappable type
explicitly. Rather, the caller needs to supply the map invocation with an
extra empty capability slot which gets populated with the newly created
mapping capability during the map invocation. Once created, a mapping
can be modified and removed by using invocations on the returned mapping
capability. Additionally, we still allow mappings to be removed by using an
invocation on the page table containing the mapping.

Conversely, if a user deletes, either directly or through a revoke, a mapped
capability, the CPU driver finds all mapping capabilities that are descended
from that particular capability and clears the page table entries that were
used for each mapping. This ensures that the user cannot circumvent the
capability system by using stale page table entries for regions of memory to
which they do not have authorization anymore.

80

3.4. Page faults and access to status bits

Page faults and access to status bits

The memory system uses the existing Barrelfish functionality for reflect-
ing VM-related processor exceptions back to the faulting process, as in
Nemesis [Han99] and K42 [KAR+06]. This incurs lower kernel overhead
than classical VM and allows the application to implement its own paging
policies. In sections 3.6.1 and 3.6.2 we show that Barrelfish’s trap latency
to user space is considerably lower than in Linux.

We extend Barrelfish to allow page-traps to be eliminated for some use-cases
when the MMU maintains page access information in the page table entries.
While Dune [BBM+12] uses nested paging hardware to present “dirty” and
“accessed” bits in an x86 64 page table to a user space program, Barrelfish’s
memory system achieves this without hardware support for virtualization.

We extend the kernel’s mapping rules in section 3.2 to allow page tables
themselves to be mapped read-only into a process’ address space. Essentially,
this boils down to allowing a 4 kB capability of type PML4, PDPT, PD, or PT
to be mapped in an entry in a PT instead of a Frame capability, with the
added restriction that the mapping must be read-only.

This allows applications (or libraries) to read “dirty” and “accessed” bits1

directly from page table entries without trapping to the kernel. Setting
or clearing these bits remains a privileged operation which can only be
performed by a kernel invocation passing the capability for the page table.

Note that this functionality remains safe under the capability system: an
application can only access the mappings it has installed itself (or for which
it holds a valid capability), and cannot subvert them.

In section 3.6.5 we demonstrate the benefits of this approach for a garbage
collector.

1for architectures which have those bits in the hardware page tables

81

Chapter 3. Design and implementation on a single core

Since Barrelfish’s memory system doesn’t need hardware virtualization
support, such hardware, if present, can be used for virtualization. Barrelfish’s
memory system can work both inside a virtual machine, or as a better
memory management system for a low-level hypervisor.

Moreover, nested paging has a performance cost for large working sets, since
TLB misses can be twice as expensive. In section 3.6.6 we show that for
small working sets (below 16 MB for our hardware) a Dune-like approach
outperforms Barrelfish due to lower overhead in clearing page table bits,
but for medium-to-large working sets Barrelfish’s lower TLB miss latency
improves performance.

The Barrelfish and Dune approaches are complementary, and a natural
extension to Barrelfish, which was not explored in this dissertation, would
allow applications access to both the physical (machine) page tables and
nested page tables if the workload can exploit them.

High-level convenience

Barrelfish provides a number of APIs above the capability invocations
discussed above. In this section we will look at a number of these higher-
level APIs which are provided by the default Barrelfish library OS and are
implemented using the primitives that make up Barrelfish’s memory system.

User space virtual address space management

Barrelfish’s library OS provides an API which is reminiscent of Mach’s
memory system and keeps track of the application’s virtual address space
layout.

82

3.5. High-level convenience

While applications can directly use the invocations that make up Barrelfish’s
memory system, the library OS builds on top of the memory system to
provide higher-level abstractions based on the concepts of virtual regions
(contiguous sets of virtual addresses), and memory objects that can be used
to back one or more virtual regions and can themselves be comprised of one
or more physical regions.

This abstraction is important to improve the usability of Barrelfish’s memory
system.

Manually invoking operations on capabilities to manage the virtual address
space can be cumbersome; take the example of a common operation such as
mapping an arbitrarily-sized region of physical memory R with physical base
address P and size S bytes, R = (P , S), at an arbitrary virtual base address
V . The number of invocations needed to create this simple mapping varies
based on V , S , and the desired properties of the mapping (such as page
size), as well as the state of the application’s virtual address space before the
operation. In particular, installing a mapping can potentially entail creating
multiple page tables at different levels of the address space in addition to
installing a number of page table entries. The library encapsulates the
code to do this on demand. In addition, by default, the library uses batch
operations within a single page table to amortize system call overhead.

Finally, the library also provides traditional interfaces such as sbrk() and
malloc() for areas of memory where performance is not critical. To simplify
start-up, programs running on Barrelfish start up with a limited, conven-
tional virtual address space with key segments (text, data, bss) backed with
RAM, though this address space is, itself, constructed by the process’ parent
using Barrelfish’s memory system (rather than the kernel).

It would be straightforward to provide demand paging to disk as in Neme-
sis [Han99], but Barrelfish does not currently do this. We de-prioritized

83

Chapter 3. Design and implementation on a single core

demand paging because, firstly, it is largely a matter of engineering rather
than a research contribution; secondly, performance-critical applications rely
on not paging for correctness in time; and thirdly, the growth of non-volatile
main memory [PFM15, HP 15] makes it plausible that demand-paging to
secondary storage will become irrelevant. Unlike the Linux and Windows
memory systems, demand paging on Barrelfish is orthogonal to page size:
there is nothing stopping Barrelfish’s memory system from demand-paging
superpages provided the application has sufficient frames and disk space.
Furthermore, the application is aware of the number of backing frames and
can add or remove frames explicitly at runtime if required.

The library shows that building a classic VM abstraction over Barrelfish’s
memory system is straightforward, but the reverse is not the case. Because
Barrelfish offers a rich API for constructing page tables from user space,
this necessarily means that applications have to keep track of their address
spaces to efficiently utilize the API.

We will now discuss the internals of the abstraction implemented in the
standard library OS in more detail.

Shadow page tables

The first layer of abstraction provided by the library OS essentially imple-
ments shadow page tables which allow the application to keep track of its
current address space.

One reason to keep shadow page tables is to alleviate the need to do system
calls when doing read-only operations on the address space, such as finding
a free virtual region in preparation for creating a new mapping. Further, in
order to fully utilize the possibilities we get by using capabilities to allow
applications to manage address spaces, we need to have an efficient way
to find those page table capabilities, when we want to delete or modify

84

3.5. High-level convenience

existing mappings. In addition, we also keep track of more metadata about
mappings, such as the mapping capability that gets created during the map
system call, the size of each mapping, the capability that is used to back
the mapping, etc.

There are two data structures can be considered to implement shadow
page tables: linked lists or arrays. To implement shadow page tables with
linked lists, we keep a linked list for the entries of each allocated page
table, which we keep ordered on the page table entry index. This option,
while it is efficient in memory usage, leads to some operations being slower
than optimal. For example, looking up a mapping needs up to four linked
list traversals instead of four array lookups. Additionally, inserting a new
mapping also requires a linked list traversal because we keep our lists sorted
by page table entry index.

When implementing shadow page tables using arrays, we consume memory
proportional to the number of allocated page tables. Due to the fact
that we store quite some metadata for each mapping, this approach can
consume more memory than we would like. On the other hand, using
arrays has clear performance benefits, as we reduce the complexity of many
frequent operations from O(#mappings) to O(1) by eliminating the linked
list traversals. As we can see in figure 3.1, the array-based shadow page
table implementation uses about two orders of magnitude more memory.
However, to put this in context, the array-based shadow page tables occupy
approximately 10 MB for a working set of 4 GB, while the linked-list shadow
page tables occupy 100 kB for the same working set size. As even the array-
based shadow page tables have less than 1% overhead over of the working
set size, we can safely use that approach when we need the advantages such
as the O(1) lookups that it brings.

85

Chapter 3. Design and implementation on a single core

20 22 24 26 28 30 32
Working set size in 2^k bytes

102

103

104

105

106

107

b
y
te

s
Slab bytes used

array
array 1mb
linked-list
linked-list 1mb

Figure 3.1: Memory usage for linked list and array-based shadow page
table implementations shown in a log-log plot

Virtual regions and memory objects

On top of the shadow page tables, the library OS presents another layer
of abstraction, which is comprised of two distinct types of objects: virtual
regions and memory objects. As mentioned previously, this API is inspired
by the Mach memory system.

Virtual regions

Virtual regions give the application a relatively simple API to manage
contiguous regions of its virtual address space. While this abstraction does
not introduce any new information, it presents information which is available

86

3.5. High-level convenience

in the shadow page tables in an easier-to-understand format, if all that the
application is worried about is finding a sufficiently large free region in an
address space.

The library OS interface for managing virtual address regions consists of
two main data structures. First, there is a data structure which represents a
contiguous range of virtual addresses in some virtual address space, a virtual
region. Second, there is a data structure which represents a single virtual
address space, and contain references to all the allocated virtual regions
in that virtual address space, a virtual space. To draw a parallel to the
shadow page table abstraction, virtual address spaces and virtual regions
can be thought of as a “shadow” virtual address space representation in
the respect that modifying the data structures does not actually change the
application’s address space but just tracks what the application believes to
be the layout of its address space(s).

To find free virtual address regions, the virtual region manager uses the
shadow page table API. For this to work correctly, each virtual address
space is associated with a shadow page table tree which we discussed in
section 3.5.2.

Internally the virtual address space data structure keeps a ordered list of
virtual regions, however the current implementation does not use this list
when allocating fresh regions, opting to directly check the shadow page tables
in order to avoid conflicts with potential mappings that the application
made directly through the shadow page table API.

Memory objects

While virtual regions are useful to keep track of regions of virtual address
space, virtual regions themselves do not know or care about how the region
will get backed when a page fault occurs. This is the job of a memory object,

87

Chapter 3. Design and implementation on a single core

which provide a glue layer between Frame (and other mappable) capabilities
and virtual regions. A virtual region is associated with a memory object,
and forwards any page faults to the memory object. The memory object
then handles the page fault in a manner which is appropriate to the type of
memory object. The default library OS in Barrelfish defines seven different
memory objects with different characteristics. The application can also
retrieve a semi-opaque handle to a memory object through a virtual region
when it desires to modify the mappings backing that virtual region, e.g. to
make the region read-only or executable.

Comparison with Mach

As mentioned previously, one of the bigger influences on the user space mem-
ory system provided in the default Barrelfish library OS is Mach [RTY+88].
Looking at the layers in Barrelfish’s library OS we can see that Barrelfish
has picked up the distinction between machine independent and machine
dependent parts of the memory system from Mach. Another area where the
Mach influence can be seen clearly are the names for some of the different
parts of the memory system.

Virtual regions In terms of functionality Barrelfish and Mach virtual
regions are mostly identical. A virtual region serves as a handle to an
allocated contiguous chunk of virtual address space in both systems.

Memory objects Memory objects are not quite the same. Mach’s mem-
ory objects are functionally more closely related to Barrelfish Frame ca-
pabilities (and other capability types that refer to data), and Barrelfish’s
memory objects provide an extra layer of abstraction in user space which
allows application to create larger memory regions from different Frame

88

3.5. High-level convenience

capabilities which can then be treated as a single mappable object in the
memory system. It is important to note that – in stark contrast to Mach –
memory objects in Barrelfish exist purely at the application level and are
not one of the primitives provided by the CPU driver.

Physical map The physical map in Mach is equivalent to the shadow
page tables in Barrelfish. The shadow page tables are the part of Barrelfish’s
user space memory system which is machine dependent as it directly caches
the information which exists in the hardware page tables. While Mach
treats its pmap layer as a cache that does not always fully track the state
of the virtual memory system, Barrelfish’s pmaps are generally kept in sync
with the virtual memory system, and are exposed to the application which
manages the virtual address space which is associated with the pmap.

Pagers Finally, because Barrelfish memory objects are not a kernel primi-
tive, Barrelfish does not have an equivalent mechanism to the pagers which
are associated with each Mach memory object. Rather, Barrelfish always
reflects a fault to the application which triggered it and leaves handling the
fault up to the application itself.

It would be possible to implement something like a pager for an entire
Barrelfish application by simply reflecting any faults of an application to a
pager instead of the application itself. This would provide a nice mechanism
for implementing swapping for potentially non-cooperative applications for
which the system would select a trusted swapping service as the application’s
pager. However, that approach does not fully cover the features available
with per-memory object pagers such as elegantly mapping files into memory
by just specifying that the pager for the memory object of the memory-
mapped file is the file system service.

89

Chapter 3. Design and implementation on a single core

An approach that would bring Barrelfish closer to Mach in terms of flexibility
of handling faults at the expense of increased CPU driver state would be to
introduce a new type of capability which more closely models Mach memory
objects in their functionality. This capability type could then serve as a
replacement for Frame capabilities when creating mappings and faults on
such a mapping would be reflected to the new memory object capability’s
pager. The minimum metadata stored in a memory object capability would
be an Endpoint capability to the pager associated with the memory object
and the size of the object.

Evaluation

We evaluate Barrelfish by first demonstrating that primitive operations have
performance as good as, or better than those of Linux, and then showing
that Barrelfish’s flexible interface allows application programmers to usefully
optimize their systems.

All Linux results, other than those for Dune (Section 3.6.5), are for version
4.2.0, as shipped with Ubuntu 15.10, with three large-page setups: none,
hugetlbfs, and transparent huge pages. As the Dune patches (git revision
6c12ba0) require a version 3 kernel, these benchmarks use kernel version
3.16 instead. These configurations are summarized in Table 2.3. Thread and
memory pinning was done using numactl and taskctl. Performance numbers
for Linux are always the best among all tested configurations.

All experiments, unless specified otherwise, were conducted on an IvyBridge
2x10 core Intel Xeon E5-2670 v2, clocked at 2.5 GHz with 256 GB of RAM.
More details of that system are given in table 2.2.

90

3.6. Evaluation

prot1-trap-unprot protN-trap-unprot trap only

Strategy

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

cy
cl

e
s/

p
a
g
e
,t

ra
p

Linux

Linux full TLB flush

Linux sel. TLB flush

Barrelfish default

Barrelfish full TLB flush

Barrelfish sel. TLB flush

Barrelfish full TLB flush + DI

Barrelfish sel. TLB flush + DI

Figure 3.2: Appel-Li benchmark. (Linux 4.2.0)

Appel and Li benchmark

The Appel and Li benchmark [AL91] tests operations relevant to garbage
collection and other non-paging tasks. This benchmark is compiled with
flags -O2 -DNDEBUG, and summarized in Figure 3.2.

We compare Linux and Barrelfish with three different TLB flush modes: 1)
Full: Invalidate the whole TLB (writing cr3 on x86) every time, 2) Selective:
Only invalidate those entries relevant to the previous operation (using the
invlpg instruction), and 3) System default: Barrelfish, by default, does
a full flush for any operation that involves more than one page. Linux’s
default behavior depends on kernel version. The version tested (4.2.0) does

91

Chapter 3. Design and implementation on a single core

a selective flush for up to 33 pages, and full a flush otherwise [Han]. We
vary this value to change Linux’s flush mode. The working set here is less
than 2 MB, and thus large pages have no effect and are disabled.

Barrelfish is consistently faster than Linux here.

For multi-page protect-trap-unprotect (protN-trap-unprot), Barrelfish is 64%
faster than Linux. For both systems, the default adaptive behavior is as
good as, or better than, selective flushing. The Barrelfish +DI results use
the kernel primitives directly, to isolate the cost of library OS overhead,
which is less than 10%.

Memory operation microbenchmarks

We extend the Appel and Li benchmarks, to establish how the primitive
operations scale for large address spaces, using buffers up to 64 GB. We map,
protect and unmap the entire buffer, and time each operation separately.
We compare Barrelfish to the best Linux method for each page size as
established in section 2.2.5. On Barrelfish we use the high-level interfaces
on a previously allocated frame, for similar semantics to shared memory
objects in Linux. Figure 3.3 shows execution time per page.

Map: Barrelfish per-page performance is highly predictable, regardless of
page size. Since all information needed is presented to each a system call, the
kernel does very little. On Linux we use shm open for 4k pages and shmat for
others. Linux needs to consult the shared segment descriptor and validate it.
This results in a general performance improvement for Barrelfish over Linux
up to 15x for 4 kB pages or 93x for large pages, once some upfront overhead
is amortized. Barrelfish’s upfront overhead, which is quite significant for
small buffers, can be attributed to the fact that Barrelfish creates a new
kernel object for the mapping, the mapping capability. Creating a capability
takes approximately 3000 cycles. This equals 1.2 µs on the machine we use

92

3.6. Evaluation

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 p

e
r

p
a
g
e
 [
µ
s]

Map

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0

2.5

3.0
Unmap

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 p

e
r

p
a
g
e
 [
µ
s]

Protect

4k Linux

4k Barrelfish

2M Linux

2M Barrelfish

1G Linux

1G Barrelfish

Figure 3.3: Comparison of memory operations on Barrelfish and Linux
using shmat, mprotect and shmdt. (Linux 4.2.0-tlbfs)

for the benchmark, and matches the overhead for mapping a 4 kB buffer
quite well.

Protect: These results are in line with the Appel and Li benchmarks:
Barrelfish outperforms Linux’s mprotect() on an mmap’ed region in all
configurations. For large buffers, the differences between Barrelfish and
Linux are up to 4x (4 kB pages) or 8x (huge pages).

Unmap: Doing an unmap in Barrelfish is expensive: the high-level interface
needs to look up the relevant mapping first, and the actual unmap operation
then needs to ensure that all the copies of the mapping capability referring to

93

Chapter 3. Design and implementation on a single core

the mapping need to be deleted. Linux shmdt, however, simply detaches the
segment from the process but doesn’t destroy it. Barrelfish could be modified
to directly invoke the page table, and thereby match the performance of
Linux.

Barrelfish memory operations are competitive: capabilities and fast traps
allows an efficient virtual memory interface. Even when multiple page table
levels are changed, Barrelfish usually outperforms Linux on most cases,
despite requiring several system calls.

HPC Challenge RandomAccess benchmark

Many HPC workloads have a random memory access pattern, and spend
up to 50% of their time in TLB misses [SGI14]. Using the RandomAccess
benchmark [KL] from the HPC Challenge [The] suite, we demonstrate that
carefully user-selected page sizes, as enabled by Barrelfish, have a dramatic
performance effect.

We measure update rate (Giga updates per second, or GUPS) for read-
modify-write on an array of 64-bit integers, using a single thread. We
measure working sets up to 32 GB, which exceeds TLB coverage for all page
sizes. The Linux configuration is 4.2.0-tlbfs, with pages allocated from
the local NUMA node. If run with transparent huge pages instead, the
system always selects 2 MB pages, and achieves lower performance.

Figure 3.4 shows the results on Barrelfish, normalized to 1 GB pages. Perfor-
mance drops once we exceed TLB coverage: at 2 MB for 4 kB pages, and at
128 MB for 2 MB pages. The apparent improvement at 32 MB is due to ex-
hausting the L3 cache, which slows all three equally, bringing the normalized
results closer together. Large pages not only increase TLB coverage, but
cause fewer table walk steps to service a TLB miss. Page-structure caches
would reduce the number of memory accesses even further but are rather

94

3.6. Evaluation

Barrelfish Linux
Page Size GUPS Time GUPS Time

4k 0.0122 1397s 0.0121 1414s
2M 0.0408 420s 0.0408 421s
1G 0.0659 260s 0.0658 261s

Table 3.1: RandomAccess GUPS as a function of page size, 32 GB table.

2M 4M 8M 16M 32M 128M 1G 4G 8G 32G
Size of table in Bytes

1x

2x

3x

4x

5x

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

1G Pages

2M Pages

4k Pages

Figure 3.4: GUPS as a function of table size, normalized, on Barrelfish.

small [Bha13, BCR10] in size. Barrelfish and Linux perform identically in
the test, as Table 3.1 shows. These results support previous findings on TLB
overhead [SGI14, BGC+13], and emphasize the importance for applications
being able to select the correct page size for their workload.

On Linux, even with NUMA-local memory, high scheduling priority, and
no frequency scaling or power management, there is a significant variance
between benchmark runs, evidenced by the multimodal distribution in
Figure 3.5. This occurs for both hugetlbfs and transparent huge pages, and

95

Chapter 3. Design and implementation on a single core

420 440 460 480 500 520 540 560
Runtime [s]

0

1

2

3

4

5

6

7

8

9
R

e
p
e
ti

ti
o
n
s

Figure 3.5: GUPS variance. Linux 4.2.0-tlbfs, 2 MB pages.

is probably due to variations in memory allocation, although we have been
unable to isolate the precise cause. This variance is completely absent under
Barrelfish even when truly randomizing paging layout and access patterns,
demonstrating again the benefit of predictable application-driven allocation.

Mixed page sizes

Previous work [GLD+14] has shown that while large pages can be beneficial
on NUMA systems, they can also hurt performance. Things are even more
complicated when there are more page sizes (e.g., 4 kB, 2 MB, 1 GB for
x86 64). Furthermore, modern machines often have a distinct TLB for each
page size, suggesting that using a mix of page sizes increases TLB coverage.

Kaestle et al. [KARH15] showed that distribution and replication of data
mitigates congestion on interconnects and balances memory controller load,

96

3.6. Evaluation

by extending Green-Marl [HCSO12], a high-level domain-specific language
for graph analytics, to automatically apply these techniques per region,
using patterns extracted by the compiler. This gave a two-fold speedup of
already tuned parallel programs.

Large pages interact with the NUMA techniques described above, by chang-
ing the granularity at which they can be applied to data structures that are
contiguous in virtual memory. The granularity of NUMA distribution, for
example, is the page size. Hence, the smaller the page size the more slack
the run-time has to distribute data across NUMA nodes. Bigger page sizes
also make memory allocation more restrictive: The starting address when
allocating memory must be a multiple of the page size. Bigger page sizes
can increase fragmentation and increases the chance of conflicts in caches
and TLB.

In Barrelfish, programs map their own memory, and all combinations of
page sizes are supported. Furthermore, no complex setup of page allocations
and kernel configurations are required.

Table 3.3 shows the effect of the page size on application performance using
Shoal’s Green-Marl PageRank [KARH15]. NUMA effects are minimal on the
2-socket machine we are using in other experiments, so for this experiment
we use the machine in Table 3.2 and note that AMD’s SMT threads (CMT)
are disabled in our experiments.

We evaluate two configurations: First, single-threaded (T=1). In this case
replication does not make sense as all accesses are local, and distribution
is unnecessary as a single thread cannot saturate the memory controller —
indeed, an increase in remote memory access would likely reduce performance.
In this case, an isolated application, bigger pages are always better.

Next, we run on all cores and explore the impact of replication and distri-
bution on the choice of page sizes. 1 GB pages clearly harm performance

97

Chapter 3. Design and implementation on a single core

CPU AMD Opteron 6378
micro architecture Piledriver
#nodes / #sockets / #cores 8 / 4 / 32 @ 2.4 GHz
L1 / L2 cache size 16 kB / 2 MB per core
L3 cache size 12 MB per socket
dTLB (4 kB pages) 64 entries, fully
dTLB (2/4 MB pages) 64 entries, fully
dTLB (1 GB pages) 64 entries, fully
L2 TLB (4 kB pages) 1024 entries, 8 way
L2 TLB (2/4 MB pages) 1024 entries, 8 way
L2 TLB (1 GB pages) 1024 entries, 8 way
RAM 512 GB (64 GB per node)

Table 3.2: Specification of machine used in §3.6.4

page size array configuration
T=1 T=32 (dist) T=32 (repl + dist)

4 kB 597.91 51.32 34.43
2 MB 414.80 58.09 28.87
1 GB 395.64 265.94 128.77

Table 3.3: PageRank runtime (seconds) depending on page size and PageR-
ank configuration (repl = replication, dist = distribution, T is the number
of threads). Highlighted are best numbers for each configuration. Standard
error is very small.

as distribution is impossible or too coarse-grained. We only break even if
90% of the working set is replicated. However, the last 10% still cannot be
distributed efficiently, which leads to worse performance.

It is clear that the right page size is highly dynamic and depends on
workload and application characteristics. It is impractical to statically

98

3.6. Evaluation

configure a system with pools (as in Linux) optimally for all programs, as
the requirements are not known beforehand. Also, memory allocated to
pools is not available for allocations with different page sizes. In contrast,
Barrelfish’s simpler interface allows arbitrary use of page sizes and replication
by the application without requiring a priori configuration of the OS.

Page status bits

The potential of using the MMU to improve garbage collection is known [AL91].
Out of many possible applications, we consider detecting page modifications;
A feature used, for example, in the Boehm garbage collector [BDS91] to
avoid stopping the world. Only after tracing does the collector stop the
world and perform a final trace that need only consider marked objects in
dirty pages. This way, newly reachable objects are accounted for and not
collected.

There are two ways to detect modified pages: The first is to make the
pages read-only (e.g., via mprotect() or transparently by the kernel using
soft-dirty PTEs [sof]), and handle page faults in user-space or kernel-space.
The handler sets a virtual dirty bit, and unprotects the page to allow the
program to continue. The second approach uses hardware dirty bits, set
when a page is updated. Some OSes (e.g., Linux) do not provide access to
these bits. This is not just an interface issue. The bits are actively used by
Linux to detect pages that need to be flushed to disk during page reclamation.
Other OSes such as Solaris expose these dirty bits in a read-only manner
via the /proc file-system. In this case, applications are required to perform
a system call to read the bits, which, can lead to worse performance than
using mprotect() [Boea].

In Barrelfish, physical memory and page tables are directly visible to appli-
cations. Applications can map page tables read-only in their virtual address

99

Chapter 3. Design and implementation on a single core

C1 C2 C3 C4 C5
GCBench configuration

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

Linux (prot)

Barrelfish (prot)

Barrelfish (dirty)

Dune (dirty)

Barrelfish/NP (dirty)

Figure 3.6: GCBench on Linux, Barrelfish and Dune, normalized runtime
to Linux. (Linux 3.16, 3.16-dune)

space. Only clearing the dirty bits requires a system call.

Dune [BBM+12] provides this functionality through nested paging hardware,
intended for virtualization, by running applications as a guest OS. Dune
applications have direct access to the virtualized (nested) page tables. This
approach avoids any system call overhead to reset the dirty bits, but depends
on virtualization hardware and can lead to a performance penalty due to
greater TLB usage [BGC+13, BSSM08].

We use the Boehm garbage collector [BDS91] and the GCBench microbench-
mark [Boeb]. GCBench tests the garbage collector by allocating and col-
lecting binary trees of various sizes. We run this benchmark with the three
described memory systems, Linux, Dune and Barrelfish with five different
configurations C1 to C5, which progressively increase the size of the allocated
trees.

100

3.6. Evaluation

Config C1 C2 C3 C4 C5
Runtime (s)
Linux (prot) 2.1 9.6 42 191 848
Barrelfish (prot) 2.0 8. 7 37 166 760
Barrelfish (dirty) 1.9 8.3 34 149 705
Dune (dirty) 1.5 7.3 33 – –
Barrelfish/NP (dirty) 2.0 8.6 36 157 720
Collections
Linux (prot) 251 336 381 428 448
Barrelfish (prot) 247 330 385 430 444
Barrelfish (dirty) 231 325 383 436 443
Dune (dirty) 318 367 403 – –
Barrelfish/NP (dirty) 233 325 381 434 443
Heap size (MB)
Linux (prot) 139 411 1924 7972 24932
Barrelfish (prot) 139 475 1515 6951 27486
Barrelfish (dirty) 105 475 1481 5911 28995
Dune (dirty) 106 386 1579 – –
Barrelfish/NP (dirty) 100 453 1573 5541 28132

Table 3.4: GCBench reported total runtime, heap size and amount of
collections.

In Figure 3.6 we compare the runtime of each system. Barrelfish implements
all three mechanisms: protecting pages (Barrelfish (prot)), hardware dirty
bits (Barrelfish (dirty)) in user-space and hardware dirty bits in guest ring
0 (Barrelfish/NP (dirty)) (as does Dune). Our virtualization code is based
on Arrakis [PLZ+14].

Barrelfish (prot) performs between 4% (C1) and 13% (C4) better than
Linux (prot). This is consistent with Figure 3.3 where Barrelfish performs

101

Chapter 3. Design and implementation on a single core

better than Linux for protecting a single 4 kB page. We further improve
Barrelfish’s performance (between 4% (C2) and 10% (C4)) when we use
hardware dirty bits, by avoiding traps when writing to pages. We still incur
some overhead as we have to make a system call to reset the dirty bits on
pages. Dune outperforms Barrelfish (dirty) by up to 21% (C1), as direct
access to the guest page tables enables resetting the dirty bits without
having to make a system call. However, Barrelfish manages to close the
gap as the working set becomes larger, in which case Dune performance
noticeably shows the overhead of nested paging. Unfortunately, we were
unable to get Dune working with larger heap sizes on our hardware and
thus have no numbers for Dune for configurations C4 and C5.

On Linux, using transparent huge pages did not have a significant impact
on performance and we report the Linux numbers with THP disabled. In a
similar vein, we were unable to get Dune working with superpages, but we
believe that having superpages might improve Dune performance for larger
heap sizes (c.f. 3.6.3).

Barrelfish/NP (dirty) runs GCBench in guest ring 0 and reads and clears
dirty bits directly on the guest hardware page tables. The performance
for Barrelfish/NP is similar to Barrelfish (dirty) and slower than Dune.
However, this can be attributed to the fact that Barrelfish/NP does not
fully leverage the advantage of having direct access to the guest hardware
page tables and still uses system calls to construct the address space.

Table 3.4 shows the total runtime, number of collections the GC did and the
heap size used by the application. Ideally, the heap size should be identical
for all systems since it is always possible to trade memory for better run time
in a garbage collector. In practice this is very difficult to enforce especially
across entirely different operating systems. For example Barrelfish uses less
memory (25%) for C4 compared to Linux (prot) but more memory (14%)
for C5.

102

3.6. Evaluation

We conclude that with Barrelfish we can safely expose MMU informa-
tion to applications which in turn can benefit from it without relying on
virtualization hardware features.

Nested paging overhead

To illustrate the potential downside of nested paging, we revisit the HPC
Challenge RandomAccess benchmark. Resolving a TLB miss with nested
paging requires a 2D page table walk and up to 24 memory accesses [AJH12]
resulting in a much higher miss penalty, and the overhead of nested paging
may end up outweighing the benefits of direct access to privileged hardware
in guest ring zero. The RandomAccess benchmark represents a worst-case
scenario due to its lack of locality.

We conduct the same experiment as in section 3.6.3 on Dune [BBM+12] with
a working set size ranging from 1 MB to 128 MB. Figure 3.7 and Table 3.5
show that for the smallest table sizes (1 MB and 2 MB) the performance
of RandomAccess under Dune and Linux is comparable. Larger working
set sizes exceed the TLB coverage and hence more TLB misses occur. This
results in almost 2x higher runtime for RandomAccess in Dune than Linux.
As for all comparisons with Dune, we disable transparent huge pages on
Linux.

Running applications in guest ring zero as in Dune has pros and cons: on
one hand, the application gets access to privileged hardware features, on
the other hand, the performance may be degraded due to larger TLB miss
costs for working sets which cannot be covered by the TLB.

103

Chapter 3. Design and implementation on a single core

1 2 4 8 16 32 64 128

GUPS size [MB]

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

gups

gups (dune)

gups_lcg

gups_lcg (dune)

Figure 3.7: Comparison of the execution time of RandomAccess with and
without nested paging for varying working set sizes, normalized to GUPS on
native Linux. (Linux 3.16, 3.16-dune)

Page coloring

The core principle of paged virtual memory is that virtual pages are backed by
arbitrary physical pages. This can adversely affect application performance
due to unnecessary conflict misses in the CPU caches and an increase
in non-determinism [KKAE11]. In addition, system wide page coloring
introduces constraints on memory management which may interfere with
the application’s memory requirements [ZDS09].

Implementing page placement policies is non-trivial: The complexity of the
FreeBSD kernel is increased significantly [Dil13], Solaris allows applications
to chose from multiple algorithms [Ora10], and there have been several

104

3.6. Evaluation

Size Linux Dune
(MB) GUPS GUPS LCG GUPS GUPS LCG

1 2 1 2 1
2 3 3 3 3
4 11 11 18 19
8 35 36 61 65

16 90 93 165 169
32 236 240 421 425
64 594 595 1098 1113

128 1510 1571 2999 3043
Table 3.5: RandomAccess absolute execution times in milliseconds. (Linux
3.16, 3.16-dune)

failed attempts to implement page placement algorithms in Linux. Other
systems like COLORIS [YWCL14] replace Linux’ page allocator entirely in
order to support page coloring.

In contrast, Barrelfish allows an application to explicitly request physical
memory of a certain color and map it according to its needs. For instance,
a streaming database join operator can restrict the large relation (which is
streamed from disk) to a small portion of the cache as most accesses would
result in a cache miss anyway and keep the smaller relation completely in
cache.

Table 3.6 shows the results of parallel execution of two instances of the
HPC Challenge suite RandomAccess benchmark on cores that share the
same last-level cache. In the first column we show the performance of each
instance running in isolation. We see a significant drop in GUP/s for the
instance with the smaller working set when both instances run in parallel.
By applying cache partitioning we can keep the performance impact on
the smaller instance to a minimum while improving the performance of the

105

Chapter 3. Design and implementation on a single core

Process Isolation Parallel Parallel Colors
16M Table 0.0926 0.0834 90.0% 0.0921 99.5%
64M Table 0.0570 0.0561 98.4% 0.0631 110.7%

Table 3.6: Parallel execution of the RandomAccess benchmark on Barrelfish
with and without cache coloring. Values in GUPS.

larger instance even compared to the case where the larger instance runs in
isolation.

The reason behind this unexpected performance improvement is that the
working set (the table) of the larger instance is restricted to a small fraction
of the cache which reduces conflict misses between the working set and other
data structures such as process state etc.

Discussion

With this evaluation, we have shown that the flexibility of Barrelfish’s
memory system allows applications to optimize their physical resources for a
particular workload independent of a system-wide policy without sacrificing
performance.

Barrelfish’s strength lies in its flexibility. By stripping back the policies
baked into traditional VM systems over the years (many motivated by
RAM as a scarce resource) and exposing hardware resources securely to
programs, it performs as well as or better than Linux for most benchmarks,
while enabling performance optimizations not previously possible in a clean
manner.

106

4
A protocol for decentralized

capabilities

The memory system design presented in the previous chapter has not
discussed scalability at all. In this chapter we describe a protocol for a
distributed capability system and its implementation in Barrelfish. This
protocol is designed in such a fashion to allow capability operations to scale
to a large multicore machine without introducing large operation latencies in
most cases. To reiterate, as Barrelfish’s capabilities support five operations:
copy, retype, delete, revoke, and invoke, our protocol needs to support each
of those operations on objects for which capabilities exist on multiple cores
in the system. This protocol has previously been discussed by Mark Nevill
in his master’s thesis [Nev12]. We claim that a scalable capability system
is sufficient to allow Barrelfish’s memory system to scale. We believe this
claim to be true because the memory system is implemented entirely on top
of the capability system.

107

Chapter 4. A protocol for decentralized capabilities

Overall design

Our distributed capability system is designed around nodes (e.g. cores
in Barrelfish) which each hold a partial replica of the capability database.
We specify how each capability operation interacts with these replicas
in section 4.2. Our protocol eliminates the need for elaborate agreement
protocols by relying on two assumptions: 1) we assume that message channels
between nodes are strictly FIFO and no messages get lost, and 2) nodes
are not adversarial. Barrelfish fulfils both assumptions. Barrelfish’s IPC
channels have preserve message order and guarantee exactly-once delivery
if the send operation succeeds. Send can fail explicitly and Barrelfish puts
the burden of retrying to send on the application. As we implement the
protocol in the monitors which are part of Barrelfish’s trusted computing
base, we can assume that nodes are not adversarial and can be trusted to
carefully ensure that messages are sent.

We design a distributed protocol which picks an arbitrary node for each
capability which serves as the serialization point for operations on that
capability and uses the assumptions we make to simplify synchronization.
We call that node the owner of the capability. Further we call a capability
copy residing on it’s owner node local, and all copies on nodes other than
the capability’s owner foreign.

Our protocol has three invariants. The first invariant is that any capability
that exists is required to have an owner.

Invariant 4.1. Each non-null capability has an owner node.

Invariant 4.1 by itself does not prohibit a capability from having multiple
owners. Thus, we need another invariant to ensure that for any capability
in the system there is a single point of serialization.

108

4.2. Capability operations

Invariant 4.2. Any two capabilities that are copies must have the same
owner node.

Additionally, to simplify all protocol operations we require the owning node
to hold at least one copy of each capability for which it is the owner. Or, in
other words, for each capability there is at least one local copy.

Invariant 4.3. For each capability, there is at least one local copy.

Capability operations

We will first give a definitions of each capability operations for a distributed
system of nodes which each keep an index into their partial local replica of
the capability database.

Before going into the specifics for each operation, we will clarify the semantics
of the pseudocode. The operations use slots: the storage location for a single
capability. An empty slot is equivalent to a slot containing a Null capability.
Every capability – and thus every non-Null slot – has an immutable location
and an owner, as described above. An individual capability is considered
“local” if owner and location are the same, and “foreign” otherwise. When
assigning to a slot dest with “←”, we copy the capability metadata into the
destination slot and update the capability database replica on location(dest)
and any other tracking information (e.g. memory mappings) accordingly.

Copy The copy operation must simply create a new copy in the target
location, making sure that the new copy’s owner is set correctly. To ensure
that the ownership invariant (invariant 4.2) is not violated, it is important
that the copy operation creates the new copy and defines the new copy’s
owner in a single and atomic1 step. The implementation in Barrelfish

1with respect to the distributed capability protocol

109

Chapter 4. A protocol for decentralized capabilities

uses the fact that the CPU driver is non-preemptable to construct atomic
operations for the capability protocol.

Algorithm 1 copy
function copy(cap: slot, dest : slot)

if dest is not Null then
fail

begin atomic
dest ← cap

if owner(cap) is location(dest) then
set dest to “local”.

else
set dest to “foreign”.

end atomic

Retype To retype a capability, we must check that no other capabilities
in the system conflict with the retype. If no conflict is found, the retyped
capability is created in the destination slot. As the owning core must always
have a copy and we do not want to create capabilities which were not
explicitly requested, the target core must also become the owner of the new
capabilities. The implementation of this protocol in Barrelfish allows the
creation of multiple non-overlapping sub-ranges in a single retype operation
akin to batching page table manipulations as discussed in the previous
chapter. For the sake of simplicity, we only create one output capability per
retype in the protocol specification, allowing retype operations to specify
a single sub-region of the source capability that is used for the output
capability. The implementation in Barrelfish is equivalent to performing
multiple single-region retypes in the same transaction.

110

4.2. Capability operations

Algorithm 2 retype
function retype(cap: slot, region: range, type: captype, dest : slot)

if dest is not Null ∨ retype(cap, region, type) is not valid then
fail the retype operation.

if any conflicting descendants exist locally or remotely then
fail the retype operation.

begin atomic
dest ← local retype(cap, region, type) on location(dest).
set dest to “local”.

end atomic

Delete We distinguish between deleting local and foreign capabilities, as
the amount and type of work we need to do is very different for these two
cases.

Deleting a local copy of a capability can get complicated because the owning
core must always have a copy of the capability, cf. protocol invariant 4.3.
Therefore when we delete the last copy of a capability on the owning core,
and other copies of the capability still exist in the system, we must transfer
ownership to a core that still holds at least one copy.

This is further complicated because not all capability types support changing
ownership: capabilities of some types, e.g. CNode and Dispatcher capabili-
ties, represent kernel state, and would require synchronization outside of
the capability system, if we want to migrate them from one CPU driver to
another.

As shown below, in algorithm 3, deleting a foreign copy is trivial, we just
set the capability slot which holds the capability we wish to delete to Null.

111

Chapter 4. A protocol for decentralized capabilities

Algorithm 3 delete
function delete(cap: local slot)

begin atomic
if last copy on owner(cap) then

if cap is not moveable then
for all foreign copies on all cores do

delete (copy).
do cleanup (last copy deleted).

else
dst ← find a foreign copy of cap.
if dst exists then

chown (dst).
else

do cleanup (last copy deleted).
cap ← null

end atomic

function delete(cap: foreign slot)
cap ← null

Delete makes use of an internal chown operation. This operation simul-
taneously updates the owner for all copies of the given capability such that
the given capability becomes “local”.

Algorithm 4 chown
function chown(cap: slot)

begin atomic
for all copies of cap on all cores do

set owner(copy) to core(cap).
end atomic

112

4.3. Delete Cascades and Reachability

Revoke We define revoke recursively: for each descendant, revoke and
delete that descendant. Simultaneously, delete all copies of the target
capability. This is equivalent to the single-core definition of revoke; the
complications arise from the distributed nature of deleting the last copy of
descendant capabilities. We discuss the finer details of distributed deletes
in section 4.3.

Algorithm 5 revoke
function revoke(cap: local slot)

begin atomic
for all immediate descendants on all cores do

revoke descendant .
delete descendant.

for all copies on all cores do
delete copy

end atomic

function revoke(cap: foreign slot)
chown (cap).
revoke (cap).

Delete Cascades and Reachability

The possibility of shared capabilities adds significant complexity to deletes
and revokes, as we will see in this section. Let us first consider delete on its
own.

When a capability is to be deleted, three cases present themselves: In the
simplest case, the capability has local copies or is foreign. In this case,
the ownership of the capability is not impacted by the delete, and so the

113

Chapter 4. A protocol for decentralized capabilities

capability slot can be cleared by the kernel directly without need for any
cross-core negotiation.

In the second case we are deleting the last copy of a capability with local
ownership, but with remote copies. If possible, ownership must be transferred
to another core that has a copy of the capability using the “move” operation.
If this succeeds, the capability is now foreign, and can be deleted safely. On
the other hand, if ownership cannot be transferred for this capability type,
all copies of the capability in the entire system must be deleted, and the
initially requested delete is transformed to the next case.

The final case is when the capability is the last copy in the entire system. In
this case, any clean-up actions for the object represented by the capability
must be performed. For a RAM-derived capability, this may mean that the
kernel reclaims the unreferenced memory and sends it back to the memory
server. In the case of a dispatcher, that dispatcher is terminated. And
in the case of a CNode, all the slots of the CNode must be cleared. This
last case is where complexity arises: If the initial CNode contains another
CNode capability that also has no copies, the same slot clearing must be
performed on that CNode prior to deletion. This can therefore result in a
cascade of deletions, a complex and long-running operation which at any
point may re-enter this complex third deletion case. Additionally, the chain
of to-be-deleted CNodes can circle around, with the CNode containing the
original capability also scheduled for deletion.

Before we look to solve this, we will also take a look at how this affects
deletions that occur during revocations, whether due to the revocation or
due to a separate delete request.

Revocation of a capability deletes all copies and descendants of that capabil-
ity in the entire system. This implies that the capability itself must remain
referenceable during the entire revoke operation, which in turn implies

114

4.3. Delete Cascades and Reachability

that the CNode containing the capability must not be deleted until the
entire operation can be executed without needing to reference the original
capability.

This complexity is not entirely caused by sharing capabilities, but the need
at any point to interrupt the operation and run a cross-core agreement
protocol makes it impossible to store temporary global state in the kernel
while the operation is running; any state must be stored in the capabilities
being deleted or revoked.

Solution

Our solution is to clear the capability graph of capabilities for objects that
do not contain capability slots or that can be trivially deleted. Once this is
complete, we have a self-contained graph where all nodes must be deleted.
We can therefore explore this graph, adding all nodes we find to a deletion
queue, which can then be deleted in a single loop.

1. (revoke only) Find all descendants. For every descendant, perform the
“delete” operation.

2. To delete a capability:

(a) When deleting the last copy of a Dispatcher capability, clean up
the dispatcher, leaving any capabilities stored in the dcb struct
intact.

(b) When deleting either a CNode capability or the last copy of a Dis-
patcher capability, mark the capability as deleted without clearing
it, and insert it at the back of a singly-linked “delete” list stored
within the extended region of the capability slot.

115

Chapter 4. A protocol for decentralized capabilities

3. Work through the “delete” list, performing a “delete” as described
above on every slot contained in the objects referenced by the list entry.
Then place the entry at the front of a “clear” list.

4. Walk through the clear list, performing the final clean-up of every entry
in the list.

It is vital that the clear list is treated as a stack, as otherwise there is a
possibility that we would erase part of the clear list itself by doing a clear
step. Consider the following example: the first element of the clear list is a
CNode, cn1, which itself contains a further CNode capability cn2. In this
case the pointer from the first clear list element, cn1, would point into the
memory region referred to by cn1 which would lead to a dangling pointer
after cleaning up cn1 and removing cn1 from the clear list.

The corresponding capability state machine is shown in Figure 4.1. Copy
and retype are not included; both operations simply put the capability in
the locked state until the operation completes or fails. This is required to
ensure operation atomicity from the perspective of the rest of the system.

In the algorithm described, both revoke and delete may require locking or
marking many capabilities. Meanwhile, other operations may also be trying
to lock some of the same capabilities. To avoid deadlocks between multiple
revokes and/or deletes, we simply merge the operations, and consider all
deletes and revokes locally complete when there are no remaining marked
capabilities. For copies and retypes that only lock a single capability and
its copies, we simply wait until the lock has been released before locking it
again for deletion.

116

4.3. Delete Cascades and Reachability

local foreign

revoking

ready

ready

null

ownership change³

"chown" to core
with copies

"chown" to local
ownership⁴

marked for
delete

marked for
clearing

cleareddeleting
remote copies

delete

delete¹

delete²

revoke

revoke
done

retype result or created by kernel

deleted by
revoke

moveable last local copy

non-moveable
last local copy

CNode

all non-CNode
slots cleared

locked

del'd by revoke or clear
all marked
CNodes cleared

done

deleted by
revoke or
clear

done

done

revoke

no remote copies

Figure 4.1: Per-capability slot state machine for
deletes and revokes. Actions in bold are user-initiated.
1,2When local copies of a capability exist, delete can
directly null the capability slot. 3When changing own-
ership, the invariant of having exactly one owning
core that is equal for all copies in the system may be
temporarily violated. 4This may fail, returning the
capability slot to the ready state.

117

Chapter 4. A protocol for decentralized capabilities

Capability transfer

To perform the operations described in section 4.2 we need to make sure that
nodes in the system can exchange information about capabilities that they
hold. In particular, the nodes need to be able to share and exchange the
metadata stored in each capability. (NB: This, of course, necessitates that
the software component that deals with distributed capability operations on
each node has to be trusted.) To enable nodes to exchange capability data,
we must define a serialization protocol which the sender can use to produce a
byte array given a capability, and the receiver can use to recover a capability
from the received byte array. The receiver then needs to ensure that the
new capability can be used on the node. To do this, the receiver needs to
register the new capability in the node’s mapping database. The mapping
database needs to support some new query types to enable the receiver to
efficiently insert a new capability into the local mapping database.

Receiving a copy First, upon receiving a serialized capability during
a copy operation, the receiver needs to insert the new capability into the
mapping database. Because the mapping database is used to look up
capability relations, inserting a received copy needs to work without prior
knowledge of copies, ancestors, or descendants on the receiving node.

Retype checks Second, checking if a capability retype operation is legal
requires checking if the requested region already has conflicting descendants
on any node in the system. Again, the receiving node has to perform the
retype checks with only a serialized copy of the source capability without
knowledge of any pre-existing local relations. One way to deal with this
would be to temporarily insert the capability into the receiving node’s
mapping database, check for descendants in the requested region, and then

118

4.4. Capability transfer

delete the temporary capability again. However, this approach creates – for
a brief time – a capability that does not appear in the high-level description
of the retype operation. While this might not actually impact the system,
we try to avoid creating such temporary copies whenever possible, and
therefore provide support for querying whether a region of a capability
has descendants without having to insert the capability into the mapping
database.

Deleting last owned copy Third, deleting the last copy of a capability
on the owning node requires that the system either finds another copy of
the capability or recognizes that the last copy in the system is being deleted.
Again, creating a temporary copy to perform this check is undesirable,
especially because in this case we are trying to ascertain the existence of
copies. Therefore we need a way to query a mapping database for copies
without inserting the capability we are searching for.

Reclaiming memory regions Fourth, to not leak physical memory(!),
we need the ability to find regions of physical memory for which no capability
exists in the system. If we implement eager memory reclamation when
deleting a capability, determining whether we are actually deleting the last
capability referring to a region of memory requires a system-wide search for
ancestors, copies and descendants. Copies, in this case, are tracked by the
algorithm described in 4.2, and we already covered the check for descendants
previously when discussing the query requirements for retype. However,
reclaiming memory eagerly when deleting a capability also requires checking
for ancestors. In particular, this check for ancestors must be performed
without creating visible copies of the capability which is being deleted.

Alternatively, we can defer reclaiming memory, and periodically scan the
entirety of the system’s memory for regions which are not covered by any

119

Chapter 4. A protocol for decentralized capabilities

capability. The minimum requirements for this operation are that we know
about all the physical memory in the system and the ability to search the
system for the “first” capability, and forward or backward siblings of a given
capability.

Revoke Revoke deletes all copies and descendants of a capability. We
can reliably find copies and descendants on the node where the revoke is
executed, as revoke can only be executed on the capability’s owning node.
However, we need to find descendants of the capability even on nodes where
no copies exist. To do this we need a way to search for capabilities covering
a given region, as already discussed for the retype case.

Implementing a mapping database

As mentioned earlier in this dissertation, we have a database of all capabilities
on a core which allows the CPU driver to quickly find capabilities by relation,
such as finding a copy or descendant of a capability. We call this database
mapping database.

In seL4, the mapping database is stored as a doubly-linked list, representing
the preorder DFS through the hierarchy of capabilities. This choice of data
structure allows easy insertion of a capability given its immediate ancestor
or a copy, and easy checking for copies and descendants. Additionally,
removing capabilities is very easy in a doubly-linked list.

However, a preorder DFS linked-list mapping database containing n capa-
bilities requires a O(n) linear scan when inserting a capability for which we
do not know any relations beforehand, as does finding ancestors and descen-
dants given only a capability’s value. As these operations are performed
in the non-preemptable privileged kernel code, any operation that requires

120

4.5. Implementing a mapping database

O(n) time creates a scheduling hole of problematic size, especially for latency
sensitive applications, or applications with real-time requirements.

We show the median operation latencies for the doubly-linked list mapping
database in figure 4.2. As discussed we see that inserting an element into a
doubly-linked list without a pointer to a close neighbor is fairly expensive
and has highly unpredictable latency, as evidenced by the standard deviation
of more than thirty thousand cycles. Additionally, checking whether any
ancestors exist for a capability takes more than twenty thousand cycles.

All the microbenchmarks shown in this section were performed on a 2x10
Intel Xeon E5-2670 v2 clocked at 2.5 GHz.

To avoid operations with linear complexity in the number of capabilities in
the mapping database, we will replace the linked list with a more suitable
search data structure.

Review of search data structures

Another popular data structure for lookup-heavy workloads is the hash table.
Hash tables provide O(1) lookup with high probability and O(1) insertion,
either amortized or with high probability. However for our use case we
require several properties that a hash table cannot provide in an efficient
manner. Firstly, hash tables cannot directly represent the hierarchical
relationships between capabilities. Therefore we would need to maintain
additional metadata to efficiently find immediate ancestors and descendants.
Because copies of capabilities can disappear, it is not enough to simply keep
track of a capability’s ancestor and descendants by keeping a pointer to
each. Rather, those pointers would need to be checked and updated on every
delete. Secondly, while a hash table’s space complexity is O(n) there is no
direct relationship between the memory used by the table and the elements
stored in the table. Because of this, one would need to dynamically allocate

121

Chapter 4. A protocol for decentralized capabilities

In
se

rt
 o

n
e
 e

le
m

e
n
t

R
e
m

o
v
e
 o

n
e
 e

le
m

e
n
t

It
e
ra

te
 1

 e
le

m
e
n
t

It
e
ra

te
 1

0
 e

le
m

e
n
ts

It
e
ra

te
 1

0
0
 e

le
m

e
n
ts

h
a
s_

co
p
ie

s(
)

h
a
s_

a
n
ce

st
o
rs

()

h
a
s_

d
e
sc

e
n
d
a
n
ts

()

A
d
d
re

ss
 r

a
n
g
e
 q

u
e
ry

0

1000

2000

3000

4000

5000

6000

7000
la

te
n
cy

 i
n
 c

y
cl

e
s

3
2

5
2

 ±
 3

2
 6

5
3

4 4

1
0

8 1
2

3
2

8
0

2
2

 4
2

0
 ±

 1
1

8
 6

0
8

1
5

6

n
/a

Figure 4.2: 50 percentile latency for a number of operations on a doubly-
linked list implementation of a mapping database. The database contains
4096 capabilities.

memory outside of the capabilities, that is, outside the CNodes. However,
the mapping database is stored and maintained by the CPU driver, and, as
mentioned previously, one reason for using the capability model is precisely
to avoid such allocations in the CPU driver.

iThe next approach we consider is to design a custom data structure with
direct links for all the relationships to make queries O(1) where possible.
Thus we are looking for a tree structure that maps directly to the capability
hierarchy, with direct links in each node to ancestors, copies, descendants.
Additionally, because a node can only link to one immediate descendant, all

122

4.5. Implementing a mapping database

immediate descendants need to be connected in a “sibling” list.

To look up a capability, we recursively walk down the hierarchy: starting at
the first root, we walk the sibling list to find a root node that covers the
target capability. If the found node does not match the target, we recurse:
starting at the first immediate descendant, we again walk through the list
of siblings, and so on. This algorithm presents a first problem: once again,
we have a worst-case of O(n). To solve this, we can replace the sibling list
with a sibling tree with an ordering based on each capability’s base address.

We now have fast lookup, but at the price of having a complex algorithm.
For example, deleting a node may require the tree of the node’s immediate
descendants to be merged into the deleted node’s sibling tree. Additionally,
we still have a problem that we had in the hash table-based solution: a
capability may have many copies, any of which may be deleted; pointers
to relations must be updated when the specific copy that is their target is
deleted.

The fundamental cause for the pointer maintenance problem comes from the
reduction of a many-to-many relationship between all copies of a capability
and all copies of its immediate ancestor to a direct many-to-one relationship.
This reduction is necessary when using direct references to relations because
many-to-many relationship must be stored externally to both sides of the
relationship, but the CPU driver is not able to dynamically allocate space
external to capabilities.

To circumvent this problem, we simply avoid directly storing the relation-
ships. Instead, we create a searchable index that is able to efficiently answer
the required queries. However, the space restrictions remain: the index
must be stored within the capabilities, i.e. the CNodes, themselves. We
thus look to a class of data structures that have a direct correspondence
between nodes and elements: search trees. With a search tree, we can look

123

Chapter 4. A protocol for decentralized capabilities

up capabilities by value, and find copies quickly by placing them sequentially
in the tree’s ordering. Not all queries are as simple, however: if we place
a capability’s first descendant close in the ordering (as in seL4’s preorder-
DFS), the ancestor will be further away in the other direction, and reverse.
To compensate, we convert the binary search tree to an interval tree using
the augmentation technique described in Cormen et al.[CLRS01, p. 311 –
317], which allows us to search for capabilities covering a address range,
which we employ for the ancestor query and the region queries necessary
for retype and memory reclamation.

A common choice of search tree for databases and filesystems is the B-
Tree. B-Trees are balanced, can be very shallow compared to other tree
types, and are useful when the node size can be tuned to some block size
of the underlying storage system for improved performance[Knu73]. Since
there is at least one element for every B-Tree node, there will always be
a capability available to store the node, fulfilling our space requirement.
However, knowing where to store the node is not so simple; elements can be
pushed up and down in a B-Tree, or even be removed without changing the
number of nodes in the tree. Thus, a B-Tree implementation would have to
be able to migrate tree nodes from one capability slot to another as slots
containing tree nodes become unavailable. Additionally, B-Tree nodes are
fairly large: the nodes of a 2-3 B-Tree, the smallest viable B-Tree degree,
contain 6 pointers, for a total of 48 bytes on a 64-bit architecture, and 24
bytes on a 32-bit architecture. Every capability must be able to store a tree
node, so we have to reserve this space in every capability slot, regardless of
whether the tree node in a given slot is used or not at any point in time.

Because of the complexity of migrating B-Tree nodes between available
capabilities, we will also look at binary trees variants where each element is
a node. Because of this correspondence, a node is removed exactly when
its element is removed and vice versa. This eliminates the need for node

124

4.5. Implementing a mapping database

migration entirely. Additionally, the tree needs only a small amount of data
per node: two child pointers, a parent pointer and usually a small amount
of metadata, e.g. the depth, sub-tree height or “colour” of the node (for
red-black trees), totalling 25 and 13 bytes for 64-bit and 32-bit architectures
respectively.

For the sake of simplicity, we have chosen to implement the index using an
AA tree [And93]. This tree, an isomorphism of a 2-3 B-Tree, guarantees
that the deepest leaf is at no more than twice the depth of the shallowest
leaf, and that that deepest leaf is the rightmost leaf in the tree, the last
element in the ordering.

Ordering

To implement a tree-based index, we need to define an ordering on the items
we want to index. This order must be defined such that the operations
defined earlier can be performed efficiently. To find all copies of a given
capability, we would like an ordering where copies are immediately adjacent
to one another. Similarly, to move up and down in the hierarchy, relations
should also be in close proximity. In essence we would therefore like an
ordering similar to the previously used preorder-DFS, except that any
two capabilities must be comparable. From this we can obtain these first
constraints on the ordering:

• Memory capabilities for an area with a higher base address must come
after capabilities for areas with a lower base address.

• For memory capabilities starting at the same base address, the smaller
capability must come after the larger capability.

125

Chapter 4. A protocol for decentralized capabilities

From these, we can determine an initial requirement: both base address
and size must appear in the ordering, and the base address must have a
higher priority. Also, as smaller sizes must appear later, sizes must be
in descending order. Thus, we have this initial tuple for lexicographical
ordering:

(base,−size)

Next, we look at the relations between types. When two memory capabilities
cover the same area, but the second is derived from the first, how to we
place these capabilities in the ordering? Since the second is a descendant,
it should appear after the first. However, any smaller capabilities covering
a sub-region of these capabilities must be descendants of both, and must
therefore appear after both. Thus, we need to have an ordering by the type
hierarchy that appears between base and −size in the ordering tuple.

How do we create such a type ordering? For this, we must first constrain
the capability type hierarchy to a tree. This allows as to define a partial
ordering between types, which we can use in our global ordering. This opens
the question how to use the partial ordering when comparing capabilities
for which the partial ordering is not defined. Here, we are saved by the
nature of this hierarchy: Retyping memory capabilities can only happen
“down” the hierarchy, and thus all capabilities with the same base address
must lie on a single path from the hierarchy root to a leaf. Since we have
already concluded that we must apply the type ordering after the base
address ordering, we will only ever be comparing types for which the partial
ordering of types is defined. Thus we arrive at this ordering tuple:

(base, type,−size)

126

4.5. Implementing a mapping database

One important aspect of capability types remains to be considered, and
was briefly mentioned in the previous paragraph: the type hierarchy is
not a tree, but a forest, containing types that do not cover any area of
memory. However, all such types lie in trees separate from the tree of
memory capability types, which leads to a simple solution: We order the
type trees themselves, and use this ordering to resolve comparisons between
unrelated types. This leads to the following ordering, with base and size set
to a single value (zero for our purposes) for non-memory capability types:

(tree, base, type,−size)

Additionally, all capability types can have fields designated to be used
for equality comparisons between capabilities of that type. Since we have
already handled comparing different types, we can just add these fields to
the end of the ordering tuple:

(tree, base, type,−size, eq . . .)

We face one final issue: all copies of a capability would be considered equal
with this ordering. But for insertion into the index, copies must also have a
stable ordering amongst each other. For this, we add a tie breaker, using
the capabilities’ in-kernel address:

(tree, base, type,−size, eq . . . , address)

We now have an index into which we can insert and delete capabilities. Let
us now analyse how to perform the operations we require.

First, various operations need to find all copies of a capability, or check
if copies exist. By definition, a copy differs only in its address, which is
the last element in the ordering. Thus, all copies will be siblings in the

127

Chapter 4. A protocol for decentralized capabilities

ordering, so we can find all copies by iterating forwards and backwards from
the initial capability until we reach the edge of the tree or find a non-copy.
All capabilities traversed in this fashion will be copies.

Next, revoke and retype need to check if a capability has any descendants.
By construction of the ordering, if a capability has any descendants, the
first will be located immediately after all copies of the capability. We can
therefore search forward past all the copies, and return true if the next
capability is a descendant.

Range Queries

By augmenting the tree with an end interval as described in Cormen at
al.[CLRS01, p. 311 – 317] we gain the ability to perform searches for ranges.
The storage cost for each tree node increases by 9 bytes, as we need to store
a 64-bit address and a 8-bit type root indicating the largest address covered
by the subtree rooted at the tree node. Note that looking up capabilities
for a single address is also a range search, as an address may be “covered”
by multiple regions in the ordering, e.g. when a capability for memory
containing the address is preceded by siblings not covering the address
before which there is an ancestor that again covers the address.

More concretely, we use range queries in two scenarios:

• When looking for a capability’s ancestor, and

• when looking up capabilities during a frame unmap as discussed in
chapter 3.

To search for a target capability’s immediate ancestor, we can first search for
a capability earlier in the ordering, and check if it is an ancestor, in which
case it is the immediate ancestor. If this is not the case, we encountered

128

4.5. Implementing a mapping database

one of two situations: The target capability has no ancestor, or the target
capability has an ancestor but that ancestor has descendants that precede
the target capability. Using a range query, we can search for the smallest
capability that covers the starting address of the target capability, i.e. that
contains the range from target.base−1 to target.base+1.

Augmented AA tree implementation trade-offs

Because we have a hard limit of 64 bytes2 per capability slot, and the
capability type specific part of each slot consumes 24 bytes, we are left with
a maximum of 40 bytes to store a capability’s metadata.

Assuming that we will always have 64 bytes available per capability, we
quickly run into space problems on machines with 64-bit architectures. For
the rest of this section, we skip the calculations with 32-bit pointers, as we
assume that all the required metadata would fit comfortably in 40 bytes,
i.e. 10 pointers.

Of the 40 bytes that are left after storing the actual capability data, the
augmented AA tree node requires three pointers, a capability type, and
the address and type of the largest address covered by the subtree. This is
3 · 8 + 1 + 8 + 1 = 34 bytes. This leaves us with just 6 bytes to (1) keep
track of the capability’s owning core, (2) cache information about potential
remote ancestors, copies, and descendants, (3) the capability’s lock, (4) a
flag indicating whether a capability is currently being deleted, and (5) a
pointer for the queue which is required to keep track of the capability if it
is part of a delete cascade as discussed in section 4.3.

Currently, we need 8 bits to store a core identifier, 1 bit each to cache
whether a capability has remote ancestors, copies, or descendants, 1 bit each

2We can – and did for a while – make capability slots bigger, but prefer to keep them cache-line sized

129

Chapter 4. A protocol for decentralized capabilities

for the capability’s lock and delete state, and 64 bits for the delete queue
pointer. Summing up, this gives us a requirement of 8+3 ·1+1+1+64 = 77
bits, or, rounded up, 10 bytes.

Summing up the space requirement for all the metadata, we see that we
exceed the 40 available bytes by 4 bytes. We will now discuss a two strategies
to optimize the size of a capability’s metadata such that all the information
that needs to be stored fits into 64 bytes. For this discussion, we assume
that the actual capability part cannot be shrunk further, and would prefer
to keep some spare bytes for the eventuality of the actual capability part
requiring more space in the future.

The first option we consider is to drop the parent pointer from tree nodes
so we can use the space for other purposes, reducing the tree node size to
2 · 8 + 1 + 8 + 1 = 26 bytes for the augmented version of the tree. Dropping
the parent pointer has the effect that retrieving the predecessor or successor
of a node is no longer O(1) on average, but may instead require a search
from the root for the next element in the ordering.

The second strategy is to use the unused high bits of a virtual address –
current 64-bit architectures have a maximum usable virtual address size of
48 bits – to store the small metadata items in order to keep the total size of
a capability including metadata below, or at, 64 bytes.

We employ the following layouts for storing the small, that is, 8 bits and
smaller, metadata items in the high bits of the three tree pointers.

We store all the one bit metadata in the highest 5 bits of the parent pointer.
04748585960616263

C A D I L available parent address

The characters C,A and D identify the bits occupied by the flags indicating
the presence of remote copies, remote ancestors and remote descendants

130

4.5. Implementing a mapping database

respectively. The character I identifies the bit storing the flag indicating that
the capability is currently being deleted. Finally, the character L identifies
the bit representing the capability’s lock state.

We store the owning core’s identifier in the high 8 bits of the right pointer.
We intentionally leave the next 8 bits unused, to account for future systems
where we may want to identify more than 256 distinct owners.

047485556585960616263

owner available right address

Finally we store the 1 byte values giving the tree node’s level and end root
in the high bytes of the left pointer. Note that those two values are only
required by the tree implementation, which is one reason why we co-locate
them in the same pointer.

047485556585960616263

end root level left address

With this layout, we are able to reduce the size for the augmented AA tree
node by 4 bytes, and therefore manage to just squeeze a full capability into
24 + 4 · 8 + 8 = 64 bytes.

We evaluate two variants of implementing this layout, one implementation
uses masks and bit shifts to read, write and mask the high bits of the
pointers, while the other implementation uses C bitfields to define the layout
of the packed pointers.

Evaluation of different implementations

We use a synthetic, randomized benchmark run in userspace on Barrelfish
to evaluate the different mapping database (MDB) implementations. Where

131

Chapter 4. A protocol for decentralized capabilities

possible, we will show both a number of variations of the AA tree imple-
mentation and the DFS doubly-linked list implementation.

For each low-level operation, we perform 1000 measurements. We reset the
mapping database after each measurement by filling a capability slot array
of varying size (from 4096 up to 65536 slots) with naturally-aligned RAM
capabilities. Measurements taken in Barrelfish indicate that a fully booted,
idle system may have roughly 3000 capabilities, of which 99% are derived
from PhysAddr. Roughly 20% of the capabilities have copies, 10% have
ancestors, and 5% have descendants.

We benchmark the operations listed in table 4.1. For finding the immediate
predecessor and successor, we always benchmark finding the successors. In
addition to finding the immediate successor, we also benchmark iterating
over 10 and 100 successors.

For our benchmarks we generate capabilities randomly with an arbitrary,
but fixed, seed provided to the libc rand function via srand.

We only set the random seed at the start of each experiment to get some
variation in the exact location of the target capability in the tree or list.

We generate capabilities such that approximately 10% of the capabilities are
copies of a capability in the other 90%, i.e. roughly 20% of all capabilities
have copies. To approximate a “regular” distribution of capabilities we
generate capabilities that are not elected to be copies such that many small
capabilities but only a few large capabilities are created. We generate those
capabilities such that the probability of creating capabilities of a given
power-of-two size is proportional to the negated power, i.e.

P [log2(size) = x] =
⎧⎪⎨⎪⎩ x < max 2−x−1

x ≥ max 0
,

where max represents the total amount of memory.

132

4.5. Implementing a mapping database

Operation Description
Insert Insert one capability into the mapping

database
Remove Remove one capability from the mapping

database
Predecessor/Successor Return a capability’s immediate predecessor

or successor in the mapping database’s order-
ing, as defined in section 4.5.2

Copies check Check if the mapping database contains other
copies of the given capability

Descendants check Check if the mapping database contains de-
scendants of the given capability

Ancestors check Check if the mapping database contains an-
cestors of the given capability

Address range query Query the mapping database for a capabil-
ity in, or covering, the given range, cf. sec-
tion 4.5.3

Table 4.1: The set of low-level mapping database operations O

For measuring insertion latency, we create a mapping database that contains
n − 1 capabilities, and then insert the last capability while measuring the
latency of the insertion using the hardware timestamp counter. For the
other operations – removing a capability, finding a capability’s successor(s),
checking a capability’s relations, and the address range query – we create
the mapping database with n capabilities and subsequently measure the
operation’s latency using the hardware timestamp counters.

We execute all benchmarks on a 2x10 Intel Xeon E5-2670 v2 clocked at
2.5 GHz, and the machine is rebooted after taking 1000 measurements for

133

Chapter 4. A protocol for decentralized capabilities

each operation.

For each operation we record each measurement individually and compute
the median, standard deviation, and 99th percentile with numpy in python.

To provide a single “score” number for each implementation, we also measure
the relative frequencies of the different operations for Barrelfish’s boot phase
and a process management workload, and compute the weighted sum of
medians for each implementation.

For each workload, we count the low-level operations for the duration of the
synthetic implementation of the workload.

The first workload is the boot phase of the system. For this workload, we
read the operation counters at the start of the execution of our synthetic
workload generator application, as we run the workload generator on a
freshly-booted system to ensure reproducible numbers. For the system’s
boot phase we get the operation frequencies shown in table 4.2

Operation Count Frequency
Insert one element 25524 28.0%
Remove one element 16094 17.7%
Predecessor/Successor 10040 11.0%
Copies check 16493 18.1%
Ancestors check 6434 7.1%
Descendants check 13992 15.4%
Address range query 2469 2.7%
Total 91046 100.0%

Table 4.2: Mapping database operation counts and frequencies during boot
phase

We see that the most frequent operation in the system boot phase is insertion,
which accounts for 28% of the mapping database operations. The next most

134

4.5. Implementing a mapping database

frequent operations are removal and checking for copies which account for
17.7% and 18.1% respectively. This can easily be explained by looking at how
Barrelfish’s memory server operates. The deletes can mostly be attributed
to the fact that the memory server, when splitting up capabilities using
retype, will delete the source capability after the retype operation completes.
We further see that checking for descendants and looking up predecessors
and successors is more frequent with 15.4% and 11% respectively, than
checking for ancestors and explicit range queries which account for the last
7.1% and 2.7%.

The next workload we consider is a system with a lot of short-lived ap-
plication processes. This workload is important, as process creation and
cleanup are two of the most capability-operation heavy system operations
in Barrelfish. For this workload, we get the operation frequencies shown in
table 4.3.

Operation Count Frequency
Insert one element 19300 19.9%
Remove one element 18779 19.3%
Predecessor/Successor 7472 7.7%
Copies check 19219 19.8%
Ancestors check 12063 12.4%
Descendants check 17884 18.4%
Address range query 2425 2.5%
Total 97142 100.0%

Table 4.3: Mapping database operation counts and frequencies in process
management workload

From table 4.3, we can see that insertions and deletions each account for
almost 20% of the overall operation mix in a process management heavy

135

Chapter 4. A protocol for decentralized capabilities

workload. Another 19.8% of operations are checks whether a capability
has copies. These three operations together make up about 60% of the
total operations in the process management workload. Explicit queries for
a capability’s predecessor or successor make up 7.7% of the workload and
checking whether a capability has descendants accounts for another 18.4%
of the operation mix in the process management workload. Finally, we see
that in the process management workload, explicit address range queries
are only about 2.5% of the total count of operations, with another 12.4% of
the operations utilizing range queries for the ancestor checks.

We use these frequencies to calculate the score Sw ,i for each implementation
i and workload w as

Sw ,i =
∑

o ∈ O
Fw ,o · Q2i ,o,

where O is the set of low-level mapping database operations as listed in
table 4.1. We denote the frequency of an operation o ∈ O in workload
w as Fw ,o ∈ [0, 1], and the operation’s median (2nd quartile) latency for
implementation i as Q2i ,o.

By choosing the workload operation frequencies Fw ,o to be in the interval
[0, 1], the score can be thought of as a number expressing the median latency
in cycles per mapping database operation for the given implementation and
workload.

We will now present measurements for each implementation discussed in
section 4.5, before analyzing the trade-offs between different AA tree opti-
mization.

Unless stated otherwise, the latencies we present are for a mapping database
which contains 4096 capabilities.

136

4.5. Implementing a mapping database

Doubly-linked list vs. AA tree

First, let us look at the operation latencies for the doubly-linked list again,
this time comparing them to the AA tree latencies. In this comparison, we
want to show that our choice of data structure does reasonably well against
the data structure we aim to replace.

We expect the tree to outperform the linked-list for insertion, and the
ancestors check, while we expect significantly worse latency for removal and
somewhat worse latencies for iterating over elements.

We show the median latencies for both the augmented AA tree, and the
doubly-linked list in figure 4.3, with whiskers indicating the standard devia-
tion. We indicate the exact latency in cycles for each bar by text positioned
inside or above the bar. For bars where the standard deviation does not fit
the plot area, we additionally indicate the standard deviation as text on
the bar.

True to our expectations, we see a significantly better insertion latency for
the augmented AA tree, both for the median and the standard deviation.
The reason for the wildly fluctuating insertion latency for the linked list is
the fact that, depending on where we need to insert a capability for which
we have no prior knowledge of relations, we have to traverse a significantly
different fraction of the list.

Again, as expected, removing a capability is much more costly in the AA
tree, as the operation’s complexity goes from O(1) in a doubly-linked list
to O(logn) in the AA tree. Additionally, we see that iterating over elements
is rather more expensive in the tree, as we follow more than one pointer on
average to find a node’s successor.

We see the most significant win for the tree in the check for a capability’s
ancestors. In the linked list, the median latency for checking if a capability
has ancestors is around 22500 cycles. In the augmented AA tree, where

137

Chapter 4. A protocol for decentralized capabilities

In
se

rt
 o

n
e
 e

le
m

e
n
t

R
e
m

o
v
e
 o

n
e
 e

le
m

e
n
t

It
e
ra

te
 1

 e
le

m
e
n
t

It
e
ra

te
 1

0
 e

le
m

e
n
ts

It
e
ra

te
 1

0
0
 e

le
m

e
n
ts

h
a
s_

co
p
ie

s(
)

h
a
s_

a
n
ce

st
o
rs

()

h
a
s_

d
e
sc

e
n
d
a
n
ts

()

A
d
d
re

ss
 r

a
n
g
e
 q

u
e
ry

W
e
ig

h
te

d
 s

u
m

o
f

m
e
d
ia

n
s

0

1000

2000

3000

4000

5000

6000

7000
la

te
n
cy

 i
n
 c

y
cl

e
s

1
6

9
2 2

2
6

8

6
8

4
1

2

3
3

3
2

2
1

2

2
5

4
8

7
7

2

1
7

3
6

1
3

2
3

3
2

5
2

 ±
 3

2
 6

5
3

4 4

1
0

8 1
2

3
2

8
0

2
2

 4
2

0
 ±

 1
1

8
 6

0
8

1
5

6

n
/a

3
4

7
5

Tree w/ parent pointer

Doubly linked list

Figure 4.3: Median latencies for low-level mapping database operations on
a doubly-linked list and the augmented AA tree

we implement the ancestor check using a range query, the ancestor check
latency drops to only about 2500 cycles.

Overall, we see that the score for the process management workload for
the doubly-linked list Sprocmgmt,linkedlist is 3475, whereas the score for the
augmented AA tree is Sprocmgmt,tree is 1323. From these scores we conclude
that choosing a binary search tree with support for range queries significantly
improves mapping database performance for a process management heavy
workload.

138

4.5. Implementing a mapping database

AA tree without a parent pointer

The next implementation that we discuss is the augmented AA tree without
parent pointers which is one of the options that we propose for keeping
capability size at 64 bytes.

This is the implementation that has been in use in Barrelfish since 2012
when we moved away from the linked-list implementation for the mapping
database.

In
se

rt
 o

n
e
 e

le
m

e
n
t

R
e
m

o
v
e
 o

n
e
 e

le
m

e
n
t

It
e
ra

te
 1

 e
le

m
e
n
t

It
e
ra

te
 1

0
 e

le
m

e
n
ts

It
e
ra

te
 1

0
0
 e

le
m

e
n
ts

h
a
s_

co
p
ie

s(
)

h
a
s_

a
n
ce

st
o
rs

()

h
a
s_

d
e
sc

e
n
d
a
n
ts

()

A
d
d
re

ss
 r

a
n
g
e
 q

u
e
ry

W
e
ig

h
te

d
 s

u
m

o
f

m
e
d
ia

n
s

0

1000

2000

3000

4000

5000

6000

7000

la
te

n
cy

 i
n
 c

y
cl

e
s

1
5

7
2

1
9

4
8

1
1

2

2
9

7
6

2
8

 4
3

8
 ±

 1
3

8
1

7
8

4

2
5

5
4

7
4

4

1
7

8
4

1
3

5
1

1
6

9
2 2

2
6

8

6
8

4
1

2

3
3

3
2

2
1

2

2
5

4
8

7
7

2

1
7

3
6

1
3

2
3

3
2

5
2

 ±
 3

2
 6

5
3

4 4

1
0

8 1
2

3
2

8
0

2
2

 4
2

0
 ±

 1
1

8
 6

0
8

1
5

6

n
/a

3
4

7
5

Tree w/o parent pointer

Tree w/ parent pointer

Doubly linked list

Figure 4.4: Median latencies for linked list, tree and tree without parent
pointers

We see that most operations have comparable latencies for the tree with
and without parent pointers. The lack of parent pointers is immediately

139

Chapter 4. A protocol for decentralized capabilities

noticeable in the latency for finding immediate predecessors and successors,
especially when we iterate over more than one element. For example,
iterating over ten elements of the mapping database takes approximately
3000 cycles in the tree that lacks parent pointers, where the tree with parent
pointers clocks in at around 400 cycles for iterating over ten elements. The
check for a capability’s copies is similarly affected because the check is
implemented by looking at the capability’s successor and predecessor and
checking whether either of those two elements in the mapping database are
copies of the capability we are checking.

Somewhat surprisingly, we see that insertion and removal have lower latencies
the tree without parent pointers than in the regular tree. In fact, median
insertion latency is 8% lower, and median removal latency is 15% lower in
the tree without parent pointer. We believe this difference stems from the
fact that inserting and removing nodes from a tree without a parent pointer
needs only two pointer manipulations per modified node compared to three
in a regular tree.

Overall, the score for the process management workload Sprocmgmt,tree-noparent =
1351 is still significantly better than the doubly-linked list which is 3475.

Compared to the tree with parent pointers, we spend an extra 20 cycles per
mapping database operation for the process management workload, which
we can accept as a penalty to keep the capability size at 64 bytes.

AA tree with small data packed into pointers

We evaluate two techniques to implement packing small data items into
the high bits of the AA tree pointers. The first technique relies on shifts
and masking to extract and store the data values and pointers. The second
technique uses C bitfields to get the compiler to extract and store the data
values and pointers in the appropriate bits.

140

4.5. Implementing a mapping database

We expect to see latencies for the packed pointer implementations that are
in the same ballpark as for the tree with parent pointers. However, we
accept that the extra instructions necessary to pack and unpack the pointers
and data items will lead to slightly increased latency.

Looking at the results in Figure 4.5, we can immediately discard the C
bitfield variant, as it shows between 5 and 65% higher latencies than the
shifts-and-masks variant.

In
se

rt
 o

n
e
 e

le
m

e
n
t

R
e
m

o
v
e
 o

n
e
 e

le
m

e
n
t

It
e
ra

te
 1

 e
le

m
e
n
t

It
e
ra

te
 1

0
 e

le
m

e
n
ts

It
e
ra

te
 1

0
0
 e

le
m

e
n
ts

h
a
s_

co
p
ie

s(
)

h
a
s_

a
n
ce

st
o
rs

()

h
a
s_

d
e
sc

e
n
d
a
n
ts

()

A
d
d
re

ss
 r

a
n
g
e
 q

u
e
ry

W
e
ig

h
te

d
 s

u
m

o
f

m
e
d
ia

n
s

0

1000

2000

3000

4000

5000

6000

7000

la
te

n
cy

 i
n
 c

y
cl

e
s

1
5

7
2

1
9

4
8

1
1

2

2
9

7
6

2
8

 4
3

8
 ±

 1
3

8
1

7
8

4

2
5

5
4

7
4

4

1
7

8
4

1
3

5
1

1
6

9
2 2

2
6

8

6
8

4
1

2

3
3

3
2

2
1

2

2
5

4
8

7
7

2

1
7

3
6

1
3

2
3

2
1

5
2 2

8
6

0

6
8

4
4

8

3
6

4
0

2
1

2

2
7

1
0

8
6

0

1
7

7
6

1
5

6
6

2
3

8
4

3
8

9
6

1
0

4

6
9

2

6
0

4
0

2
6

8

2
8

4
0

9
2

8

1
8

7
6

1
8

5
8

Tree w/o parent pointer

Tree w/ parent pointer

Tree (packed pointers w/ shift+mask)

Tree (packed pointers w/ bitfields)

Figure 4.5: Median latencies for tree, tree without parent pointers, and
tree with packed pointers

Looking at the shifts-and-masks variant in more detail, we see that insertion
and removal show significantly higher latencies than the regular tree – 26%
and 27% higher respectively. Additionally, we see a 8 to 9% increase in
latency for iterating over 10 and 100 elements respectively when using packed

141

Chapter 4. A protocol for decentralized capabilities

pointers. On the other hand, operations that do not require any parent
pointer traversals, such as the range query, and the operations implemented
in terms of a range query, are largely unaffected by the tree implementation
choice regarding latency, and show a slowdown of 0% to check for copies,
4% to check for ancestors, 11% to check for descendants, and 2% for explicit
range queries.

However, given the process management workload, both pointer pack-
ing variants show significantly worse scores Sprocmgmt,shift+mask = 1566 and
Sprocmgmt,bitfield = 1858 than even the tree without parent pointers whose
score is 1351.

We suspect that the large latency increases in insertion and removal stem
from the fact that modern hardware does not have many execution units that
are able to compute shifts and masks, which heavily impacts the amount
instruction level parallelism we are able to achieve during tree rebalancing,
as rebalancing requires a lot of pointer unpacking and packing. Further,
because we utilize the high bits of the pointers to store data items, we may
also impact the hardware’s ability to prefetch tree nodes, as the pointers
need to be unpacked before the hardware prefetcher can recognize the values
as potential addresses.

Conclusion

To conclude, it is pretty clear that the augmented AA tree performs signifi-
cantly better as the data structure of choice for the mapping database.

However, the question of choosing a tree implementation is significantly
harder to answer. Given the process management workload we use for
scoring here, the tree without parent pointers is the clear winner with a
score that is only 20 cycles / operation worse than the regular tree’s, while
the two variants with packed pointers are clearly behind with scores of 1566

142

4.5. Implementing a mapping database

cycles/operation and 1858 cycles/operation for the shifts-and-masks and
the bitfield packing respectively.

Depending on the workload however, a tree implementation with parent
pointers may significantly increase application performance, which leads to
the conclusion, that like so many other things in Barrelfish, the final choice
on tree implementation may be better suited to a policy layer which could
employ techniques like coreboot [ZGKR14] to provide applications with the
best possible mapping database implementation given a predicted mix of
mapping database operations resulting from the application’s workload.

Finally, we show the median latencies for all the low-level operations for all
implementations in figure 4.6.

143

Chapter 4. A protocol for decentralized capabilities

Insert one element

Remove one element

Iterate 1 element

Iterate 10 elements

Iterate 100 elements

has_copies()

has_ancestors()

has_descendants()

Address range query

Weighted sum
of medians

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

latency in cycles

1572

1948

112

2976

28 438 ± 1381

784

2554

744

1784

1351

1692

2268

68

412

3332

212

2548

772

1736

1323

2152

2860

68

448

3640

212

2710

860

1776

1566

2384

3896

104

692

6040

268

2840

928

1876

1858

3252 ± 32 653

4

4

108

1232

80

22 420 ± 118 608

156

n/a

3475

T
re

e
 w

/o
 p

a
re

n
t p

o
in

te
r

T
re

e
 w

/ p
a
re

n
t p

o
in

te
r

T
re

e
 (p

a
cke

d
 p

o
in

te
rs w

/ sh
ift+

m
a
sk)

T
re

e
 (p

a
cke

d
 p

o
in

te
rs w

/ b
itfie

ld
s)

D
o
u
b
ly

 lin
ke

d
 list

F
igure

4.6:
Com

paring
differentm

apping
database

im
plem

entations
for

a
m

apping
database

containing
4096

capabilities.
W

e
show

the
50

percentile
with

the
standard

deviation
as

error
bars,exceptfor

the
linked-listvariant,where

the
error

bars
are

astronom
ical.

W
e

give
the

latencies
for

operations
in

C
PU

cycles,and
indicate

the
exactlatency

for
each

bar
on

or
above

the
bar

itself.

144

4.6. Implementation in Barrelfish

Implementation in Barrelfish

In Barrelfish, we implement the protocol discussed in section 4.1 and sec-
tion 4.2 in the monitor. Because the monitor is the user space component of
the Barrelfish kernel, we have privileged access to all the capability spaces on
the core. This is necessary in order to implement the capability operations.
As the monitor is implemented in a purely event-based fashion, we imple-
ment all the capability operations based on events. Capability operations are
initiated by applications sending a local RPC to the monitor. The monitor
then executes the requested operation on behalf of the application. Each
operation is implemented as a sequence of messages on the inter-monitor
channels. Taken together, these messages move the capability on which the
operation was invoked into a new state according to the state machine in
figure 4.7.

We will take the Delete operation as an example of how the algorithm
presented in section 4.2 gets transformed to a sequence of kernel operations
and messages between the monitors of a running Barrelfish instance.

We will first discuss the simple case, in terms of messages required, of
deleting a capability which triggers further deletes. For our example we will
assume that we are deleting a L2 CNode which holds some capabilities.

The delete is initiated by an application that tried to delete the CNode
but got a return code of SYS_ERR_RETRY_THROUGH_MONITOR from the local CPU
driver when calling cap_delete on the CNode’s capability address. This
return code triggers a capability delete RPC to the local monitor. The
monitor receives the RPC call message and in turn calls the entry point for
the Delete operation in the monitor.

The first step in the monitor is to call cap_delete on the capability again,
as its state could have changed according to figure 4.7 between the time

145

Chapter 4. A protocol for decentralized capabilities

the application initiated the RPC and the monitor received the RPC.
If this delete returns anything other than SYS_ERR_RETRY_THROUGH_MONITOR or
SYS_ERR_CAP_LOCKED, we either got an actual error while deleting the capability,
or the delete succeeded. In both those cases, we just forward the return
code to the application, and the operation completes.

Otherwise, the monitor starts working through the Delete algorithm. First
the monitor sets up a state object which will track the state of this particular
Delete and fills out the object with all the necessary information, such
as the kernel capability representation of the capability, the result handler
callback and data, and some flags.

After that the monitor tries to lock the capability. This step is designed
in such a way that it can be called repeatedly until the capability lock is
acquired, or the capability has disappeared. Therefore, this step tries to
delete the capability using the cap_delete call to the local CPU driver once
again. If the simple delete returns SYS_ERR_RETRY_THROUGH_MONITOR, we can
try to acquire the lock by calling requesting that the CPU driver locks the
capability. In case the CPU driver returns SYS_ERR_CAP_NOT_FOUND for any
invocations in this step, another operation, which was running concurrently,
has deleted our target capability and we can signal success to the application.
In case we get SYS_ERR_CAP_LOCKED from either of the invocations, we enqueue
the function to be executed again once the capability is unlocked. This
allows us to pause our operation without blocking the monitor until the
capability is unlocked. This is important because some operations that
lock capabilities can be long-running and we do not want to completely
block the monitor until such an operation completes. Assuming the lock
step succeeds, we have acquired the lock for the capability and can proceed
with our delete. The first step after acquiring the lock is to check the
capability’s remote relations flags. This is an important optimization as we
use these flags to decide whether we need to synchronize the delete across

146

4.6. Implementation in Barrelfish

cores.

From this point onward, there are three different scenarios to consider.

The first situation is that the capability we are deleting does not have remote
copies. In this case we need to simply go through the process of properly
deleting any capabilities contained in the capability we are deleting. This
case happens most frequently when we are deleting CNodes.

If copies of the capability exist on other cores, there are two possibilities. If
the capability has a type for which we can move ownership, we can simply
transfer the capability’s ownership to one of the cores that hold copies and
then proceed to delete the now “foreign” copy. In the last case, where
ownership cannot be moved, we need to first delete all copies on all other
cores, after which we land in the first case described above, where no remote
copies exist, and we clean up the very last copy of the capability that exists.

Cleaning up the last copy is a fairly complex process itself, as we have to
potentially delete quite a few capabilities that were stored in the capability
we are deleting.

The cleanup operation happens in two phases: first we inspect the capability
and put all the capabilities contained in it on a list of capabilities that
need to be deleted. If we find more capabilities which may contain further
capabilities during this step, we also inspect those capabilities and put any
further capabilities on the list, unless they are already there. This enables
our algorithm to deal with circular references between CNodes in the manner
we outlined in section 4.3.

This concludes the marking phase of the cleanup operation. This phase
is currently implemented as a single invocation to the CPU driver, which
may prove to be a problem when cleaning up a large CSpace. However, in
day-to-day operation of Barrelfish we have not observed the latency of the
mark invocation to be problematic.

147

Chapter 4. A protocol for decentralized capabilities

Before starting the process of stepping through the list of capabilities to
clean up, we enqueue our Delete operation object to wait until the list
is fully processed, that is, we have performed all the deletes and cleanups
which are necessary for the original capability to be fully deleted. This
process is called delete stepping, because it is implemented by processing
the list of capabilities created in the mark phase one element at a time.

The delete stepping process is implemented as a queue of events in each
monitor, and events on the queue are processed continuously as part of the
monitor’s event dispatching loop, unless the stepping mechanism is paused
manually.

For each delete step, we invoke the capability on which the delete was
requested. The metadata of this capability contains a pointer to the first
element of the list of capabilities we still have to process. The CPU driver
cleans up the capability at the head of the list and updates the head pointer
to point to the next element of the list. Each delete step may produce a
new RAM capability which needs to be returned to the memory server. If
this is the case, the CPU driver puts the new capability into an empty slot
which is specified as an invocation argument by the monitor. After each
delete step, the monitor checks if the step produced a new RAM capability
and forwards it to the memory server, if necessary.

148

4.6. Implementation in Barrelfish

Another node is leaderThis node is leader

nullstart

lc = 1
rc = 0

lc > 1
rc = 0

lc = 1
rc = 1

lc > 1
rc = 1

lc > 1
rc = 1

lc = 1
rc = 1

create

copy

xcore copy

delete

de
le

te
[lc

=
2]

re
vo

ke

xcore copy

copy delete[lc > 2]

copy
xfer owner

revoke
de

le
te

[lc
=

2]

xfer owner

revoke

copy delete[lc > 2]

delete

copy

rx owner

de
le

te
[lc

=
2]

rx owner

copy delete[lc > 2]

Figure 4.7: The state machine for a single capability slot. This is the state
machine which is implemented in Barrelfish for the Delete, Chown, and
Revoke operations.

149

Chapter 4. A protocol for decentralized capabilities

Evaluation

In this section we will discuss the experimental evaluation of the distributed
capability system presented in this chapter. We have designed microbench-
marks which cover all the capability operations discussed earlier in the
chapter. The basic format of these microbenchmarks is that we measure the
latency of a capability operation while varying the number of capabilities in
the local mapping database.

With these microbenchmarks we want to verify that the capability operation
implementations fulfil our requirement of not showing unreasonably high
latency. As most operations will include operations on the mapping database,
we expect to see logarithmic latency behaviour with respect to the total
amount of capabilities present on a core, i.e. the mapping database size on
that core.

Furthermore, we present a series of latency breakdowns with which we
analyze the latency of the different parts of each operation. Using these
breakdowns, we will also identify parts of the implementation which need
further attention.

Experimental design

Again, we conduct all experiments on a 2x10 Intel Xeon E5-2670 v2, clocked
at 2.5 GHz. More details about the machine are given in table 2.2.

For the latency breakdowns, we work with a fixed number of capabilities
present in the mapping database. We choose to populate the mapping
database with 4096 extra capabilities over the number of capabilities that
exist in the mapping database of an idle core in the system . We make this
choice, as we observe that typical workloads usually result in similar mapping

150

4.7. Evaluation

database sizes. We use Barrelfish’s built in tracing infrastructure [SG13] to
capture timestamps at key points inside the operation implementations. The
evaluation of the tracing infrastructure [SG13, §5.3.1] shows that recording
a trace point has a latency of roughly 40 cycles. Considering this, and taking
into account the fact that we utilize less than ten trace points for each
operation that we benchmark, we accept that the tracing infrastructure
may increase the latency of a purely local operation, such as deleting a
local copy of a capability, by roughly 10%. For operations that require
synchronization, and have much higher latency, the latency contributed by
the tracing infrastructure is less than 0.2%.

Invoke

We look at the Invoke operation first, as all the other operations are
implemented as invocations on CNodes. Apart from evaluating invoke itself,
we will use this experiment to establish how much latency an invocation
itself contributes to the latency of the other capability operations.

Latency of a “noop” invocation Because invocation targets are given
by their capability address we do not expect the mapping database size to
influence invocation latency. To illustrate this, we present the latency for a
“noop” invocation here. As we can see in figure 4.8, the cost of transferring
control to the CPU driver and back via a SYS INVOKE system call is mostly
less than 250 cycles. As predicted, the number of capabilities in the mapping
database does not impact invocation latency, because resolving a capability
by its capability address is a constant time operation, cf. the discussion
about capability addresses in section 2.6.

151

Chapter 4. A protocol for decentralized capabilities

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

#capabilities on node (over base set of capabilities)

0

100

200

300

400

500

la
te

n
cy

 i
n
 c

y
cl

e
s

Figure 4.8: “noop” invocation latency

Delete

Next we present a series of experiments showing the latency for the Delete
operation while varying the number of capabilities in the mapping database.
We consider the following states in which a capability may be when it is
deleted:

1. The capability is local, and other local copies exist.
2. The capability is foreign.
3. The capability is local, and no other copies exist.
4. The capability is local, and foreign copies exist.

We expect that deleting a capability in each of the four states will have
different absolute latencies, but states 1 and 2 should exhibit similar trends.

152

4.7. Evaluation

Deleting a local capability with local copies The setup for this ex-
periment is quite simple. We just allocate a RAM capability on any core,
create a copy of it, and measure the latency of deleting that copy.

Because the only operation that is not O(1) when deleting a local capa-
bility with local copies is removing a node from the mapping database, cf.
algorithm 3, we expect to see relatively low latencies absolutely speaking,
and a logarithmic increase in latency, as removing a node from the mapping
database is O(log n) on average with n being the number of capabilities in
the mapping database.

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

1000

2000

3000

4000

5000

6000

la
te

n
cy

 i
n
 c

y
cl

e
s

core 1
core 2
core 19

Figure 4.9: Deleting a local capability which has local copies

Figure 4.9 shows that the latency for deleting a local copy is between
2000 cycles and 6000 cycles depending on the amount of capabilities that
exist on the core, with a clearly logarithmic trend.

153

Chapter 4. A protocol for decentralized capabilities

Looking at a more detailed breakdown of the delete latency, we see that
more than half of the latency, 2428 cycles of 4092 cycles for a mapping
database with 4096 synthetically added capabilities, is contributed by the
call to mdb_remove, which is the C function for removing a capability from
the mapping database. Another 1000 cycles are spent in the check whether
the capability we are deleting has local copies. The latency for this check
is rather high, as we choose the mapping database implementation that
uses the AA tree without parent pointers as the default implementation,
cf. subsection 4.5.4. Interestingly, in our breakdown, the system call latency
is more than 500 cycles, increasing by a factor of two compared to the
no-op invocation which shows latencies under 250 cycles. This increase in
latency can be contributed to two factors. First, as delete, like all CSpace
manipulations, is implemented as an invocation on a root CNode, we need to
do an extra capability lookup to find the capability which we want to delete.
Second, as we use Barrelfish’s tracing framework to acquire the latency
numbers necessary to produce the breakdown, we introduce a number of
operations – time stamp counter reads etc. – which simply are not present
in the benchmark execution where we only report the overall delete latency.

154

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

1000

2000

3000

4000

5000

6000
la

te
n
cy

 i
n
 c

y
cl

e
s

536 540 656

1460

972 988
992

1060

44 44
48

482392 2428
2488

2780
88 92

92

144

4032 4092
4276

5492

syscall+sysret

has_copies()

cleanup_copy()

mdb_remove()

Misc. work

Figure 4.10: Latency breakdown for deleting a local capability with local
copies

Deleting a foreign capability In this experiment we create a foreign
capability by first allocating a RAM capability on one core and then transfer-
ring a copy of that capability to another core without moving the capability’s
ownership. We then repeatedly create a copy and delete that copy on the
core that is not the capability’s owner.

Similar to deleting a local capability for which local copies exist, the only
mapping database operation necessary for deleting a foreign capability is
the removal of the node in the tree. Thus we again expect the latency to be
logarithmic, but still low absolutely speaking.

In this plot, figure 4.11, we see that the latency of deleting a foreign capability
copy is between 6000 cycles and 10 000 cycles for mapping databases with

155

Chapter 4. A protocol for decentralized capabilities

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

2000

4000

6000

8000

10000
la

te
n
cy

 i
n
 c

y
cl

e
s

core 1
core 2
core 19

Figure 4.11: Deleting a foreign capability

about 1000 to about 65000 synthetically added capabilities.

This is surprisingly higher than the latency for deleting a local capability,
so we investigate in more detail by looking at the latency breakdown for
deleting a foreign copy shown in figure 4.12.

We see that in contrast to deleting a local capability, the latency of the
call to cleanup copy contributes 2476 cycles to the total latency, which
accounts for the roughly 2000 cycles higher latency compared to deleting a
local copy. The reason why the latency of cleanup copy() is much higher
when deleting a foreign copy is that we need to ensure that the deleted
capability’s ancestor’s remote descendants flag is set, if an ancestor exists
on this core. Finding such an ancestor requires a range query which, as
discussed in subsection 4.5.3, has an asymptotic complexity of O(log n) on
average.

156

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

1000

2000

3000

4000

5000

6000

7000

8000
la

te
n
cy

 i
n
 c

y
cl

e
s

540 544 728

1412
812 828

832

836

2436 2476
2592

2808

2112 2124

2136

222484 88

88

148

5984 6060

6376

7428

syscall+sysret

has_copies()

cleanup_copy()

mdb_remove()

Misc. work

Figure 4.12: Latency breakdown for deleting a foreign capability

Deleting a local capability with foreign copies For this experiment
we need to make sure that the capability we delete is the last local copy.
To achieve this, we allocate a new RAM capability for each benchmark
iteration. We then distribute copies of that RAM capability to other cores in
the system. After the copies have been distributed, we measure the latency
of calling cap delete on the capability which we originally allocated. As a
last step of each benchmark iteration, we delete all the remaining copies
we distributed in order to keep the mapping database size constant across
iterations.

In this experiment, we measure the latency of Delete when, in addition
to removing a tree node, the system has to find another core in the system
that has foreign copies and make that core the new owner. Thus we expect

157

Chapter 4. A protocol for decentralized capabilities

to see higher absolute latencies, as we need to send messages to other cores
in the system.

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

#capabilities on node (over base set of capabilities)

0

100

200

300

400

500

la
te

n
cy

 i
n
 k

cy
cl

e
s

Figure 4.13: Deleting a local capability which only has foreign copies

As we can see in figure 4.13, this case has latencies which are about two
orders of magnitude larger than the latencies observed when we do not have
to communicate with other cores. We do not show 130 latency outliers
above 500 kcycles across all mapping database sizes, as those are mostly
artifacts which stem from scheduling decisions.

Given the latency breakdown shown in figure 4.14, we can see that lion’s share
of the latency for this operation, approximately 215 kcycles of the median
latency of 257 kcycles given a mapping database with 4096 synthetically
generated capabilities, is contributed by the broadcast to find a new owner
and the follow-up RPC to move the capability’s ownership to that core.

The remaining 42.7 kcycles are made up of the RPC between the benchmark
application and the monitor on the local core, and some local work that

158

4.7. Evaluation

needs to be done before and after finding a new owning core.

1%ile 50%ile 90%ile 99%ile
0

100

200

300

400

500

la
te

n
cy

 i
n
 k

cy
cl

e
s

10 674 19 096 20 455 21 4764759
5648 11 180 13 437

79 845

135 476
142 204 143 654

68 050

79 324

90 244

246 748

6401

7448

9056

22 130

5815

10 540

17 291

21 374

175 547

257 532

290 432

468 823

App-Monitor RPC

Monitor: prepare

Find new owner BC

Move ownership

Cleanup our copy

Monitor: finish operation

Figure 4.14: Latency breakdown for deleting a local capability with only
foreign copies

Deleting a local copy for which no other copies exist The last
case of deleting a local capability which we consider separately is the case
where we delete the last capability that refers to some resource (usually
RAM). This case is interesting, as apart from deleting the capability, the
system needs to ensure that no physical resources are leaked. When the
last capability referring to some region of RAM is deleted, Barrelfish will
create a new RAM capability covering the region. That new capability then

159

Chapter 4. A protocol for decentralized capabilities

needs to be passed to the memory server. This is achieved by first passing
the capability to the local monitor which can forward the capability to the
correct memory server.

To measure the latency of delete in this case, we repeatedly allocate a
new RAM capability and measure the latency of doing a Delete on that
capability.

As an optimization, the CPU driver tries to process such a delete without
the application having to do an explicit user level RPC to the monitor. The
new RAM capability is passed to the monitor by simply inserting it into
the well-known monitor upcall endpoint that is available to the CPU driver.
However, if there is no space left in the monitor upcall endpoint, the CPU
driver will signal the application that it has to retry the delete that would
result in a new RAM capability through the monitor.

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

#capabilities on node (over base set of capabilities)

0

2000

4000

6000

8000

10000

12000

14000

la
te

n
cy

 i
n
 c

y
cl

e
s

Figure 4.15: Deleting last copy of a (local) capability

As we can see in figure 4.15, this case of Delete is a fairly low-latency op-

160

4.7. Evaluation

eration, taking between 6000 cycles and 15 000 cycles for mapping database
sizes up to approximately 65000.

Looking at the latency breakdown for this delete variation, figure 4.16, we
see a call to cleanup last which is responsible for creating a new capability
if necessary. This call contributes roughly 40%, 4356 cycles, to the total
median latency of 10 168 cycles for a mapping database with 4096 synthetic
capabilities. The other two operations that make up 24%, 2500 cycles, and
19%, 1936 cycles, respectively, are removing the capability from the mapping
database, and checking whether copies exist for the capability.

1%ile 50%ile 90%ile 99%ile
0

2000

4000

6000

8000

10000

12000

14000

la
te

n
cy

 i
n
 c

y
cl

e
s

896 992 1060
1668

1616
1936 2044

2220

3780

4356
4516

5096
48

56
60

72

2136

2500

2740

2976

200

228

240

284

88

100

116

168

8764

10 168

10 776

12 484

syscall+sysret

has_copies()

cleanup_last()

cleanup_copy()

mdb_remove()

create_ram_lmp()

Misc. work

Figure 4.16: Latency breakdown for deleting the last copy of a (local)
capability

161

Chapter 4. A protocol for decentralized capabilities

This – again – shows that deletes that do not involve other cores and thus
can be processed in a single invocation are fast operations.

Deleting CNodes

Deleting a CNode is a special case, as we have to delete the CNode’s contents
when deleting the last copy of a CNode capability. We discuss the process in
more detail in section 4.6. Here we show two different microbenchmarks, one
is how the latency of deleting a CNode behaves when we vary the mapping
database size, and the other is how the delete latency changes depending
on the number of slots occupied.

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

#capabilities on node (over base set of capabilities)

0

20

40

60

80

100

120

140

la
te

n
cy

 i
n
 k

cy
cl

e
s

Figure 4.17: Deleting last copy of a CNode with 4 occupied slots

For the first benchmark, where we evaluate the latency of deleting a CNode
while varying the number of capabilities on the core, we create a new CNode
in each iteration and populate the first four slots of the CNode with RAM

162

4.7. Evaluation

capabilities that are allocated from the memory server. This requires a fair
amount of work, as we ensure that the RAM capabilities which are present
in the CNode that is deleted refer to regions for which no other capabilities
exist. This choice tries to model the most frequent case of deleting a CNode:
deleting an application’s CSpace after the application exits. In that case we
expect that a some amount of capabilities present in the CNodes will be
capabilities referring to regions for which no other capabilities exist. The
CNode delete will create new RAM capabilities for any regions of physical
memory for which the last capability is deleted, as discussed in section 4.3
and evaluated in isolation in the previous experiment.

Figure 4.17 shows the results of this benchmark for mapping database sizes
with 256 up to 65536 synthetically added capabilities. For a CNode in
which four slots hold a RAM capability that needs to be returned to the
memory server we see latencies from 65 kcycles up to 140 kcycles for differing
mapping database sizes.

Qualitatively, we see that deleting a CNode has a behavior similar to deleting
any other memory based capability. However, the absolute latency is an
order of magnitude higher, because we require a system call for each delete
step, as discussed in section 4.3.

In figure 4.18, we see that processing the actual delete takes approximately
48 kcycles of an overall operation latency of 80 kcycles. This is in the right
ballpark, as we have shown in figure 4.15 that the latency for a single cleanup
operation is approximately 10 kcycles.

For the second benchmark, we do not create any extra capabilities on the
node running the benchmark, but rather vary the number of occupied slots
in the deleted CNode. Again, we choose to a allocate RAM capability
referring to a region for which no other capabilities exist for each CNode
slot that we wish to fill. This experiment tries to show the impact of the

163

Chapter 4. A protocol for decentralized capabilities

1%ile 50%ile 90%ile 99%ile
0

20

40

60

80

100

120

140
la

te
n
cy

 i
n
 k

cy
cl

e
s

2372 2468 2608 3032

16 688 17 116 17 464
20 456

9804 10 904
17 404

21 028

42 384
45 016

49 236

52 100

4884

5716

5884

6688

76 132

81 220

92 596

103 304

App syscall

App-Monitor RPC

Monitor: init

Monitor: do delete

Monitor: finish operation

Figure 4.18: Latency breakdown for deleting the last copy of a CNode with
4 occupied slots

delete steps, as we need one delete step per slot in the CNode that holds a
capability that needs to be returned to the memory server.

Figure 4.19 shows the latency for deleting a CNode which has 1 to 256
slots occupied by capabilities that need to be cleaned up. We see that
while deleting a cnode with only a couple slots occupied has fairly low la-
tency, approximately 50 kcycles, a fully occupied CNode takes approximately
1.7 Mcycles to delete.

Given that we need one delete step per occupied slot in this experimental
setup, it is unsurprising that the latency has a linear response to the number

164

4.7. Evaluation

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

#occupied slots in CNode

0.0

0.5

1.0

1.5

2.0

la
te

n
cy

 i
n
 M

cy
cl

e
s

Figure 4.19: Deleting last copy of a CNode while varying number of
occupied slots

of occupied slots.

Using the numbers from the breakdown plot in figure 4.18, we see that
in the monitor we are more efficient at deleting and reclaiming memory
capabilities, as we would predict a latency of 256×10 kcycles = 2.56 Mcycles
for the delete steps that are required to delete a fully occupied CNode. This
prediction is approximately 50% higher than the latency of 1.7 Mcycles that
we actually observe in this experiment.

165

Chapter 4. A protocol for decentralized capabilities

Revoke

Now that we have gained an understanding of the latencies for different
cases of Delete, we consider the following cases for Revoke:

1. Revoking a capability with no foreign relations
2. Revoking a foreign copy of a capability
3. Revoking a local copy of a capability with foreign relations

It is important to remember that a Revoke is simply a series of deletes
that should appear atomic to callers.

For each benchmark, we create 10 copies of the capability which we will
revoke. Again, we measure the latency of 1000 calls to revoke for each
mapping database size.

Revoking a capability with no foreign relations First, we present
the latency for revoking a capability which has no foreign relations. In this
case, for each mapping database size, we allocate a RAM capability from
the memory server. Before each call to revoke, we create ten copies of the
capability, which will be deleted by the revoke operation.

Given that the bulk of the work for this case of revoke is deleting the existing
ten copies, we predict that the revoke latency is going to be comparable to
ten times the latency for deleting a local capability for which local copies
exist.

Latencyrevoke w/o remote = 10× Latencydelete local copy

Referring to the benchmark deleting a local copy of a capability for which
other local copies exist in section 4.7.3, we see that the median latency for

166

4.7. Evaluation

deleting a local copy on a node with a mapping database that contains 4096
synthetic capabilities is roughly 4100 cycles.

Latencydelete local copy ≈ 4100 cycles

This gives a rough estimate for the median latency of revoking a local
capability with ten local copies, and no remote relations on a node with a
mapping database that contains 4096 synthetic capabilities

Latencyrevoke w/o remote ≈ 41 000 cycles

We show the latency for revoking a capability with no foreign relations in
figure 4.20.

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

50

100

150

200

250

300

350

la
te

n
cy

 i
n
 k

cy
cl

e
s

core 1
core 2
core 19

Figure 4.20: Revoking a capability with no foreign relations

We see that the latency for revoke in this case is between 300 kcycles and
350 kcycles, with no outliers omitted. The latency for revoke is much higher
than our estimate, because we do a full two-phase commit on all the nodes

167

Chapter 4. A protocol for decentralized capabilities

in the system for every revoke, even if there exist no remote relations for a
capability. This is necessary, because the cached indicators that the CPU
driver uses to tell whether a capability has remote relations may be stale.
Additionally, we require the full operation for every revoke, so we can ensure
that we never miss a concurrent copy operation that may be in progress
when the revoke is requested.

Looking at the latency breakdown, figure 4.21, we see that, indeed, the most
of the overall latency comes from the two system-wide broadcasts which
form the two phases of our commit. Each phase has a median latency of
about 135 kcycles, independently of the number of capabilities present in
the mapping databases on all nodes.

For remaining 65 kcycles, the RPC between the benchmark application and
the monitor contributes approximately 16 kcycles. The actual deletions
happen in the monitor “prepare” phase which has a median latency of
41 716 cycles given a mapping database that contains 4096 synthetic ca-
pabilities. The latency for the “prepare” phase almost perfectly matches
our predicted latency Latencyrevoke w/o remote, showing that the latency for
the actual work that needs to be done can be approximated fairly well by
simply multiplying the latency for deleting a local copy by the number of
capabilities that need to be deleted for the revoke.

The remaining cycles, less than 10 kcycles, are contributed by various bits
of monitor code, such as cleaning up temporary capability copies after the
revoke completes.

168

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

50

100

150

200

250

300

350

400
la

te
n
cy

 i
n
 k

cy
cl

e
s

15 443 15 802 16 080
25 255

41 304 41 716 45 684

51 841

134 354 137 588
142 930

148 540

133 432
136 308

139 644

153 175

7526
7712

7896

8841

332 061
339 126

352 236

387 655

App-Monitor RPC

Monitor: prepare

Mark phase

Commit phase

Monitor: finish operation

Figure 4.21: Latency breakdown: revoking a capability with no foreign
relations

Revoking a foreign copy of a capability The next revoke setting
we analyze is calling revoke on a foreign copy of a capability. For this
experiment, for each measurement, we allocate a RAM capability on one
node, the alloc node, forward the capability to another node, the revoke
node, which creates ten copies of the received capability, and then revokes
the received capability.

In this situation, before we can revoke the capability, we need to move the
capability’s ownership to the node on which the revoke is requested. We
expect that retrieving ownership is comparable to giving away ownership

169

Chapter 4. A protocol for decentralized capabilities

in the case where we delete the last local copy of a capability for which
foreign copies exist. Looking at the latency breakdown for that variant
of delete, cf. figure 4.14, we see that giving away ownership takes roughly
80 kcycles given a mapping database with 4096 synthetic capabilities. Given
the experimental design, we expect the two-phase commit to show a similar
latency to the case where we revoke a capability with no remote relations,
as there will be a single capability that needs to be deleted by the two-
phase commit, namely the original copy on the alloc node. Putting the
pieces together, we predict that the median latency for Revoke, with a
mapping database with 4096 synthetic capabilities, in this situation can be
approximated by

Latencyrevoke remote copy ≈ Latencymove + 10× Latencydelete + 2× LatencyBC

Substituting approximate median latencies,

Latencydelete ≈ 4100 cycles
Latencymove ≈ 80 000 cycles
LatencyBC ≈ 135 000 cycles

we get an estimated latency of

Latencyrevoke remote copy ≈ 80 kcycles + 10× 4100 cycles + 2× 135 kcycles
= 391 kcycles

for revoking a remote copy of a capability.

In figure 4.22, we give the latency for calling revoke on a foreign copy of
a capability. The figure omits 74 outliers with latencies up to 2.7 Mcycles
for some mapping database sizes. Looking at the results for a mapping
database which contains 4096 synthetic capabilities, we see that the measured
median latency of approximately 538 kcycles is higher than our prediction
of 391 kcycles.

170

4.7. Evaluation

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

#capabilities on node (over base set of capabilities)

0

200

400

600

800

1000

la
te

n
cy

 i
n
 k

cy
cl

e
s

Figure 4.22: Revoking a foreign copy of a capability

Given the latency breakdown in figure 4.23, we can immediately spot that
retrieving a capability’s ownership has a median latency of 197 kcycles rather
than our prediction of 80 kcycles. Inspecting the ownership move operation,
chown, cf. algorithm 4, we see that this operation requires an atomic
update of the ownership state for all capability copies in the system. The
current implementation in Barrelfish does this atomic update by first doing
a unicast to the new owner who then does a broadcast to set the new
ownership information on all copies of the capability. Currently, in the case
where we give away the ownership when deleting the last local copy of a
capability, Barrelfish does not require the ownership update broadcast to
complete before completing the Delete.

For revoke however, Barrelfish requires that the ownership update broad-
cast completes before the revoke can continue. The latency of the “retrieve
ownership” phase shown in figure 4.23 therefore is composed of a unicast

171

Chapter 4. A protocol for decentralized capabilities

1%ile 50%ile 90%ile 99%ile
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
la

te
n
cy

 i
n
 M

cy
cl

e
s

16 344 16 824 17 250 17 579
1940 2256 3387 4314

189 973 197 394 207 305

918 095

33 645 36 100 39 013

44 997

134 062 137 120
141 548

145 500

135 516
139 074

142 453

146 908

7492
9500

10 918

12 313

518 976
538 268

561 876

1 289 710

App-Monitor RPC

Monitor: prepare

Monitor: retrieve ownership

Monitor: mark target

Mark phase

Commit phase

Monitor: finish operation

Figure 4.23: Latency breakdown: revoking a foreign copy of a capability

to the old owner informing it that we acquire the ownership of the given
capability, followed by a broadcast from our node. The unicast takes
roughly 80 kcycles, as shown by the latency breakdown in figure 4.14, and
we have established that the median latency of a broadcast is approximately
135 kcycles.

If we substitute the new expected latency for a full ownership move,

Latencymove = Latencygiveaway + LatencyBC ≈ 80 kcycles + 135 kcycles
= 215 kcycles

172

4.7. Evaluation

in our formula to predict the latency of revoking a remote copy we get

Latencyrevoke remote ≈ 215 kcycles + 10× 4100 cycles + 2× 135 kcycles
= 526 kcycles

which is fairly close to the measured median latency of 538 kcycles.

Comparing the expected and measured latencies for the different parts we
see that our approximation is pretty accurate. As expected, the median
latency for a broadcast remains stable at roughly 135 kcycles. We somewhat
overestimate the cost of marking the target capability, which is the step
in which we delete local copies for which we do not have to make special
considerations, as the measured median latency of 36 kcycles is lower than
the predicted median latency of 41 kcycles. Similarly, our new estimate for
retrieving a capability’s ownership is a bit too high at 215 kcycles, compared
to the measured median latency of 197 kcycles.

Looking at the breakdown, we can also see that the RPC between the
benchmark application and the monitor, and the final cleanup in the monitor
remain unchanged from the previous experiment at approximately 15 kcycles
and 10 kcycles respectively.

Revoking a local copy of a capability with foreign relations The
last experiment we consider for revoke is revoking a capability for which
many foreign relations exist. In this experiment, we designate one node to
be the bench node. For each measurement, the bench node first allocates
a RAM capability, which is forwarded to a number of other nodes in the
system, which we call the copy nodes. Each of those nodes creates ten copies
of the received capability and signals that it is done. Once all the nodes
have informed the bench node that they have created copies, the bench node
calls revoke on the original copy of the capability and measures the latency.
As we run our experiment with only two copy nodes, we expect to see revoke

173

Chapter 4. A protocol for decentralized capabilities

latencies that look very similar to the first revoke experiment, as the cost of
deleting ten copies will be largely masked by the cost of our broadcasts.

A tentative prediction of the latency can be given as

Latencyrevoke with remote relations ≈ 10× Latencydelete + 2× LatencyBC.

Substituting the previously given median latencies for nodes with mapping
databases with 4096 synthetic capabilities, we get

Latencyrevoke with remote relations ≈ 10× 4100 cycles + 2× 135 kcycles
= 311 kcycles.

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

50

100

150

200

250

300

la
te

n
cy

 i
n
 k

cy
cl

e
s

core 1

Figure 4.24: Revoking a local copy of a capability with foreign relations

As we can see in figure 4.24, our predicted median latency of 311 kcycles
for a mapping database with 4096 synthetic capabilities is very close to the
measured latency of revoke which is largely unaffected by mapping database
size, and remains relatively stable between 300 kcycles and 350 kcycles.

174

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

50

100

150

200

250

300

350

400
la

te
n
cy

 i
n
 k

cy
cl

e
s

16 628 17 044 17 328 21 439

34 856 35 228 38 088
45 440

133 893 135 840
139 498

145 372

135 259 137 556
142 010

148 201

7193
7416

7620

9611

327 829
333 084

344 544

370 064

App-Monitor RPC

Monitor: prepare

Mark phase

Commit phase

Monitor: finish operation

Figure 4.25: Latency breakdown: revoking a local copy of a capability with
foreign relations

We also see that the latency breakdown for revoke in the presence of remote
relations of the target capability, figure 4.25, looks very similar to the latency
breakdown for revoke with a target capability with no remote relations, as
shown in figure 4.21.

The latency breakdown also closely matches our prediction, with each
broadcast, “Mark phase” and “Commit phase”, having a median latency of
approximately 135 kcycles, and the “prepare” phase in the monitor taking
slightly less than our estimated 41 kcycles.

175

Chapter 4. A protocol for decentralized capabilities

Retype

For Retype we consider the following cases:

1. Retyping a capability with no foreign copies and no descendants
2. Retyping a capability with local descendants
3. Retyping a capability with foreign copies

Retyping a capability with no remote relations and no descen-
dants The first case we consider for Retype is again the case where the
capability does not have any relations on other nodes. This case should
give us some insights into the latency characteristics of the actual retype
invocation.

For this experiment, we allocate a single 2 MB RAM capability from the
memory server for each mapping database size. We then do a thousand
iterations of calling Retype on that RAM capability. In each iteration i ,
we retype a 4 kB Frame capability at offset o,

o = (i × 4 kB) mod 2 MB (4.1)

from the base of the 2 MB RAM capability. After measuring Retype
latency, we delete the capability produced by the retype before starting the
next benchmark iteration, to make sure that the retype succeeds for each
iteration.

We expect to see fairly low latency for this case, as retyping a capability
which has no descendants does not require a range query check.

Figure 4.26 shows that the retype invocation has a latency of 4000 cycles
to 5000 cycles given a mapping database which contains between 256 and
65536 synthetic capabilities. In the latency breakdown in figure 4.27, we
see that inserting the new capability into the mapping database is the

176

4.7. Evaluation

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

1000

2000

3000

4000

5000

6000
la

te
n
cy

 i
n
 c

y
cl

e
s

core 1
core 2
core 19

Figure 4.26: Retype a capability with no foreign copies

operation with the highest latency with a median latency of 1840 cycles
for a mapping database with 4096 synthetic capabilities. We also spend
a fair amount of effort in zeroing the freshly retyped capabilities. The
zeroing has a median latency of 1160 cycles for a mapping database with
4096 synthetic capabilities. The operation with the third-highest latency is
checking whether the retype is allowed to proceed, with a median latency
of 892 cycles in a mapping database with 4096 synthetic capabilities.

177

Chapter 4. A protocol for decentralized capabilities

1%ile 50%ile 90%ile 99%ile
0

1000

2000

3000

4000

5000

6000

7000

8000
la

te
n
cy

 i
n
 c

y
cl

e
s

964 988 1008

1828

876 892 924

936

204 216 260

372

680
1160

1480

2120

1796

1840

1848

2076

392

412

532

640

4912

5508

6052

7972

syscall+sysret

Retypeable check

Creating capabilities

Zeroing new capabilities

mdb_insert()

Retype: misc. work

Figure 4.27: Latency breakdown: retype a capability with no foreign copies

Retyping a capability with local descendants The next case for
retype is chosen in such a way that it illustrates the extra cost of allowing
subregions of capabilities to be retyped.

In this experiment, we allocate a single 4 MB RAM capability for each
mapping database size. Before measuring Retype latency in this case,
we retype the second half of the 4 MB RAM capability into a 2 MB RAM
capability. For each benchmark iterations we use the same strategy as in the
previous experiment and retype a 4 kB Frame capability for each iteration
while choosing the offset according to the formula given in equation 4.1.
Again, each retype result is deleted before starting the next benchmark
iteration, so we can retype the same offset multiple times.

Compared to retyping a capability without descendants, the only extra

178

4.7. Evaluation

operation which is required is a range query which is now necessary to
make sure it is not possible to create overlapping capabilities by carefully
requesting retypes of overlapping subregions of a source capability. Given
the performance results for the mapping database operations presented in
section 4.5.5, we expect that a range query will have a latency of around
1800 cycles, giving us a predicted latency for this retype of 5800 cycles to
7800 cycles depending on the number of capabilities in the mapping database.

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

la
te

n
cy

 i
n
 c

y
cl

e
s

core 1
core 2
core 19

Figure 4.28: Retype with local descendants

Figure 4.28 shows the measured latencies for this case, which match our
predictions relatively closely, showing a range from approximately 4500 cycles
to 8000 cycles. In the latency breakdown shown in figure 4.29, we see that
the measured median latency of 1820 cycles for the range query given a
mapping database with 4096 synthetic capabilities is very close to our
prediction of 1800 cycles. Comparing the latency breakdown for this retype
with the latency breakdown for the retype without descendants shown in

179

Chapter 4. A protocol for decentralized capabilities

figure 4.27, we see that the latencies for the other operations in the CPU
driver remain largely unchanged by the presence of local descendants.

1%ile 50%ile 90%ile 99%ile
0

2000

4000

6000

8000

10000

12000

la
te

n
cy

 i
n
 c

y
cl

e
s

960 980 1036

1736

884 920 924

1032

1812 1820 1933

2041212 220
300

395

687
1200

1484

2104

1936

1956

1981

2149

444

456

560

784

6935

7552

8218

10 244

syscall+sysret

Retypeable check

Retypeable check: range query

Creating capabilities

Zeroing new capabilities

mdb_insert()

Retype: misc. work

Figure 4.29: Latency breakdown: retype with local descendants

Retyping a capability with remote relations The final case of retype
is the case where we retype a region of a capability for which remote
descendants exist.

The experiment here is setup similarly to the previous retype experiments,
with the change that we elect one node to be the node on which we benchmark
retype latency which we call the bench node. We use the other nodes in the
system to create remote descendants of the capability which will be retyped

180

4.7. Evaluation

by the bench node. Again, we allocate a single 4 MB RAM capability for each
benchmark round with different mapping database size. After allocating
this capability on the bench node, it is forwarded to the other nodes which
each create one 4 kB RAM capability at offset or = 2 MB +nodeid × 4 kB of
the 4 MB RAM capability. After these remote descendants are created, the
bench node proceeds to do the benchmark iterations with the same strategy
as presented for the other retype experiments.

For this experiment, we expect to see a significantly higher retype latency,
as we now have to do the retype checks on all nodes of the system which
could potentially hold descendants. Because we currently do not keep track
of the nodes that actually have remote relations for a given capability, this
check is implemented as a broadcast to all the nodes in the system. Given
our observations for other operations which require a broadcast, we predict
that the retype latency for this experiment as

Latencyretype = Latencylocal retype + LatencyBC + Latencymonitor RPC.

Substituting the latency values we observed for the local retype, the monitor
RPC, and the broadcast in previous experiments, 7500 cycles, 16 kcycles,
and 135 kcycles respectively, we predict that the median latency for retyping
a region of a capability with remote relations in a system with a mapping
database which contains 4096 synthetic capabilities to be

Latencyretype ≈ 7500 cycles + 16 kcycles + 135 kcycles = 158.5 kcycles

We show the median latency of retyping a region of a capability with remote
relations on nodes with mapping databases loaded with 512–65536 synthetic
capabilities in figure 4.30. We can see that our estimate of 158.5 kcycles is
lower than the observed median latency in a system with 4096 synthetic
capabilities, which is 213 426 kcycles.

181

Chapter 4. A protocol for decentralized capabilities

0 10000 20000 30000 40000 50000 60000 70000
#capabilities on node (over base set of capabilities)

0

50

100

150

200
la

te
n
cy

 i
n
 k

cy
cl

e
s

core 1

Figure 4.30: Retype with remote copies

Looking at the latency breakdown in figure 4.31, we see that rather than our
prediction of processing the retype check once locally, we actually do one
extra local retype check before doing the broadcast which shows a median
latency of 10.5 kcycles which we did not account for in our prediction. An
additional 9.5 kcycles, which we did not predict are spent deleting temporary
copies of the source and destination root CNodes in the monitor’s CSpace.
Additionally, we mispredict the cost of the RPC to the monitor by about
a factor of two, as the breakdown shows that the median monitor RPC
latency is 36 kcycles rather than our prediction of 16 kcycles. Summing up
we have identified 40 kcycles which makes up the majority of the difference
of 55 kcycles by which our predicted median latency is off of the measured
median latency. The remaining 15 kcycles can be attributed to the local
retype invocation which the application makes before doing an RPC to the
monitor, and various overheads in the monitor.

182

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

50

100

150

200

250
la

te
n
cy

 i
n
 k

cy
cl

e
s

3151 3312 3444 4022

35 803 36 264 36 693 37 892

10 314 10 452 10 605 11 572

136 316 138 002
142 748

151 738

7117
7746

9605

13 947

9330
9540

9912

10 753

7980
8110

8236

8624

210 015
213 426

221 244

238 552

Early app syscall

App-Monitor RPC

Monitor: local check

Monitor: check BC

Monitor: final retype syscall

Monitor: cleanup

Misc. work

Figure 4.31: Latency breakdown: retype with remote copies

After investigating why the monitor RPC latency for retype is a factor of
two off from the monitor RPC latency which we observed for revoke, the
root cause of this slowdown is the fact that for retype we need to pass
two possibly different root CNodes to the monitor, the root CNode for the
CSpace which contains the retype source capability, and the root CNode for
the CSpace which contains the retype destination slots. Because we need
a round trip between the application and the monitor for each capability
which we transfer in a RPC, we can explain the increased RPC latency by
the need to transfer two capabilities to the monitor instead of one in the
revoke case.

183

Chapter 4. A protocol for decentralized capabilities

We present another latency breakdown for the median retype latency on a
node with 4096 synthetic capabilities in the mapping database, where we
optimize the case where source capability and destination slots of the retype
are located in the same CSpace in figure 4.32. The median latency for the
retype with this optimization is 189 kcycles which is 24.5 kcycles lower than
the unoptimized case shown in figure 4.31.

We see that the median monitor RPC latency is decreased to 18 kcycles
which is much closer to our prediction of 16 kcycles. Additionally, we see
that the cost of cleaning up temporary capability copies in the monitor is
decreased from 9.5 kcycles to 6 kcycles, and some of the other operations
done by the monitor also show slightly lower latencies.

184

4.7. Evaluation

1%ile 50%ile 90%ile 99%ile
0

50

100

150

200

250

la
te

n
cy

 i
n
 k

cy
cl

e
s

3069 3236 3339 3547

17 899 18 380 18 808 19 382

8615 8816 8943 9676

136 584 138 660
143 215

149 802

6383
7188

9896

14 352

5755
5956

6118

6879

6743
6936

7080

7579

185 051
189 172

197 400

211 219

Early app syscall

App-Monitor RPC

Monitor: local check

Monitor: check BC

Monitor: final retype syscall

Monitor: cleanup

Misc. work

Figure 4.32: Latency breakdown: retype with remote copies, optimized to
not pass two copies of same root CNode to monitor

185

5
Formalizing the capablity protocol

in TLA+

We now discuss an approach to formalize the algorithms presented in the
previous chapter. We present a formal model in TLA+ [Lam02] which aims
to capture the high-level behaviour of the system.

The model

We use global state to formalize and verify the assumptions and invariants
specified in the previous section. This does not quite correspond to the
implementation discussed in section 4.6, but is a good way to check the
global invariants of the protocol operations, replicating the operations in a
similar fashion to the pseudo code in section 4.2.

module globaldistops

extends Naturals

This module illustrates the invariants specified for the capability system using a specification
that matches the pseudocode in the previous chapter.

187

Chapter 5. Formalizing the capablity protocol in TLA+

First we define constants for the basic components of the capability type
system.

All capability types, and the null type specially identified

constant CapTypes

constant Null

Predicates for retype relations and mutability of ownership.

constants RetypeSource(), Moveable()

Null must be a valid type.

assume Null ∈ CapTypes

Use an implicit "NoType" value to indicate a type has no parent.

constant NoType

assume NoType /∈ CapTypes

With NoType defined, type requirements for RetypeSource become possible:

FromTypes
∆= (CapTypes ∪ {NoType}) \ {Null} Cannot retype from Null

assume ∀ t ∈ CapTypes : RetypeSource(t) ∈ (FromTypes \ {t})

Next, we define requirements for capabilities that refer to addressable
resources.

A basic memory type. This constant is only required for setting up the inital state

constant Mem

Additional predicates for addressable capabilities

constants Splittable(), Addressable()

Addressable and Moveable must be defined for all types

assume ∀ t ∈ CapTypes : Addressable(t) ∈ boolean ∧Moveable(t) ∈ boolean

188

5.1. The model

Null is not addressable, while Mem is

assume Addressable(Null) = false
assume Addressable(Mem) = true

Addressability applies to a whole tree of the type forest.

assume ∀ t ∈ CapTypes :
let p

∆= RetypeSource(t)
in p ̸= NoType ⇒ (Addressable(t) ≡ Addressable(p))

Only addressable caps can be split.

assume ∀ t ∈ CapTypes :
∧ Splittable(t) ∈ boolean
∧ (¬Addressable(t))⇒ (¬Splittable(t))
∧ Splittable(t)⇒ Addressable(t)

The ancestors of a capability are defined as the transitive closure over its retype sources

Ancestors(t) ∆=
if RetypeSource(t) = NoType

then {}
else choose s ∈ subset CapTypes :
∧ RetypeSource(t) ∈ s

∧ t /∈ s

∧ ∀ parent ∈ s : ∃ desc ∈ (s ∪ {t}) : RetypeSource(desc) = parent

The next set of definitions outlines a simple physical address space with
contiguous addresses ∈ N0 starting at 0. This is a simplification of reality,
where addresses do not have to be contiguous, or start at 0, but this makes
the model specification and checking a lot simpler and should not change
the behavior of the system. The size of the physical address space is a model
parameter which can be specified when we check the model. We define a
record to represent a region of physical addresses defined by a base and a

189

Chapter 5. Formalizing the capablity protocol in TLA+

size.

constant PSpaceSize

assume PSpaceSize ∈ Nat

MaxPAddr
∆= PSpaceSize − 1

PSpace
∆= 0 . . MaxPAddr

Regions are ranges of PSpace given by a base and size

Regions
∆= [base : PSpace, size : 1 . . (MaxPAddr + 1)]

After defining the set of regions, we also define a special identifier for a token region that
is not in the set of regions
constant NoRegion

assume NoRegion /∈ Regions

We define a function to get the set of addresses encompassed by the region

RegionAddrs(r) ∆= r .base . . (r .base + r .size − 1)

Now we define the set of processing cores in the system. The cores have
contiguous identifiers ∈ N0 starting at 0. Again, these identifiers should
not have to be contiguous, or start at 0, but for simplicity of the model we
define this to be the case.

constant NumCores

assume NumCores ∈ Nat

Cores
∆= 0 . . (NumCores − 1)

Finally, we define the number of capability slots and concurrent operations
in the system as model parameters. We use a variable, slots, to represent
all capability slots in the system as one big array. Similarly, we use another
variable, operations, to represent the set of currently active operations in
the system.

190

5.1. The model

constants NumSlots , NumOps

variables slots , operations

Now we define a record which represents a capability, an expression that
declares two capabilities to be copies if their record fields are equal, and a
constructor for a capability record that is the result of a retype operation.

Caps
∆= [type : CapTypes , region : Regions ∪ {NoRegion}]

NullCap
∆= [type ↦→ Null , region ↦→ NoRegion]

assume NullCap ∈ Caps

IsCapCopy(cap1, cap2) ∆= cap1.type = cap2.type ∧ cap1.region = cap2.region

Retyped(cap, region, type) ∆= [type ↦→ type, region ↦→ region]

Next, we define a formula that returns true iff the capability record child is
a direct descendant of the capability record ancestor.

IsAncestor(child , ancestor) ∆=
∨ ∧ child .type = ancestor .type

∧ Addressable(child .type)
∧ Splittable(child .type)
∧ child .region ̸= ancestor .region

∧ RegionAddrs(child .region) ⊆ RegionAddrs(ancestor .region)
∨ ∧ ancestor .type ∈ Ancestors(child .type)
∧ ¬Addressable(child .type)

∨ ∧ ancestor .type ∈ Ancestors(child .type)
∧ Addressable(child .type)
∧ RegionAddrs(child .region) ⊆ RegionAddrs(ancestor .region)

191

Chapter 5. Formalizing the capablity protocol in TLA+

We also define a formula that returns true iff source capability cap, target
region region and target type type form a valid retype operation. The
last part of the formula checks that there is no capability referring to a
region which overlaps the target region except the source capability and its
ancestors.

CanRetype(cap, region, type) ∆=
∧ type ∈ CapTypes

∧ region ̸= NoRegion ⇒ RegionAddrs(region) ⊆ PSpace

∧ ∨ RetypeSource(type) = cap.type

∨ cap.type = type ∧ Splittable(type)
∧ IsAncestor(Retyped(cap, region, type), cap)
∧ ∀ s ∈ domain slots :

let scap
∆= slots [s].cap

rcap
∆= Retyped(cap, region, type)

in ∨ scap.type = Null

∨ IsAncestor(rcap, scap)
∨ (Addressable(rcap.type) ∧ Addressable(scap.type))
⇒ (RegionAddrs(rcap.region) ∩ RegionAddrs(scap.region)) = {}

Now, we define a record for the capability slots in the system, as well
as a token representing an unowned slot, NoOwner, which is not a valid
core identifier. For convenience we define slot identifiers ∈ N0, starting at
0. Further, we define two record transformations which we will use when
specifying the capability operations later.

The record for the capability slots, given in Slots, has four elements: (1) the
capability, (2) the capability’s owner which is either a member of the set
of available cores, or the special token NoOwner for empty slots, (3) the

192

5.1. The model

location of the slot represented by an element of Cores, and (4) the slot’s
lock.

constant NoOwner

assume NoOwner /∈ Cores

SlotIds
∆= 0 . . (NumSlots − 1)

Slots
∆= [cap : Caps , owner : (Cores ∪ {NoOwner}),

location : Cores , locked : boolean]

SlotWithCap(slot , cap, owner) ∆=
[slot except !.cap = cap, !.owner = owner , !.locked = false]

SlotWithNullCap(slot) ∆=
SlotWithCap(slot , NullCap, NoOwner)

Further, we specify a number of transformations which affect the whole slots
variable. There are model steps in which two logically different operations
modify the slots variable. TLA+ does not allow such model steps, so
we introduce the SetSlotAndUnlockSrc transformation, which modifies two
elements of the slots variable for model steps that need this operation. The
ClearSlot operation implicitly also unlocks the cleared slot.

SetSlot(slotid , cap, owner) ∆=
slots ′ = [slots except ![slotid] = SlotWithCap(@, cap, owner)]

SetSlotAndUnlockSrc(slotid , cap, owner , src) ∆=
slots ′ = [slots except

![slotid] = SlotWithCap(@, cap, owner),
![src].locked = false]

CopySlot(destid , srcid) ∆= SetSlot(destid , slots [srcid].cap, slots [srcid].owner)

193

Chapter 5. Formalizing the capablity protocol in TLA+

ClearSlot(slotid) ∆= SetSlot(slotid , NullCap, NoOwner)

SetSlotState(slotid , st) ∆= slots ′ = [slots except ![slotid].locked = st]

Additionally, we define a predicate that we can use to check whether two
slots contain copies of the same capability record.

IsSlotCopy(sid1, sid2) ∆=
IsCapCopy(slots [sid1].cap, slots [sid2].cap)

We now have enough helpers to specify invariants regarding the capability
slots in the system. The first invariant regarding capability slots just asserts
basic slot properties, such as the size of the slot array, and the type for the
values of each slot. Further, it states that only Null capabilities may not
have an owner.

SlotInvariants
∆=

Type correctness of slot array

∧ domain slots ⊆ SlotIds

∧ ∀ sid ∈ domain slots : slots [sid] ∈ Slots

Only Null caps may not have an owner

∧ ∀ sid ∈ domain slots : slots [sid].owner = NoOwner

≡ slots [sid].cap.type = Null

The next invariant encompasses the invariants 4.2 and 4.3. This invariant
specifies capability ownership in the presence of capability copies. It states
that all copies of a capability have to have the same owner, irrespective
of slot location and that for each capability a copy exists on the core that
holds ownership to that capability.

194

5.1. The model

OwnershipInvariants
∆=

∧ ∀ sid1 ∈ domain slots , sid2 ∈ domain slots :
IsSlotCopy(sid1, sid2)⇒ slots [sid1].owner = slots [sid2].owner

∧ ∀ sid ∈ domain slots : slots [sid].owner ̸= NoOwner

⇒ ∃ sid2 ∈ domain slots :
IsSlotCopy(sid , sid2) ∧ slots [sid2].owner = slots [sid2].location

We can also define a temporal invariant which states that the location of
each slot is immutable regardless of what operations are executed.

SingleLocationProperty
∆=

∀ sid ∈ domain slots : slots ′[sid].location = slots [sid].location

We can express another temporal invariant, stating that a non-null capability
cannot be modified without being deleted first.

SlotImmutabilityProperty
∆=

∀ sid ∈ domain slots :
(slots [sid].cap.type ̸= Null ∧ slots ′[sid].cap.type ̸= Null)
⇒ IsCapCopy(slots ′[sid].cap, slots [sid].cap)

Now we define records and state predicates for the different capability
operations. First we define an operation request record for each operation.
These requests will be used to define the set of possible operations a user of
the system can request.

CopyReq
∆= [name : {“copy”}, src : SlotIds , dest : SlotIds]

RetypeReq
∆= [name : {“retype”}, src : SlotIds , region : Regions ,

195

Chapter 5. Formalizing the capablity protocol in TLA+

type : CapTypes , dest : SlotIds]
DeleteReq

∆= [name : {“delete”}, target : SlotIds]
RevokeReq

∆= [name : {“revoke”}, target : SlotIds]
RequestTypes

∆= CopyReq ∪ RetypeReq ∪ DeleteReq ∪ RevokeReq

We then define another record for each operation that is currently running.

CopyOp
∆= [name : {“copy”}, src : Caps ,

owner : (Cores ∪ {NoOwner}), dest : SlotIds]
RetypeOp

∆= [name : {“retype”}, src : Caps , region : Regions ,
type : CapTypes , dest : SlotIds]

DeleteOp
∆= [name : {“delete”}, target : SlotIds]

RevokeOp
∆= [name : {“revoke”}, target : SlotIds , target cap : Caps]

OperationTypes
∆= CopyOp ∪ RetypeOp ∪ DeleteOp ∪ RevokeOp

Next, we define the states an operation can be in, and define the set of new
requests as the set of records constructed of all the request types with flag
launched set to false. Further, we define the set of launched requests as a
set of records which have a request record in field req, their launched flag set
to true, and additional record fields op and state reflecting the operation’s
type and state respectively. We also define a state predicate on operation
requests with a state field which is true iff the operation has completed.

OperationStates
∆= {“running”, “failed”, “succeeded”}

NewRequests
∆= [req : RequestTypes , launched : {false}]

LaunchedRequests
∆= [req : RequestTypes , launched : {true},

op : OperationTypes , state : OperationStates]
OperationComplete(o) ∆= o.state ∈ {“failed”, “succeeded”}

196

5.1. The model

We define the set of all operations to be the union of new requests and
launched requests. We also define contiguous operation identifiers ∈ N0 for
simplicity.

Operations
∆= NewRequests ∪ LaunchedRequests

OperationIds
∆= 0 . . (NumOps − 1)

With these predicates, we can define an invariant over the operations vari-
able stating that the variable reprents an array of operations with array
indices ∈ OperationIds and that each array element is an element of the
Operations set.

OperationInvariants
∆=

∧ domain operations ⊆ OperationIds

∧ ∀ o ∈ domain operations : operations [o] ∈ Operations

Before we get to the actual operation definitions, we define some helpers.

Get source slot for operation with operation id ‘oid‘

GetOpSrc(oid) ∆=
let rq

∆= operations [o].req
opname

∆= rq .name

in case opname = “copy” ∨ opname = “retype”→ rq .src

□opname = “delete” ∨ opname = “revoke”→ rq .target

Lock source slot for operations[oid]

LockSrcSlot(oid) ∆= let src
∆= GetOpSrc(oid)

in SetSlotState(src, true)

197

Chapter 5. Formalizing the capablity protocol in TLA+

Unlock source slot for operations[oid]

UnlockSrcSlot(oid) ∆= let src
∆= GetOpSrc(oid)

in SetSlotState(src, false)

Next we define a predicate that we can use to check whether a particular
operation can transition from pending to launched.

CanStart(req) ∆=
case req .name = “copy” ∨ req .name = “retype”→

∧ req .src ∈ domain slots

∧ slots [req .src].locked = false
∧ req .dest ∈ domain slots

□ req .name = “delete” ∨ req .name = “revoke”→
req .target ∈ domain slots ∧ slots [req .target].locked = false

We also define a state function which we can use to make an operation out
of an unlaunched operation request.

MkRequestOp(req) ∆=
case req .name = “copy” → [name ↦→ req .name,

src ↦→ slots [req .src].cap,

owner ↦→ slots [req .src].owner ,

dest ↦→ req .dest]
□ req .name = “retype” → [req except !.src = slots [@].cap]
□ req .name = “delete” → req

□ req .name = “revoke”→ [name ↦→ req .name,

target ↦→ req .target ,

target cap ↦→ slots [req .target].cap]

198

5.1. The model

Additionally we define a state function which we can use to transition one
operation slot from not launched to launched.

StartOp(oid) ∆=
∧ ¬operations [oid].launched
∧ CanStart(operations [oid].req)
∧ LockSrcSlot(oid)
∧ operations ′ = [operations except ![oid] = [

req ↦→ @.req ,

launched ↦→ true,

op ↦→ MkRequestOp(@.req),
state ↦→ “running”]]

Now we define a couple more helper functions which we can use to transition
a completed operation to another state, such as “succeeded”.

SetOpState(o, state) ∆=
operations ′ = [operations except ![o].state = state]

FailOp(o) ∆= SetOpState(o, “failed”)
SucceedOp(o) ∆= SetOpState(o, “succeeded”)

With all of these definitions, we can now specify all the distributed capa-
bility operations. We first specify the copy operation. Copy is relatively
simple. We extract the source capability for the copy and its owner from
the operation request that we are executing in this model step. We first
check whether the destination slot is occupied or the source slot contains a
Null capability. If either of these conditions is true we fail the operation.
Otherwise we create a copy of the source capability in the destination slot
and complete the operation successfully.

199

Chapter 5. Formalizing the capablity protocol in TLA+

RunCopy(o) ∆=
let op

∆= operations [o].op
src

∆= slots [operations [o].req .src].cap
owner

∆= slots [operations [o].req .src].owner
in case slots [op.dest].cap.type ̸= Null ∨ src.type = Null

Fail copy when src empty or dest occupied

→ ∧ UnlockSrcSlot(o)
∧ FailOp(o)

□ other
→ ∧ SetSlotAndUnlockSrc(op.dest , src, owner , GetOpSrc(o))
∧ SucceedOp(o)

Next, we specify the retype operation. Retype does a number of checks, the
failure of any of these fails the operation. After the checks we create the
new capability in the destination slot and complete the operation.

RunRetype(o) ∆=
let op

∆= operations [o].op
Fail when dest occupied

in case ∨ slots [op.dest].cap.type ̸= Null

Fail if src deleted concurrently

∨ slots [operations [o].req .src].cap.type = Null

Fail if retype request is not valid

∨ CanRetype(op.src, op.region, op.type)
→ UnlockSrcSlot(o) ∧ FailOp(o)

□ other
→ ∧ let retyped

∆= Retyped(op.src, op.region, op.type)
in SetSlotAndUnlockSrc(op.dest , retyped ,

200

5.1. The model

slots [op.dest].location,

GetOpSrc(o))
∧ SucceedOp(o)

The third operation we specify is delete. Delete requires a few different
cases.

First off we handle the “easy” cases, such as deleting a Null slot, deleting a
non-owned copy, or deleting a capability of which copies exist on the same
core. Next we handle the case where we delete a non-moveable copy which
has no local copies. In this case, we need to delete all non-owned copies as
well as the copy on which delete was called.

Then, we consider the case where we can move ownership of the remaining
copies of the deleted capabilities to some other core. In that case, we pick
an arbitrary copy of the deleted capability and take that copy’s location as
the new owner for all remaining copies. Finally, we handle the case where
we delete the last existing copy of a capability in the system. This case
looks really simple in our model because we do not model the CSpace on
each core as CNode capabilities which would require special attention when
their last copy is deleted. Also, we cannot express the fact that deleting
the last copy of a capability should trigger a memory reclamation process,
because we do not take that part of the system into consideration in the
model.

RunDelete(o) ∆=
let op

∆= operations [o].op
slotid

∆= op.target

slot
∆= slots [op.target]
Deleting Null slots is OK and a no-op

in case ∨ slot .cap.type = Null

201

Chapter 5. Formalizing the capablity protocol in TLA+

→ UnlockSrcSlot(o) ∧ SucceedOp(o)
Non-owned, just delete

□ ∨ slot .location ̸= slot .owner

Have copies on same core, just delete

∨ (∃ s ∈ domain slots :
∧ s ̸= slotid

∧ slots [s].location = slot .location

∧ IsSlotCopy(s , slotid))
→ ClearSlot(slotid) ∧ SucceedOp(o)

Cannot move, delete all copies

□ ¬Moveable(slot .cap.type)
→ ∧ slots ′ = [s ∈ domain slots ↦→ if IsSlotCopy(s , slotid)

then SlotWithNullCap(slots [s])
else slots [s]]

∧ SucceedOp(o)
Migrate ownership and delete

□ (∃ s ∈ domain slots :
∧ s ̸= slotid

∧ slots [s].location ̸= slot .location

∧ IsSlotCopy(s , slotid))
→ ∃ s ∈ domain slots :
∧ s ̸= slotid

∧ IsSlotCopy(s , slotid)
∧ slots ′ = [c ∈ domain slots ↦→

case c = slotid → SlotWithNullCap(slot)
□ IsSlotCopy(c, slotid)→

[slots [c] except !.owner = slots [s].location]
□ other → slots [c]]

∧ SucceedOp(o)

202

5.1. The model

Delete last copy of a cap

□ other → ClearSlot(slotid) ∧ SucceedOp(o)

Finally, we specify revoke. Technically, a revoke is just a delete for each copy
and descendant of the revoked capability, but due to constraints in TLA+ –
namely, that each variable can only be modified once per model step – we do
not model revoke as a series of delete operations. The first case for revoke
handles all possible failures for a revoke. Those are either that the we try to
revoke a Null capability or that we try to revoke a non-moveable capabilty
on a non-owned copy. The second case is a failure, because we cannot satisfy
the post-condition of revoke – i.e. the only remaining capability that refers
to the resource (or parts of it) that exists in the system is the one that we
call revoke on – and the system invariants that state that non-moveable
capabilities cannot change ownership and that the owning core must always
hold at least one copy of an owned capability.

RunRevoke(o) ∆=
let op

∆= operations [o].op
slotid

∆= op.target

slot
∆= slots [op.target]

in case ∨ slot .cap.type = Null

∨ slot .location ̸= slot .owner ∧ ¬Moveable(slot .cap.type)
→ UnlockSrcSlot(o) ∧ FailOp(o)

□other
→ ∧ slots ′ = [s ∈ domain slots ↦→

case s = slotid
We handled not moveable in previous case, so always reas-
sign ownership to location of remaining copy here
→ [slots [s] except !.locked = false,

!.owner = slots [s].location]

203

Chapter 5. Formalizing the capablity protocol in TLA+

Delete all copies

□ IsSlotCopy(s , slotid)
→ SlotWithNullCap(slots [s])
Delete all descendants

□ IsAncestor(slots [s].cap, slot .cap)
→ SlotWithNullCap(slots [s])

□ other → slots [s]]
∧ SucceedOp(o)

Now, we have almost everything we need to specify initial and next steps
for the model and the theorem we want to check.

Before we come to that, we define a state function which selects an operation
that is launched and in state “running”, and actually executes the state
transition function for the operation.

CompleteOp(o) ∆=
∧ operations [o].launched
∧ operations [o].state = “running”
∧ let op

∆= operations [o].op
name

∆= op.name

in case name = “copy”→ RunCopy(o)
□ name = “retype” → RunRetype(o)
□ name = “delete” → RunDelete(o)
□ name = “revoke”→ RunRevoke(o)

204

5.1. The model

We define one last state function that we can use to replace a completed
operation with a new operation from the pool of available operations

ResetOp(o) ∆=
∧ operations [o].launched
∧ operations [o].state ∈ {“failed”, “succeeded”}
∧ ∃ newop ∈ NewRequests :

operations ′ = [operations except ![o] = newop]
∧ unchanged slots

We now specify the initial state, Init, for our model. In the initial state,
we define all capability slots to be empty except the slot with identifier 0,
which contains a Mem capability that covers the full range of the physical
address space. Every element of the operations variable is selected from the
pool of available operations arbitrarily.

In the initial state, we specify the location of each slot to be one of the
available cores in a round-robin fashion.

Init
∆=
∧ slots = [s ∈ 0 . . (NumSlots − 1) ↦→

if s = 0
then [cap ↦→ [type ↦→ Mem,

region ↦→ [base ↦→ 0, size ↦→ MaxPAddr + 1]],
owner ↦→ 0, location ↦→ s%NumCores ,

locked ↦→ false]
else [cap ↦→ NullCap, owner ↦→ NoOwner ,

location ↦→ s%NumCores , locked ↦→ false]]
∧ operations ∈ [0 . . (NumOps − 1)→ NewRequests]

205

Chapter 5. Formalizing the capablity protocol in TLA+

We define our model step Next and our specification Spec.

Next
∆= ∧ ∃ o ∈ domain operations :

∨ StartOp(o)
∨ CompleteOp(o)
∨ ResetOp(o)

Spec
∆= Init ∧□[Next]⟨slots, operations⟩

We define one big invariant that combines all the invariants we have specified
previously and one big temporal invariant.

TypeInvariant
∆=

∧ SlotInvariants
∧ OwnershipInvariants
∧ OperationInvariants

SlotProperty
∆=

∧ SingleLocationProperty
∧ SlotImmutabilityProperty

Finally, we define the following theorem which should hold if our algorithms
are correct.

theorem Spec ⇒ □TypeInvariant ∧□[SlotProperty]⟨slots⟩

206

5.2. Checking the model

Checking the model

The model by itself does not assume anything about the number of nodes,
and capabilities, or the size of the physical memory which the capabilities
refer to.

However, that variant of the model, due to its generality cannot be model-
checked in a reasonable amount of time. That is, the model checker did
not terminate after running for more than two weeks for a system with 3
bytes of physical memory, 2 cores and 3 capability slots, while running two
concurrent capability operations.

A big part of the intractability is hidden in the way we specify the possible
retypes in the system. To recall, we allow the system to issue any retype
with a target region that has a base address that is within the existing
physical addresses of the model and any size less or equal the size of the
physical memory. This leads to a lot of unnecessary work, as the model
checker cannot, and, indeed, does not, understand the symmetries here.
There is a lot of symmetry hidden in those target regions even for our
previously mentioned system with 3 bytes of physical memory. Consider
the following pairs of retypes

1. retype 1 has target region [base ↦→ 0, size ↦→ 2] and retype 2 has target
region [base ↦→ 2, size ↦→ 1].

2. retype 1 has target region [base ↦→ 0, size ↦→ 1] and retype 2 has target
region [base ↦→ 1, size ↦→ 2] .

These two combinations of retypes are clearly symmetric, but there is no
easy way to convey that information to the model checker, as this is outside
of what is possible to specify as symmetry sets in TLA+. However, we can
modify the definition for Regions that was given in the previous section.

207

Chapter 5. Formalizing the capablity protocol in TLA+

Regions
∆= [base : PSpace, size : 1 . . (MaxPAddr + 1)]

The new definition only contains a subset of target regions, namely the ones
shown in figure 5.1.

Regions
∆= {[base ↦→ 0, size ↦→ 1], [base ↦→ 0, size ↦→ 2], [base ↦→ 0, size ↦→ 3],

[base ↦→ 1, size ↦→ 2], [base ↦→ 1, size ↦→ 3]}

With this change we can successfully validate our modified model in less
than a day (approximately 19 hours) on a single 2x10 Intel Xeon E5-2670
v2 machine.

[0, 1] [0, 2] [0, 3] [1, 1] ≡ [0,1]

[1, 2] [1, 3] [2, 1] ≡ [0, 1] [2, 2] ≡ [1, 3]

[2, 3] ≡ [1, 3]

Figure 5.1: Selected retype target regions in light blue, symmetric ones in
light red, with a reference to their partners

We select the regions shown in figure 5.1 in such a way that we can model
check the following retype pairs being executed concurrently:

1. Two retypes with non-overlapping and valid target regions

2. Two retypes with non-overlapping target regions

208

5.2. Checking the model

3. Two retypes with overlapping and valid target regions

4. Two retypes with overlapping target regions

For the case where we have non-overlapping and valid target regions for a
pair of retypes, we eliminate all the pairs with two single byte target regions,
and the pairing of [0, 2]+[2, 1] which is symmetric to [0, 1]+[1, 2].

For the case of retype pairs with non-overlapping target regions, we reduce
the number of “invalid” target regions – i.e. target regions which extend past
the limit of our physical address space – to one. This is acceptable because
any retype with an invalid target region must fail, disregarding how far past
the limit of the address space it reaches. We pick the region [1, 3] as the
solitary invalid target region in the reduced set. The combination [0, 1]+[1, 3]
stands in for its symmetric – with regard to the retype operation succeeding
or failing – counterparts [0, 2]+[2, 2] and [0, 2]+[2, 3]. Additionally there are
a number of further combinations with the other single byte target regions,
which we do not consider here, as they are directly comparable to either
[0, 2]+[2, 2] or [0, 2]+[2, 3].

For retypes with overlapping and valid target regions, we have all the pairs
X+X for two retypes with different target slots but the same, valid, target
region X , the pairs created by combining two differently-sized target regions
starting at byte 0, as well as [0, 2]+[1, 2], and [0, 3]+[1, 2].

For retypes with overlapping, but not necessarily valid target regions we
have [0, 2]+[1, 3] and [0, 3]+[1, 3], as well as [1, 3]+[1, 3].

209

Chapter 5. Formalizing the capablity protocol in TLA+

Outlook

Of course the model presented in this chapter does not accurately represent
the implementation of the model in Barrelfish.

There are two areas where the model needs to be refined to accurately portray
the implementation. First, we need to model the partial mapping database
replicas and the messages that are required to execute operations. Second,
we need to correctly model the capability spaces as CNode capabilities and
implement the model operations to handle dynamic CSpaces.

While it may be possible to express such a more accurate model in TLA+, my
impression is that the model checker would struggle with such a specification,
and it may be more useful to rewrite the model in PlusCal – or an entirely
different logic system.

210

6
Conclusions

Summary

This dissertation explores a very different style of OS service provision.
Demand paging can often have negative impacts on modern applications that
rely on fast memory. The virtual address space can be an abstraction which
degrades application performance. In Barrelfish, in contrast, an application
knows when it has insufficient physical memory and must explicitly deal
with it. Given current trends in both applications and hardware, we believe
that our radically different memory system is worthy of further attention.

In the evaluation of our memory system, we confirm our thesis and show
that by turning the classical virtual memory system inside out, we give
applications unprecedented freedom in the construction of their virtual
address spaces without negatively impacting their performance and, in fact,
allowing our system to outperform Linux in some cases..

We then demonstrate that the capability system, which is the foundation
of our memory system, can be made scalable with a comparatively simple

211

Chapter 6. Conclusions

protocol which exploits the properties of the message channels available in
Barrelfish. We demonstrate that the latency of operations of that capability
protocol are acceptable, and present a simple formal model in TLA+ which
demonstrates that our protocol does not violate the safety guarantees given
by either the memory or capability system.

Directions for Future Work

Barrelfish’s memory system has many areas with opportunities for future
research. We give a brief outline of a few of those opportunities in this
section.

Multiple physical address spaces

We noted in the beginning that our design makes the assumption that
there is only a single shared physical address space in a machine. However,
with RDMA technologies, such as InfiniBand, we can execute direct reads
and writes in another machine’s physical address space. Additionally, a
lot of large-scale server software runs on a whole rack of machines today,
necessitating some form of rack-scale management. We give a more in-depth
motivation for the necessity of explicitly managing multiple physical address
spaces in a operating system in our 2015 HotOS submission [GZA+15].

Our memory management design should lend itself to such a rack-scale
environment where machines can access memory on other machines through
one-sided remote reads and writes. The fundamental change which is neces-
sary to make the capability system understand multiple physical address
spaces is that each capability has a field which holds an identifier for the
physical address space to which the region it refers to belongs. Those

212

6.2. Directions for Future Work

address space identifiers then need to be checked when necessary, e.g. when
installing new mappings in a virtual address space. In addition to simply
checking the identifiers, the memory system also needs to program the
RDMA hardware to allow remote accesses assuming the checks succeed.

Additionally, the distributed capability protocol needs to be extended to
work across machine boundaries, where the assumptions we make about
message channels, namely that they guarantee in-order, exactly once, FIFO
delivery of messages, do not necessarily hold anymore.

One approach that one might take when extending the capability protocol
is to create a two-level protocol, where we have a protocol implementation
which is more resilient to reordered or lost messages between machines,
while we run the protocol presented in chapter 4 inside each machine.

A better capability description language

We have briefly discussed Hamlet, Barrelfish’s domain specific language
for defining capability types in this thesis. While Hamlet currently makes
adding new capability types easy, there is a lot of boiler-plate code which
needs to be written manually for each capability type. The boiler-plate
includes things like small predicate functions which express higher-level
properties of capability types, such as whether a capability type is a mapping
type or a page table type, as well as a lot of argument marshalling and
unmarshalling when implementing invocations for that new capability type.

A research direction which has been discussed, but postponed in favour
of more directly OS-related research, as it touches more on programming
language design, is to make Hamlet a more full-featured programming
language that can express invocations for each capability type and higher-
level predicates, and use that improved language to eliminate a lot of the
manually written boiler-plate code for capability invocations and predicates.

213

Chapter 6. Conclusions

Hardware acceleration for kernel-based capabilities

An idea that has been discussed a number of times is to see if we can
dramatically improve the latency of capability operations by designing
custom hardware – most likely on a FPGA which is closely coupled to the
CPU – which we can use as a capability offload engine or co-processor.

We never pursued this direction of research until now because available
systems which pair CPU and FPGA suffer from latency issues when trans-
ferring control from the CPU to the FPGA and back. However, Enzian,
http://enzian.systems, a research computer platform designed in the
Systems Group, will be a system where the CPU and the FPGA are directly
connected using the CPU’s cache coherency interface, giving applications a
low-latency and high-bandwidth link between the CPU and the FPGA. The
latency of this link seems to be low enough for a capability co-processor on
the FPGA to potentially improve overall capability operation latencies, cf.
the results for software-based capability operation latencies in section 4.7.

Additionally, a platform like Enzian opens avenues of making capabilities a
mechanism for authorization across multiple physical systems as we could
extend the protocol presented in chapter 4 to a cluster of Enzian machines
using the FPGA in each node of such a cluster to ensure that over-the-wire
capability traffic between nodes is encrypted without imposing high latency
overheads from having to do encryption and network traffic processing on
the CPU.

Multi-threaded shared-memory applications

One interesting direction for future research is to explore support for multi-
threaded shared-memory based applications on a multikernel OS such as
Barrelfish.

214

http://enzian.systems

6.2. Directions for Future Work

Barrelfish currently only supports domain spanning on x86 64, which is a
major limitation of the implementation. The current implementation of
domain spanning, as presented in Razvan Damachi’s master’s thesis [Dam17],
does not offer great support for shared address space management. On
x86 64, we currently statically partition the domain’s virtual address space
into 512GB chunks, and each core to which the domain spans is assigned
one chunk to back local virtual region allocations.

There are a number of options on how to make Barrelfish’s library OS aware
of the interactions between cores when it comes to spanned domains.

The first variant is to fully embrace the multikernel philosophy and share
nothing. This would mean that any page tables that make up the domain’s
virtual address space need to be fully replicated for each core on which the
domain has a dispatcher. The immediate downside of this is that every
map request needs to be broadcast to all cores on which the domain has
a dispatcher. The domain then has to decide if its virtual address space
is identical on all cores. Further the library OS needs to synchronize the
shadow page tables etc. on each virtual address space modification.

The second variant is to share everything. In this implementation, the
domain’s dispatchers would share a single set of page table frames, and a
single set of shadow page tables and other user-space data structures. This
approach requires carefully implemented thread safe data structures for the
shadow page tables, and other user space data structures. In addition to that,
we would heavily utilize invocations on foreign capabilities when creating
mappings on cores that do not own the particular page table capability
involved in the mapping request. As we envision those remote invocations
to be proxied to the owning core, this could lead to severe performance
degradation, especially in light of having to simultaneously hold locks on
the relevant shadow page table entries.

215

Chapter 6. Conclusions

The third option is to share the page table frames, but not the shadow page
tables. This is closest to the current system, where we share the page table
frames, but do not keep the shadow page tables synchronized between cores.
This would need some synchronization to keep track of the actual state
of the page table frames in the shadow page tables of all dispatchers, but
would be less contention-heavy than the second option, as we only need to
synchronize operations that allocate or free virtual address space. Once a
region of address space is allocated, the core which requested the allocation
gains authority over that region, and can send shadow page table updates
to the other cores voluntarily, or reply to an update request.

216

List of Tables

2.1 Intel paging structures . 16

2.2 Test bed specifications . 38

2.3 Tested Linux configurations 38

2.4 Survey of related capability-based systems 45

3.1 RandomAccess GUPS as a function of page size 95

3.2 Specification of machine used in §3.6.4 98

3.3 PageRank runtime . 98

3.4 GCBench results . 101

3.5 RandomAccess absolute execution times in milliseconds . . . 105

3.6 Parallel RandomAccess with and without cache coloring . . 106

4.1 The set of low-level mapping database operations O 133

4.2 MDB operation counts and frequencies during boot phase . . 134

4.3 MDB operation counts and frequencies in process manage-
ment workload . 135

217

List of Figures

1.1 Moore’s law . 3

2.1 Linear address lookup . 14

2.2 Intel Core i7 cache hierarchy 17

2.3 Linux large page API comparion 36

2.4 The multikernel model . 57

2.5 Well-defined root CNode slots 63

2.6 Well-defined task CNode slots 64

3.1 Memory usage for different shadow page tables 86

3.2 Appel-Li benchmark. (Linux 4.2.0) 91

3.3 Comparison of memory operations on Barrelfish and Linux . 93

3.4 GUPS as a function of table size, normalized, on Barrelfish. 95

3.5 GUPS variance. Linux 4.2.0-tlbfs, 2 MB pages. 96

3.6 GCBench on Linux, Barrelfish and Dune 100

3.7 RandomAccess with and without nested paging 104

4.1 Per-capability slot state machine for deletes and revokes . . 117

219

List of Figures

4.2 Doubly-linked list mapping database operation latencies . . 122

4.3 MDB latencies for linked list and augmented AA tree 138

4.4 MDB latencies for list, tree, and tree w/o parent pointers . . 139

4.5 MDB latencies for all tree variants 141

4.6 Mapping database implementation comparison 144

4.7 State transitions for a single capability slot 149

4.8 “noop” invocation latency 152

4.9 Deleting a local capability which has local copies 153

4.10 Latency breakdown for deleting a local capability with local
copies . 155

4.11 Deleting a foreign capability 156

4.12 Latency breakdown for deleting a foreign capability 157

4.13 Deleting a local capability which only has foreign copies . . . 158

4.14 Latency breakdown for deleting a local capability with only
foreign copies . 159

4.15 Deleting last copy of a (local) capability 160

4.16 Latency breakdown for deleting the last copy of a (local)
capability . 161

4.17 Deleting last copy of a CNode with 4 occupied slots 162

4.18 Latency breakdown for deleting the last copy of a CNode
with 4 occupied slots . 164

4.19 Deleting last copy of a CNode while varying number of occu-
pied slots . 165

4.20 Revoking a capability with no foreign relations 167

220

List of Figures

4.21 Latency breakdown: revoking a capability with no foreign
relations . 169

4.22 Revoking a foreign copy of a capability 171

4.23 Latency breakdown: revoking a foreign copy of a capability . 172

4.24 Revoking a local copy of a capability with foreign relations . 174

4.25 Latency breakdown: revoking a local copy of a capability
with foreign relations . 175

4.26 Retype a capability with no foreign copies 177

4.27 Latency breakdown: retype a capability with no foreign copies178

4.28 Retype with local descendants 179

4.29 Latency breakdown: retype with local descendants 180

4.30 Retype with remote copies 182

4.31 Latency breakdown: retype with remote copies 183

4.32 Latency breakdown: retype with remote copies, optimized to
not pass two copies of same root CNode to monitor 185

5.1 Reduced retype target region set 208

221

Bibliography

[ABG+86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian,
and M. Young. “Mach: A New Kernel Foundation for UNIX
Development.” Tech. rep., Computer Science Department,
Carnegie Mellon University, 1986.

[AJH12] J. Ahn, S. Jin, and J. Huh. “Revisiting Hardware-assisted Page
Walks for Virtualized Systems.” In Proceedings of the 39th
Annual International Symposium on Computer Architecture,
ISCA ’12, pp. 476–487. IEEE Computer Society, Washington,
DC, USA, 2012.

[AL91] A. W. Appel and K. Li. “Virtual Memory Primitives for User
Programs.” In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS IV, pp. 96–107. ACM, New York,
NY, USA, 1991.

[And93] A. Andersson. “Balanced Search Trees Made Simple.” In
Proceedings of the Third Workshop on Algorithms and Data
Structures, WADS ’93, pp. 60–71. Springer-Verlag, Berlin,
Heidelberg, 1993.

[ARM] ARM Ltd. Cortex-A9 Technical Reference Manual. Revision
r4p1.

223

Bibliography

[ARM14] ARM Ltd. ARM Architecture Reference Manual: ARMv7-A
and ARMv7-R Edition, 2014. ARM DDI 0406C.c.

[ARM15] ARM Ltd. “ARMv8-A Architecture.” Online,
2015. http://www.arm.com/products/processors/
armv8-architecture.php.

[ARS89] E. Abrossimov, M. Rozier, and M. Shapiro. “Generic Virtual
Memory Management for Operating System Kernels.” In Pro-
ceedings of the Twelfth ACM Symposium on Operating Systems
Principles, SOSP ’89, pp. 123–136. ACM, 1989.

[Azi14] K. Aziz. “Improving the Performance of Transparent Huge
Pages in Linux.” https://blogs.oracle.com/linuxkernel/
entry/performance_impact_of_transparent_huge, 2014.

[BALL90] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. “Lightweight Remote Procedure Call.” ACM Trans.
Comput. Syst., vol. 8, no. 1, 37–55, 1990.

[BBD+09] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. “The
Multikernel: A New OS Architecture for Scalable Multicore
Systems.” In Proceedings of the ACM SIGOPS Twenty-Second
Symposium on Operating Systems Principles, SOSP ’09, pp.
29–44. Big Sky, Montana, USA, 2009.

[BBM+12] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. “Dune: safe user-level access to privileged
CPU features.” In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation (OSDI).
Hollywood, CA, USA, 2012.

224

http://www.arm.com/products/processors/armv8-architecture.php
http://www.arm.com/products/processors/armv8-architecture.php
https://blogs.oracle.com/linuxkernel/entry/performance_impact_of_transparent_huge
https://blogs.oracle.com/linuxkernel/entry/performance_impact_of_transparent_huge

Bibliography

[BCR10] T. W. Barr, A. L. Cox, and S. Rixner. “Translation Caching:
Skip, Don’t Walk (the Page Table).” In Proceedings of the 37th
Annual International Symposium on Computer Architecture,
ISCA ’10, pp. 48–59. ACM, New York, NY, USA, 2010.

[BDS91] H.-J. Boehm, A. J. Demers, and S. Shenker. “Mostly Parallel
Garbage Collection.” In Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Im-
plementation, PLDI ’91, pp. 157–164. 1991.

[BGC+13] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift.
“Efficient Virtual Memory for Big Memory Servers.” In Proceed-
ings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pp. 237–248. ACM, New York, NY,
USA, 2013.

[Bha13] A. Bhattacharjee. “Large-reach Memory Management Unit
Caches.” In Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-46, pp.
383–394. ACM, New York, NY, USA, 2013.

[Boea] H.-J. Boehm. “Conservative GC Algorithmic Overview.” http:
//www.hboehm.info/gc/gcdescr.html.

[Boeb] H.-J. Boehm. “GCBench.” http://hboehm.info/gc/gc_
bench/.

[BSP+95] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. “Extensi-
bility Safety and Performance in the SPIN Operating System.”
In Proceedings of the Fifteenth ACM Symposium on Operating

225

http://www.hboehm.info/gc/gcdescr.html
http://www.hboehm.info/gc/gcdescr.html
http://hboehm.info/gc/gc_bench/
http://hboehm.info/gc/gc_bench/

Bibliography

Systems Principles, SOSP ’95, pp. 267–283. ACM, New York,
NY, USA, 1995.

[BSSM08] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. “Acceler-
ating Two-dimensional Page Walks for Virtualized Systems.”
In Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, pp. 26–35. 2008.

[BWCC+08] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. “Corey: An Operating System for Many Cores.” In
Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’08, pp. 43–57. USENIX
Association, Berkeley, CA, USA, 2008.

[Cas13] M. Casey. “Performance Issues with Transparent Huge
Pages (THP).” https://blogs.oracle.com/linux/entry/
performance_issues_with_transparent_huge, 2013.

[CD94] D. R. Cheriton and K. J. Duda. “A Caching Model of Op-
erating System Kernel Functionality.” In Proceedings of the
1st USENIX Conference on Operating Systems Design and
Implementation, OSDI ’94. USENIX Association, Monterey,
California, 1994.

[CJ75] E. Cohen and D. Jefferson. “Protection in the Hydra Operating
System.” In Proceedings of the Fifth ACM Symposium on
Operating Systems Principles, SOSP ’75, pp. 141–160. ACM,
Austin, Texas, USA, 1975.

226

https://blogs.oracle.com/linux/entry/performance_issues_with_transparent_huge
https://blogs.oracle.com/linux/entry/performance_issues_with_transparent_huge

Bibliography

[CKD94a] N. P. Carter, S. W. Keckler, and W. J. Dally. “Hardware
Support for Fast Capability-based Addressing.” In Proceedings
of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 319–
327. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE
Computer Society, San Jose, California, 1994.

[CKD94b] N. P. Carter, S. W. Keckler, and W. J. Dally. “Hardware
Support for Fast Capability-based Addressing.” In Proceedings
of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
VI, pp. 319–327. ACM, San Jose, California, USA, 1994.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, 2
ed., 2001.

[Cor12a] J. Corbet. “AutoNUMA: the other approach to NUMA schedul-
ing.” http://lwn.net/Articles/488709/, 2012.

[Cor12b] J. Corbet. “NUMA in a hurry.” http://lwn.net/Articles/
524977/, 2012.

[Cor12c] J. Corbet. “Toward better NUMA scheduling.” http://lwn.
net/Articles/486858/, 2012.

[Cor13a] J. Corbet. “NUMA scheduling progress.” http://lwn.net/
Articles/568870/, 2013.

[Cor13b] J. Corbet. “User-space page fault handling.” http://lwn.
net/Articles/550555/, 2013.

[Cor14a] J. Corbet. “2014 LSFMM Summit: Huge page issues.” http:
//lwn.net/Articles/592011/, 2014.

227

http://lwn.net/Articles/488709/
http://lwn.net/Articles/524977/
http://lwn.net/Articles/524977/
http://lwn.net/Articles/486858/
http://lwn.net/Articles/486858/
http://lwn.net/Articles/568870/
http://lwn.net/Articles/568870/
http://lwn.net/Articles/550555/
http://lwn.net/Articles/550555/
http://lwn.net/Articles/592011/
http://lwn.net/Articles/592011/

Bibliography

[Cor14b] J. Corbet. “NUMA placement problems.” http://lwn.net/
Articles/591995/, 2014.

[Cor14c] J. Corbet. “Page faults in user space: MADV USERFAULT,
remap anon range(), and userfaultfd().” http://lwn.net/
Articles/615086/, 2014.

[Cor14d] J. Corbet. “Transparent huge pages in 2.6.38.” http://lwn.
net/Articles/423584/, 2014.

[CPK08] M. D. Castro, R. D. Pose, and C. Kopp. “Password-Capabilities
and the Walnut Kernel.” The Computer Journal, vol. 51, no. 5,
595–607, 2008.

[Dam17] R.-G. Damachi. Process Management in a Capability-
Based Operating System. ETH Zurich, 2017. Mas-
ter’s Thesis, http://www.barrelfish.org/publications/
ma-damachir-procmgmt.pdf.

[DBMZ08] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic.
“Hardbound: architectural support for spatial safety of the C
programming language.” SIGARCH Comput. Archit. News,
vol. 36, no. 1, 103–114, 2008.

[DBR09] P.-E. Dagand, A. Baumann, and T. Roscoe. “Filet-o-Fish:
practical and dependable domain-specific languages for OS
development.” In Proceedings of the 5th Workshop on Program-
ming Languages and Operating Systems (PLOS). 2009.

[DEE06] P. Derrin, D. Elkaduwe, and K. Elphinstone. seL4 Reference
Manual. NICTA, 2006. http://www.ertos.nicta.com.au/
research/sel4/sel4-refman.pdf.

228

http://lwn.net/Articles/591995/
http://lwn.net/Articles/591995/
http://lwn.net/Articles/615086/
http://lwn.net/Articles/615086/
http://lwn.net/Articles/423584/
http://lwn.net/Articles/423584/
http://www.barrelfish.org/publications/ma-damachir-procmgmt.pdf
http://www.barrelfish.org/publications/ma-damachir-procmgmt.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf

Bibliography

[DFF+13] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. “Traffic Management: A
Holistic Approach to Memory Placement on NUMA Systems.”
In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’13, pp. 381–394. ACM, Houston, Texas,
USA, 2013.

[Dil13] M. Dillon. “Design elements of the FreeBSD VM system -
Page Coloring.” Online, https://www.freebsd.org/doc/
en/articles/vm-design/page-coloring-optimizations.
html, 2013. Accessed 2015-08-26.

[DY16] G. J. Duck and R. H. C. Yap. “Heap Bounds Protection with
Low Fat Pointers.” In Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, pp. 132–142.
ACM, Barcelona, Spain, 2016.

[EDE08] D. Elkaduwe, P. Derrin, and K. Elphinstone. “Kernel Design
for Isolation and Assurance of Physical Memory.” In Pro-
ceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems, IIES ’08, pp. 35–40. ACM, New York, NY,
USA, 2008.

[EGK95] D. R. Engler, S. K. Gupta, and M. F. Kaashoek. “AVM:
Application-level Virtual Memory.” In Proceedings of the Fifth
Workshop on Hot Topics in Operating Systems (HotOS-V),
HOTOS ’95, pp. 72–. IEEE Computer Society, 1995.

229

https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html

Bibliography

[EKO95] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. “Exoker-
nel: An Operating System Architecture for Application-level
Resource Management.” In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles, pp. 251–266. 1995.

[ESG+94] Y. Endo, M. Seltzer, J. Gwertzman, C. Small, K. A. Smith,
and D. Tang. “VINO: The 1994 Fall Harvest.” Technical Re-
port TR-34-94, Center for Research in Computing Technology,
Harvard University, 1994.

[Eva15] J. Evans. “Issue #243: Improve interaction with transpar-
ent huge pages.” https://github.com/jemalloc/jemalloc/
issues/243, 2015.

[FFB+88] A. Forin, R. Forin, J. Barrera, M. Young, and R. Rashid.
“Design, Implementation, and Performance Evaluation of a
Distributed Shared Memory Server for Mach.” In In 1988
Winter USENIX Conference. 1988.

[GARH14] J. Giceva, G. Alonso, T. Roscoe, and T. Harris. “Deployment
of Query Plans on Multicores.” Proc. VLDB Endow., vol. 8,
no. 3, 233–244, 2014.

[Ger12] S. Gerber. “Virtual Memory in a Multikernel.” Master’s
thesis, 2012. Master’s Thesis, http://www.barrelfish.org/
publications/gerber-master-vm.pdf.

[GH12] M. Gorman and P. Healy. “Performance Characteristics of
Explicit Superpage Support.” In Proceedings of the 2010 Inter-
national Conference on Computer Architecture, ISCA’10, pp.
293–310. Springer-Verlag, Berlin, Heidelberg, 2012.

230

https://github.com/jemalloc/jemalloc/issues/243
https://github.com/jemalloc/jemalloc/issues/243
http://www.barrelfish.org/publications/gerber-master-vm.pdf
http://www.barrelfish.org/publications/gerber-master-vm.pdf

Bibliography

[GLD+14] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova,
and V. Quéma. “Large Pages May Be Harmful on NUMA
Systems.” In Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, pp.
231–242. USENIX Association, Philadelphia, PA, 2014.

[Gor10a] M. Gorman. “Huge pages.” http://lwn.net/Articles/
374424/, 2010.

[Gor10b] M. Gorman. “Huge pages part 2: Interfaces.” https://lwn.
net/Articles/375096/, 2010.

[GZA+15] S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe,
and D. Milojicic. “Not Your Parents’ Physical Address Space.”
In 15th Workshop on Hot Topics in Operating Systems, HotOS
XV. Kartause Ittingen, Switzerland, 2015.

[Han] D. Hansen. “TLB flushing on x86.” https://www.kernel.
org/doc/Documentation/x86/tlb.txt.

[Han99] S. M. Hand. “Self-paging in the Nemesis Operating System.”
In Proceedings of the Third Symposium on Operating Systems
Design and Implementation, OSDI ’99, pp. 73–86. USENIX
Association, New Orleans, Louisiana, USA, 1999.

[HB] B. Haible and P. Bonzini. “GNU libsigsegv - Handling
page faults in user mode.” http://libsigsegv.sourceforge.
net/.

231

http://lwn.net/Articles/374424/
http://lwn.net/Articles/374424/
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
https://www.kernel.org/doc/Documentation/x86/tlb.txt
https://www.kernel.org/doc/Documentation/x86/tlb.txt
http://libsigsegv.sourceforge.net/
http://libsigsegv.sourceforge.net/

Bibliography

[HC92] K. Harty and D. R. Cheriton. “Application-controlled Physical
Memory Using External Page-cache Management.” In Pro-
ceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS V, pp. 187–197. ACM, New York, NY, USA, 1992.

[HCSO12] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. “Green-Marl:
A DSL for Easy and Efficient Graph Analysis.” In Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, pp. 349–362. ACM, New York, NY, USA, 2012.

[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schön-
berg. “The Performance of µ-Kernel-based Systems.” In Pro-
ceedings of the Sixteenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’97, pp. 66–77. ACM, New York, NY,
USA, 1997.

[HP 15] HP Labs. “The Machine.” http://www.hpl.hp.com/
research/systems-research/themachine/, 2015.

[HSH81] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. “IBM Sys-
tem/38 Support for Capability-based Addressing.” In Proceed-
ings of the 8th Annual Symposium on Computer Architecture,
ISCA ’81, pp. 341–348. IEEE Computer Society Press, Min-
neapolis, Minnesota, USA, 1981.

[Iii91] J. B. Iii. “A Fast Mach Network IPC Implementation.” In
USENIX MACH Symposium, pp. 1–11. USENIX, 1991.

[Int] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual. Order Number: 325384-052US.

232

http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/

Bibliography

[Int13] Intel Plc. “Introduction to Intel R⃝ Memory Protection Ex-
tensions.” http://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions,
2013.

[Int14] Intel Corporation. Intel 64 and IA-32 Architec-
tures Optimization Reference Manual, 2014. On-
line. Accessed 2015-03-12. http://www.intel.com/
content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html?
wapkw=order+number+248966-025.

[JCD+79] A. K. Jones, R. J. Chansler, Jr., I. Durham, K. Schwans, and
S. R. Vegdahl. “StarOS, a Multiprocessor Operating System
for the Support of Task Forces.” In Proceedings of the 7th
ACM Symposium on Operating Systems Principles, pp. 117–
127. 1979.

[JMG+02] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang. “Cyclone: A Safe Dialect of C.” In Proceedings
of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pp. 275–288. USENIX
Association, Berkeley, CA, USA, 2002.

[KAR+06] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. “K42: Building
a Complete Operating System.” In Proceedings of the 1st
EuroSys Conference, pp. 133–145. 2006.

233

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025

Bibliography

[KARH15] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris. “Shoal:
Smart Allocation and Replication of Memory for Parallel Pro-
grams.” In Proceedings of the 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, pp. 263–276. Santa Clara, CA,
2015.

[KDS+13] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and
A. DeHon. “Low-fat Pointers: Compact Encoding and Efficient
Gate-level Implementation of Fat Pointers for Spatial Safety
and Capability-based Security.” In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communica-
tions Security, CCS ’13, pp. 721–732. ACM, Berlin, Germany,
2013.

[KEH+09] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. “seL4: Formal
Verification of an OS Kernel.” In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pp. 207–220. ACM, Big Sky, Montana, USA, 2009.

[KKAE11] J. Kim, J. Kim, D. Ahn, and Y. I. Eom. “Page coloring syn-
chronization for improving cache performance in virtualization
environment.” In Computational Science and Its Applications-
ICCSA 2011, pp. 495–505. Springer, 2011.

[KL] D. Koester and B. Lucas. “HPC Challenge - Random Ac-
cess.” Online. http://icl.cs.utk.edu/projectsfiles/
hpcc/RandomAccess/. Accessed 2015-03-09.

234

http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/

Bibliography

[KN93] Y. A. Khalidi and M. N. Nelson. “The Spring Virtual Memory
System.” Technical Report SMLI TR-93-9, Sun Microsystems
Laboratories Inc., 1993.

[Knu73] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sort-
ing and Searching. Addison-Wesley, Reading, Massachusetts,
1973.

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[LBKN14] V. Leis, P. Boncz, A. Kemper, and T. Neumann. “Morsel-
driven Parallelism: A NUMA-aware Query Evaluation Frame-
work for the Many-core Age.” In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’14, pp. 743–754. ACM, New York, NY, USA, 2014.

[LCC+75] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
“Policy/Mechanism Separation in Hydra.” In Proceedings of
the Fifth ACM Symposium on Operating Systems Principles,
SOSP ’75, pp. 132–140. ACM, Austin, Texas, USA, 1975.

[Lina] Linux Kernel Project. “Hugetlbpage support in the Linux
kernel.” https://www.kernel.org/doc/Documentation/vm/
hugetlbpage.txt.

[Linb] Linux Kernel Project. “Transparent Hugepage Sup-
port.” https://www.kernel.org/doc/Documentation/vm/
transhuge.txt.

235

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

Bibliography

[LUE+99] J. Liedtke, V. Uhlig, K. Elphinstone, T. Jaeger, and Y. Park.
“How to Schedule Unlimited Memory Pinning of Untrusted
Processes or Provisional Ideas About Service-Neutrality.” In
Proceedings of the The Seventh Workshop on Hot Topics in
Operating Systems, HOTOS ’99, pp. 153–. IEEE Computer
Society, Washington, DC, USA, 1999.

[LW09] A. Lackorzynski and A. Warg. “Taming Subsystems: Ca-
pabilities as Universal Resource Access Control in L4.” In
Proceedings of the Second Workshop on Isolation and Integra-
tion in Embedded Systems, Eurosys affiliated workshop, IIES
’09, pp. 25–30. ACM, Nuremburg, Germany, 2009.

[Mar12] E. Martignetti. What Makes It Page?: The Windows 7 (x64)
Virtual Memory Manager. CreateSpace Independent Publish-
ing Platform, 2012.

[Mil06] M. S. Miller. “Robust composition: towards a unified approach
to access control and concurrency control.” Ph.D. thesis, Johns
Hopkins University, Baltimore, MD, USA, 2006.

[MSL+08] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
“Caja: Safe active content in Sanitized JavaScript.”, 2008.

[MvRT+90] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse,
and H. van Staveren. “Amoeba, A distributed operating system
for the 1990s.” Computer, vol. 33, no. 5, 44–53, 1990.

236

Bibliography

[MW10] A. Mettler and D. Wagner. “Class Properties for Security
Review in an Object-capability Subset of Java: (Short Paper).”
In Proceedings of the 5th ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, PLAS ’10, pp.
7:1–7:7. ACM, Toronto, Canada, 2010.

[Nev12] M. Nevill. An Evaluation of Capabilities for a Multikernel.
ETH Zurich, 2012. Master’s Thesis, http://www.barrelfish.
org/publications/nevill-master-capabilities.pdf.

[NIDC02] J. Navarro, S. Iyer, P. Druschel, and A. Cox. “Practical, Trans-
parent Operating System Support for Superpages.” SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, 89–104, 2002.

[NMW02] G. C. Necula, S. McPeak, and W. Weimer. “CCured: Type-
safe retrofitting of legacy code.” ACM SIGPLAN Notices,
vol. 37, no. 1, 128–139, 2002.

[NW77] R. M. Needham and R. D. Walker. “The Cambridge CAP
Computer and Its Protection System.” In Proceedings of the
Sixth ACM Symposium on Operating Systems Principles, SOSP
’77, pp. 1–10. ACM, New York, NY, USA, 1977.

[NZMZ09] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
“SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C.” In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’09, pp. 245–258. ACM, New York, NY, USA, 2009.

[Ora10] Oracle Corporation. Online. http://docs.oracle.com/cd/
E19683-01/806-7009/chapter2-95/index.html, 2010. Ac-
cessed 2015-08-15.

237

http://www.barrelfish.org/publications/nevill-master-capabilities.pdf
http://www.barrelfish.org/publications/nevill-master-capabilities.pdf
http://docs.oracle.com/cd/E19683-01/806-7009/chapter2-95/index.html
http://docs.oracle.com/cd/E19683-01/806-7009/chapter2-95/index.html

Bibliography

[PFM15] T. M. Paolo Faraboschi, Kimberly Keeton and D. Milojicic.
“Beyond processor-centric operating systems.” In Proceedings
of the 2015 International Workshop on Hot Topics in Operating
Systems (HotOS XV). Karthause Ittingen, Warth-Weiningen,
Switzerland, 2015.

[PLZ+14] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. “Arrakis: The
Operating System is the Control Plane.” In 11th Symposium
on Operating Systems Design and Implementation (OSDI’14).
Broomfield, Colorado, USA, 2014.

[RAA+91] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,
P. Léonard, et al. “Overview of the chorus distributed op-
erating systems.” In Computing Systems. Citeseer, 1991.

[RHB+86] S. Rajunas, N. Hardy, A. Bomberger, W. Frantz, and C. Lan-
dau. “Security in KeyKOS.” In Proceedings of the 1986 IEEE
Sympsium on Security and Privacy. 1986.

[RR81] R. F. Rashid and G. G. Robertson. “Accent: A Communication
Oriented Network Operating System Kernel.” In Proceedings of
the Eighth ACM Symposium on Operating Systems Principles,
SOSP ’81, pp. 64–75. ACM, Pacific Grove, California, USA,
1981.

[RTY+88] R. Rashid, J. Tevanian, A., M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. “Machine-Independent
Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures.” Computers, IEEE Transactions
on, vol. 37, no. 8, 896–908, 1988.

238

Bibliography

[San] S. Sanfilippo. “Redis latency problems troubleshooting.” http:
//redis.io/topics/latency.

[Sch17] D. Schwyn. Hardware Configuration With Dynamically-
Queried Formal Models. ETH Zurich, 2017. Mas-
ter’s Thesis, http://www.barrelfish.org/publications/
ma-schwynda-hwconf.pdf.

[Seb91] E. J. Sebes. “Overview of the architecture of Distributed
Trusted Mach.” In Proceedings of the USENIX Mach Sympo-
sium, pp. 20–22. 1991.

[SG13] D. Stolz and A. Grest. Trace Collection, Analysis and
Visualization for Barrelfish. ETH Zurich, 2013. Dis-
tributed Systems Lab report, http://www.barrelfish.org/
publications/stolz-grest-dslab-tracing.pdf.

[SGI14] Y. Soma, B. Gerofi, and Y. Ishikawa. “Revisiting Virtual
Memory for High Performance Computing on Manycore Ar-
chitectures: A Hybrid Segmentation Kernel Approach.” In
Proceedings of the 4th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS ’14, pp. 3:1–3:8.
ACM, New York, NY, USA, 2014.

[sof] “Soft-Dirty PTEs.” https://www.kernel.org/doc/
Documentation/vm/soft-dirty.txt.

[SSF99] J. S. Shapiro, J. M. Smith, and D. J. Farber. “EROS: A Fast
Capability System.” In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, SOSP ’99, pp.
170–185. Charleston, South Carolina, USA, 1999.

239

http://redis.io/topics/latency
http://redis.io/topics/latency
http://www.barrelfish.org/publications/ma-schwynda-hwconf.pdf
http://www.barrelfish.org/publications/ma-schwynda-hwconf.pdf
http://www.barrelfish.org/publications/stolz-grest-dslab-tracing.pdf
http://www.barrelfish.org/publications/stolz-grest-dslab-tracing.pdf
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt

Bibliography

[Tev87] A. Tevanian, Jr. “Architecture Independent Virtual Memory
Management for Parallel and Distributed Environments: The
Mach Approach.” Ph.D. thesis, Pittsburgh, PA, USA, 1987.
AAI8814734.

[The] The University of Tennessee. “HPC Challenge Bench-
mark.” Online. http://icl.cs.utk.edu/hpcc/software/
view.html?id=178. Accessed 2015-03-09.

[VBYN+14] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. “CODOMs: Protecting Software with Code-centric
Memory Domains.” In Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture, ISCA ’14, pp.
469–480. IEEE Press, Minneapolis, Minnesota, USA, 2014.

[Wal] S. Wallentowitz. “Moore and More.” https://github.com/
wallento/mooreandmore.

[WLH81] W. Wulf, R. Levin, and S. Harbison. Hydra/C.mmp: An
Experimental Computer System. McGraw-Hill, New York,
1981.

[WWN+15] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Lau-
rie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera.
“CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization.” In Proceedings of the 2015
IEEE Symposium on Security and Privacy, SP ’15, pp. 20–37.
IEEE Computer Society, Washington, DC, USA, 2015.

240

http://icl.cs.utk.edu/hpcc/software/view.html?id=178
http://icl.cs.utk.edu/hpcc/software/view.html?id=178
https://github.com/wallento/mooreandmore
https://github.com/wallento/mooreandmore

Bibliography

[YRSI17] P. Yosifovich, M. E. Russinovich, D. A. Solomon, and
A. Ionescu. Windows Internals, Part 1: System Architec-
ture, Processes, Threads, Memory Management, and More (7th
Edition). Microsoft Press, Redmond, WA, USA, 7th ed., 2017.

[YWCL14] Y. Ye, R. West, Z. Cheng, and Y. Li. “COLORIS: A Dy-
namic Cache Partitioning System Using Page Coloring.” In
Proceedings of the 23rd International Conference on Paral-
lel Architectures and Compilation, PACT ’14, pp. 381–392.
Edmonton, AB, Canada, 2014.

[ZDS09] X. Zhang, S. Dwarkadas, and K. Shen. “Towards Practical
Page Coloring-based Multicore Cache Management.” In Pro-
ceedings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09, pp. 89–102. Nuremberg, Germany, 2009.

[ZGKR14] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe. “Decou-
pling Cores, Kernels, and Operating Systems.” In Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pp. 17–31. Broomfield, CO,
USA, 2014.

241

	Contents
	Introduction
	Motivation
	Contribution
	Structure of the Dissertation
	Related publications

	Background and related work
	Modern Virtual Memory Hardware
	Intel
	ARMv7-A
	ARMv8-A
	Conclusion

	Classical virtual memory
	Modern Linux
	Windows NT
	FreeBSD
	Solaris
	Discussion

	An overview of capability-based systems
	Kernel supported capabilities

	Other types of capabilities
	Hardware supported capabilities
	Programming language systems

	Non-traditional memory systems
	Application-level memory management
	Customizable policies
	Dune
	Mach

	An overview of Barrelfish
	Domain specific languages
	Capabilities in Barrelfish
	A Barrelfish application's view of capabilities
	Message passing
	User-space memory management

	Design and implementation on a single core
	Physical memory allocation
	Securely building page tables
	Keeping track of virtual to physical mappings
	Page faults and access to status bits
	High-level convenience
	User space virtual address space management
	Shadow page tables
	Virtual regions and memory objects
	Comparison with Mach

	Evaluation
	Appel and Li benchmark
	Memory operation microbenchmarks
	HPC Challenge RandomAccess benchmark
	Mixed page sizes
	Page status bits
	Nested paging overhead
	Page coloring
	Discussion

	A protocol for decentralized capabilities
	Overall design
	Capability operations
	Delete Cascades and Reachability
	Capability transfer
	Implementing a mapping database
	Review of search data structures
	Ordering
	Range Queries
	Augmented AA tree implementation trade-offs
	Evaluation of different implementations

	Implementation in Barrelfish
	Evaluation
	Experimental design
	Invoke
	Delete
	Revoke
	Retype

	Formalizing the capablity protocol in TLA+
	The model
	Checking the model
	Outlook

	Conclusions
	Summary
	Directions for Future Work
	Multiple physical address spaces
	A better capability description language
	Hardware acceleration for kernel-based capabilities
	Multi-threaded shared-memory applications

	Lists of Tables
	Lists of Figures
	Bibliography

