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Chapter 1

Introduction

With an increasing number of cores a single computer can already be viewed as
a distributed system which needs a distributed operating systems running on it
[4]. Having several instances of processes running on different cores, the need
for communication to synchronize them increases. Therefore a fast inter process
communication mechanism is the basis for good performance.

However, distributing work among many processes running on different cores
or even different machines also involves providing them with larger and larger
amounts of data. This results in a second requirement for good performance:
an efficient bulk transfer mechanism.

The bulk transfer should work seamlessly between domains running on the
same machine as well as between different nodes in a network: A data block
should be movable between multiple domains without copying it and in addition
to that sent over the network without copying it to transmit buffers.

A fast bulk transfer implementation is not useful, when the two participat-
ing domains do not trust each other and the implementation does not provide
mechanisms to enforce certain policies: there must be a possibility to ensure
data integrity once the data block has been sent.

Report Outline In this report, we will give an overview of related work 2
followed by a brief introduction to the Barrelfish related components in Chapter
3. In Chapter 4 we give a high level description of the architectural design
followed by a formal specification of the semantics 5. We provide an overview of
our sample implementation in Chapter 6 followed by the description of a sample
application which uses our bulk transfer implementation in Chapter 7. The last
chapter briefly discusses our conclusions of our approach.

12



Chapter 2

Related Work

fbufs The article Fbufs: A High-Bandwidth Cross-Domain Transfer Facility
[6] presents an I/O buffer management facility providing high throughput for
I/O intensive applications. Its focus is on fast buffers (fbufs) crossing multiple
domains and being processed on the way, as is the case for data traversing from
an application to the network and vice versa. I/O data in fbufs is accessible read-
only as soon as buffers are shared with other domains. Their size is a multiple of
the system’s page size. This allows to use shared memory and page remapping
technology to avoid the actual copying of data. The read-only property ensures
data integrity. To allow data modification on-the-fly, references to sections of
immutable buffers are combined into an aggregate object tree. This allows for
dynamic recombination of data chunks making the data changeable on a higher
level of abstraction. The article makes a strong point that increased sharing of
buffers will benefit speed but at the same time start to compromise security.

Many of the ideas in the paper were integrated into our design of the bulk
transfer interface, especially with focus on allowing eager optimization for the
shared memory scenario.

rbufs The design of rbufs [5] consists of two different types of memory regions.
First there is a data area, which is a large contiguous range of virtual memory.
The protection is the same for the entire data area such that the data source
can write and the other can at least read. In general, the data area can always
be written by the generating domain and therefore is volatile.

Secondly, there are control areas at each side of the channel which can be
viewed as a circular buffer. Two of these control areas form a channel. The
protection of these control areas depend on the direction of data transfer: The
control areas must be at least writable by the writing domain and readable by
the receiving domain.

Data transfers are represented by iorecs which are references to a number of
regions in the data area, allowing for the aggregation of multiple regions in the
data area.

Rbufs can be used to form longer channels by spanning them over multiple
domains.

mbufs In FreeBSD, the kernel uses mbufs [9] as a basis for IPC and network
processing: the arrived packets are stored in (potentially) multiple mbufs which

13



CHAPTER 2. RELATED WORK 14

are chained together. As with pbufs, the chaining allows to efficiently remove
headers and footers from the received buffers. The fact that the mbufs are used
by the kernel only leads to a need for copying the data to user space.

Xen Grant Tables In XEN [2] - a bare metal hypervisor - domains1 can
share frames with other domains by explicitly granting access to them. There
is a grant table associated with each domain specifying which frames can be
accessed by this domain. Granting access to another domain means allowing
access to the granter’s memory. This can be viewed as a capability.

The access rights can be passed to another domain by invoking XEN to set
the corresponding entry in the grant table i.e. transferring the capability to
access that frame to another domain. That way a shared frame can be set up
which can be used to transfer data between domains.

This shared frame allows virtual machines residing on the same physical
machine to share data with each other.

1Domain in this case means a virtual machine running on top of XEN



Chapter 3

Barrelfish Operating System

The Barrelfish OS1 is a research operating system developed as a collaboration
between the Systems Group2 at ETH Zurich and Microsoft Research3. In this
Section, we will briefly describe important aspects of Barrelfish with respect to
a bulk transfer infrastructure.

3.1 Operating System Structure
Most of today’s popular operating systems such as Linux, Microsoft Windows or
Mac OS X have a monolithic kernel architecture. In contrast to that, Barrelfish
has a multikernel approach [10]. The multikernel architecture can be viewed
as a collection of multiple microkernels - one per core - which communicate via
explicit messages to keep the OS state consistent, rather than accessing shared
data structures.

A microkernel provides only a very small set of security relevant services to
the applications, such as setting up page tables or enabling inter process commu-
nication. All the other services like memory management or device drivers run
entirely in user space. The multikernel approach increases the need for commu-
nication between domains. This demands for an efficient way of communication,
and not only for small control messages but also for bulk data.

3.2 Flounder
In Barrelfish, inter process communication is done by exporting a certain inter-
face which can be invoked by other domains. The interfaces are described in
a domain specific language and compiled into C code using a tool called floun-
der [3]. As soon as a domain exported the interface, another domain can bind
to it and send messages, either in an asynchronous fashion or with full RPC
semantics.

1http://www.barrelfish.org
2Systems Group, Department of Computer Science, CAB F.79, Universitätstrasse 6, Zurich

8092, Switzerland
3http://research.microsoft.com/
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3.3 Resource Management and Capabilities
In Barrelfish, critical system resources such as physical memory or kernel services
are protected using capabilities [1]. A capability grants the possessing domain
certain access rights to a resource e.g. reading a certain memory range. This
access rights can be granted to other domains by passing the capability to the
other domain.

Accessing system resources such as kernel services are done by capability
invocations instead of traditional systems calls. That way only if the domain
possesses the capability can it do a system call.

Capabilities are strongly typed and have certain access rights associated with
them. For instance, a RAM capability can be retyped into a frame capability
by doing an invocation on it. The access rights of a frame capability can then
be restricted to read only. These operations are usually one way.

3.4 Current Bulk Transfer Implementation
The technical note about bulk transfer [11] describes the two existing bulk
transfer mechanisms in Barrelfish and their limitations. We want to briefly
describe them here and explain their drawbacks.

3.4.1 The Official Bulk Transfer Infrastructure
This implementation of a bulk transfer mechanism is based on a single shared
capability which is mapped read-write in both domains. The mapped virtual
address range has to be contiguous. The mapped memory range is divided into
blocks of equal size. To do a data transfer, data is written into one of the blocks
and its block id transmitted to the other domain.

Limitations

There are several limitations with the current state of this implementation. We
want to briefly list them here.

• Security: cannot be enforced. Both domains have to trust each other
not to mess with the blocks.

• Multiple Domains: It is possible to use the shared capability with
more than two domains. However, all of them must be trusted to follow
the protocol and track the location of the buffers by themselves.

• Copy Semantics: There is no copy operation that guarantees the
copying domain that the data will be kept consistent.

• Abstraction: The interface is modelled after the underlying implemen-
tation and relies on shared memory. This is in stark contrast to other
means of communication in Barrelfish, like flounder message passing.
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3.4.2 Networking Bulk Transfer: pbufs
The concepts of pbufs is similar to the official implementation described above:
there is a shared frame used as buffer. However, in contrast the memory lo-
cations do not need to be consecutive. Furthermore, there is another layer of
indirection that enables the replacement of one memory location by another to
reuse the pbuf meta structure.

Limitations

As with the official implementation, there are some limitations with the pbufs
as well. We will quickly summarize them here.

• Security: Shared memory region is mapped read/write in both domains.

• Multiple Domains: It should work in theory, but it is hard to tell when
the memory can be reused. Furthermore, all domains must be co-operative

• Memory Reclamation: It’s easy to get it wrong, leading to memory
leaks because it’s hard to tell when all threads are done with accessing the
buffer.

3.4.3 Summary
To sum up, the two available bulk transfer implementations in Barrelfish require
the participating domains to co-operate and follow the protocol. The lack of
policy enforcement makes it not possible to use the implementations in a ma-
licious environment. In addition, the complexity of having multiple domains
sharing buffers increases and it is hard to tell which buffers are allowed to be
reused.



Chapter 4

Architectural Design

This Chapter describes the major building blocks of our bulk transfer infras-
tructure. We will give an explanation of the used terms and state the goals of
the bulk transfer implementation.

4.1 Design Goals
The technical note 014 [11] about bulk transfer states some of the goals for a
bulk transfer implementation, which we have adapted and complemented:

1. Avoid data copy as much as possible, if it can’t be avoided, then try to
push it into user-space/user-core.

2. Ability to batch notifications.

3. Should work with more than two domains.

4. Should work with multiple producers and multiple consumers.

5. True zero copy capability (scatter-gather packet sending/receiving).

6. Should support different means of data transfer e.g. shared memory or
network.

7. Unified interface for all possible backend implementations.

4.2 Terminology

4.2.1 Backend
The bulk transfer backend is the implementation or hardware specific part of the
bulk transfer infrastructure. It handles the operations and events triggered by
the user and forwards them to the destination. To list some possible backends:

• Shared memory between two domains on the same machine.

• Network between two machines reachable over the network.

• Local (between threads in a single domain)

18
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• Direct Memory Access Engines

• Mailboxes between two different cores (e.g. OMAP44xx Cortex A9 and
Cortex M3.)

• GPU / Accelerators

4.2.2 Endpoint
A bulk endpoint represents either the source or destination of a data flow. An
endpoint can either be local i.e. created by the domain or remote, created by
another domain. The local endpoint may be created implicitly depending on
the remote endpoint. Endpoints are backend specific and therefore specify how
the data is to be transferred or received. An endpoint is either the source or
sink of a data transfer.

Endpoint Descriptors

Bulk endpoints are referred to by endpoint descriptors which contain the nec-
essary information to enable the channel operations.

4.2.3 Channel
A bulk channel consists of exactly two endpoints which must exists before a
channel can be created. A channel is just a point-to-point link and spans at most
two domains1. Each channel has a clearly specified direction of data transfer
which is either receive or transmit, and the endpoints must be the corresponding
source or sink. An illustration of the channel, endpoint and library relationship
can be seen in Figure 4.1.

The channel initialization consists of two different operations: create and
bind.

Channel Creation

The channel create operation is the first to be executed to establish a new bulk
channel. The application needs to specify the local endpoint for this channel
which has to be created beforehand. The endpoint type also determines the
channel type. The general channel parameters are set and chosen during the
create procedure.

Channel Binding

The second step in the channel initialization protocol is the binding process. In
contrast to the create procedure, the application needs to provide an endpoint
descriptor of the remote endpoint. Local endpoints are created implicitly de-
pending on the remote endpoint. The binding side of a channel has to adapt
the channel properties as defined by the creation side.

1A local channel resides in just one domain



CHAPTER 4. ARCHITECTURAL DESIGN 20

Application Domain

libbulk_transfer

Implementation specific backend

endpoint

Application Domain

libbulk_transfer

Implementation specific backend

endpoint

control channel

data channel

Figure 4.1: Bulk Transfer Architecture

Data and Control Channel

On a conceptual level, each channel consists of a control channel for small mes-
sages and a data channel used for the actual data transfer. Depending on the
implementation, the control channel may be in-line with the data channel or
the data channel might just be virtual.

4.2.4 Channel Properties
Each channel has certain properties by which both endpoints of the channel
must comply.

Roles

After the channel is established, each endpoint is either the MASTER or SLAVE
with respect to that channel. During the channel creation the local endpoint
may be in the GENERIC role, which enables the binding side to decide the role
distribution.

Trust Levels

The channel creator decides on the trust level of the channel. The trust level
specifies the level of data integrity protection applied to this channel. There are
three different trust levels:

1. Full Trust: There are no protection mechanisms2 enforced. The do-
mains are trusted not to mess around with the data blocks after they are
transferred to another domain.

2Depending on the backend, such protection mechanisms could be removing the MMU
mapping or restricting the memory access for hardware devices (IO-MMU)
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2. Half Trust: The basic protection mechanisms are applied but the ca-
pabilities are not revoked. The application may regain access to the data
blocks manually. This should only be seen as a protection against acci-
dental overwriting of buffers.

3. No Trust: In addition to the application of the basic protection mech-
anisms, the change in the access rights to the resources are enforced i.e.
the corresponding capabilities are revoked.

4.2.5 Pool
A pool represents a contiguous range of virtual memory and consists of a number
of equal sized parts called bulk buffer (refer to Section 4.2.6). The number
and size of the buffers are specified upon pool allocation. In order to use the
pool over a channel, it needs to be assigned first. After the pool is assigned
to a channel, the pool occupies a contiguous range of virtual memory in both
domains.

Pool ID

To uniquely identify the pool across domains, cores and even machines, we
assign each pool a unique id. The pool identifier is generated at allocation time.

Pool Trust Level

As with the channels, the pools also have a trust level. The trust level of a pool
is set to the channel trust level upon the first assignment. In general, the trust
level of the pool must match the trust level of the channel.

4.2.6 Buffer
A bulk buffer is the smallest unit of transfer in our infrastructure. Each
buffer is a contiguous region of virtual and physical memory. As mentioned in
the previous section, the size of the buffers can be specified upon pool allocation.
In order to guarantee the enforcement of access rights we require the buffer size
to be a multiple of page size3. A buffer can either be present in the domain
i.e. its data is accessible or it is not present in the domain and the data is not
accessible.

Ownership

The ownership of a buffer specifies which operations a domain can do with the
buffer. There exists exactly one owner for each buffer at any point of time.

4.3 Bulk Transfer Architecture
We suggest to have a layered architecture as shown in Figure 4.2. With a
concrete application in mind there are 3+1 layers:

3With the capability system the size must also be a power of two.
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Domain

service layer

lib bulk_transfer

Implementation specific backend

service specific interface of the domain
e.g. block service

generic bulk transfer interface

Implementation specific handling of operations
Domain local, shared memory, network

Figure 4.2: Architecture Layers

1. Application Layer4: The user application which makes use of the bulk
transfer library and the service

2. Service Layer: The interface of a service that is used by the application
e.g. a block service.

3. Bulk Transfer Library: Provides the unified interface to the backend,
common functions and does general checks.

4. Implementation Specific Backend: This layer deals with the effective
data transfer between the endpoits.

4.4 Additional Libraries
The core bulk transfer library just provides the functionality necessary to create
channels and transfer buffers. We want to give the application freedom how it
allocates and manages pools or send more data than a buffer can hold. There
are two suggestions we present here that complement the bulk transfer library.

Pool Allocator

This library is responsible for allocating pools and their resources. We provide
a sample implementation of a pool allocator. The reason why we decided that
the pool allocator is not part of the core library is that an application may want
to have another way of managing the buffers of the pool or use a lazy approach
in resource allocation which may be more suitable for the usage scenario.

Our allocator will just allocate all the resources for the pool, map the buffers
and fills the list of free buffers.

4This is the +1
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Aggregates

The core interface of the bulk transfer architecture does only support the sending
or receiving of one buffer at a time. To overcome this limitation, we suggest a
library which works on top of that that allows sending larger amounts of data
by the use of buffer aggregates which may be similar to the aggregate objects
used in [6]. Note that this has not been implemented yet.

Aggregates should make it possible to send a collection of bulk buffers over
a channel while the buffers may belong to different pools. One approach to this
would be to send an additional data structure before or after the buffers are
being transmitted. This data structure may look like the one in Listing 4.1.
Please refer to Section 8.4 for a further discussion.

1 struct bulk_aggregate_object
{

3 size_t num_bufs;
struct

5 {
struct bulk_pool_id pool_id;

7 size_t buffer_id;
} buffers [];

9 }

Listing 4.1: Possible Representation of an Aggregate Object



Chapter 5

Semantic Specification

One of the goals of a bulk transfer mechanism is to provide the possibility to
enforce certain policies such as restricting access rights. This requires a clear
understanding at what point which domain has access to which resources. In
this Chapter we present a formal specification of our model (Section 5.1) as well
as an overview of the channel operations (Section 5.2)

Notation Meaning
dom r Domain of relation r
r [x ] Relational image of values x in r
r ◦ s Composition of relations r ,s
r−1 Inverse of relation r

A→ B Set of functions from A to B
A 7→ B Set of partial functions from A to B

Table 5.1: The used formal specification

5.1 Formal Specification
In this Section we want to give a high level description of the possible transfer
types together with a precise formal specification for each of the transfer types.
We aimed to keep this formal specification as open as possible to make it suitable
for any possible backend implementation. Note that the specification specifies
the system state and not the state as viewed from a particular domain. The
notation used can be seen in Table 5.1.

5.1.1 Buffer States
For every domain, each buffer is always in its clear specified state.1 These states
are:

1. Invalid: the buffer is not present in this domain
1Note that this state may be different in different domains.

24
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2. Read/Write: the buffer is owned by this domain and accessible for
reading and writing

3. Read Only Owned: the buffer is owned by this domain but only acces-
sible for reading2

4. Read Only : the buffer is accessible for reading

5.1.2 Formal State Definition
In order to model the operations we must have a clear understanding of the
model state in our formal specification. The state of the model is expressed in
Algorithm 1. To make it clear, we would like to highlight some of the statements:

• Buffer Copies: (line 14) Conceptually, there exists a graph of channels.
This function tracks over which channels this buffer has been copied.

• Queues: (line 19 and 20) These queues represent the data channel and
the control channel.

• Endpoints: (line 17 and 18) These partial bijections return the endpoint
given a channel and a direction or role.

Buffer States

For every domain, each buffer is always in its clear specified state.3 These states
are:

1. Invalid: the buffer is not present in this domain

2. Read/Write: the buffer is owned by this domain and accessible for
reading and writing

3. Read Only Owned: the buffer is owned by this domain but only acces-
sible for reading4

4. Read Only : the buffer is accessible for reading

5.1.3 Invariants
From the state definition we can formulate invariants which hold at any time.
These invariants are listed in Algorithm 2. These invariants are important for a
proper understanding of the bulk transfer model and we give a short explanation
for the invariants here.

1. Specifies all the domains that hold copies of a buffer b. We take all the
channels, which received a buffer copies and take only the sink endpoint
and do a domain lookup.

2This state is added for the clarification of an owned copy
3Notice that this state may be different in different domains.
4This state is added for the clarification of an owned copy



CHAPTER 5. SEMANTIC SPECIFICATION 26

Algorithm 1 State Definition
1: ACCESS RIGHTS := {NONE,READ,READ WRITE}
2: ROLES := {MASTER, SLAVE}
3: DIRECTIONS := {SOURCE,SINK}
4:
5: valid buffers ⊆ BUFFERS
6: valid pools ⊆ POOLS
7: valid channels ⊆ CHANNELS
8: valid eps ⊆ ENDPOINTS
9:

10: buffers to pools ∈ valid buffers→ valid pools
11: buffer ownership ∈ valid buffers→ DOMAINS
12: buffer access ∈ (valid buffers×DOMAINS)→ ACCESS RIGHTS
13: buffer data ∈ valid buffers→ DATA
14: buffer copies ⊆ valid buffers× valid channels
15: pools to channels ⊆ valid pools× valid channels
16: ep to dom ∈ valid ep→ DOMAINS
17: dir to ep ∈ (valid channels×DIRECTIONS) 7→ valid ep
18: roles to ep ∈ (valid channels× ROLES) 7→ valid ep
19: data queues ∈ valid channels→ BUFFER QUEUES
20: control queues ∈ valid channels→ BUFFER QUEUES

Algorithm 2 Invariants
1: copy receivers(b, buffer copies′) :=

ep to dom[dir to ep[buffer copies′[{b}]× {SINK}]]
2: ∀ b, d : buffer ownership(b) = d ∧ b 6∈ dom(buffer copies)⇔

buffer access(b, d) = READ WRITE
3: ∀ b, d : (buffer ownership(b) = d ∧ b ∈ dom(buffer copies)) ∨

d ∈ copy receivers(b, buffer copies)⇔ buffer access(b, d) = READ
4: ∀ b, d : buffer ownership(b) 6= d ∧ d 6∈ copy receivers(b, buffer copies)⇔

buffer access(b, d) = NONE
5: copy reachability satisfied(buffer copies′) :=
∀ b, c : (b, c) ∈ buffer copies′ ⇒
∃ d : d = ep to dom(dir to ep(c, SOURCE)) ∧
(buffer ownership(b) = d ∨ d ∈ copy receivers(b,buffer copies′))
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2. This invariant says, that if a domain has buffer ownership and if there
are no copies of this buffer, then this domain has read-write access to the
buffer.

3. A domain has read access to a buffer, if this domain owns the buffer and
there are copies around. A domain also has read access if it receives a
copy.

4. A domain has no access to a buffer, if this domain has never received a
copy and it is not the owner of the buffer

5. This invariant says, that if there is a buffer copy, there exists a directed
path from the owner along the graph edges to this copy i.e. a copy is
always reachable by its owner.

5.1.4 Channel Creation and Binding
A channel is established by a create (Algorithm 3) and a bind operation (Algo-
rithm 4). The creation of a channel requires that the endpoint associated with
the channel has not yet been used for a channel yet. After the creation, the
channel is valid, the second endpoint has not been assigned and the other role
exists not for this endpoint.

The binding requires that there exists a valid channel with the specified
remote endpoint and that the local endpoint has not been assigned to a channel
yet. Further, the direction and roles of this endpoint must not have been present
in the state. After the binding, the roles and directions are assigned and the
remote endpoint is not modified.

Algorithm 3 Create Channel
Require: domain ∈ DOMAINS
Require: ep ∈ (ENDPOINTS \ valid eps)
Require: direction ∈ DIRECTIONS
Require: role ∈ ROLES
1: procedure ChannelCreate(domain, ep, direction, role)
2: end procedure
Ensure: ep ∈ valid eps′

Ensure: ∃ c : c 6∈ valid channels ∧ c ∈ valid channels′

Ensure: dir to eps′(c, direction) = ep
Ensure: roles to eps′(c, role) = ep
Ensure: (c, other dir(direction)) 6∈ dom(dir to eps′)
Ensure: (c, other role(role)) 6∈ dom(roles to eps′)
Ensure: eps to domains′(ep) = domain

5.1.5 Pool Allocation and Assignment
Sending data over channels requires the allocation and assignment of pools to
the channels. The allocation of a pool (Algorithm 5) requires that the pool
to create is not valid and there is at least one unused (not valid) buffer to be
associated with this pool. After the creation, all buffers of this pool are owned
by this domain and belong to the newly created pool.
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Algorithm 4 Bind to Channel
Require: domain ∈ DOMAINS
Require: local ep ∈ (ENDPOINTS \ valid eps)
Require: remote ep ∈ valid eps
Require: ∃ chan, remote dir, remote role :
Require: dir to eps(chan, remote dir) = remote ep
Require: roles to eps(chan, remote role) = remote ep
Require: (chan, other dir(remote dir)) 6∈ dom(dir to eps)
Require: (chan, other role(remote role)) 6∈ dom(roles to eps)
1: procedure ChannelBind(domain, local ep, remote ep)
2: end procedure
Ensure: local ep ∈ valid eps’
Ensure: dir to eps’(chan, other dir(remote dir)) = local ep
Ensure: dir to eps’(chan, remote dir) = remote ep
Ensure: roles to eps’(chan, other role(remote role)) = local ep
Ensure: roles to eps’(chan, remote role) = remote ep
Ensure: eps to domains′(local ep) = domain

The assignment of a pool to a channel (Algorithm 6 requires that the pool
has not been assigned to this channel yet and that the channel is bound.

Algorithm 5 Create Pool
Require: domain ∈ DOMAINS
Require: pool ∈ (POOLS \ valid pools)
Require: bufs ⊆ (BUFFERS \ valid buffers) ∧ bufs 6= ∅
1: procedure PoolCreate(domain, pool, bufs)
2: end procedure
Ensure: pool ∈ valid pools′

Ensure: bufs ⊆ valid buffers′

Ensure: ∀ b : b ∈ bufs⇒ buffer to pools(b) = pool
Ensure: ∀ b : b ∈ bufs⇒ buffer ownership(b) = domain

5.1.6 Buffer Transfer Types
Buffer Transfers are the core functionality of a bulk transfer mechanism: sending
data from one domain to another. There exist different possibilities which we
describe in the following Sections. Figure 5.1 shows the relationship between
the buffer states and the transfer operations.

5.1.7 Moving a Buffer on a Channel
Algorithm 7 describes the semantics of a buffer move operation. A buffer can
only be movable if the channel is bound and the pool this buffer belongs to is
assigned to the channel. In addition to that, the domain must be the owner
of the buffer and the direction of the channel must be transmit i.e. the local
endpoint is the source.



CHAPTER 5. SEMANTIC SPECIFICATION 29

Algorithm 6 Assign Pool to Channel
Require: ep ∈ valid eps
Require: pool ∈ valid pools
Require: ∃ chan, dir : dir to eps−1(ep) = (chan, dir)
Require: (pool, chan) 6∈ pools to channels
1: procedure ChannelAssignPool(ep, pool)
2: end procedure
Ensure: pools to channels−1[{chan}] = pools to channels−1[{chan}]

⋃
{pool}

After the move is done, the buffer is sent over the data channel and its con-
tents are preserved. The ownership of the buffer is transferred to the receiving
domain unless the contents need to be copied in a new buffer.

Algorithm 7 Move Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain
Require: ∃ chan : dir to ep−1(ep) = (chan, SOURCE)
Require: ∃ other ep : dir to ep(chan, SINK) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelMoveBuffer(ep, buffer)
2: end procedure
Ensure: ∃ buf : data queues′(chan) = enqueue(data queues(chan), buf)
Ensure: buffer data′(buf) = buffer data(buffer)
Ensure: buffer ownership′(buf) = ep to dom(other ep)
Ensure: buf 6= buffer⇒ buffer ownership′(buffer) = ep to dom(ep)

5.1.8 Buffer Pass
A domain has the possibility to pass the ownership of a buffer to another domain
i.e. enabling read-write access. This operation (Algorithm 8 is conceptually like
a move with the difference that the local endpoint must be the sink of the
channel.

After the pass is executed, the buffer is enqueued to the control queue and
the buffer ownership is transferred to the receiving domain.

5.1.9 Read-Only Copy
The basic requirements of the copy operation (Algorithm 9 are almost the same
as with the move operation, with one fundamental difference: The buffer to be
copied is either owned by the domain, or the domain received a copy of the
buffer.

In contrast to a move, the ownership of the buffer does not change when
doing a copy. Further the copy is tracked. It may be the case that the data
needs to be copied into another buffer. Then the ownership is also passed.
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Algorithm 8 Pass Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain
Require: ∃ chan : dir to ep−1(ep) = (chan, SINK)
Require: ∃ other ep : dir to ep(chan, SOURCE)) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelPassBuffer(ep, buffer)
2: end procedure
Ensure: control queues′(chan) = enqueue(control queues(chan), buffer)
Ensure: buffer ownership′(buffer) = ep to dom(other ep)

Algorithm 9 Copy Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain ∨

(∃ c : (buffer, c) ∈ buffer copies ∧
ep to dom(dir to ep(c, SINK)) =
ep to dom(ep))

Require: ∃ chan : dir to ep−1(ep) = (chan, SOURCE)
Require: ∃ other ep : dir to ep(chan, SINK) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelCopyBuffer(ep, buffer)
2: end procedure
Ensure: ∃ buf : data queues′(chan) = enqueue(data queues(chan), buf)
Ensure: buffer data′(buf) = buffer data(buffer)
Ensure: buffer ownership′(buffer) = buffer ownership(buffer)
Ensure: buf 6= buffer⇒ buffer ownership′(buf) = ep to dom(other ep)
Ensure: buf = buffer⇒

buffer copies′[{buffer}] = buffer copies[{buffer}] ∪ {chan}
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5.1.10 Copy Release
Doing a release (Algorithm 0) of a copy is only allowed if there are no other copies
originating from this domain, i.e. the release does not violate the reachability
constraints. Further the buffer needs to be copied to the domain (not moved).
When the owner of the copy gets all its copies back by a release, the buffer is
changed to read-write again and its copy status is removed.

Algorithm 10 Release Copied Buffer on Channel
Require: ep ∈ valid ep
Require: ∃ chan : dir to ep−1(ep) = (chan, SINK)
Require: ∃ other ep : dir to ep(chan, SOURCE)) = other ep
Require: (buffer, chan) ∈ buffer copies
Require: copy reachability satisfied(buffer copies \ {(buffer, chan)})
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelReleaseCopy(ep, buffer)
2: end procedure
Ensure: (buffer, chan) 6∈ buffer copies′

Ensure: buffer access(buffer, domain) = NONE

5.1.11 Full Copy
When doing a full copy, the buffer will be accessible read-write in both domains
in the end while ensuring data integrity at the sender. This can be conceptually
viewed as a local copy5 combined with a move. Therefore with a full copy a real
memory-to-memory copy cannot be avoided and the receiving domain will get
a buffer moved event.

5.2 Overview of Operations
The previous section gave a precise specification of the channel operations and
their semantics. To clarify and to show the intended flow of steps we illustrate
certain operations in this Section.

5.2.1 Buffer State Diagram
The formal specification clearly defines the possible states of a buffer in the
whole system. From a domain point of view, the buffer states and their transi-
tions can be seen in Figure 5.1. Notice, that we have introduced another state
READ ONLY OWNED to distinguish the domain that first copied a buffer.

The state diagram also summarizes all possible operations and events that
can occur on a channel.

5.2.2 Channel Setup
Establishing a new bulk channel between two endpoints involves two operations
to be executed, a channel create followed by a channel bind. The workflow
of a channel setup can be seen in Figure 5.2.

5e.g. memcopy
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Figure 5.1: Buffer State Diagram (Domain View)

Creator Side

1. Endpoint Create: Initialization of a new local endpoint

2. Exporting Endpoint: Export of the information about the local end-
point to a name service.

3. Channel Create: Invocation of bulk channel create(...) with the
callbacks and the setup parameters as arguments

4. Backend: After general checks and setup, the call gets forwarded to the
implementation specific backend which enters a listening mode

5. Bind Request: The other side has sent a bind request. This request is
forwarded to the application by invoking the callback handler and a reply
is sent back.

Binding Side

1. Remote Endpoint Creation: To bind a channel, a remote endpoint
is needed. There are two ways to do this:

(a) Look up: Querying the name service for the endpoint information
with the name of the exported service.

(b) Explicitly created with pre-defined values.
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Figure 5.2: Setup of a Bulk Channel

2. Channel Bind: Invocation of bulk channel bind(...) with the call-
backs and binding parameters as arguments

3. Backend: After general checks and binding steps, the backend specific
implementation code is invoked.

4. Send Bind Request: The binding message is sent to the remote end-
point

5. Bind Reply: The bind reply is received and the continuation is exe-
cuted.

5.2.3 Pool Assignment
The pool assignment procedure can be seen in Figure 5.3. In general, the channel
master needs to provide buffers for operating the channel and thus is expected
to add pools6. The pool assignment does not change anything in the ownership
of the buffers.

Note that the pool assignment procedure is a two phase protocol, where the
other side can veto the assignment request. The steps, as shown in Figure 5.3
are:

1. Application: Either the pool is allocated by the assigning domain or
the pool was received earlier by another domain.

2. Bulk Transfer Library By invoking bulk channel pool assign(..)
the assignment process starts and general checks are done within the li-
brary.

6There is no restriction that the slave endpoint can’t add pools as well.
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3. Backend: After the checks, the backend specific pool assignment handler
is invoked, which sends a pool assignment request to the other endpoint

4. Backend: The other side receives the pool assignment request

5. Bulk Transfer Library: The pool resources are allocated by the bulk
transfer library7 and the pool added to the domain list.

6. Callback: if everything succeeded so far:

(a) Executing of the callback to inform the application about the new
pool

(b) Return value of the callback is either an accept or a veto.

7. Backend: Depending on the return value of the user function, either
cleanup is done or the pool is added to the channel, and the reply sent to
the assigning side.

8. Backend: The pool assignment reply is received and forwarded to the
bulk library

9. Bulk Transfer Library: Depending on the outcome, the pool is added
to the channel.

10. Application: The registered continuation gets executed, informing the
application about the outcome of the assignment request.

It is important to note that the backend is responsible for cleaning up if
the user application vetoed the assignment request. This includes removing the
pool from the domain list if this pool was assigned for the first time.

Reasons for vetoing a pool assignment request may be that a pool has a
wrong memory range or alignment, too small buffer sizes or other reasons from
the application point of view.

5.2.4 Sending and Receiving
There are two operation modes of a channel. Depending on the role and di-
rection, a channel can be seen to operate either in receive master or transmit
master node. With the obligation for the master to provide buffers the two
modes are slightly different:

• Transmit Master: Since, the master is on the transmit side, the buffers
are already present in the sending domain and can be used for transfers.
The receiving side may pass them back.

• Receive Master: In this configuration, the sending side is not neces-
sarily in possession of buffers. Thus the receiver has to pass them first to
the sending domain.

Note that this scenario is rather simple and it may be the case that the
sender gets its buffers from another domain or allocates the resources by its
own. The process of receiving or sending in the different modes can be seen
in Figure 5.4. Without loss of generality, we explain the process at the move
operation while the copy operation works analogously.

7Depending on the channel type and trust level
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Figure 5.3: Pool Assign Operation

Transmit Master Mode

1. Pool Allocation: The transmit side allocates a pool

2. Buffer Allocation : The transmit side allocates a new buffer from the
pool

3. Move Operation: The buffer state is changed in the transmitting
domain and sent over the data channel to the receiver.

4. Receive Event: In the receiving side, the buffer state is changed, the
move received event is triggered and the application gets informed about
the buffer.

5. Pass Operation: Again the state of the buffer is changed and passed
on the control channel back to the transmitting side.

6. Receive Event: In the transmitting side, the state of the buffer is
changed and the buffer received event is triggered. The application
returns the buffer back to the pool.

Receive Master Mode

1. Pool Allocation: The receiving side allocates the pool.

2. Pass Operation: The receiving side allocates all buffers and passes
them to the transmitting side.

3. Receive Event: At the transmit side, the buffers states are changed,
the buffer received event is triggered and the application stores them
in a suitable way.
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Figure 5.4: Bulk Transfer Architecture

4. Sending Data: The needed buffers is taken from the received buffers

5. Move Operation: The state of the buffer is changed and the buffer is
moved over the data channel.

6. Receive Event: At the receiving side, the state of the buffers is changed
and the move received event is triggered. The application decides to
return the buffer to the pool.



Chapter 6

Interface Specification

In the previous Chapters we have defined the terms and semantics of our bulk
transfer infrastructure. In this Chapter we will outline a possible interface which
implements the formal specification of the bulk transfer mechanism. First, we
give an overview of the most important data structures (section 6.2), followed
by the basic channel operations (section 6.3) and last the pool allocator (sec-
tion 6.4).

6.1 Core Functionality
In order to use our bulk transfer infrastructure, we have written a library which
provides a common interface to all backends. This library can be used by adding
the following two inclusions to your code. Note that <BACKEND> has to be
replaced by the backend you want to use.

1 #include <bulk_transfer/bulk_transfer.h>
#include <bulk_transfer/bulk_ <BACKEND >.h>

The bulk transfer.h header file has to be included as soon as the bulk
transfer library is to be used by the application. All the necessary declarations
are contained within this single header file.

The backend specific header file bulk <BACKEND>.h is currently needed to
create the bulk endpoint which is required for the creation or binding process.
See limitations (section 8.5) or future work (section 8.5) for further explanations
on this topic.

6.2 Core Data Structure
Each part of the architecture as described in the previous Sections is reflected
as a data structure in our library. We will explain the most important data
structures in the following Sections. For a complete enumeration of all data
structures please refer to the source files of our implementation.

37



CHAPTER 6. INTERFACE SPECIFICATION 38

6.2.1 Enumerations and Constants
As described in the formal specification (chapter 5) the possible states of chan-
nels or buffers and their properties are finite and clearly defined. Listing 6.1
on page 39 shows some of the used enumerations and constants. We want to
highlight and explain some of them.

Channel Roles

The channel role enumeration contains three options. The BULK ROLE GENERIC
can only be used on channel creation. This role is not valid when the channel
is connected. If the creator is generic, its role will be adapted according to the
choice of the binding side.

Trust Level

The interface provides a total of four different trust levels which are applied to
pools and channels.

• BULK TRUST UNINITIALIZED: The trust level is not initialized. This only
applies to pools that have not yet been assigned to any channel yet. This
trust level is invalid for channels.

• BULK TRUST NONE: There is no trust on this channel. All security policies
are applied to guarantee isolation.

• BULK TRUST HALF: An middle ground variant, that unmaps unowned
buffers but does not revoke resources. Does not protect against malicious
users, but against honest mistakes and accidents.

• BULK TRUST FULL: There is complete trust, all security policy changes
are omitted.

Channel State

Each channel is in exactly one of the states defined in this enumeration. Some
actions can only be done when the channel is in a specific state.

• BULK STATE UNINITIALIZED: This channel has not yet been assigned an
endpoint i.e. the creation / binding procedure has not yet been executed.

• BULK STATE INITIALIZED: This channel is initialized i.e. the local end-
point is assigned. (Creator side only)

• BULK STATE BINDING: The remote endpoint has been assigned and the
channel is waiting for a binding reply. (Binding side only)

• BULK STATE BIND NEGOTIATE: The binding has been initiated and the
channel properties are being negotiated.

• BULK STATE CONNECTED: The channel is fully operable.

• BULK STATE TEARDOWN: The teardown message has been sent. Messages
in transit are received. No new messages can be sent.

• BULK STATE CLOSED: The channel is closed and the resources are freed.
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Buffer State

When a buffer is copied, its state changes to read-only. In order to track
which domain the first copy initiated from, we have introduced the buffer state
BULK BUFFER RO OWNED. This enables us to set the buffer to read/write again
when the other copies have been released.

/** Specifies the direction of data flow over a channel. */
2 enum bulk_channel_direction {

BULK_DIRECTION_TX , BULK_DIRECTION_RX
4 };

6 /** Specifies the endpoint role on a channel */
enum bulk_channel_role {

8 BULK_ROLE_GENERIC , BULK_ROLE_MASTER , BULK_ROLE_SLAVE
};

10

/** trust levels of channels and pools */
12 enum bulk_trust_level {

BULK_TRUST_UNINITIALIZED , BULK_TRUST_NONE ,
14 BULK_TRUST_HALF , BULK_TRUST_FULL

};
16

/** channel states */
18 enum bulk_channel_state {

BULK_STATE_UNINITIALIZED , BULK_STATE_INITIALIZED ,
20 BULK_STATE_BINDING , BULK_STATE_BIND_NEGOTIATE ,

BULK_STATE_CONNECTED , BULK_STATE_TEARDOWN ,
22 BULK_STATE_CLOSED

};
24

/** represents the state of a buffer */
26 enum bulk_buffer_state {

BULK_BUFFER_INVALID , BULK_BUFFER_READ_ONLY ,
28 BULK_BUFFER_RO_OWNED , BULK_BUFFER_READ_WRITE

};

Listing 6.1: Bulk Transfer Enumerations

6.2.2 Bulk Channel
In our interface, the bulk channel is the central data structure. It contains the
entire channel state such as trust level, direction or role. In addition to that,
each channel is aware of the pools assigned to it. The complete representation
of a bulk channel can be seen in Listing 6.2. We want to highlight some of the
elements in the channel struct.

Callbacks

The implementation of the channel is event based. If the application wants to
be informed about an event on the channel e.g. the arrival of a buffer, it can
register a callback function which is called when the event occurs.

Constraints

There may exist some constraints on the channel such as memory alignment or
range of supported physical addresses. This information is stored in the channel
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constraints and is used to validate the assignment of pools.

Implementation Data / User State

Each channel also supports additional data to be associated with the channel.
The implementation data is intended to be used by the backend to store backend
specific information. The application has the possibility to store additional state
with the channel.

1 /** Handle/Representation for one end of a bulk transfer channel */
struct bulk_channel {

3 /** callbacks for the channel events */
struct bulk_channel_callbacks *callbacks;

5 /** the local endpoint for this channel */
struct bulk_endpoint_descriptor *ep;

7 /** the current channel state */
enum bulk_channel_state state;

9 /** orderd list of assigned pools to this channel */
struct bulk_pool_list *pools;

11 /** the direction of data flow */
enum bulk_channel_direction direction;

13 /** role of this side of the channel */
enum bulk_channel_role role;

15 /** the trust level of this channel */
enum bulk_trust_level trust;

17 /** constraints of this channel */
struct bulk_channel_constraints constraints;

19 /** the size of the transmitted meta information */
size_t meta_size;

21 /** the waitset for this channel */
struct waitset *waitset;

23 /** pointer to user specific state for this channel */
void *user_state;

25 /** implementation specific data */
void *impl_data;

27 };

Listing 6.2: Bulk Channel Struct

6.2.3 Bulk Endpoint Descriptors
The bulk endpoints are not represented explicitly with a data structure but
are rather defined by an endpoint descriptor. Endpoint descriptors are backend
specific and we refer to the backend specific part of the documentation or the
source code for the endpoint descriptor specification.

6.2.4 Bulk Pool and Bulk Buffer
The bulk pools and buffers represent the registered memory usable for bulk
transfers. Each buffer belongs to exactly one pool and the pool keeps track of
its buffers. Listings 6.3 and 6.4 show the complete definition. How the data
structures are represented in memory can be seen in Figure 6.1.
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Figure 6.1: Pool and Buffer Representation

Address Ranges

The virtual addresses as well as the physical addresses of the pools and the
buffers stay fixed after the pool has been allocated. This enables the calculation
of the buffer id from its address and the address from the buffer id.

Capabilities

Both the pools as well as the buffers contain a frame capability which represent
the physical memory of the pool or the buffer respectively. The union of all frame
capabilities of the buffers belonging to a pool will match the pool capability
exactly. Depending on the trust level, the pool capability may not be present.

Trust Level

Like the channel, the pool also has a trust level. This is because we do not want
to allow a pool being assigned to channels of different trust levels.
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1 /**
* The bulk pool is a continuous region in (virtual) memory that

3 * consists of equally sized buffers.
*/

5 struct bulk_pool {
struct bulk_pool_id id;

7 lvaddr_t base_address;
size_t buffer_size;

9 enum bulk_trust_level trust;
struct capref pool_cap;

11 size_t num_buffers;
struct bulk_buffer ** buffers;

13 };

Listing 6.3: Bulk Pool Struct

1 /**
* a bulk buffer is the base unit for bulk data transfer in the

system
3 */

struct bulk_buffer {
5 void *address;

uintptr_t phys;
7 struct bulk_pool *pool;

uint32_t bufferid;
9 struct capref cap;

lpaddr_t cap_offset;
11 enum bulk_buffer_state state;

uint32_t local_ref_count;
13 };

Listing 6.4: Bulk Buffer Struct

6.3 Bulk Channel Operations
Bulk channel operations can be divided into three fundamental categories. First,
we have operations for channel management (subsection 6.3.2), second opera-
tions for pool management (subsection 6.3.3) and third the buffer transfer op-
erations (subsection 6.3.4).

6.3.1 Asynchronous Interfaces
Before we explain the particular interfaces, we emphasize a common character-
istic of all operations on the bulk channel. We decided to have asynchronous
semantics for these operations. If the application wants to be informed about
the outcome of the action, it can register a continuation so it will get an event
when the action is finished. Listing 6.5 below shows the declaration of the
continuation.



CHAPTER 6. INTERFACE SPECIFICATION 43

1 struct bulk_continuation {
void (* handler)(void *arg , errval_t err ,

3 struct bulk_channel *channel);
void *arg;

5 };

Listing 6.5: Bulk Continuation

While all functions have an error code as return value, this error code is only
based on local sanity checks e.g. sending a buffer over a not connected channel
will always fail beforehand.

6.3.2 Channel Initialization and Teardown
The initialization semantics for a bulk channel are similar to those of sock-
ets, where the socket corresponds to the endpoint and the call to listen cor-
responds to the bulk channel create() operation. On the other hand the
bulk channel bind() operation corresponds to the call to connect. Listing 6.6
shows the function signatures for these operations.

1 errval_t bulk_channel_create(struct bulk_channel *chan ,
struct bulk_endpoint_descriptor *epd ,

3 struct bulk_channel_callbacks *cb,
struct bulk_channel_setup *setup

);
5

errval_t bulk_channel_bind(struct bulk_channel *chan ,
7 struct bulk_endpoint_descriptor *rem_ep ,

struct bulk_channel_callbacks *cb,
9 struct bulk_channel_bind_params *params ,

struct bulk_continuation cont);
11

errval_t bulk_channel_destroy(struct bulk_channel *chan ,
13 struct bulk_continuation cont);

Listing 6.6: Bulk Channel Operations

Both the create and the bind function take parameters which specify the
initial state values for the channel and are used to negotiate the final channel
properties during the binding process.

Further, there is no continuation for the channel create operation. The
creation does not involve another endpoint and thus only depends on the local
domain. The result of the create procedure is directly signalled via the return
value.

6.3.3 Pool Assignment and Removal
Recall that buffers can only be sent over a channel if the corresponding pool is
assigned to that channel. Assigning a pool to a channel is a two way operation:
only if the other side agrees to the assignment request can the pool be added
to the channel. At assignment time, the necessary resources such as memory
range and data structures are allocated. Thus it is important for an application
to check the error value when the continuation is called (Listing 6.7).

Note that a pool can not be assigned to the same channel twice.



CHAPTER 6. INTERFACE SPECIFICATION 44

1 errval_t bulk_channel_assign_pool(struct bulk_channel *chan ,
struct bulk_pool *pool ,

3 struct bulk_continuation cont);

5 errval_t bulk_channel_remove_pool(struct bulk_channel *chan ,
struct bulk_pool *pool ,

7 struct bulk_continuation cont);

Listing 6.7: Bulk Pool Operations

6.3.4 Buffer Transfer Operations
The signatures of the actual transfer functions can be seen in Listings 6.8 and
6.9 respectively (each with their counterparts). All four functions take the buffer
to be sent, the channel over which to send it and the continuation as arguments.

In addition to that, there is some meta data that can be transmitted along
with the buffers. The meta data should be small compared to the buffer size
e.g. a block id or request id.

The application has to be aware that when one of these functions is called
on a buffer, the buffer may not be accessible to the application any more, or
just in read-only mode in the case of copy.

1 errval_t bulk_channel_move(struct bulk_channel *channel ,
struct bulk_buffer *buffer ,

3 void *meta ,
struct bulk_continuation cont);

5

errval_t bulk_channel_pass(struct bulk_channel *channel ,
7 struct bulk_buffer *buffer ,

void *meta ,
9 struct bulk_continuation cont);

Listing 6.8: Bulk Move Operations

1 errval_t bulk_channel_copy(struct bulk_channel *channel ,
struct bulk_buffer *buffer ,

3 void *meta ,
struct bulk_continuation cont);

5

errval_t bulk_channel_release(struct bulk_channel *channel ,
7 struct bulk_buffer *buffer ,

struct bulk_continuation cont);

Listing 6.9: Bulk Copy Operations

6.4 Pool Allocator
In contrast to the declarations above, the pool allocator is not part of the core
interface. This decision is based on the observation that a domain can use the
bulk transfer library without allocating buffers and pools on its own, receiving
buffers from other domains instead. Therefore, in order to allocate a new pool
of buffers, we need to include the bulk allocator header:
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#include <bulk_transfer/bulk_allocator.h>

The following Sections will briefly describe the most important functions of
this header that are needed to allocate a new pool.

6.4.1 Allocator Initialization
Initializing an allocator will create a new pool with the corresponding bulk
buffers. The number and size of the buffers are given by the arguments. List-
ing 6.10 shows the function signature for the initialization.

It is possible to initialize the allocator with additional constraints. These
constraints can set the possible memory range for allocation, the pool trust level
or special alignment constraints for the buffers.

1 errval_t bulk_alloc_init(struct bulk_allocator *alloc ,
size_t count ,

3 size_t size ,
struct bulk_pool_constraints *constraints)

;

Listing 6.10: Bulk Allocator Initialization

When the allocator initialization is completed, the memory for the pool is
allocated and mapped in the domain.

6.4.2 Allocating and Returning Buffers
As soon as an allocator is initialized, it can be used to get bulk buffers. List-
ing 6.11 shows the signatures of the buffer alloc and free functions.

Notice that the buffers are in fact always there, the allocator only tracks the
unused buffers.

struct bulk_buffer *bulk_alloc_new_buffer(
2 struct bulk_allocator *ac);

4 errval_t bulk_alloc_return_buffer(struct bulk_allocator *alloc ,
struct bulk_buffer *buffer);

Listing 6.11: Bulk Allocator Initialization

6.5 The Bulk Transfer Library
Recall that the generic part of the bulk transfer library provides a unified in-
terface to the different backends as described earlier in this chapter. Under
the hood, the library also provides common functionalities that are used by the
different backends. We want to give an overview of these functionalities as they
are useful when developing a new backend.

6.5.1 Contracts of Public Interface Functions
The application calls the backend functions via the public interface as described
in chapter 6. These public interface functions ensure that the preconditions
stated in chapter 5 are satisfied before invoking the backend specific function.
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Further, the buffer state is changed according to the invoked operation – this
implies that the backend does not need to deal with buffer state changes and
that the buffer contents may not be accessible any more1.

When getting invoked, the backend can assume that this operation is valid
with the given parameters. In addition to that, the backend may introduce
additional checks related to backend specific state e.g. if there is space left in
the transmit queue and return a proper error code if not.

6.5.2 Buffer Related Functions
There are functions available to query the buffer state, to check e.g. if a buffer
is owned by the domain or if that buffer is a copy. The bulk transfer library pro-
vides functions for mapping, unmapping and changing the protection rights of a
buffer. These functions are accessible from the backends. These operations are
no-ops if the channel is trusted and involve a page table modification otherwise.

We provide a single function that does the corresponding map/unmap/pro-
tect instruction depending on the state transition the buffer is about to make.
The signature of this function is shown in Listing 6.12.

1 errval_t bulk_buffer_change_state(struct bulk_buffer *buffer ,
enum bulk_buffer_state new_st);

Listing 6.12: Changing a Buffer State

6.5.3 Pool Related Functions
Managing pools and tracking them is one of the core functional requirements of
the bulk transfer library. We provide a set of functions that

• Compare two pool ids and generate a new unique one

• Track the pools assigned to a channel and check if the pool has been
assigned to the channel

• Allocating pool data structures

• Mapping / Unmapping of pools

Domain Pool List

As specified in chapter 5, we allow each pool to only be present once in the
domains. To ensure this, the library maintains an ordered list of pools present
in this domain. The policy of this domain pool list is the following:

• Allocators: When allocating a pool, the allocator must make sure that
this pool is inserted into the domain pool list.

• Backends: Upon receiving a pool assign request, the backend must
make sure that a pool is not created twice.

1In the untrusted case the buffer may be unmapped
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Listing 6.13 shows the interface to the domain pool list. If a pool is not
present in this domain, the getter function will return NULL.

errval_t bulk_pool_domain_list_insert(struct bulk_pool *pool);
2

struct bulk_pool *bulk_pool_domain_list_get(
4 struct bulk_pool_id *id);

Listing 6.13: Interface to the Domain Pool List
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Application

As a use case of our bulk transfer infrastructure, we implemented a basic block
server which makes use of the different backends. The application setup can
be seen in Figure 7.1. This basically establishes a two hop bulk channel with
different backends.

7.1 Domains
As one can see, the setup consists of tree different domains running on two
different machines.

7.1.1 Network Block Service (NBS)
The network block service domain is located on a different machine than the
other two domains. This domain is responsible for managing the blocks located
on this machine. In our implementation this block store is just a distinct region
in physical memory.

The domain exports two interfaces:

• Service Interface: This interface exports the functionality of the block
service and is used to issue read requests, channel initialization and status
messages. The service layer is implemented as a TCP server.

• Bulk Interface: There are two bulk channels opened during the con-
nection process. The actual data transfer of the blocks is going over these
channels.

7.1.2 Network Block Service Client (NBS Client)
This domain serves as a network client for the block service and does not store
the the blocks locally1. There are two modules in this domain:

• Network Client: This is the counter part to the network server located
in the network block service. When the domain is spawned, the network
client initializes the connections to the network server.

1There is no caching available at this time
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Figure 7.1: Network Proxy using Local Channel

• Machine Local Server: This module provides the block service inter-
face to other domains located on this machine. The interface is imple-
mented as a Flounder service.

The main purpose of this domain is to forward requests and messages received
on the local server over the network client to the network block service and vice
versa.

7.1.3 Block Service User (BS User)
The block service user domain issues read/write requests of blocks and sends
them to the local service interface of the NBS client.

7.2 Connection Initialization
The connection setup between the NBS and the NBS client is done using a
tree-way handshake protocol. When the block service starts, it starts listening
on a well-known port.

1. Connection: Client connects to the TCP server of the block service and
waits until the connection is established.

2. Setup: Client creates the two bulk channels and sends the endpoint in-
formation to the server.

3. Bulk Binding: The NBS binds to the channels. As soon as the binding
is complete, the NBS client exports the Flounder interface.

This connection setup procedure is adapted to the Flounder interface ac-
cordingly when the BS user connects to it.
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7.3 Pool Assignments
Pool assignments are initiated by the BS user domain, which allocates the pools
and assigns them to the channels. The NBS client will eventually receive a pool
assignment request and forward it to the NBS. The pool assignment process is
finished when the pools are assigned over both channels.

7.4 Serving Requests
There are two types of requests that can be executed on the block service.

Read The read request is sent over the service layer and has support for batch
requests. To send the bock, a bulk buffer is allocated and the data copied from
the block into the bulk buffer before sending.

Write The write request is sent directly over the bulk channel. There is no
support for batch writes. The buffer contents are copied from the bulk buffer
into the corresponding block.

7.5 Basic Work Load
As soon as the pools are assigned to the channels, the BS user starts issuing
requests to the block server. As a basic workload, the client issues a write request
by doing a bulk move operation and waits for the acknowledgement (status
message). Then it issues a read request, waits until the data arrives and then
checks the data for integrity. This sample workload is just for demonstration of
correctness.



Chapter 8

Conclusion

8.1 Support for Variable Sized Buffers
The current implementation does not support sending variable sized buffers. All
the buffers belonging to the same pool must have the same size. Depending on
the backend, this may result in quite an overhead, when sending buffers that
are just half full.

A possible way of doing this would be to introduce the length information
in the buffer and provide an interface like Java byte buffers [8] to read or write
the data.

8.2 Enforcing Policies
With the capabilities currently implemented in Barrelfish, a clean enforcement
of the security policies is not always possible. When a pool is allocated there will
be a master capability for this pool. Therefore, the allocator of the pool can map
the pool at any time at another memory location and mess with the data in the
buffers. One way to overcome this issue, would be to have a third trusted domain
which is responsible for allocating pools and just hands the buffer capabilities
out to the domains using the bulk transfer facility. A different approach would
be to use a new type of capability, as it will be introduced in the shared memory
backend report.

8.3 Device Drivers
Many devices, especially block devices like hard drives, deliver a significant
amount of data, have DMA support and are making use of equal sized buffers.

Adapting existing device drivers for disks or the USB stack to support bulk
buffers as backing memory would be a valid option to consider. Building a
file system server which makes use of the block device driver or a usb mass
storage driver and the bulk transfer framework would be an interesting use case
to investigate.
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8.4 Aggregate Objects
As already explained in Section 4.4, having the possibility to send aggregate
objects would simplify the transmission of larger data blocks at once (from an
application point of view). Further having a dynamic aggregate object data
structure also enables to insert / remove blocks of memory within the object.

As an addition, for simplified access the aggregate objects library may pro-
vide the possibility to map the aggregate object as a single contiguous range of
virtual memory. This possibility will lead to the interesting question on how
this would be conform with our formal specification of the bulk buffers: If the
buffer is mapped as part of an aggregate objects it should not be possible to
send it further, otherwise the data of the buffer could be corrupted by writing
to the mapped aggregate location.

8.5 Name Service Integration
With Flounder [3] the domains can export their iref and associate it with a
name in the nameservice, to enable other domains to look them up based on the
service name. A similar approach may also be beneficial with the bulk transfer
endpoints. However, for some endpoints a single iref value is not enough to
fully represent the endpoint.

As an endpoint may only be used by at most one channel anyway, it makes
more sense to have an orthogonal service that the domain exports, which creates
the requested endpoints on the fly. Currently, this is the approach we have
implemented in our block service application, where we use the block service
channel to exchange the endpoint information.

8.6 THC Integration
We have chosen to design and implement the bulk transfer mechanism based
on asynchronous events and waitsets. This design might be easily adaptable
to be integrated into THC [? ]. This integration can lead to a unified way of
exchanging messages of different size between domains and even machines.
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Chapter 1

Introduction

Using shared memory to send large buffers is not a new idea. In many systems,
shared memory has been the main form of inter-process communication. Using
the CPU to copy buffer contents from one memory location to another is ex-
pensive, and has only become more so as the gap between processor frequency
and memory latency increased.

In traditional SMP systems, much has been done to defer the actual copying
operation until it is absolutely necessary (e.g. copy on write), and services like
the network stack use copy-free message systems. These message systems tradi-
tionally do not offer any isolation between the sending and receiving side, so they
require a certain amount of trust. They also have very specific interfaces that
have very little in common and directly reflect the specifics of their respective
implementations. In systems like Barrelfish, where consistent shared memory is
optional and core services run as regular userspace processes, it is much more
desirable to make all communication explicit through message passing.

We designed and implemented a system for sending large messages – an
abstraction for sharing memory with no unnecessary copying. The common
abstraction of this bulk transfer interface, that also can be used to send bulk
messages across an actual network using the exact same calls, was detailed in
chapter 6.

In this part, we discuss how the shared memory backend was designed and
implemented, as well as some performance measurements and their implica-
tions. The target of our implementation is a modern multiprocessor with cache-
coherent shared memory. While it will also run on NUMA machines, we did not
design it with that environment in mind.
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Chapter 2

Related Work

Several influential designs for bulk transfer mechanisms were already presented
in chapter 2 as they guided the design of the common interface from the begin-
ning. That these systems all used shared memory for their implementation is
simply due to the fact that traditional SMP systems (as well as many uncon-
ventional ones) are heavily grounded in shared memory communication. In this
chapter, we explore the designs again, but with an emphasis on the optimiza-
tions they employed to boost performance.

2.1 fbufs
The article discusses several methods of increasing the speed when sharing im-
mutable buffers. It argues that in many cases, data travels the same path along
domains. This is especially true when looking at network traffic, where inspect-
ing all the packet headers clearly determines the intermediate and target domain
of the packet payload. This is referred to as an I/O data path. The article sug-
gests to keep page mappings of buffers valid even if the buffers are no longer
needed, and to reuse them for more traffic on the same path. This is to avoid
traps into the kernel and locking of VM data structures. It goes even further
and suggests not enforcing access policies on buffers for higher throughput. It
points out at the end that this is at the cost of security.

The influence of these thoughts are mainly twofold. First, we note that prior
knowledge of I/O data paths is not a given when looking at general bulk transfer,
as opposed to the specific problem of network traffic studied in the article. This
idea however was integrated with the concept of the bulk pool in our bulk transfer
facility. The same pool should be used over multiple bulk channels for the same
bulk transfer data path, allowing to reuse existing data structures and possible
mappings. Second, the choice to go for increased throughput at the cost of
isolation was emphasized from the beginning of the design stage and resulted in
the different trust levels for the channels and pools involved in the bulk transfer.

2.2 rbufs
The Nemesis system was intended for the specific purpose of providing quality
of service guarantees to multimedia applications. This can be seen in the deci-
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CHAPTER 2. RELATED WORK 59

sion to have applications do their own processing of work traditionally done by
central services in order to have scheduling control, as well as in the optimiza-
tion of having a single virtual address space for all processes to share, so that
context switches would have a smaller impact on the TLB and cache.

Nemesis actually has many similarities with Barrelfish, as both try to push as
much functionality as possible into the applications themselves via libraries, with
privileged userspace services providing the parts that regular applications can
not be trusted with. In both systems, the kernel’s main purpose is scheduling,
as it has the unique ability to preempt all other code.

Rbufs partially inspired our early desire to support aggregate objects on the
lowest level, before we later decided to rather have our interface be generally
extensible instead. While the rbufs design is a clean approach to fully trusted
channels, it is unclear how it would be extended to support isolation without
getting rid of the main performance optimization.



Chapter 3

Design Considerations

3.1 General Design Challenges
The main challenges for our shared memory backend design were the following:

• Buffer contents should not be copied if it can be avoided.

• If both domains trust each other, they should not pay a performance
penalty for using our system.

• If the domains do not trust each other, they should have enforcable isola-
tion guarantees.

• The system should fit into Barrelfish’s distributed design.

The last two points are especially important, because they explain why other
bulk transfer approaches, such as fbufs or rbufs (see chapter 2) can not just be
adapted to our system.

In the message passing abstraction of our interface, doing a move operation
conceptually makes the buffer go away, and the other side will expect us to
now leave it alone. The traditional shared memory bulk transfer systems were
not made with isolation in mind, as their primary purpose was communication
between mutually trusted subsystems.

3.2 Capability System
In Barrelfish, all physical memory is managed in userspace by the applications
themselves. To insert a mapping into its page table, an application needs to have
a capability for the physical memory. To share memory with other domains,
applications can send each other their capabilities. While the kernel and monitor
enforce the rules of the capability system, the decision of when to use which
capability is purely the application’s. A comprehensive analysis of the capability
system in Barrelfish both as it is and as it is intended to become can be found
in Mark Nevill’s master’s thesis[7].

Because all capabilities are stored in a protected area (called cspace), capa-
bilities can also be revoked: all copies of a capability – no matter what domain
they belong to – are deleted, and only the copy that has been revoked remains.
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This is a very powerful operation, as it gives guarantees about the non-existence
of other capabilities.

Any protocol based on sharing memory in Barrelfish must necessarily involve
the domains exchanging capabilities. The big advantage of this approach is that
the kernel does not need to understand the semantics of the protocol – it merely
enforces the semantics of the general capability system.

3.3 Using Capabilities For Bulk Buffers
If there are no isolation requirements (i.e. the domains trust each other), then all
that is needed for bulk transfers is for both domains to map the same capability
into their virtual address space. Since they never have to unmap anything, it
is sufficient for them to share just one big capability for the whole buffer pool,
which can be sent along with a pool assignment message.

If the domains do not trust each other, we do not want them to be able to
overwrite data they have sent. In the case of a move or pass operation, only the
receiver will need access to the data, so we can simply remove the capability from
the sender’s cspace. Because the receiving domain does not trust the sender to
delete the capability voluntarily, it has to revoke the capability it received.

The biggest challenge is the copy operation, because it involves more than
one domain having access to the data. Both the sender and the receiver want
a guarantee that the other side can not overwrite the data, which means that
neither of them should have a read-write capability. However, as soon as both
have released the copy, we want the owner to regain full read-write access.

3.4 Trusted Third Party
One way to give the isolation guarantees for untrusted copy operations would
be to introduce a trusted third party, a userspace process with the specific
purpose of managing copy operations. To send a copy message, the owner of
the buffer would transfer ownership to this third party, which would then revoke
the capability and give both sides a read-only capability. When the buffer is
released, the third party transfers ownership back to the sender. This approach
addresses both issues of copying: Both domains know that the other can not
overwrite the data, and the owner can regain its privileges after the buffer is
released. However, introducing such a third party also has serious drawbacks:

• Both domains need to trust another service.

• The trusted service needs to manage all channels it is involved in.

• Copy messages are essentially relayed, increasing latency.

• If there is only one such trusted third party, it could quickly become a
bottleneck.

The connection to the service could either be separate from the bulk channel,
in which case the service would also need to authenticate requests for buffer
access, or it could be inserted between the sender and receiver as a relay sta-
tion, increasing latency for all messages (not just copies). For these reasons of
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scalability, we would prefer to extend the existing trusted infrastructure instead
– the capability system.

3.5 New Capability
As the existent capabilities do not provide the functionality we need to send un-
trusted copy messages, we would like to propose a new one. Our new capability
must have the following semantics:

• Represent a mappable region of physical memory

• There can be multiple read-only copies

• There can only be one read-write copy

• There can not be read-only and read-write copies at the same time

• There must be a way to regain a read-write copy if there are no read-only
copies left

Ideally, the capability should also largely behave like the existing frame or
device-frame capabilities to better integrate into existing code.

These requirements are analogous to the classic multiple readers / single
writer lock, but need to be enforced by a distributed system. While the current
Barrelfish capability system does not contain any capabilities with comparable
semantics, it can be extended using a simple state machine. Figure 3.1 shows a
simple state diagram that is sufficient to satisfy all our requirements.

The most important insight is that while the semantics are stating invariants
on the global state, the transitions between reading and writing can only happen
when there is just one such capability in the whole system. This allows us to
encode a state machine directly into the capability and keeping all the copies’
states consistent without ever having to change the state of more than one copy.

Just by enforcing that such a capability can not be copied or sent while in
the exclusive state, and that the only way to get back to the exclusive state is
revocation, we can guarantee that there will never be both an exclusive and a
shared copy simultaneously in the whole system.

This requires some additional checks in the invocation handlers in the kernel,
but these are very simple (reading the capability type and one of its fields) and
– most importantly – completely local. Invocations like copy and send can
already fail and return error codes to the user (e.g. if the invocation targets a
non-existent cspace slot), so it is not a big step to add more failure conditions.
The invocation that changes the state from exclusive to shared should check if
the capability has already been mapped, and if so either remap it read-only or
return an error to the user.

Simply possessing a read-only copy of such a capability guarantees a domain
that there is no corresponding read-write capability in the whole system. An-
other noteworthy aspect is that this capability allows us to regain rights that
were previously reduced, without any outside intervention.

A more subtle aspect of this new capability is that it can not be generated
by retyping a frame or device frame. This decision was made, so that there
would not be any mappable ancestors – if one revokes a frame that was retyped
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         from RAM
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Figure 3.1: State diagram of a single shared frame capability.
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from a bigger frame, the bigger frame does not get deleted, so the holder could
still access the same memory. Retyping directly from RAM eliminates this
possibility, as RAM capabilities can not be mapped, and a capability can not
be retyped twice.

It is important to note that this shared frame capability not only provides
the semantics we want for the untrusted copy operation, but it also does not
interfere with untrusted moves. This means we can use it instead of regular
frames for untrusted pools without having to differentiate between movable and
copyable buffers.

For trusted channels, we still want to use regular frames, because we need
to be able to have the same buffer mapped read-write in both domains.

3.6 Limitations
Due to time constraints, we could not actually implement the shared frame ca-
pability (as it only provides security guarantees, more essential functionalities
were prioritized). The current Barrelfish capability system differs from the one
specified by Nevill[7] mostly in that the remote capability database is deacti-
vated, so the monitors do not manage the global capability space. Revocations
across cores are currently just ignored, which means that we can not actually
give the security guarantees in the untrusted case until the system is reacti-
vated.



Chapter 4

Implementation

4.1 Existing Infrastructure

4.1.1 Libbarrelfish Bulk Transfer
There already is a simple bulk transfer mechanism implemented in libbarrelfish,
the Barrelfish core library[11]. However, that implementation has several im-
portant limitations:

• Both domains have full read-write access to all buffers at all time, so they
have to trust each other not to overwrite data the other side is reading.

• The interface is explicitly machine-local, so it does not provide a message
passing abstraction.

• There is no standardized way to share buffers between more than two
domains. It can still be done on top of the interface, but the user has to
manage it.

A similar system called pbufs also exists, and it shares these drawbacks. For a
more detailed analysis see section 3.4.

In order to be able to give strong isolation guarantees and provide a common
interface with the networking backend, we did not use the existing bulk transfer
code.

4.1.2 Flounder
As Barrelfish is a purely message based system, there is a common interface
for the different ways that messages are implemented in the backend. A do-
main specific language called Flounder[3] is used to specify interfaces, defining
the structure of messages that can be sent and received. Depending on where
the communicating domains are actually located at runtime, the appropriate
message passing backend is then chosen to send such messages.

LMP

If both domains are running on the same core, then local message passing (LMP)
is used. Data is transmitted by loading it into registers, invoking a capability
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for the other domain and having the kernel upcall the receiver with the data
from the registers.

UMP

If the domains are running on different cores, but have access to shared memory,
then user-level message passing (UMP) is used. The sender copies the message
data into a shared region of memory, and the receiver then copies it into a
local buffer. To transmit capabilities, the sender has to first send it to its local
monitor, which will transmit it to the other core’s monitor, where it will be
inserted into the receiver’s cspace.

Flounder allows messages to contain fixed-size or variable-size arrays, so it
could be used to directly send bulk messages. However, both backends are
designed to only transmit small chunks at a time (about 10 registers worth of
data) and copy the message payload.

4.2 Backend Implementation

4.2.1 Overall Design
We implemented a backend to the bulk transfer interface specified in chapter 6
to be used for bulk transfer on a cache-coherent machine in a symmetric mul-
tiprocessing setup. As shared memory can always be used in such a setup to
make data available to another domain, our backend implementation could avoid
physically copying or moving bulk data in memory. The backend’s task therefore
is twofold: First, it needs to ensure the proper memory mappings of the buffer
in each involved domain according to the access rights and trust levels specified
in section 5.2. Second, it needs to notify the other endpoint about buffers being
transferred and allocate and manage the corresponding data structures for the
library representation.

For communication amongst the domains, we used Barrelfish’s message pass-
ing infrastructure provided by Flounder. A Flounder channel is established be-
tween to the bulk transfer endpoints. The channel is used to notify the peer
endpoint about operations on the channel as well as transmitting corresponding
metadata and buffer capabilities.

4.2.2 Channel Creation
Our shared memory bulk transfer backend is tightly coupled with the Flounder
communication channel. For a Flounder channel, one side exports the channel
interface and receives a unique identifier, the iref. The interface our Flounder
channel uses is specified in if/bulk ctrl.if. The other side can then bind to
that iref to establish the channel. From then on, messages can be exchanged.

Channel creation for the bulk transfer library runs in two phases. First, the
underlying Flounder channel is established. Second, messages are exchanged to
verify whether the bulk channel properties of the two endpoints match: channel
role and channel trust. This phase is called negotiate.

The bulk channel endpoint descriptor for shared memory contains only the
iref of the underlying Flounder channel. Two functions for endpoint creation
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are available1: bulk sm ep create and bulk sm ep create remote. The first
creates an endpoint to be used with bulk channel create. It exports the
interface. The second creates an endpoint to be used with bulk channel -
bind. It takes as argument the interface’s iref which the bind function will
use to establish the Flounder channel. To establish a bulk channel between to
domains, the bulk channel’s iref can either be registered to the name service
or conveyed by some higher-level negotiation protocol that uses bulk transfer as
a sub-mechanism.

There is one caveat to this procedure: Exporting an interface binds it to
a waitset to dispatch events. By the design of our bulk library, the waitset is
specified at channel creation, not endpoint creation. As a result, the endpoint’s
iref is only valid after the call to bulk channel create and must not be
communicated to the other domain before that. The library will verify this is
true and report an error otherwise.

4.2.3 Transferring Buffers
If the user wants to copy or move a buffer, he calls the library and registers a
continuation to be notified about the result. The sequence of events generated
by the shared memory backend are depicted in Figure 4.1 for a copy operation.
A Flounder message notifies to other endpoint about the buffer. The other side
generates the corresponding library data structures and performs an upcall to
the user-defined buffer copied callback.

No buffer data is actually transferred – the contents of the bulk buffer are
never accessed by the library. If the channel is trusted, the whole memory
region of the buffer’s pool are already mapped in the domain’s address space.
In the untrusted case, the corresponding frame capability is transferred with the
message and mapped. Two implementation issues found communicating with
Flounder are described in the next two sections.

1see include/bulk transfer/bulk sm.h
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 copy operation

Figure 4.1: Messages transmitted between channel endpoints in a copy opera-
tion.

4.2.4 Implementation Challenge: Message Ordering
Using Flounder channels, sending messages may fail with a temporary FLOUNDER -
ERR TX BUSY error. In such a case, the message queue is full and the user needs
to retry sending the message at a later point in time. Such errors occur often
when using the bulk transfer library. There are several implications of this be-
haviour for the bulk transfer implementation. The issues are presented looking
at a copy operation as seen in Figure 4.1.

For the implementation, receiving a temporary transmission error is fine if
the send request comes directly from the user, e.g. the buffer copy request
cannot be transferred. The error can be reported to the user. However, this is
not always true. On the receiver side, the user is not actively making calls, but
gets notified about the new buffer by a registered callback. He is not involved
in sending the reply back to the receiver. The error cannot be reported. As this
is a common case, Flounder allows to register a closure to be called as soon the
message can potentially be transmitted. Thus, retransmission can be triggered
without user involvement. The general approach in the Flounder example codes
is to split sending a message into two functions. The first is to prepare all the
arguments required for the message and store them on the heap. The second
function attempts to send the message using the arguments prepared and frees
the data upon success. Using this approach, the second function can directly be
registered as resend closure. This said, one problem remains: Only one resend
closure may be registered at any time. Registering further resend closures fails.
As multiple bulk transfer operations can be pending on the same bulk channel,
this is not enough.

To our knowledge, Barrelfish does not provide means to deal with this sit-
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uation. Our first solution was to introduce a thread-safe resend queue to the
bulk channel. The sending function (the second of the two functions mentioned
before) was structured as follows: It would try to send the message. If send-
ing failed, it would insert itself into a resend queue. The resend function was
designed as a general purpose function that would dequeue the first element
of the resend queue and call the closure. If sending failed again, the sending
function would reinsert itself into the resend queue as in the attempt before.
This approach guaranteed that all messages would be sent eventually. How-
ever, it resulted in arbitrary message reordering leading to an unexpected and
impossible communication pattern from the user perspective.

First, this led to a race condition on the flounder channel send queue. A
message attempted to be sent as a direct consequence of a user call to the library
was reported back to the user. He would retry the library call. At the same
time, reply messages by the library that could not be sent were inserted into the
resend queue. When the resend handler was called, retransmitting the message
could fail because the send queue was already filled again by a user library
call. As a result, a message generated by a user library call could have been
transmitted before a reply message due to a previous event, leading to message
reordering.

Secondly, the bulk channel resend handler would dequeue a closure from the
channel’s resend queue and call it. The closure would reinsert itself into the
queue if sending the message failed. However, it would reinsert itself at the end
of the queue. Thus, closures inserted into the queue at a later time could be sent
before the response to the message that triggered them in the first place, leading
to the user being notified about events in an acausal (and largely random) order.

In this setup, we could observe incorrect interaction such as this: Agent A
would copy a buffer to an agent B. As depicted in Figure 4.1, the library will
automatically send a copy reply back to agent A. However, transmission of the
copy reply fails and it gets added to the resend queue. Meanwhile, agent B
would happily process the data and decide to release the buffer again. Sending
the message succeeds. As a result, agent A will receive a buffer released message
before knowing the buffer was actually copied successfully. Even worse, agent
A will receive the buffer copied successfully message long after the buffer was
already released, about which he was already notified. Clearly, the bulk transfer
implementation could not be used meaningfully in such a configuration.

We made two changes to this first approach, to achieve FIFO ordering of
messages on the Flounder channel. First, we changed the usage policy of the
two send functions present for every Flounder message we defined. Recall that
the first function is to prepare the message arguments on the heap and call the
second function. The second function is to attempt to transmit the message
and insert itself into the bulk channel resend queue upon failure. In the new
implementation, the second function no longer serves as a Barrelfish send clo-
sure. It only attempts to send the message and returns an error code about
the success. The first function no longer calls the second but directly inserts it
into the resend queue. The resend handler again looks at the first element in
the resend queue and calls the function. However, it only dequeues the element
if sending the message actually succeeds. This prevents reordering of messages
in the resend queue. Secondly, even messages attempted to be sent as a direct
result of a user library call are now inserted into the resend queue. Thus, the
race condition on the flounder channel send queue is removed. This yields FIFO
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ordering of all messages on the Flounder control channel. The corresponding
functions are implemented in flounder helpers.c of the shared memory bulk
transfer backend.

One difficulty our automatic resend handling still has is that it requires the
dispatching of waitsets by the user, who may not be aware that his message will
only really leave the domain if he continues dispatching. While it is reasonable
to assume that the user would dispatch the waitset anyway – in anticipation of
a reply – there might be edge cases where he would not expect to still need to
dispatch events (e.g. if he just got what he knows to be the last pass operation,
but never dispatches the following event that would send a reply back to the
other side).

4.2.5 Implementation Challenge 2: Unnecessary Locking
Of Monitor

Using a Flounder channel for our backend messages allowed us to abstract away
the topology of CPU’s. Depending on where the two communicating domains
are located, Flounder will automatically use the appropriate form of data trans-
fer. However, while the different Flounder implementations all provide the same
functionality, they differ drastically in their performance when transferring ca-
pabilities.

LMP If the receiver is on the same core, then sending a capability is a local
operation. The message is transferred by the kernel, which manages the
cspace for both domains. Sending a capability is no different than copying
it locally, and does not require any synchronization. Furthermore, mes-
sages with capabilities are treated exactly the same as messages without,
so there is no penalty for defining messages with optional capabilities.

UMP If the receiver is on a different core, then sending a capability is not local
anymore and can not be done by the kernel alone. Instead, the request
is first sent to the local monitor, which communicates with the monitor
on the other core to place a copy of the capability into the receiving
domain’s cspace. As the capability takes a different path than the rest
of the UMP message payload, the receiver has to wait for two different
receiving events to occur before it can reassemble the complete message.
Messages without capabilities on the other hand are directly transmitted
over shared memory, involving neither the kernel nor monitor.

If one really needs to transmit a capability, then the UMP performance penalty
is easily justifiable as the price of a consistent capability system. However, if
one sends a message that could contain a capability, but doesn’t, then the UMP
backend will still connect to the monitor, acquire a mutex and send a NULL CAP
– leading to the same performance penalty.

In our bulk transfer backend, the main distinction between trusted and un-
trusted channels is that we only send the individual buffers’ capabilities around
in the untrusted case. If the channel is trusted, we once send a capability for
the whole pool, and only refer to offsets within it on all subsequent move, pass,
and copy operations. We first wanted to use the same Flounder messages for
both trusted and untrusted operations, with the capability simply being set to
NULL CAP by trusted channels. As a result, trusted channels over UMP were



CHAPTER 4. IMPLEMENTATION 71

almost as slow as untrusted ones, since the monitor synchronization overhead
dominated all messages (the untrusted case was still slightly slower, because
it also performs two additional invocations on each receive). To get rid of this
unnecessary synchronization, we had to define separate messages for the trusted
case. This simple change sped up trusted UMP channels by a factor of 20. Bulk
channels over LMP were unaffected.
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Evaluation

5.1 Bulk Transfer Semantics
To verify the correct functioning of the shared memory bulk transfer imple-
mentation as well as the buffer access semantics, the bulk shm application was
developed. It can be found in usr/tests/bulk transfer/bulk shm.c in the
Barrelfish source tree. It implements the role of two agents that run in separate
domains and establish a bulk transfer channel. Their communication is outlined
in Figure 5.1. A total of seven different tests can be run.

Tests 0 and 1 are used to verify that sent buffers really do contain the
data they are expected to on the receiver’s side. They run the communication
depicted in Figure 5.1 omitting other tests. A bulk channel is established and
buffers are copied as well as moved on it. In particular, the following functions
are covered in the test with the shared memory backend in use.

• bulk sm ep create

• bulk sm ep create remote

• bulk channel create

• bulk channel bind

• bulk channel assign pool

• bulk channel pass

• bulk channel move

• bulk channel copy

• bulk channel release

In test 0, a trusted bulk transfer channel is used. In a trusted scenario, all the
buffer frames are mapped in each of the endpoints’ domains as soon as a pool is
assigned. The underlying Flounder channel is used solely to notify the receiver
about buffers being transferred.
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 usr/tests/bulk_transfer/bulk_shm: Test 0 [FT] / Test 1 [NT]

 Test 2

 Test 3

 Test 4

 Test 5

 Test 6

Figure 5.1: Interaction of the two agents in the bulk shm test.
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Test 1 establishes a non-trusted bulk transfer channel. In the non-trusted
scenario, frame capabilities for the buffers being copied or moved need to be
transferred along with the notifications about buffer transfer. Tests 0 and 1
ensure the implementation provides the functionality specified and that the
data being transferred is received correctly.

The access rights to buffers has been specified in section 5.2. If domains can-
not expect their communication partner to adhere to these conventions, they
need to be enforced. To what extend they can actually be enforced in the capa-
bility system currently provided by Barrelfish and possible design alternatives
have been discussed in section 3.1. Tests 2 through 6 of bulk shm verify the
guarantees our implementation provides. These include

Test 2 A passed buffer can no longer be accessed.

Test 3 A moved buffer can no longer be accessed.

Test 4 A buffer shared by a copy operation is read-only.

Test 5 A buffer received by a copy operation is read-only.

Test 6 A released buffer copy can no longer be accessed.

The agents establish a non-trusted bulk transfer channel and start interacting as
in the first two tests. At the step indicated in Figure 5.1, one of the agents will
try to break the guarantee specified in the test. The test is passed if the agent’s
domain produces a page fault. The other domain will point out it expects it’s
peer to fail and enter an endless loop.

The bulk shm application takes two commandline arguments. The first de-
fines which agent’s role to take on (1 or 2) and the second defines the test to
run (0 – 6). This can be specified as follows in the Barrelfish boot configuration
menu.lst:

# bulk_shm Test 0 in dual -core setup
module /x86_64/sbin/bulk_shm core=0 1 0
module /x86_64/sbin/bulk_shm core=1 2 0

Listing 5.1: bulk shm boot configuration

Our shared memory bulk transfer implementation passes all seven tests. This
is true regardless of whether the agents run on the same or on different cores.
As we know, there is no revocation across cores in the current capability system,
so this test is clearly quite limited in scope: neither agent goes out of its way to
violate the guarantees. It does however show the view of a regular user of the
library.

5.2 Bulk Transfer Performance

5.2.1 Setup
To evaluate the shared memory bulk transfer implementation, the benchmarks
and block service developed in collaboration with the network bulk transfer
team were used. These microbenchmarks consist of an echo server (that just
sends back every buffer it receives) connected to either a throughput or latency
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load. The latency benchmark sends a single buffer, and measures the time until
the echo is received. The throughput benchmark sends many buffers in quick
succession and measures the time it takes until the last echo is received. These
benchmarks can be configured to use different buffer sizes and sample sizes as
well as the following more backend specific options:

Trust As trusted channels never unmap their buffers, and do not need to send
capabilities along with every buffer operation, we would expect them to
perform much better than untrusted channels.

Core Residence Depending on whether the communicating domains are run-
ning on the same core or not, the Flounder channel that the shared mem-
ory implementation is built on uses either the LMP or UMP backend.

Intermediate Domains In a real-world scenario, we expect bulk transfers to
span multiple domains such as for example an application, service provider
and driver. To simulate this situation, the bulk transfer passthrough
application was developed that can be inserted between any two com-
munication endpoints to study the influence of additional hops in the
communication path.

The different communication scenarios we set up are illustrated in Figure 5.2,
Figure 5.3 and Figure 5.4 respectively.

The boot configuration we used is provided in Listing 5.2 for the latency
microbenchmark. The micro rtt binary can be replaced by micro throughput
for throughput testing.

# RTT microbench single -core
module /x86_64/sbin/bulkbench_micro_echo sml:bench1 sml:bench2
module /x86_64/sbin/bulkbench_micro_rtt smc:bench2 smc:bench1

# RTT microbench dual -core
module /x86_64/sbin/bulkbench_micro_echo core=0 sml:bench1 sml:bench2
module /x86_64/sbin/bulkbench_micro_rtt core=1 smc:bench2 smc:bench1

# RTT microbench multi -core (trusted)
module /x86_64/sbin/bulkbench_micro_echo core=0 sml:bench1_2 sml:bench2_1
module /x86_64/sbin/bulk_transfer_passthrough core=1 bench1_2 bench1_1 1
module /x86_64/sbin/bulk_transfer_passthrough core=2 bench2_1 bench2_2 1
module /x86_64/sbin/bulkbench_micro_rtt core=3 smc:bench2_2 smc:bench1_1

Listing 5.2: Boot configurations for microbenchmarks.

5.2.2 Testing Hardware
All measurements were taken on the ziger2 machine, which has a cache coherent
AMD Istanbul architecture with a total of 24 cores in 4 sockets. All cores are
clocked at 2400 MHz. This is a fairly standard SMP design, so we expect our
results to translate to other SMP machines as well.
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core 0

RX TXRX TX
bench2

echo

RXTX RXTX
bench1

throughput

Figure 5.2: Microbenchmark configuration with communicating domains on the
same core.

core 0core 1

RX TXRX TX
bench2

echo

RXTX RXTX
bench1

throughput

Figure 5.3: Microbenchmark configuration with communicating domains on dif-
ferent cores.

core 0core 3

core 2

core 1

RX TXRX TX
bench2_1

echo

RXTX RXTX
bench1_2

passthrough

passthrough

RX TXRX TX
bench2_2

RXTX RXTX
bench1_1

throughput

Figure 5.4: Microbenchmark configuration with additional hops between com-
municating domains, all on different cores.
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5.2.3 Results
Buffer Size

As it can be seen in Figure 5.5, the size of the bulk buffers has virtually no
influence on the latency of operations. This is because our implementation never
even accesses the buffers themselves, but only sends messages with references
and capabilities – and neither the number of messages nor their payload size
changes with buffer size. The very small increase in latency seen in the graph is
probably caused by the fact that in the untrusted case, these much larger regions
of memory need more page table entries to be changed with every mapping
and unmapping. We did not take detailed measurements for the trusted case,
because it is even less dependant on buffer size: the memory is only mapped
once on pool assignment, and never unmapped.

This constant latency for variable buffer size makes it almost meaningless
to talk about general maximal throughput, as it is only bounded by what the
user can process. On the other hand, it is unrealistic to expect users to choose
megabyte-sized buffers. To measure throughput in a meaningful and comparable
way, we decided to use the rate of transmitted buffers, independent of their size,
for all following benchmarks.
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Figure 5.5: Latency as a function of bulk buffer size.

Core Configuration – Trusted Channels

When comparing different configurations of trusted channels, there is a remark-
able difference between throughput and latency, as seen when comparing Fig-
ure 5.6 and Figure 5.7. While a single-core setup has the smallest latency, it’s
throughput is worse than if two domains were running on separate cores. This is
probably because an individual message benefits from LMP transfers automat-
ically scheduling the receiving domain and notifying the dispatcher of the new
message, whereas UMP channels need to be actively polled by a thread. If the
channels are however flooded with messages (as in the throughput benchmark),
then the dual-core setup benefits from being able to execute both domains at
the same time and sending messages without leaving userspace, whereas the in-
stant delivery mechanism of LMP becomes a burden, since it requires a context
switch for every single message.

Surprisingly, doubling the number of UMP hops does not double the latency.
We do not know why it reduces throughput by a factor of 20, as this is a
very extreme result that even memory allocation problems could not account
for. As UMP relies heavily on cache-coherence for its efficiency, we can only
speculate that the flood of memory accesses to pairwise shared cache lines could
be responsible.
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Figure 5.6: Latency for different core configurations.

Figure 5.7: Throughput for different core configurations.
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Core Configuration – Untrusted Channels

As was to be expected, untrusted channels are much slower than their trusted
counterparts, since they are sending capabilities around with every move, and
then revoke and map them once received. In contrast to the trusted case,
Figure 5.8 and Figure 5.9 both show the same ranking for the different configu-
rations. Single-core setups are unsurprisingly by far the fastest, since they can
be served locally and LMP messages go through the kernel anyway.

The much slower transmission across cores can be explained by how UMP
works: the sender first has to acquire a lock on the local monitor (using LMP),
then send the capability to that monitor (using LMP). The monitor serializes
the content of the capability (using a system call), and sends this data to the
monitor on the other core (over UMP). That monitor then generates a new
capability from the serialized data and sends it to the receiving domain (using
LMP). So every single capability transmission over UMP uses several LMP
messages and additional system calls.

As the remote capability database was still deactivated at the time of our
measurements, they actually understate the true cost. In the fully operational
system, revoking capabilities across cores will be significantly more expensive,
as it will involve connecting to the monitors and having them communicate
with each other as well. This enormous performance penalty across cores is
the price of a consistent distributed capability system – any other bulk transfer
implementation that sends capabilities over UMP would be just as slow.
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Figure 5.8: Latency for different core configurations.

Figure 5.9: Throughput for different core configurations.
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5.2.4 Implications For Users
As the differences in both latency and throughput are vastly different for the
different configurations, and different still for other bulk transfer backends, users
who care about the performance of their application might need to adapt their
system to the setup it is running on. This is similar to the way different flounder
backends have different performance characteristics – which is also one of the
main reasons for the different characteristics of our system. The performance
penalty of untrusted cross-core channels is so big, that it might be better to run
both domains on the same core even if other cores are idle. In some cases, users
may even be willing to pay that performance penalty, as it buys them isolated
buffers of arbitrary size.

5.2.5 Possible Improvements
Due to time constraints, we could not try out as many optimizations as we
would have liked. One area where there might still be room for improvement
is memory allocation, as our backend often allocates and frees small structs of
just a few different constant sizes.

However, from our measurements it is clear that for most setups, the per-
formance is completely dominated by the underlying flounder channel. LMP
always performs a system call with a context switch to send a message, and in
the untrusted cases the revocation alone will take orders of magnitude longer
than our local userspace processing. The only setup without any mandatory
system calls is a trusted channel over UMP, and it would also proportionally
benefit the most from even small optimizations as it is already the case with the
most throughput.



Chapter 6

Future Work

It would be interesting to have a working implementation of the shared frame
capability that we described in section 3.5, though for it to work properly would
also require the reactivation of the remote capability database in the monitors.
The concept of encoding state machines in capabilities could be taken much
further, and the limits of the achievable semantics are probably worth exploring.

We were surprised by the decay in throughput as we added more trusted chan-
nels over UMP, and the rather extreme result might be worth further research.
We suspect the problem to lie with the exploitation of cache-coherency proto-
cols that constitutes the main optimization of UMP. If that really is the case,
it suggests that even using cache-coherency exclusively for optimization might
not scale well.

It would be interesting to have other bulk transfer backends with the same
interface on shared memory machines, to compare to our implementation. Ob-
vious ideas are DMA engines and naive full-copy channels. While these would
not be faster than our implementation on the machines we used, they may be-
come more favourable on NUMA machines, as the receiver would get the buffer
on its local node.
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