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Abstract

A vast majority of parallel programming languages lacks a coopera-
tion with the OS, therefore they cannot adapt to changes in hardware
resources. In this lab project we present a task parallel run-time system
which is tightly coupled with the Barrelfish OS. The run-time system
is built on top of the existing Barrelfish process model, thus it can ad-
dress such issues as dynamic allocation of processor cores. The core
of our system is a cooperative scheduler based on the work-stealing
principle. To integrate with the existing Barrelfish services, we intro-
duce a messaging system that supports message forwarding in case
of work stealing, and migration of messaging channels in case of dy-
namic core removal. The evaluation shows that our run-time system
is able to scale well for heavy workload problems such as merge sort.
Meanwhile, the overhead of the messaging system is relatively high
compared to the native Flounder bindings based messaging, but it is a
trade-off for supporting non-breakable connections.
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Chapter 1

Introduction

1.1 Motivation

The complexity of writing multi-threaded applications has led to an explo-
ration of different ways of expressing parallel algorithms. One possible way
is to use task parallel programming languages which allow developers ex-
plicitly indicate parts of a program that can run safely in parallel, so called
tasks. Each task is being scheduled by a user-level process and therefore
its footprint in terms of resource usage is considerably smaller compared to
traditional methods, e.g. POSIX Threads implementation in Linux.

Usually, such approach for solving parallel problems has one limitation. The
user-level scheduler and a run-time system itself do not take an advantage
of cooperating with the OS. For instance, a blocking operation executed by
a task might suspend the entire scheduler thread.

The next issue related to the missing cooperation is that with the rise of
multi/manycore systems we cannot assume that system hardware configu-
ration will stay static during execution of tasks. Most implementations of
task parallel run-time systems are not able to cope with the changes in a
CPU topology.

The goal of the project is to explore a possibility for creating a parallel run-
time system which would be tightly coupled with the Barrelfish OS. The
emphasis is put on an ability to react to hardware resource changes while
running tasks.
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1.2. Overview

1.2 Overview

In Chapter 2, we briefly overview the relevant parts of the Barrelfish OS. Fol-
lowing that, Chapter 3 presents the design of our run-time system including
the messaging system. Later on, in Chapter 4 we discuss implementation
details. Next, in Chapter 5 we analyse the systems by running different
benchmarks. Finally, Chapter 6 discusses our conclusions.

2



Chapter 2

Background

This chapter gives an overview on the Barrelfish OS. Besides the introduc-
tory overview, the two main topics are the process and threading model
of Barrelfish, described in Section 2.1.2, and Barrelfish’s messaging system,
explained in Section 2.1.3.

2.1 Barrelfish

Barrelfish [16] [4] is a research operating system developed by ETH Zürich
in collaboration with Microsoft Research. Barrelfish is based on the ”mul-
tikernel” approach: Each processor core is running its own instance of a
small kernel, called the CPU driver. The CPU driver shares no memory
with the other kernel instances. It also implements scheduling, resource
protection, and implements privileged or platform-dependent operations
such as interrupt handling and MMU modifications for user-space. State
and data is transferred between cores using message passing mechanisms
in user-space. A privileged process, the monitor, is responsible for inter-core
communication, state management and other services that otherwise would
be traditionally implemented in a kernel.

The design of the Barrelfish CPU drivers allow different instances of the
CPU driver to be run on different, possibly heterogeneous cores.

In order to manage information about available devices, Barrelfish imple-
ments a system knowledge base (SKB). The SKB is populated statically or dy-
namically from various sources and can be accessed by means of constraint
logic programming.

2.1.1 Resource Management with Capabilities

Memory management in Barrelfish is based on a capability system. Capa-
bilities are unforgeable, communicable references to system resources that
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2.1. Barrelfish

are handed to applications. Frames of physical memory in Barrelfish are
represented by a capability that can be retyped in order to represent other
system resources, such as communication endpoints or page tables.

2.1.2 Dispatchers

A dispatcher is a unit of kernel scheduling in Barrelfish. The concept of
dispatchers is similar to the traditional notation of a user-level process, as it
has it’s own virtual memory address space.

Because the CPU driver is kept as minimal as possible, dispatchers imple-
ment paging, interrupt reception and threading completely in user-space.
The default implementation for this is provided by libbarrelfish, which
is statically linked to every application.

For dispatchers to implement their own threads, as well as to receive inter-
rupts and intra-core messages, Barrelfish has an upcall mechanism. Pointers
to upcall handlers are stored in a region of memory shared between the CPU
driver and the dispatcher. Each dispatcher has a flag that indicates whether
the dispatcher is enabled or disabled. When the kernel decides to schedule
an enabled dispatcher, it will execute the run upcall handler. This upcall
handler for example then can decide which user-level thread to run. In case
of traps, page faults or message arrival, other corresponding upcall handlers
are called by the kernel. A dispatcher can flag itself as disabled when it is
executing a critical section. This means that normal execution is resumed
where the dispatcher was preempted, instead of the run upcall handler.

Dispatchers are bound to the processor core they were spawned on.

Domains

Barrelfish offers the concept of domains to allow a shared-memory applica-
tion to exploit hardware parallelism by running on multiple cores. A do-
main is a group of dispatchers running on different cores that share the
same virtual address space, but not their capability space. The functionality
needed by a dispatcher to be part of a domain is mostly implemented in
libbarrelfish.

The current implementation thereof has some limitations: For example, it is
not possible to add new dispatchers to a domain if other dispatchers (other
than the bootstrapping dispatcher) are already running threads. Other lim-
itations occur because the capability space is not shared. For example it is
not possible for a dispatcher to send messages over channel endpoints that
are bound to other cores, even though all dispatchers are part of the same
domain.
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2.1. Barrelfish

A lot of the functionality implemented by libbarrelfish is running one
instance per dispatcher. Applications running inside a multi-dispatcher do-
main need to be aware of this when using libbarrelfish’s services. Exam-
ples for this include the waitset implementation or the nameservice client.

Threads

As mentioned above, libbarrelfish implements its own user-level thread
scheduling. While these threads are conceptually decoupled from the op-
erating system and could in theory be replaced by a different implementa-
tion, the monolithic nature of libbarrelfish makes this difficult to achieve.
For example the self-paging and memory management mechanisms of
libbarrelfish have to use thread locking primitives in order to guarantee
correctness.

Barrelfish threads cannot be migrated among dispatchers running inside a
domain. It is however possible to spawn new threads at runtime.

It should also be mentioned that while some functionality of libbarrelfish
is considered thread-safe for dispatcher-local threads, the same is not neces-
sarily true if the two accessing threads are running on different cores. Wait-
sets for example are bound to exactly one dispatcher. While any thread
can safely trigger an event on a local waitset, it is not possible for a thread
to trigger an event on a remote waitset. The rationale behind this is that
libbarrelfish’s implementation disables the current dispatcher to avoid
preemption by other threads running on that dispatcher. This however will
not exclude threads running on different dispatchers in the same domain.

However, the synchronization primitives of libbarrelfish, namely thread
mutexes and semaphores, can be used to synchronize threads running on
separate cores.

Blocking Operations The Barrelfish CPU driver does not have a notation
of kernel threads. This means that system calls will never block: The kernel
might schedule a different dispatcher as a result of the system call, but the
calling dispatcher itself is still runnable.

Most blocking operations are related to messaging, e.g. when a thread is
waiting for a message to arrive. The upcall mechanism allows the thread
scheduler to be notified when the dispatcher is receiving a new message
from a core-local dispatcher. The thread scheduler then can decide which
thread to wake up in order the handle the message.

The abstraction for this mechanism is the notation of a waitset. A waitset is
the rendezvous point between events and threads. Events, such as message
channel events or timer events, are modeled as closures of the event handler.
Threads waiting on a waitset will execute that closure when it is triggered.
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2.1. Barrelfish

In order to block and unblock threads, the current waitset implementation
makes calls to the thread scheduler.

2.1.3 Inter-Dispatcher Communication

Barrelfish implements most system services as user-level applications run-
ning in their own domain. This raises the need for message passing between
dispatchers running on the same core, as well as dispatchers running on dif-
ferent cores. The messaging interface in Barrelfish is based on bi-directional,
typed channels. Using an interface description language called Flounder,
one can define the types of messages that can be be sent over a channel of
this interface type.

During connection set-up, Barrelfish imposes the roles of client and server
on domains. The server that offers some service has to export a correspond-
ing Flounder interface via the monitor in order to accept incoming connec-
tions. The monitor assigns an interface reference (iref) to the exported inter-
face. The iref works as an identifier for the exported service, it can be used
by client domains to bind to this interface. During the binding process, the
actual channel is created and assigned to both domains. Once the binding
process is completed, there is no technical distinction between server and
client with regard to channel usage.

A nameservice is available for clients to retrieve the iref of a server. The
server can register the iref of the exported interface by assigning a name.
The clients lookup this name to get the iref.

2.1.4 Interconnect Drivers

Barrelfish supports multiple implementations for message transportation.
Those highly specialized implementations are called interconnect drivers. The
interconnect driver used for a particular channel is automatically chosen at
binding time. The two most common interconnect drivers are LMP for intra-
core messages, and UMP for cache-coherent inter-core messaging.

LMP: Local Message Passing When a dispatcher wants to send a message
to another dispatcher running on the same core, LMP is used. In Barrelfish,
a dispatcher capability can be retyped into an LMP endpoint capability. If
a dispatcher owns such an endpoint capability for a remote dispatcher, it
can send that dispatcher a message. This is done by invoking a syscall with
the endpoint capability and the message as arguments. The CPU driver can
derive the receiving dispatcher from the endpoint capability and execute an
upcall in the receiving dispatcher, where the upcall handler will trigger a
receive event in the waitset assigned to the LMP channel.
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2.1. Barrelfish

UMP: User-Level Message Passing While intra-core message passing needs
assistance from the CPU driver to schedule the receiver, inter-core message
passing is implemented entirely in user-space. Connection set-up in UMP is
done with the help of both monitors on the two involved cores, where the
client sends a frame capability to the server. This shared frame then is used
to communicate by using cache-coherent memory reads and writes.

2.1.5 Flounder

Programmers can specify their channel type in the Flounder interface descrip-
tion language. This provides a uniform interface for sending and receiving
messages using the different interconnect drivers. The Flounder compiler
generates function stubs that abstract away the message marshaling as well
as the underlying transport.

Besides plain messages, Flounder also offers the notion of remote procedure
calls. For every interface that defines remote procedures, Flounder also gen-
erates RPC client stubs that wait for response arrival.

2.1.6 Concurrent Programming in Barrelfish

There are two basic approaches for Barrelfish applications to run on multiple
processor cores: They can either use a shared-memory approach using the
Domain model among cache-coherent cores, or they can use an approach
based message-passing with multiple dispatchers running on different cores
without sharing memory. Shared-memory applications are typically using
Barrelfish’s domain infrastructure. There exists a port of the Wool task-based
work-stealing library [10] that is called libtweed. libtweed makes use of
Barrelfish’s domains, but otherwise is not well integrated with Barrelfish.

Very well integrated with Barrelfish is THC, an implementation of the AC
language extension [12]. THC however is designed to assist concurrent pro-
gramming when using asynchronous I/O, it is not a task-parallel library
that can directly be used to exploit parallelism multi-core architectures. Us-
ing THC-integrated Flounder stubs, applications can easily express which
code should run while a messaging-passing call is blocked.
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Chapter 3

Approach

In this chapter we present the design of our task parallel run-time system
we implemented in this lab project. The first part in Sections 3.1 to 3.3 dis-
cuss the general design in terms of scheduling, while the second part in
Section 3.4 discusses our integration with Barrelfish’s messaging infrastruc-
ture.

3.1 Model of Computation

The unit of execution in our run-time system is a task. Like threads, tasks
have an entry point and a stack frame for their local data. Unlike Barrelfish
threads however, the tasks in our run-time are cooperatively scheduled. Par-
allelism is achieved when a task spawns one or more child tasks. Those child
tasks may or may not be executed in parallel. In order to use the result com-
puted by a child task, the parent task can invoke the sync operation. This
will block the task until all spawned children returned. These primitives
allow parallel computing using the fork-join model, which fits a number of
divide and conquer algorithms: the problem is divided into sub-problems,
which are solved by forked child tasks. Then, the parent task joins all sub-
tasks back together and combines the solution, which to be returned to the
caller.

It should be mentioned that the general design described in this section is
inspired by Cilk and similar work-stealing run-times. This model of compu-
tation has been analyzed in related work, see Section 6.2.

3.1.1 Task Scheduling

As mentioned above, tasks are not preempted, we implement cooperative
scheduling. In the absence of I/O operations, during task execution the
scheduler is only invoked during spawn and sync operations, where the
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3.2. Run-Time Structure

scheduler can decide if other tasks are to run. Our scheduler is a classi-
cal work-stealing child-first scheduler: If a task spawns a new child, we will
always execute the new child first. The parent is pushed into a queue of
runnable tasks and can get stolen by an idle scheduler running on a differ-
ent core. Every task knows the number of child tasks currently spawned, as
well as the identity of its parent task. When a task returns, it decrements
the children counter of its parent task. If a parent calls sync after all chil-
dren have already returned, it can continue. Otherwise the parent will yield
to the scheduler and the last child to return will resume execution of the
parent.

We decided to invoke an implicit sync operation after the entry function of
a task returns. This avoids dangling pointers in child tasks, as we free the
data associated with a task as soon as it returns.

We run a separate task scheduler on each core, every scheduler has its own
double ended queue of runnable tasks. If a new child task is to be executed,
the parent is pushed into the queue at the bottom. Once a task blocks or
returns, the scheduler will pop the next runnable task from the bottom of
the task queue. If the local task queue is empty, a scheduler will try to steal
work from a randomly chosen remote scheduler. The stealing operates on
the top of the queue. In a typical fork-join workload, the task at the top of
the queue is not only the oldest task, but also a task with a high probability
of spawning a lot of new child tasks.

3.2 Run-Time Structure

To utilize the available processor cores, our run-time system creates its own
Barrelfish domain by spawning one dispatcher per core. These dispatchers
are part of the same address space, which implies that our run-time system
requires cache-coherent hardware.

We run one instance of our scheduler on each core. This means that ev-
ery dispatcher decides on its own which tasks are to be scheduled. Every
scheduler has its own task queue, but a scheduler can steal work from re-
mote dispatchers within the same domain. Communication between the
dispatchers of our run-time system is implemented using shared memory.
As explained in the next section, every dispatcher in our run-time system
can be shut down, which means it will not execute any more tasks on that
core. Shut down dispatchers can be restarted again. Additionally, every
dispatcher will send and receive messages on behalf of the tasks that are
running the run-time system. This is further explained in Section 3.4.
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3.3 Dynamic Core Allocation

One requirement for our run-time is that it needs to adapt to addition and
removal of processor cores dynamically. As of the time of writing, support
for processor hot plugging was recently added to Barrelfish. If a core is
removed, the CPU driver together with all running dispatchers on that core
are virtualized on a different core.

The current implementation of multi-dispatcher domains in libbarrelfish
does not support adding or removing dispatchers at run-time. Thus, we only
create and terminate the scheduler threads dynamically, we never destroy
the actual dispatchers.

Adding a new scheduler core to the run-time system is trivial: We create a
new scheduler thread on the newly added core, the thread will initialize its
own state and as soon as it is ready, try to steal work from other schedulers.

Removing a scheduler requires a bit more work, but in the absence of mes-
saging is still relatively easy. See Section 3.4 for the additional work needed
to remove a scheduler with the presence of Flounder channels.

A scheduler can be notified about its removal by a boolean flag which can
be set by other threads. Once the currently running task yields the processor
to the scheduler, the scheduler will check the flag and initiate its shutdown.

If the scheduler was about to spawn a new task, it needs to make sure
that both the parent and the child end up in it’s task queue. Then, it can
just terminate the scheduler thread. The task queue (among other shared
scheduler state) is not destroyed when the scheduler exits, it keeps being
accessible by other schedules. Once another scheduler gets idle and would
start stealing work from other cores, instead of stealing a single task, it can
take over ownership of the left-over task queue.

3.4 Messaging

This section describes the design towards integrating Barrelfish’s messaging
infrastructure with the run-time system. In the thesis report, the result of
integration is interchangeably called as a messaging system.

3.4.1 Goals

Before specifying the actual design, we will define goals which the mes-
saging system should fulfill in the ideal case. The goals are listed in no
particular order.
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Integration with Barrelfish

The Barrelfish OS uses messaging for interprocess communication due to its
multikernel nature. Therefore, to take an advantage of the existing Barrelfish
services, the tasks running inside the run-time system should be able to:

• Establish a connection with a service.

• Send a message (or request) to a service.

• Receive a message (or response) from a service.

Most of the Barrelfish services are accessible via Flounder generated stubs,
therefore the messaging system should be compatible with Flounder.

Non-Blocking Behavior

In order to fully utilize the scheduler thread, a task cannot block the entire
thread when communicating with a service. Thus, execution of the task
needs to be deferred and the other task has to be scheduled instead.

In terms of Flounder, exporting a connection, binding to the connection and
sending a message (in a case of non-RPC connection) are non-blocking asyn-
chronous operations. Therefore no special treatment is needed. However, a
receiving is handled via waitsets and the access of which might block.

Transparent Migrations of Channels

The run-time system is able to react to changes in allocation of hardware re-
sources (particularly in CPU topology) by adding or removing a scheduling
dispatcher which results in relocating tasks.

Barrelfish does not support migration of channels, therefore we need to en-
sure that after removal of a core any channel belonging to the core is re-
opened on the new core in the background.

The migration should not require any explicit handling in the application
code on both sides, therefore it has to be abstracted out.

3.4.2 Support for Migrating Tasks

Task relocation might also happen frequently due to work stealing which
either implies that any established channel has to be relocated as well, or
that messages on that channel are forwarded inside the run-time system.

A migrated task should not need to handle this case explicitly, the message
forwarding or connection reestablishment should happen transparently.

11
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Easy-to-Use Model

Ideally, there should be no changes required for existing messaging inter-
faces which are based on Flounder generated stubs. For example, a task
could communicate with an existing service directly via Flounder function
stubs without any wrapper involved.

3.4.3 Design

A design of the messaging system is mainly influenced by a constraint that
Barrelfish does not support channel migrations and implementing it would
require to modify the internals of Flounder. For this reason, we decided to
build the messaging system on top of a custom Flounder interface which
means that the existing services have to be changed to be able to communi-
cate with tasks. However, despite breaking the compatibility, such approach
gives us a freedom when deciding on a messaging model.

Model The usage of Flounder implies client-server model for connection
establishment, which results that in the beginning one side acts as a server
and the other as a client. Such model resembles stream-oriented Berkeley
(or BSD) sockets [17]. Therefore, to not reinvent the wheel and to not
overcomplicate we decided to be consistent with this model. We support
the following operations:

• Export - prepare the Flounder interface for incoming connections which
includes registering the interface iref in nameservice.

• Accept - notify a receiver about the incoming connection.

• Bind - connect to a given interface which results in opening a new
channel.

• Send - send a message over the channel.

• Receive - receive a message over the channel.

The listed operations can easily be mapped to the generated stubs that are
created from a custom Flounder interface.

It is worth noting that the operations are bi-directional in a sense that they
can be used by both - domains using our run-time system and traditional
domains which do not use our task parallel run-time system.

Message Forwarding The other influencing fact is that a task might migrate
relatively often due to the work stealing and the cost of the stealing would
increase if channels of the task have to be reopened per each theft. As a
consequence, a message forwarding mechanism has to be introduced.

12
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The main idea of the forwarding is that a channel is owned by the dispatcher
on which a task has been running during the connection establishment.
When a task migrates because of work stealing, it issues it requests the
dispatcher owning the channel to send a message. In a case of receiving,
the dispatcher owning the channel receives a message and forwards it to the
receiving task.

Such forwarding mechanism ensures that if tasks migrate among the schedul-
ing dispatchers, established channels do not have to be reopened.

Channel Migrations In a case of a scheduling dispatcher is removed due to
resource reallocation, all its owned, open channels have to be reestablished
on a successor core. The exist two types of channels:

• Server Channel - a channel of a server task, i.e. a task created this
channel by issuing a export operation.

• Client Channel - a channel of a client task, i.e. a task created this
channel by issuing a bind operation.

Each channel type reestablishment is handled separately. The reestablish-
ment is driven by a protocol based on Flounder interface messages and is
hidden from applications code.

Server Channel When a channel has to be reestablished because of dynamic
core reallocation, and the task creating the channel was acting as a server,
the following operations are done:

1. Re-export the interface on the successor dispatcher.

2. Notify all server’s clients about migrations.

3. Wait until all clients have reconnected and have notified the server
about the reconnection.

Client Channel The client type channel reestablishment is simpler than the
server type as of operations needed:

1. Re-bind connection to a server.

2. Notify the server that the client is re-binding a existing connection

Because of the re-binding notification, initial client connection establishment
in the interface we support should consist of:

1. Bind to a server interface.

2. Notify the server that a connection is new.

Otherwise a server could not distinguish between a new connection estab-
lishment and an existing connection reestablishment.
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Blocking As it was mentioned in Section 3.4.1, the messaging system does
have blocking operations such as receive. To avoid blocking of the schedul-
ing thread, a receiving task should notify the scheduler that it will block
if there are no messages in a particular channel. Meanwhile, the scheduler
can block the task and remove it from the run-queue. The unblocking, i.e.
placing the task back to the queue, happens when a dispatcher receives a
message on a channel which belongs to the blocked task.

3.4.4 Alternative approaches

While designing the messaging system we have considered alternative ap-
proaches which we discuss briefly.

Actor Model

The message passing itself can be implemented either via channels [14] or
via actors [13]. In the later approach, each process is globally identifiable
and exports a publicly accessible storage which is used to receive a message
from any process. Meanwhile the former approach avoids enumerating pro-
cesses and instead, a communication between any process pair is done via
an explicit channel established in advance.

Although the actor model is tempting for application developers due to
an easy-to-use messaging system, it does not come along with Barrelfish’s
channel-based nature. To support it, we would have to introduce a notion
of a process identifier and also a registry for mapping it to iref in our case.
Also, before sending a message, a channel would have to be established, if
it has not existed before. For these reasons, we have ruled it out from our
design.

Support Blocking Behavior with Waitsets

Instead of creating a wrapper for every messaging operation to ensure the
task scheduler is informed about blocking, a different approach would be
based on changing an existing primitive of Barrelfish events - waitset. The
waitset is the source of blocking behavior in Barrelfish, in case there are no
events to processed, it calls Barrelfish’s thread scheduler to block the current
thread.

Thus, the waitset implementation could have been generalized not only to
support calls to Barrelfish’s thread scheduler, but also to different schedulers
such as our task scheduler.

This way, tasks could directly call event dispatch on a waitset associated
with a tasks channel, blocking the task until events are triggered on that
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waitset. We did explore this approach further during this lab project by de-
signing and implementing an interface to decouple waitsets from the thread
scheduler.

However, the problem with this approach comes from the need to support
migrations. To use this model, we would have to change Flounder internals
to support channel migrations. The change was decided to be out of the
question in this thesis and therefore we also discarded our changes to the
waitset implementation.
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Chapter 4

Implementation

Typical user-level schedulers in traditional operating systems depend on
kernel-level threads to exploit hardware parallelism of multi-core systems.
Having multiple kernel-level threads also allows such run-times to execute
blocking operations without blocking the whole process, because the kernel
can schedule a different thread for that process.

The concept of dispatchers in Barrelfish however allows for more powerful
user-level schedulers. The kernel will notify a dispatcher if it got preempted,
thus allowing a dispatcher to schedule a different context if the previous one
is blocked. As mentioned in Section 2.1.2, the current Barrelfish threading
implementation is already based completely in user-space. In theory, a task
parallel run-time thus could replace the existing threading implementation
with a task scheduler. It would not need to rely on threads in order to
achieve parallelism and support blocking operations.

However, Barrelfish threads are too deeply entangled with the rest of
libbarrelfish. While the early phase of dispatcher initialization does not
assume the existence of multiple threads, later on in the lifetime of an appli-
cation, code assumes the existence of a thread scheduler. Examples of this
include the calls to the threading scheduler in the waitset implementation
or the usage of thread synchronization primitives for memory management.

Therefore, our run-time does not replace the current thread scheduler to run
directly on the dispatcher infrastructure. Instead, we rely on Barrelfish’s
waitsets which allow us to exactly control where and when blocking be-
haviour can occur.

Because we identified that we have no need to run directly on Barrelfish’s dis-
patcher machinery and thus do not depend on internals of libbarrelfish,
we decided to implement our run-time system as a separate library. This
decision allowed us to depend on other libraries instead. For example, we
consult the system knowledge base (SKB) to get the list of available pro-
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cessor cores. Doing this inside libbarrelfish would introduce circular
dependencies.

4.1 Run-Time Initialization

If an application wants to make use of our run-time system, all it needs
to do is to link against our run-time implementation, libtasks. We use a
GCC attribute to declare our own C constructor function. This means our
run-time initialization executes after libbarrelfish has finished its set-up
phase, but before the main() function is called. This enables us to perform
initialization before main() runs, allowing application code to directly issue
spawn and sync commands inside main().

During the initialization, we spawn one dispatcher on every available core
as part of the current domain, so all dispatchers share the same address
space. libbarrelfish’s domain implementation requires us to spawn a
dispatcher on every core before the actual scheduler threads are created. We
are however able to create and terminate scheduler threads running on those
dispatcher.

Except on the bootstrapping core, the newly created schedulers will have no
tasks to execute, thus trying to steal work from other cores. The bootstrap-
ping core will create a root task for the main function and treat it as the
currently running context. Once this root task spawns other child tasks, the
other schedulers do have actual work to steal.

4.2 Stack Management

Memory management optimization was explicitly not a concern in this lab
project. There are however lots of possible places for optimization in mem-
ory management for multi-core applications, typical multi-processor aware
memory allocators for example have per-core pools of memory blocks, in
order improve cache locality and to reduce global contention.

Stack Allocation The most heavy use of memory allocation in our run-time
system is the allocation of task stacks. We use one instance of libbarrelfish’s
slab allocator on each core to allocate task stacks, instead of using malloc.
We found that using a slab allocator improves performance, as we can pre-
allocate larger chunks of memory.

Because the stack of stolen tasks needs to be returned to the original slab
allocator, every dispatcher-local allocator is protected by a mutex. This lock
is taken when allocating or freeing stacks. However, as stealing does not
occur that often in balanced workloads, lock contention is typically not an
issue.
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We assume that the task stack grows downwards in the address space. Thus,
we place the task control block at the bottom of the stack. This allows us to
easily implement a stack canary as part of the task control block. This value
can be checked every time a task returns to the scheduler.

Note that we currently only support statically sized task stacks. Implement-
ing support for split or cactus stuck is a task for future work.

Context Switching Executing a new child also means executing the con-
text with a new stack. This is necessary so the parent task and its stack
can get stolen by another core. In order to do the stack switching, we use
setjmp/longjmp that are provided by newlib, Barrelfish’s libc. Standard
longjmp can only to be used to jump to already existing contexts. Therefore,
we rely on the internals of newlib’s jmp buf in order to be able to create a
new context. We do this by modifying the registers’ values stored inside a
jmp buf.

This approach is also discussed in an article called ”Portable multithreading”
[9], together with other portable approaches to user-level context switching.

4.3 Messaging

This section discusses implementation details of the messaging system we
described in Section 3.4.

4.3.1 Flounder Interface

As it was stated in the design Section 3.4.3, the messaging system is built on
top of the Flounder interface. The interface definition is presented in Figure
4.1. The meaning of each message type is explained in the later sections, but
it is worth noting that all defined messages are asynchronous.

The shown interface is used to generate a binding object (tasks binding).

1 interface tasks –

2 message client˙new(uint8 client˙coreid, bool rts);

3 message client˙reconnect(uint64 conn˙id);

4 message server˙response(client˙conn˙t req˙type, uint64 conn˙id,

5 errval resp˙err);

6 message notify˙client(uint64 conn˙id, iref new˙iref,

7 uint8 to˙coreid, uint8 from˙coreid);

8 message msg(string s);

9 ˝

Figure 4.1: Flounder interface for the messaging system (if/tasks.if)
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4.3.2 Messaging and Event Threads

In the section about message forwarding 3.4.3, we stated that a channel
should be opened on the scheduling thread which is running a task. To
simplify the task scheduler implementation, we introduced a messaging
thread and an event thread. There is one instance of the pair per each
of our run-time system dispatcher.

Messaging Thread The messaging thread is responsible for establishing
connections and accessing the binding objects. To avoid taking a lock on
a binding object, we decided to invoke operations on the binding objects
only inside the messaging thread, thus essentially serializing execution or-
der. Such operations are for example sending a message or notifying a client
about server channel migration should be run on that thread. This implies
that the messaging thread is the owner of all channels opened by tasks run-
ning on the same dispatcher.

Basically, this messaging thread loops while calling event dispatch on the
messaging waitset. This means it executes every closure that is triggered on
the messaging waitset, such as receive handlers for its channels. To enforce
the rule that all messaging related operations are executed on the messaging
thread, we invoke these operations by triggering a closure on the messaging
waitset. It implies that for example if a task wants to send a message, we
enforce execution of the send handler on the messaging thread by triggering
a closure on the messaging waitset assigned to that channel.

Event Thread As explained above, we implemented messaging operations
as events on the messaging waitset in the form of closures. Barrelfish al-
ready implements an event queue that allows queuing of events that are to
be triggered on a waitset. However, Barrelfish’s waitset must not be accessed
by remote dispatchers within the same domain. The current waitset imple-
mentation asserts that it is only accessed by the local dispatcher. This for
example allows it to disable the local dispatcher in order to achieve atomic-
ity of operations.

In our run-time system however we need to be able to trigger events on wait-
sets belonging to remote dispatchers. This occurs for example when a task
is migrated after creating a channel and then wants to invoke a send oper-
ation. The according send handler needs to be executed on the dispatcher
the task originated from. Therefore we need to be able to execute closures
on the messaging thread of a remote dispatcher.

In order to be able to trigger closures from remote dispatchers, we introduce
an additional layer of indirection by having our own event queue implemen-
tation that works together with the event thread. The event thread’s responsi-
bility is to consume the events put in the event queue and trigger them on
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the messaging waitset. If a task wants to invoke a messaging operation on
a remote messaging thread, it puts the according closure in the event queue
belonging to the remote dispatcher. The remote event thread then takes the
closure out of the event queue and triggers it on messaging waitset.

Our implementation relies on Barrelfish’s thread synchronization primitives,
as those are designed to be used by multiple dispatchers within the same
domain. The event thread blocks on a conditional variable in case the event
queue is empty, therefore it is only woken up if there is an event to consume.

4.3.3 Data Structures

We introduced two data structures, task handle that abstracts a Flounder bind-
ing (task binding), and task iref, which abstracts the iref that is used to refer
to an exported Flounder interface. The usage examples are shown in Sec-
tion 4.3.5.

task handle The structure (struct task handle) associates the binding ob-
ject. It is used during connection establishment by both connection sides.
The most important fields of the structure are the following:

1 // a reference to the binding object

2 struct tasks˙binding *binding;

3

4 // core id on which channel has been opened

5 coreid˙t core;

6

7 // a task which has been blocked while issuing

8 // some blocking operation on this handle

9 struct task *blocked˙task;

10

11 // buffer for incoming messages

12 void *mailbox;

13

14 // lock for accessing the handle

15 spinlock˙t lock;
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task iref The structure (struct task iref) is created when a server ex-
ports the interface. The fields include:

1 // interface reference for accepting binding requests

2 iref˙t iref;

3

4 // a task which has been blocked while waiting

5 // for incoming binding requests

6 struct task *blocked˙task;

7

8 // list of accepted, but not yet handled binding requests

9 struct task˙handle *accept˙queue;

10

11 // lock for accessing the task˙iref

12 spinlock˙t lock;

13

14 // core id on which interface has been exported and

15 // incoming binding requests have been handled

16 coreid˙t core;

17

18 // list of server’s clients (task˙handle)

19 collections˙listnode *connections;

4.3.4 Messaging Support Without Using the Run-Time System

We implemented the messaging system as part of our run-time system. How-
ever, we also offer an additional implementation that can be used by tradi-
tional applications that do not want to use our task parallel run-time. Appli-
cations linking against this libtasks msg can communicate with migrating
tasks that run in a libtasks domain. However, an traditional application
that does not use our run-time is not allowed to migrate itself to a different
core when using the alternative implementation in libtasks msg.

4.3.5 Operations

For the scenarios shown bellow, we consider only a case when both server
and client are running inside our run-time system, but not necessarily in the
same domains.

Exporting a Service

In order to receive binding requests, a server has to export the interface.
The export operation resides inside boundaries of a dispatcher in which the
server is running.

The operation is depicted in Figure 4.2 and is initiated when the server calls
the messaging system API function:
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Server Event Messaging Nameservice

tasks export

export cb

export handler

waitset chan trigger

nameservice register

Figure 4.2: Workflow for exporting a service (task msg export)

errval˙t task˙msg˙export(const char *service˙name,

struct task˙iref **t˙iref);

The function allocates and initializes task iref structure. Afterwards, it ex-
ports a service by calling Flounder generated stub function tasks export. One
of the parameters of the Flounder stub function is the export callback which
is executed asynchronously on a scheduler thread running the server. The
callback pushes a handler to event thread queue which is later on executed
on messaging thread. The handler registers a mapping from the service
name to the interface reference in the nameservice’s registry. We do this
nameservice register operation during the export in order to be able to re-
register it after a channel migration.

The returned task iref is used in later operations.

Binding to a service

To establish a communication channel between a server and a client, the
client has to initiate a binding procedure by using:

struct task˙handle *task˙msg˙bind(const char *service˙name);

The function creates task handle structure for the client. Afterwards, it blocks
a task by entering a scheduler context (task handle.blocked task is set to the
client task) and from scheduler context it triggers a handler to be executed
on the messaging thread. The handler on the messaging thread does two
things: First, it performs a lookup for the iref using the service name. This
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is done on the messaging thread, because the nameservice client implemen-
tation is not thread-safe, and we already register names in the messaging
thread. Second, the handler executes the tasks bind stub function. This
function initiates the Flounder binding procedure and later on executes a
binding callback which notifies a server about new connection by sending a
client new message. The server replies with a server response message which
contains a connection id. The connection id corresponds to an address value
of a reference to task handle on the server side. Afterwards it unblocks the
task by putting it back to the scheduler’s run-queue.

In order to be notified about new connection, the server has to call the API
function:

struct task˙handle *task˙msg˙accept(struct task˙iref *t˙iref);

The function blocks the server task if there are no pending connections in
task iref.accept queue.

On the server side, after the client has initiated the binding, messag-
ing thread of the server executes connection establishment callback. The
callback function appends the connection (the binding object) to server’s
task iref.accept queue and notifies the server task by unblocking it (if it has
been blocked).

The binding workflow is shown in Figure 4.3. For brevity, we have excluded
event thread which takes part when any task wants to request messaging
thread to execute a closure.

Sending

A message can be sent by either a server or a client. The message is typed
and the current implementation only supports a string type. The following
API function should be used in order to send the message.

errval˙t task˙msg˙send(const char *message);

It is worth noting, that sending operation blocks a sending task. It is due
to our decision that only messaging thread is allowed to issue operations
on the binding object. Therefore, in order to return an error to the user, the
sending task has to wait until the messaging thread has performed the send.

Receiving

Receiving is done by the following API call:

char *task˙msg˙recv(struct task˙handle handle);
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Server Messaging (server) Messaging (client) Client Nameservice

task msg accept

Blocks the taskBlocks the task

task msg bind

bind handler

Blocks the taskBlocks the task

nameservice lookup

iref

tasks bind

bind cb

client new

server response

unblock

unblock

Figure 4.3: Workflow for binding (task msg accept and task msg bind)

The function might block a caller task if a message queue inside a han-
dle (task handle.mailbox) is empty. A message is received by the messaging
thread. The receive handler determines the handle to which the message has
to be appended to, by inspecting the binding object which stores a pointer
to the handle. If there is a blocked task, then the thread will push the task
back to scheduler’s run-queue.
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Channel Migrations

In order to support a complete shutdown of a dispatcher on which the sched-
uler, the messaging and the event threads are running, all channels opened
on the messaging thread have to be migrated on a remote messaging thread.
The remote successor thread is chosen randomly.

The migration consists of multiple steps:

1. A remote messaging thread receives via event thread a list of server
services which have to be re-exported, and a list of client connections
opened on a local messaging thread.

2. The remote thread re-exports all services.

3. The remote thread re-establishes all client type connections belong-
ing to the local thread by re-binding them and afterwards by sending
client reconnect message.

4. The remote thread requests the local thread to notify all client con-
nections of re-exported services. Notification is done by sending a
notify client message.

5. The remote messaging thread notifies the local messaging thread via
event thread about migration completion which results in shutdown
of the local messaging and event threads.

After a client has received notify client message, it re-binds its connection by
new iref and sends client reconnect message indicating that the connection is
not new.

The server type channel migration workflow is depicted in Figure 4.4, while
the client type channel migration in Figure 4.5. For simplicity reasons, the
participation of event thread and nameservice is not included.
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Server Messaging (local) Messaging (remote) Client Domain

migrate channels

reexport channels

notify server connections

notify client

reconnect

client reconnect

server response

Figure 4.4: Migration workflow for server type connections. The local thread is migrating to

the remote thread. The Client is running on some other remote dispatcher and is connected

to Server which will be migrated.

Client Messaging (local) Messaging (remote) Server

migrate channels

rebind client connections

client reconnect

server response

Figure 4.5: Migration workflow for client type connections. The local thread is migrating to

the remote thread. The Client is running on the local to-be-migrated dispatcher, while the

server is running on some other remote dispatcher.
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4.3.6 Limitations

The implementation of the messaging system is not ideal and it faces limita-
tions described bellow.

Performance When designing the messaging system, we did not take in
mind the need for performance. It is obvious, that the usage of messaging
threads are the bottleneck of the system.

Security Due to simplicity reasons, as it was stated before, the connection
id is a reference to task handle on the server side. Therefore, in malicious en-
vironment, a client could overtake any connection by sending client reconnect
with a foreign connection id.

Closing connections The current implementation does not support closing
connections. Therefore, in the long run the whole run-time system might
leak a memory and slow down the procedure of migration because of in-
creasing number of connections which have to be re-established. It should
be noted however that most Flounder interconnect driver also do not sup-
port proper connection tear-down.

Queuing incoming messages and incoming connection requests The cur-
rent implementation of the messaging system does not queue incoming mes-
sages. It means that the latest arrived message always overwrites a previous
message. To support that we need to store incoming messages in a queue.

The same applies to incoming connection requests. Only one arriving re-
quest is stored at the same time.
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Chapter 5

Evaluation

In this chapter we present the benchmarks we performed to evaluate our run-
time system. In Section 5.1 we port two parallel programs to our run-time
system. In Section 5.2 we measure and analyze the overhead our run-time
system imposes, and in section Section 5.3 we evaluate the performance of
our messaging bindings.

All the benchmarks except for merge sort were done on AMD Italy (Opteron
275) architecture machine consisting of 4 cache-coherent cores placed on
two sockets. The CPU frequency of the machine is 2.1 GHz. The merge
sort benchmarks were run on Intel Ivy Bridge architecture machine. The
machine has 20 cache-coherent cores spread on two sockets and clocked at
2.50 GHz.

5.1 Parallel Programs

For the experiments in this section, we ported two examples of multithreaded
algorithms from the book ”Introduction To Algorithms” [7] to our run-time
system. In order to be useful for parallel applications, our run-time sys-
tem needs to scale with the number of cores. Therefore in the following
experiments, we measure the speedup S that is gained when allocating p
processors to the run-time system, compared to when running it sequen-
tially. We define speedup as S = T1

Tp
, where T1 is the execution time on a

single core and Tp is the execution time on p cores.
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5.1.1 Fibonacci

One example program often used to present the API of typical task paral-
lel frameworks is the following calculation of the nth Fibonacci number, as
shown in Figure 5.1.

The algorithm presented here itself is obviously a poor choice to for the
actual problem. But it still can be used to evaluate the scalability of a task
parallel language: In each recursion step, the two spawned child tasks will
spawn an unevenly number of child task themselves, which means that the
workload is not perfectly balanced. Additionally, there is not much other
work done inside each recursive step, so this experiment can be seen as a
stress test for our run-time system.

fib(n) –

if n ¡ 2 –

return n;

˝

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return x + y;

˝

Figure 5.1: Program calculating the nth Fibonacci number

5.1.2 Merge Sort

Merge sort is a typical divide and conquer algorithm and thus can be eas-
ily implemented by a task parallel framework that supports the fork-join
pattern.

For this benchmark we ported a merge sort implementation to our task par-
allel run-time system, the code is depicted in Figure 5.6. Note that even
though the merge step could be parallelized further, in our benchmark the
merge step is sequential and has to allocate additional memory in order to
merge the two arrays.

We ran our merge sort implementation on multiple machines with different
core configurations, sorting 100 million integers in each run.
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mergesort(array, left, right) –

if left ¡ right –

mid = (left + right) / 2;

spawn mergesort(array, left, mid);

spawn mergesort(array, mid+1, right);

sync;

merge(array, left, mid, right);

˝

˝

Figure 5.2: Parallel merge sort algorithm

5.1.3 Results

The result for the Fibonacci program is shown in Figure 5.5. Because the
tasks themselves do not much work, this experiment really shows the over-
head our run-time system imposes, as the maximum achieved speedup is
only about 1.5 for four cores. We analyze this overhead further the next
section, Section 5.2.

Figures 5.3 and 5.4 show the speedup for parallel merge sort. Because in
this experiment the tasks actually do heavy work, the speedup is much
closer to linear speedup, especially for low core counts. As stated above,
parallel merge sort does have some sequential part, so even without run-
time overhead, perfect linear speedup could not be achieved.

These experiments show that there are opportunities to improve scalability.
For example, our current task queue implementation currently needs to take
a lock for every manipulation. There are many work-stealing queue algo-
rithms that reduce this kind synchronization which could be implemented
as future work.

Note that the sequential execution T1 is also based on our run-time, i.e. we
create a new stack for every recursive call. This is of course more expensive
than just normal function calls, but allows task stealing on multi-core setups.

30



5.1. Parallel Programs

1 2 4 6 8
Number of Cores

1

2

3

4

5

6

7

8
A
ve
ra
ge

Sp
ee
du
p
T

1

T
p

Merge Sort on Intel Xeon E5-2670 v2

linear speedup
actual speedup

Figure 5.3: Speedup for merge sort on 100 million integers for up to eight cores.
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Figure 5.4: Speedup for merge sort on 100 million integers for up to four cores.
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Figure 5.5: Speedup for recursive calulation of the 35th Fibonacci number
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5.2 Run-Time Overhead

To evaluate the overhead our run-time system imposes, we implemented a
small profiling framework. By instrumenting the code to perform timing
measurements, the profiling data shows where time is spent inside our run-
time system. For the application code in this experiment we use a stress test,
where each task spawns two child tasks and immediately syncs afterwards.

To be able to properly account the execution time inside our run-time sys-
tem, we ran this experiment on a single core, because of limitations in our
profiling code. We are currently not able to calculate the amount of time
spent outside the instrumented code when using multiple cores.

stress(n) –

if (n == 0) –

return;

˝

spawn stress(n-1);

spawn stress(n-1);

sync;

˝

Figure 5.6: To measure the overhead imposed by our run-time system, we use this stress test

that spawns 2n child tasks

For this experiment, we set n to 24, meaning in each run we spawn 224 tasks
in total.

5.2.1 Results

The result of this experiment can be seen in Figure 5.7. Because the stress
test application does nothing else than spawning tasks, most of the execution
time is spent inside the run-time system, where our profiling code is able to
account execution time for the individual subsystems.

The fraction of execution time is quite evenly distributed. The largest frac-
tion of time, namely 23%, is spent for context switches from and to the
scheduler. These context switches occur when spawning a new task or when
syncing on child tasks.

The second largest part is memory management, 14% are spent for allocating
and freeing the task structs, including the stacks. Additional 3% are spent
on initializing the allocated memory.

Task queue manipulations amount only 7% of the work, but note that this
experiment was run on a single core. The percentage spent for work queue
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manipulation does increase when using multiple cores because of synchro-
nization overhead.

The remaining 16% are spent in other scheduling related code, i.e. in the
state machine of our scheduler function.

Run-time Overhead

0% 10% 20% 30% 40% 50% 60% 70%
Percentage of Execution Time

application

run-time 127 11 163

37

3 47

outside run-time
struct initialization
stack allocation
stack freeing
context switch from scheduler
context switch to scheduler
queue push
queue pop
scheduler

Figure 5.7: Breakdown of the overhead the run-time system imposes during the execution of

the stress benchmark on a single core. The upper bar shows the relative amount of time spent

in application code, the lower bar shows the fractions of time spent inside the different parts

of our run-time system.
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5.3 Messaging

To evaluate the messaging system, we implemented a client and a server
listed in Figure 5.8.

In all experiments presented below, we measure a latency. The latency can
be defined as the amount of time a message takes to be received by the
server.

server(n) –

t˙iref = task˙export(service˙name);

handle = task˙accept(t˙iref);

for (i = 0; i ¡ n; i++) –

msg = task˙msg˙recv(handle);

task˙msg˙send(handle, ””);

˝

˝

client(n) –

handle = task˙bind(service˙name);

for (i = 0; i ¡ n; i++) –

task˙msg˙send(handle, i);

msg = task˙msg˙recv(handle);

˝

Figure 5.8: The client and the server for measuring the latency of the messaging system.

5.3.1 Message Forwarding Latency Breakdown

In order to support messaging even in case of task migration, we imple-
mented functions for sending and receiving messages that are directed to
the right cores inside the run-time system.

However, such a forwarding system naturally imposes some additional over-
head. In this experiment, we measured and analyzed the latency for send-
ing a message from a hypothetical client application to a server application.
The client and the server are using our run-time system, but are running in
different domains on different cores, with only one core allocated to each
run-time system. The actual message therefore is sent over UMP channels.

Results The overhead of using our messaging implementation is quite
high, as shown in the analysis in Figure 5.9. The amount of time spent
for actual message transfer using Flounder channels is not significant. The
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vast majority of the time is spent before executing send and receive handlers
on the messaging thread. This can be explained as follows:

A send request by a task is processed by a send handler on the messaging
thread. In this experiment the scheduler thread is running when a send
request is issued, thus some time passes before the messaging thread is
actually scheduled and executes the send handler.

The case where a task wants to send a message on the local messaging thread
could be optimized as future work. This would reduce the sending latency
shown in this experiment.

However, even with the optimization, in the case where a message is sup-
posed to be sent from a remote thread this latency overhead would still
occur: The remote processor might be busy executing a task, thus creating
latency between the send request and the actual send execution.

The same effect can be observed in this experiment when receiving a mes-
sage: Because the receiving core is busy executing a task, execution of the
receive handler is stalled. This also is the source of the high standard devia-
tion in Figure 5.9.

Note that this kind of problem is not specific to our implementation [2].
Having cooperative scheduling inevitably introduces these kinds of laten-
cies, because the scheduling unit supposed to react to the event will not
get any execution time as long as any another scheduling unit currently is
utilizing the time slice without yielding the processor to the scheduler.
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Messaging Latency Breakdown
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send event in waitset
send handler
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tasks receive mailbox

Figure 5.9: Breakdown of the overhead of our messaging implementation when sending a

message from a client task to a server task in a remote domain. The upper bar shows the

time spent for sending a message in the client domain, the lower bar shows the time spent for

receiving in the server domain.

Detailed description of individual parts for messaging latency:

tasks send stub
This part shows the amount of time spent in the task msg send stub that is called by
the application code. This stub puts the message into the event queue.

event queue
The amount of time spent in the task event queue before the send handler is triggered
on the messaging waitset.

send event in waitset
Shows the average duration it takes until the message thread executes the send han-
dler after the event was triggered in the waitset.

send handler
Execution time of the send handler including the duration of the send operation on
the messaging thread.

receive event in waitset
Time spent before the receive handler is executed on the messaging thread. This
includes the time for the actual message transfer.

receive handler
Execution time of the receive handler function on the messaging thread.

tasks receive mailbox
Time the message spends in the inbox of the receiving task. This is the time it takes
after completion of the receive handler until the receiving task is scheduled and exe-
cuted.
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5.3.2 Messaging Latencies per Different Receiver Configurations

For this kind of experiment we measured the latency when the client is
running on core 1 as a task inside a run-time system domain, while the
server is on core 0 and belongs to:

• Remote run-time system domain.

• The same run-time-system domain as the client.

• Domain not using our run-time system, but libtasks msg instead.

Results The results are presented in Figure 5.10. As it can be seen, the
lowest latency is when the server is not using our run-time system, i.e. the
server runs on a regular Barrelfish thread. This is so due to the fact that
the receiving on the server side does not involve the event and messaging
threads. Thus, the message path is shorter.

The latency in a case of the server residing in the same run-time system
domain is roughly 10 times higher, because the client and the server tasks
are being stolen multiple times as soon as they are unblocked. Additionally
both cores are trying to steal work from each other, thus wasting cycles that
are not available for messaging instead. As explained in Section 5.3.1 this
kind of latency cannot easily be reduced in cooperatively scheduled work-
stealing schedulers.

5.3.3 Migration Latencies

To measure an overhead of the client task migration, we decided to use the
configuration when the server runs outside of our run-time system and the
client runs in a run-time system domain which allocates two cores. Such a
setup mimics typical situations, because a client tasks will probably interact
with existing Barrelfish services which do not use our run-time system.

After 50 client messages, the client removes the dispatcher which runs on
core 2. The removal results in the migration of client channels to core 3.

Results As it can be seen from Figure 5.11, the latency peaks at a time
when the dispatcher is stopping. After the migration is finished, the latency
becomes roughly the same as one before the migration.

The are some fluctuations in the latency before the migration. This is due to
the work stealing, because in the beginning there are two active schedulers
which might steal the client task.
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Messaging Latencies
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Figure 5.10: One-way latencies for sending a message when receiver is running on different

domains. The client is a run-time system task and running on core 1, while the server is running

on core 0 and is subject to different domain configurations.
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Figure 5.11: Message latency during client channel migration from core 2 to core 3. The

yellow area denotes the period of the migration.
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Chapter 6

Discussion

6.1 Unresolved Issues

Dynamic Core Allocation In the current implementation of our task paral-
lel run-time system we depend on libbarrelfish’s support for Barrelfish’s
domains. This means that actual addition of a new core is not possible, as
libbarrelfish currently does not support adding new dispatchers while
other threads are running. Therefore we currently allocate all available cores
for our run-time system at initialization. A similar case is the removal of
cores: Ideally, we would destroy the dispatcher associated with the removed
core. But in order to be able to re-enable a core again, we need to keep
the dispatcher alive, as we cannot create dispatchers dynamically. In or-
der to give up a processor core, we currently only terminate the scheduler
thread, meaning that our run-time system does not use that core to execute
any work. But we keep the data structures associated with the dispatcher
around.

6.2 Related Work

Work-Stealing Schedulers As described in section Model of Computation
(3.1), our run-time system implements a typical work-stealing scheduler.
The concept of work stealing is described in great detail by Blumofe and
Leiserson in [6]. The model of for multithreaded computation presented
in the paper consists of a set of threads, where each thread itself has an
ordered list of instructions. Dependencies between threads are introduced
by spawn and syncs: An instruction can spawn another thread, where the
first instruction of the spawned thread cannot be executed before the spawn
instruction. Threads can also wait for other threads to complete, so the suc-
cessor of a sync instruction will not be executed before the spawned threads
are completed.
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These theoretical ideas were applied by Cilk [5] [11], an implementation of
a task parallel run-time that was also the main inspiration for our run-time
system. It introduces additional keywords like spawn and sync into the C
language to allow the creation of new threads according to the model above.
Cilk also introduces the concepts of inlets and aborts. Inlets can be used for
thread-safe consolidation of results computed by the spawned tasks, while
aborts can be used to terminate children tasks early.

User-Level Task Schedulers In contrast to other task parallel run-times sys-
tems such as Cilk or Go, our run-time system is heavily integrated with the
Barrelfish operating system. For scheduling this means that we can easily
control which physical cores are to be used to execute the tasks. In a paper
called ”Analysis of the Go runtime scheduler” [8] the authors describe how
Go uses kernel-level threads to distribute work among physical cores. One
problem with this approach is that system calls will block such kernel-level
threads for the duration of the syscall, even though the thread could exe-
cute other user code in the mean time. One proposal described in the paper
solves this problem by introducing an additional data structure that maps
kernel-level threads to physical cores. When a blocking syscall is invoked,
the kernel-level thread designated to execute that syscall ensures that at least
one other kernel-level thread is runnable on that physical core. This ensures
every physical core is fully utilized by the run-time system.

Scheduler Activations The common problem in N:M user-level threading
is addressed with the concept of scheduler activations presented in [3]. Sched-
uler activations provide applications with a number of virtual processors on
which applications can run their threads. In the case of blocking kernel-level
events, the kernel performs an upcall to the application to inform it that one
of the applications virtual processor was blocked. This notification allows
the application to execute other code on that virtual processor. When the
blocking syscall returns, the application is preempted and gets an upcall
which informs it about the completion of the syscall. Barrelfish’s concept
of dispatchers, as described in Section 2.1.2, is based upon the concept of
scheduler activations.

The run-time system presented in this thesis benefits from Barrelfish’s dis-
patchers in two ways: First, the combination of dispatcher upcalls and wait-
sets gives our run-time system control over blocking operations such as mes-
sage receive. Second, because Barrelfish dispatchers are bound to the CPU
driver they were spawned on, our run-time system is always informed about
the number of available cores.

Channel Migration Support for dynamic allocation and removal of pro-
cessor cores is not often found in task parallel runtimes. However, CPU
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hotplug in operating system kernels is a problem with some similarities:
When a core is removed from the system, the workload of that core needs
to be offloaded to other cores. In the recently added support in Barrelfish
[1], a designated CPU driver takes over whole state of the removed core.
In our run-time system, an idle dispatcher can take over the whole work
queue of a removed dispatcher. Another similarity is interrupt migration in
kernel, which has the same constraints as the channel migration in our run-
time system. Like interrupts, Flounder channels cannot be migrated lazily,
otherwise interrupts, respectively messages, would be sent to a removed
core. In Barrelfish, as well as Linux [15], device interrupt handlers need to
be re-registered on a new core and the device needs to be programmed to
send the interrupts to the new core as well. This is conceptually similar to
our re-connection protocol shown in section 3.4.3, where a server channel
is re-exported on the new core, and all the clients are notified about that
change.

6.3 Future Work

6.3.1 Coreboot Integration

As of the time of writing, Barrelfish recently gained the capability to decou-
ple processor cores and CPU drivers. This means that processor cores can be
dynamically removed, while kernel and applications running on that core
are migrated to a different core. One task for future work would be to in-
tegrate our task library with this system, so that our run-time system does
not try to spawn work on removed cores anymore.

6.3.2 Improved Language Constructs

The current interface of our task parallel run-time system only provides the
spawn and sync operation. Both these operations are currently implemented
as library functions. The spawn function currently takes a function pointer
as the entry point for the newly created tasks. Other language extensions
such as Cilk or AC introduce additional keywords instead to improve er-
gonomics. As future work, a plugin for the GCC oder LLVM compiler could
be implemented. We did not have time to explore such extensions in this
thesis.

An alternative approach to improve ergonomics would be the use of C11
generics selections: Our current implementation of task spawn requires the
task entry function to take a void pointer as the sole argument and also
return a void pointer as its return value. This forces the programmer to
cast values manually, which can be tedious and error-prone. Using C11
generic selections, it would be possible to implement spawn as a type-safe C
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macro that could support common argument and return types besides void
pointers.

Additional Language Constructs Our run-time system is in parts inspired
by Cilk. Besides spawn and sync, Cilk also offers more advanced language
constructs, including inlets and aborts.

Inlets A common pattern found in fork-join style programming is the ac-
cumulation of return values of spawned child tasks. Cilk simplifies this by
providing inlets. Inlets are inner functions, typically closures, that run on the
parent’s frame when a child returns. The usage of inlets can be illustrated
by the following example: Assume one would like calculate the maximum
return value of all spawned task in a designated variable on the parent’s
frame. Using inlets, the inlet function would take the return value of a child
as its argument, compare the argument with the current maximum and re-
place the maximum value if necessary. Because the inlet is executed for
every returning child task, after invoking sync, the maximum return value
can be read out by the parent. Cilk guarantees atomic execution of inlets,
thus no synchronization is needed in the inlets body.

Support for inlets in our task parallel run-time system would be a case for
future work, however it should be straight-forward to implement: The GNU
C Compiler (GCC) already has support for nested functions that can access
variables on the frame of the outer function. While those nested functions
cannot outlive the parent, which is not needed for inlets, they can be passed
around as function pointers. Thus, inlets could be implemented as function
pointers to a nested functions. For atomic invocation, there are two possible
approaches, eager execution or lazy execution. For eager execution, the
inlet pointer would be stored in child task struct and directly executed by
the child as soon as it returns. In order for this approach to support mutual
exclusion, a shared lock on the parent would need to be taken, to avoid
having two inlets running on the same parents frame at the same time. In
the lazy execution approach, every child that return would store its inlet
invocation as a closure in the parents struct. The last child to return would
not only schedule the parent for execution, but first execute all queued inlet
closures in a sequential fashion.

Aborts Cilk allows a parent task to abort all existing child tasks. This fea-
ture is useful for search algorithms that terminate early if the result is found.
In Cilk, aborts can be triggered inside inlets, thus to actually support early
termination, inlets would need to be implemented using eager execution.
Supporting aborts in our run-time system would be considerably more work.
In Cilk, the run-time marks all currently spawned tasks as aborted and noti-
fies any processor that is currently executing an aborted task. Non-running
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aborted tasks are discarded when taken out of the work queue. We currently
only store a link to the parent in the child, but not vice-versa, and additional
work would be needed to implement the abort notification mechanism.

6.4 Conclusion

In this thesis we presented a task parallel run-time system for the Barrelfish
operating system. Our library offers applications the functionality to cre-
ate lightweight threads, called tasks, that can spawn new child tasks and
wait for them to return. In contrast to Barrelfish’s preemptively scheduled
threads that are bound to a single dispatcher, our tasks are cooperatively
scheduled and can migrate between dispatchers within a domain. Our run-
time system utilizes the available processor cores by spanning a Barrelfish
domain, with a separate scheduler running on each core. Our run-time sys-
tem is based on a work-stealing scheduling approach, where an idle sched-
uler will steal work from other cores.

Additionally, our run-time system supports dynamic allocation of processor
cores, allowing applications to disable or enable specific cores at run-time.
This dynamic balancing of work integrates well with the work-stealing ap-
proach, as the task queue of a disabled scheduler can easily get inherited by
an idle core.

We put a lot of effort into integrating our task run-time with the Barrelfish
messaging system. While our task scheduler does not directly rely on Bar-
relfish’s dispatcher upcall mechanism, the use of Barrelfish’s waitsets for
blocking operations gives us full control over when blocking should occur,
without the need to spawn additional threads. Therefore if an individual
task needs to block while waiting for a message operation to complete, our
run-time is able to execute other work instead.

Additionally, we implement a message forwarding system, as Barrelfish’s
channels are bound to specific cores. This allows a task to continue commu-
nication even in case of work stealing, where the migrated task will use a
channel that was created on a different core.

In case of processor core removal, we support the migration of all messaging
channels to a new successor core using a re-connection protocol. This migra-
tion is transparent to tasks running within our run-time system, meaning
they can continue using their existing messaging handles without interrup-
tion. In order to support communication with services not using our task
parallel run-time, we additionally provide a run-time free implementation
of our re-connection protocol that service application can use.
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