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Chapter 1

Introduction

With an increasing number of cores a single computer can already be viewed as
a distributed system which needs a distributed operating systems running on it
[4]. Having several instances of processes running on different cores, the need
for communication to synchronize them increases. Therefore a fast inter process
communication mechanism is the basis for good performance.

However, distributing work among many processes running on different cores
or even different machines also involves providing them with larger and larger
amounts of data. This results in a second requirement for good performance:
an efficient bulk transfer mechanism.

The bulk transfer should work seamlessly between domains running on the
same machine as well as between different nodes in a network: A data block
should be movable between multiple domains without copying it and in addition
to that sent over the network without copying it to transmit buffers.

A fast bulk transfer implementation is not useful, when the two participat-
ing domains do not trust each other and the implementation does not provide
mechanisms to enforce certain policies: there must be a possibility to ensure
data integrity once the data block has been sent.

Report Outline In this report, we will give an overview of related work 2
followed by a brief introduction to the Barrelfish related components in Chapter
3. In Chapter 4 we give a high level description of the architectural design
followed by a formal specification of the semantics 5. We provide an overview of
our sample implementation in Chapter 6 followed by the description of a sample
application which uses our bulk transfer implementation in Chapter 7. The last
chapter briefly discusses our conclusions of our approach.

13



Chapter 2

Related Work

fbufs The article Fbufs: A High-Bandwidth Cross-Domain Transfer Facility
[9] presents an I/O buffer management facility providing high throughput for
I/O intensive applications. Its focus is on fast buffers (fbufs) crossing multiple
domains and being processed on the way, as is the case for data traversing from
an application to the network and vice versa. I/O data in fbufs is accessible read-
only as soon as buffers are shared with other domains. Their size is a multiple of
the system’s page size. This allows to use shared memory and page remapping
technology to avoid the actual copying of data. The read-only property ensures
data integrity. To allow data modification on-the-fly, references to sections of
immutable buffers are combined into an aggregate object tree. This allows for
dynamic recombination of data chunks making the data changeable on a higher
level of abstraction. The article makes a strong point that increased sharing of
buffers will benefit speed but at the same time start to compromise security.

Many of the ideas in the paper were integrated into our design of the bulk
transfer interface, especially with focus on allowing eager optimization for the
shared memory scenario.

rbufs The design of rbufs [6] consists of two different types of memory regions.
First there is a data area, which is a large contiguous range of virtual memory.
The protection is the same for the entire data area such that the data source
can write and the other can at least read. In general, the data area can always
be written by the generating domain and therefore is volatile.

Secondly, there are control areas at each side of the channel which can be
viewed as a circular buffer. Two of these control areas form a channel. The
protection of these control areas depend on the direction of data transfer: The
control areas must be at least writable by the writing domain and readable by
the receiving domain.

Data transfers are represented by iorecs which are references to a number of
regions in the data area, allowing for the aggregation of multiple regions in the
data area.

Rbufs can be used to form longer channels by spanning them over multiple
domains.

mbufs In FreeBSD, the kernel uses mbufs [19] as a basis for IPC and network
processing: the arrived packets are stored in (potentially) multiple mbufs which

14



CHAPTER 2. RELATED WORK 15

are chained together. As with pbufs, the chaining allows to efficiently remove
headers and footers from the received buffers. The fact that the mbufs are used
by the kernel only leads to a need for copying the data to user space.

Xen Grant Tables In XEN [2] - a bare metal hypervisor - domains1 can
share frames with other domains by explicitly granting access to them. There
is a grant table associated with each domain specifying which frames can be
accessed by this domain. Granting access to another domain means allowing
access to the granter’s memory. This can be viewed as a capability.

The access rights can be passed to another domain by invoking XEN to set
the corresponding entry in the grant table i.e. transferring the capability to
access that frame to another domain. That way a shared frame can be set up
which can be used to transfer data between domains.

This shared frame allows virtual machines residing on the same physical
machine to share data with each other.

1Domain in this case means a virtual machine running on top of XEN



Chapter 3

Barrelfish Operating
System

The Barrelfish OS1 is a research operating system developed as a collaboration
between the Systems Group2 at ETH Zurich and Microsoft Research3. In this
Section, we will briefly describe important aspects of Barrelfish with respect to
a bulk transfer infrastructure.

3.1 Operating System Structure
Most of today’s popular operating systems such as Linux, Microsoft Windows or
Mac OS X have a monolithic kernel architecture. In contrast to that, Barrelfish
has a multikernel approach [21]. The multikernel architecture can be viewed
as a collection of multiple microkernels - one per core - which communicate via
explicit messages to keep the OS state consistent, rather than accessing shared
data structures.

A microkernel provides only a very small set of security relevant services to
the applications, such as setting up page tables or enabling inter process commu-
nication. All the other services like memory management or device drivers run
entirely in user space. The multikernel approach increases the need for commu-
nication between domains. This demands for an efficient way of communication,
and not only for small control messages but also for bulk data.

3.2 Flounder
In Barrelfish, inter process communication is done by exporting a certain inter-
face which can be invoked by other domains. The interfaces are described in
a domain specific language and compiled into C code using a tool called floun-
der [3]. As soon as a domain exported the interface, another domain can bind

1http://www.barrelfish.org
2Systems Group, Department of Computer Science, CAB F.79, Universitätstrasse 6, Zurich

8092, Switzerland
3http://research.microsoft.com/
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to it and send messages, either in an asynchronous fashion or with full RPC
semantics.

3.3 Resource Management and Capabilities
In Barrelfish, critical system resources such as physical memory or kernel ser-
vices are protected using capabilities [1]. A capability grants the possessing
domain certain access rights to a resource e.g. reading a certain memory range.
This access rights can be granted to other domains by passing the capability to
the other domain.

Accessing system resources such as kernel services are done by capability
invocations instead of traditional systems calls. That way only if the domain
possesses the capability can it do a system call.

Capabilities are strongly typed and have certain access rights associated with
them. For instance, a RAM capability can be retyped into a frame capability
by doing an invocation on it. The access rights of a frame capability can then
be restricted to read only. These operations are usually one way.

3.4 Current Bulk Transfer Implementation
The technical note about bulk transfer [22] describes the two existing bulk
transfer mechanisms in Barrelfish and their limitations. We want to briefly
describe them here and explain their drawbacks.

3.4.1 The Official Bulk Transfer Infrastructure
This implementation of a bulk transfer mechanism is based on a single shared
capability which is mapped read-write in both domains. The mapped virtual
address range has to be contiguous. The mapped memory range is divided into
blocks of equal size. To do a data transfer, data is written into one of the blocks
and its block id transmitted to the other domain.

Limitations

There are several limitations with the current state of this implementation. We
want to briefly list them here.

• Security: cannot be enforced. Both domains have to trust each other
not to mess with the blocks.

• Multiple Domains: It is possible to use the shared capability with
more than two domains. However, all of them must be trusted to follow
the protocol and track the location of the buffers by themselves.

• Copy Semantics: There is no copy operation that guarantees the
copying domain that the data will be kept consistent.

• Abstraction: The interface is modelled after the underlying implemen-
tation and relies on shared memory. This is in stark contrast to other
means of communication in Barrelfish, like flounder message passing.
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3.4.2 Networking Bulk Transfer: pbufs
The concepts of pbufs is similar to the official implementation described above:
there is a shared frame used as buffer. However, in contrast the memory lo-
cations do not need to be consecutive. Furthermore, there is another layer of
indirection that enables the replacement of one memory location by another to
reuse the pbuf meta structure.

Limitations

As with the official implementation, there are some limitations with the pbufs
as well. We will quickly summarize them here.

• Security: Shared memory region is mapped read/write in both domains.

• Multiple Domains: It should work in theory, but it is hard to tell when
the memory can be reused. Furthermore, all domains must be co-operative

• Memory Reclamation: It’s easy to get it wrong, leading to memory
leaks because it’s hard to tell when all threads are done with accessing the
buffer.

3.4.3 Summary
To sum up, the two available bulk transfer implementations in Barrelfish require
the participating domains to co-operate and follow the protocol. The lack of
policy enforcement makes it not possible to use the implementations in a ma-
licious environment. In addition, the complexity of having multiple domains
sharing buffers increases and it is hard to tell which buffers are allowed to be
reused.



Chapter 4

Architectural Design

This Chapter describes the major building blocks of our bulk transfer infras-
tructure. We will give an explanation of the used terms and state the goals of
the bulk transfer implementation.

4.1 Design Goals
The technical note 014 [22] about bulk transfer states some of the goals for a
bulk transfer implementation, which we have adapted and complemented:

1. Avoid data copy as much as possible, if it can’t be avoided, then try to
push it into user-space/user-core.

2. Ability to batch notifications.

3. Should work with more than two domains.

4. Should work with multiple producers and multiple consumers.

5. True zero copy capability (scatter-gather packet sending/receiving).

6. Should support different means of data transfer e.g. shared memory or
network.

7. Unified interface for all possible backend implementations.

4.2 Terminology
4.2.1 Backend
The bulk transfer backend is the implementation or hardware specific part of the
bulk transfer infrastructure. It handles the operations and events triggered by
the user and forwards them to the destination. To list some possible backends:

• Shared memory between two domains on the same machine.

• Network between two machines reachable over the network.

• Local (between threads in a single domain)

19
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• Direct Memory Access Engines

• Mailboxes between two different cores (e.g. OMAP44xx Cortex A9 and
Cortex M3.)

• GPU / Accelerators

4.2.2 Endpoint
A bulk endpoint represents either the source or destination of a data flow. An
endpoint can either be local i.e. created by the domain or remote, created by
another domain. The local endpoint may be created implicitly depending on
the remote endpoint. Endpoints are backend specific and therefore specify how
the data is to be transferred or received. An endpoint is either the source or
sink of a data transfer.

Endpoint Descriptors

Bulk endpoints are referred to by endpoint descriptors which contain the nec-
essary information to enable the channel operations.

4.2.3 Channel
A bulk channel consists of exactly two endpoints which must exists before a
channel can be created. A channel is just a point-to-point link and spans at most
two domains1. Each channel has a clearly specified direction of data transfer
which is either receive or transmit, and the endpoints must be the corresponding
source or sink. An illustration of the channel, endpoint and library relationship
can be seen in Figure 4.1.

The channel initialization consists of two different operations: create and
bind.

Channel Creation

The channel create operation is the first to be executed to establish a new bulk
channel. The application needs to specify the local endpoint for this channel
which has to be created beforehand. The endpoint type also determines the
channel type. The general channel parameters are set and chosen during the
create procedure.

Channel Binding

The second step in the channel initialization protocol is the binding process. In
contrast to the create procedure, the application needs to provide an endpoint
descriptor of the remote endpoint. Local endpoints are created implicitly de-
pending on the remote endpoint. The binding side of a channel has to adapt
the channel properties as defined by the creation side.

1A local channel resides in just one domain
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Application Domain

libbulk_transfer

Implementation specific backend

endpoint

Application Domain

libbulk_transfer

Implementation specific backend

endpoint

control channel

data channel

Figure 4.1: Bulk Transfer Architecture

Data and Control Channel

On a conceptual level, each channel consists of a control channel for small mes-
sages and a data channel used for the actual data transfer. Depending on the
implementation, the control channel may be in-line with the data channel or
the data channel might just be virtual.

4.2.4 Channel Properties
Each channel has certain properties by which both endpoints of the channel
must comply.

Roles

After the channel is established, each endpoint is either the MASTER or SLAVE
with respect to that channel. During the channel creation the local endpoint
may be in the GENERIC role, which enables the binding side to decide the role
distribution.

Trust Levels

The channel creator decides on the trust level of the channel. The trust level
specifies the level of data integrity protection applied to this channel. There are
three different trust levels:

1. Full Trust: There are no protection mechanisms2 enforced. The do-
mains are trusted not to mess around with the data blocks after they are
transferred to another domain.

2Depending on the backend, such protection mechanisms could be removing the MMU
mapping or restricting the memory access for hardware devices (IO-MMU)
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2. Half Trust: The basic protection mechanisms are applied but the ca-
pabilities are not revoked. The application may regain access to the data
blocks manually. This should only be seen as a protection against acci-
dental overwriting of buffers.

3. No Trust: In addition to the application of the basic protection mech-
anisms, the change in the access rights to the resources are enforced i.e.
the corresponding capabilities are revoked.

4.2.5 Pool
A pool represents a contiguous range of virtual memory and consists of a number
of equal sized parts called bulk buffer (refer to Section 4.2.6). The number
and size of the buffers are specified upon pool allocation. In order to use the
pool over a channel, it needs to be assigned first. After the pool is assigned
to a channel, the pool occupies a contiguous range of virtual memory in both
domains.

Pool ID

To uniquely identify the pool across domains, cores and even machines, we
assign each pool a unique id. The pool identifier is generated at allocation time.

Pool Trust Level

As with the channels, the pools also have a trust level. The trust level of a pool
is set to the channel trust level upon the first assignment. In general, the trust
level of the pool must match the trust level of the channel.

4.2.6 Buffer
A bulk buffer is the smallest unit of transfer in our infrastructure. Each
buffer is a contiguous region of virtual and physical memory. As mentioned in
the previous section, the size of the buffers can be specified upon pool allocation.
In order to guarantee the enforcement of access rights we require the buffer size
to be a multiple of page size3. A buffer can either be present in the domain
i.e. its data is accessible or it is not present in the domain and the data is not
accessible.

Ownership

The ownership of a buffer specifies which operations a domain can do with the
buffer. There exists exactly one owner for each buffer at any point of time.

4.3 Bulk Transfer Architecture
We suggest to have a layered architecture as shown in Figure 4.2. With a
concrete application in mind there are 3+1 layers:

3With the capability system the size must also be a power of two.
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Domain

service layer

lib bulk_transfer

Implementation specific backend

service specific interface of the domain
e.g. block service

generic bulk transfer interface

Implementation specific handling of operations
Domain local, shared memory, network

Figure 4.2: Architecture Layers

1. Application Layer4: The user application which makes use of the bulk
transfer library and the service

2. Service Layer: The interface of a service that is used by the application
e.g. a block service.

3. Bulk Transfer Library: Provides the unified interface to the backend,
common functions and does general checks.

4. Implementation Specific Backend: This layer deals with the effective
data transfer between the endpoits.

4.4 Additional Libraries
The core bulk transfer library just provides the functionality necessary to create
channels and transfer buffers. We want to give the application freedom how it
allocates and manages pools or send more data than a buffer can hold. There
are two suggestions we present here that complement the bulk transfer library.

Pool Allocator

This library is responsible for allocating pools and their resources. We provide
a sample implementation of a pool allocator. The reason why we decided that
the pool allocator is not part of the core library is that an application may want
to have another way of managing the buffers of the pool or use a lazy approach
in resource allocation which may be more suitable for the usage scenario.

Our allocator will just allocate all the resources for the pool, map the buffers
and fills the list of free buffers.

4This is the +1
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Aggregates

The core interface of the bulk transfer architecture does only support the sending
or receiving of one buffer at a time. To overcome this limitation, we suggest a
library which works on top of that that allows sending larger amounts of data
by the use of buffer aggregates which may be similar to the aggregate objects
used in [9]. Note that this has not been implemented yet.

Aggregates should make it possible to send a collection of bulk buffers over
a channel while the buffers may belong to different pools. One approach to this
would be to send an additional data structure before or after the buffers are
being transmitted. This data structure may look like the one in Listing 4.1.
Please refer to Section 8.4 for a further discussion.

1 struct bulk_aggregate_object
{

3 size_t num_bufs ;
struct

5 {
struct bulk_pool_id pool_id ;

7 size_t buffer_id ;
} buffers [];

9 }

Listing 4.1: Possible Representation of an Aggregate Object



Chapter 5

Semantic Specification

One of the goals of a bulk transfer mechanism is to provide the possibility to
enforce certain policies such as restricting access rights. This requires a clear
understanding at what point which domain has access to which resources. In
this Chapter we present a formal specification of our model (Section 5.1) as well
as an overview of the channel operations (Section 5.2)

Notation Meaning
dom r Domain of relation r
r [x] Relational image of values x in r
r ◦ s Composition of relations r ,s
r−1 Inverse of relation r

A→ B Set of functions from A to B
A 7→ B Set of partial functions from A to B

Table 5.1: The used formal specification

5.1 Formal Specification
In this Section we want to give a high level description of the possible transfer
types together with a precise formal specification for each of the transfer types.
We aimed to keep this formal specification as open as possible to make it suitable
for any possible backend implementation. Note that the specification specifies
the system state and not the state as viewed from a particular domain. The
notation used can be seen in Table 5.1.

5.1.1 Buffer States
For every domain, each buffer is always in its clear specified state.1 These states
are:

1. Invalid: the buffer is not present in this domain
1Note that this state may be different in different domains.

25



CHAPTER 5. SEMANTIC SPECIFICATION 26

2. Read/Write: the buffer is owned by this domain and accessible for
reading and writing

3. Read Only Owned: the buffer is owned by this domain but only acces-
sible for reading2

4. Read Only : the buffer is accessible for reading

5.1.2 Formal State Definition
In order to model the operations we must have a clear understanding of the
model state in our formal specification. The state of the model is expressed in
Algorithm 1. To make it clear, we would like to highlight some of the statements:

• Buffer Copies: (line 14) Conceptually, there exists a graph of channels.
This function tracks over which channels this buffer has been copied.

• Queues: (line 19 and 20) These queues represent the data channel and
the control channel.

• Endpoints: (line 17 and 18) These partial bijections return the endpoint
given a channel and a direction or role.

Buffer States

For every domain, each buffer is always in its clear specified state.3 These states
are:

1. Invalid: the buffer is not present in this domain

2. Read/Write: the buffer is owned by this domain and accessible for
reading and writing

3. Read Only Owned: the buffer is owned by this domain but only acces-
sible for reading4

4. Read Only : the buffer is accessible for reading

5.1.3 Invariants
From the state definition we can formulate invariants which hold at any time.
These invariants are listed in Algorithm 2. These invariants are important for a
proper understanding of the bulk transfer model and we give a short explanation
for the invariants here.

1. Specifies all the domains that hold copies of a buffer b. We take all the
channels, which received a buffer copies and take only the sink endpoint
and do a domain lookup.

2This state is added for the clarification of an owned copy
3Notice that this state may be different in different domains.
4This state is added for the clarification of an owned copy
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Algorithm 1 State Definition
1: ACCESS RIGHTS := {NONE,READ,READ WRITE}
2: ROLES := {MASTER,SLAVE}
3: DIRECTIONS := {SOURCE,SINK}
4:
5: valid buffers ⊆ BUFFERS
6: valid pools ⊆ POOLS
7: valid channels ⊆ CHANNELS
8: valid eps ⊆ ENDPOINTS
9:
10: buffers to pools ∈ valid buffers→ valid pools
11: buffer ownership ∈ valid buffers→ DOMAINS
12: buffer access ∈ (valid buffers×DOMAINS)→ ACCESS RIGHTS
13: buffer data ∈ valid buffers→ DATA
14: buffer copies ⊆ valid buffers× valid channels
15: pools to channels ⊆ valid pools× valid channels
16: ep to dom ∈ valid ep→ DOMAINS
17: dir to ep ∈ (valid channels×DIRECTIONS) 7→ valid ep
18: roles to ep ∈ (valid channels× ROLES) 7→ valid ep
19: data queues ∈ valid channels→ BUFFER QUEUES
20: control queues ∈ valid channels→ BUFFER QUEUES

Algorithm 2 Invariants
1: copy receivers(b,buffer copies′) :=

ep to dom[dir to ep[buffer copies′[{b}]× {SINK}]]
2: ∀ b,d : buffer ownership(b) = d ∧ b 6∈ dom(buffer copies)⇔

buffer access(b,d) = READ WRITE
3: ∀ b,d : (buffer ownership(b) = d ∧ b ∈ dom(buffer copies)) ∨

d ∈ copy receivers(b,buffer copies)⇔ buffer access(b,d) = READ
4: ∀ b,d : buffer ownership(b) 6= d ∧ d 6∈ copy receivers(b,buffer copies)⇔

buffer access(b,d) = NONE
5: copy reachability satisfied(buffer copies′) :=
∀ b, c : (b, c) ∈ buffer copies′ ⇒
∃ d : d = ep to dom(dir to ep(c,SOURCE)) ∧
(buffer ownership(b) = d ∨ d ∈ copy receivers(b,buffer copies′))
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2. This invariant says, that if a domain has buffer ownership and if there
are no copies of this buffer, then this domain has read-write access to the
buffer.

3. A domain has read access to a buffer, if this domain owns the buffer and
there are copies around. A domain also has read access if it receives a
copy.

4. A domain has no access to a buffer, if this domain has never received a
copy and it is not the owner of the buffer

5. This invariant says, that if there is a buffer copy, there exists a directed
path from the owner along the graph edges to this copy i.e. a copy is
always reachable by its owner.

5.1.4 Channel Creation and Binding
A channel is established by a create (Algorithm 3) and a bind operation (Algo-
rithm 4). The creation of a channel requires that the endpoint associated with
the channel has not yet been used for a channel yet. After the creation, the
channel is valid, the second endpoint has not been assigned and the other role
exists not for this endpoint.

The binding requires that there exists a valid channel with the specified
remote endpoint and that the local endpoint has not been assigned to a channel
yet. Further, the direction and roles of this endpoint must not have been present
in the state. After the binding, the roles and directions are assigned and the
remote endpoint is not modified.

Algorithm 3 Create Channel
Require: domain ∈ DOMAINS
Require: ep ∈ (ENDPOINTS \ valid eps)
Require: direction ∈ DIRECTIONS
Require: role ∈ ROLES
1: procedure ChannelCreate(domain, ep, direction, role)
2: end procedure
Ensure: ep ∈ valid eps′
Ensure: ∃ c : c 6∈ valid channels ∧ c ∈ valid channels′
Ensure: dir to eps′(c,direction) = ep
Ensure: roles to eps′(c, role) = ep
Ensure: (c, other dir(direction)) 6∈ dom(dir to eps′)
Ensure: (c, other role(role)) 6∈ dom(roles to eps′)
Ensure: eps to domains′(ep) = domain

5.1.5 Pool Allocation and Assignment
Sending data over channels requires the allocation and assignment of pools to
the channels. The allocation of a pool (Algorithm 5) requires that the pool
to create is not valid and there is at least one unused (not valid) buffer to be
associated with this pool. After the creation, all buffers of this pool are owned
by this domain and belong to the newly created pool.



CHAPTER 5. SEMANTIC SPECIFICATION 29

Algorithm 4 Bind to Channel
Require: domain ∈ DOMAINS
Require: local ep ∈ (ENDPOINTS \ valid eps)
Require: remote ep ∈ valid eps
Require: ∃ chan, remote dir, remote role :
Require: dir to eps(chan, remote dir) = remote ep
Require: roles to eps(chan, remote role) = remote ep
Require: (chan, other dir(remote dir)) 6∈ dom(dir to eps)
Require: (chan, other role(remote role)) 6∈ dom(roles to eps)
1: procedure ChannelBind(domain, local ep, remote ep)
2: end procedure
Ensure: local ep ∈ valid eps’
Ensure: dir to eps’(chan, other dir(remote dir)) = local ep
Ensure: dir to eps’(chan, remote dir) = remote ep
Ensure: roles to eps’(chan, other role(remote role)) = local ep
Ensure: roles to eps’(chan, remote role) = remote ep
Ensure: eps to domains′(local ep) = domain

The assignment of a pool to a channel (Algorithm 6 requires that the pool
has not been assigned to this channel yet and that the channel is bound.

Algorithm 5 Create Pool
Require: domain ∈ DOMAINS
Require: pool ∈ (POOLS \ valid pools)
Require: bufs ⊆ (BUFFERS \ valid buffers) ∧ bufs 6= ∅
1: procedure PoolCreate(domain, pool, bufs)
2: end procedure
Ensure: pool ∈ valid pools′
Ensure: bufs ⊆ valid buffers′
Ensure: ∀b : b ∈ bufs⇒ buffer to pools(b) = pool
Ensure: ∀b : b ∈ bufs⇒ buffer ownership(b) = domain

5.1.6 Buffer Transfer Types
Buffer Transfers are the core functionality of a bulk transfer mechanism: sending
data from one domain to another. There exist different possibilities which we
describe in the following Sections. Figure 5.1 shows the relationship between
the buffer states and the transfer operations.

5.1.7 Moving a Buffer on a Channel
Algorithm 7 describes the semantics of a buffer move operation. A buffer can
only be movable if the channel is bound and the pool this buffer belongs to is
assigned to the channel. In addition to that, the domain must be the owner
of the buffer and the direction of the channel must be transmit i.e. the local
endpoint is the source.
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Algorithm 6 Assign Pool to Channel
Require: ep ∈ valid eps
Require: pool ∈ valid pools
Require: ∃ chan,dir : dir to eps−1(ep) = (chan,dir)
Require: (pool, chan) 6∈ pools to channels
1: procedure ChannelAssignPool(ep, pool)
2: end procedure
Ensure: pools to channels−1[{chan}] = pools to channels−1[{chan}]

⋃
{pool}

After the move is done, the buffer is sent over the data channel and its con-
tents are preserved. The ownership of the buffer is transferred to the receiving
domain unless the contents need to be copied in a new buffer.

Algorithm 7 Move Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain
Require: ∃ chan : dir to ep−1(ep) = (chan,SOURCE)
Require: ∃ other ep : dir to ep(chan,SINK) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelMoveBuffer(ep, buffer)
2: end procedure
Ensure: ∃buf : data queues′(chan) = enqueue(data queues(chan),buf)
Ensure: buffer data′(buf) = buffer data(buffer)
Ensure: buffer ownership′(buf) = ep to dom(other ep)
Ensure: buf 6= buffer⇒ buffer ownership′(buffer) = ep to dom(ep)

5.1.8 Buffer Pass
A domain has the possibility to pass the ownership of a buffer to another domain
i.e. enabling read-write access. This operation (Algorithm 8 is conceptually like
a move with the difference that the local endpoint must be the sink of the
channel.

After the pass is executed, the buffer is enqueued to the control queue and
the buffer ownership is transferred to the receiving domain.

5.1.9 Read-Only Copy
The basic requirements of the copy operation (Algorithm 9 are almost the same
as with the move operation, with one fundamental difference: The buffer to be
copied is either owned by the domain, or the domain received a copy of the
buffer.

In contrast to a move, the ownership of the buffer does not change when
doing a copy. Further the copy is tracked. It may be the case that the data
needs to be copied into another buffer. Then the ownership is also passed.
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Algorithm 8 Pass Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain
Require: ∃ chan : dir to ep−1(ep) = (chan,SINK)
Require: ∃ other ep : dir to ep(chan,SOURCE)) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelPassBuffer(ep, buffer)
2: end procedure
Ensure: control queues′(chan) = enqueue(control queues(chan),buffer)
Ensure: buffer ownership′(buffer) = ep to dom(other ep)

Algorithm 9 Copy Buffer on Channel
Require: ep ∈ valid ep
Require: ∃domain : ep to dom(ep) = domain
Require: buffer ownership(buffer) = domain ∨

(∃ c : (buffer, c) ∈ buffer copies ∧
ep to dom(dir to ep(c,SINK)) =
ep to dom(ep))

Require: ∃ chan : dir to ep−1(ep) = (chan,SOURCE)
Require: ∃ other ep : dir to ep(chan,SINK) = other ep
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelCopyBuffer(ep, buffer)
2: end procedure
Ensure: ∃buf : data queues′(chan) = enqueue(data queues(chan),buf)
Ensure: buffer data′(buf) = buffer data(buffer)
Ensure: buffer ownership′(buffer) = buffer ownership(buffer)
Ensure: buf 6= buffer⇒ buffer ownership′(buf) = ep to dom(other ep)
Ensure: buf = buffer⇒

buffer copies′[{buffer}] = buffer copies[{buffer}] ∪ {chan}
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5.1.10 Copy Release
Doing a release (Algorithm 0) of a copy is only allowed if there are no other copies
originating from this domain, i.e. the release does not violate the reachability
constraints. Further the buffer needs to be copied to the domain (not moved).
When the owner of the copy gets all its copies back by a release, the buffer is
changed to read-write again and its copy status is removed.

Algorithm 10 Release Copied Buffer on Channel
Require: ep ∈ valid ep
Require: ∃ chan : dir to ep−1(ep) = (chan,SINK)
Require: ∃ other ep : dir to ep(chan,SOURCE)) = other ep
Require: (buffer, chan) ∈ buffer copies
Require: copy reachability satisfied(buffer copies \ {(buffer, chan)})
Require: (buffer, chan) ∈ buffers to pools ◦ pools to channels
1: procedure ChannelReleaseCopy(ep, buffer)
2: end procedure
Ensure: (buffer, chan) 6∈ buffer copies′
Ensure: buffer access(buffer, domain) = NONE

5.1.11 Full Copy
When doing a full copy, the buffer will be accessible read-write in both domains
in the end while ensuring data integrity at the sender. This can be conceptually
viewed as a local copy5 combined with a move. Therefore with a full copy a real
memory-to-memory copy cannot be avoided and the receiving domain will get
a buffer moved event.

5.2 Overview of Operations
The previous section gave a precise specification of the channel operations and
their semantics. To clarify and to show the intended flow of steps we illustrate
certain operations in this Section.

5.2.1 Buffer State Diagram
The formal specification clearly defines the possible states of a buffer in the
whole system. From a domain point of view, the buffer states and their transi-
tions can be seen in Figure 5.1. Notice, that we have introduced another state
READ ONLY OWNED to distinguish the domain that first copied a buffer.

The state diagram also summarizes all possible operations and events that
can occur on a channel.

5.2.2 Channel Setup
Establishing a new bulk channel between two endpoints involves two operations
to be executed, a channel create followed by a channel bind. The workflow
of a channel setup can be seen in Figure 5.2.

5e.g. memcopy
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READ ONLY
OWNED

INVALID READ/WRITE

READ ONLY

pool_allocate

move_received

release_recveived
refcnt--

release_recveived
refcnt--

Figure 5.1: Buffer State Diagram (Domain View)

Creator Side

1. Endpoint Create: Initialization of a new local endpoint

2. Exporting Endpoint: Export of the information about the local end-
point to a name service.

3. Channel Create: Invocation of bulk channel create(...) with the
callbacks and the setup parameters as arguments

4. Backend: After general checks and setup, the call gets forwarded to the
implementation specific backend which enters a listening mode

5. Bind Request: The other side has sent a bind request. This request is
forwarded to the application by invoking the callback handler and a reply
is sent back.

Binding Side

1. Remote Endpoint Creation: To bind a channel, a remote endpoint
is needed. There are two ways to do this:

(a) Look up: Querying the name service for the endpoint information
with the name of the exported service.

(b) Explicitly created with pre-defined values.
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Figure 5.2: Setup of a Bulk Channel

2. Channel Bind: Invocation of bulk channel bind(...) with the call-
backs and binding parameters as arguments

3. Backend: After general checks and binding steps, the backend specific
implementation code is invoked.

4. Send Bind Request: The binding message is sent to the remote end-
point

5. Bind Reply: The bind reply is received and the continuation is exe-
cuted.

5.2.3 Pool Assignment
The pool assignment procedure can be seen in Figure 5.3. In general, the channel
master needs to provide buffers for operating the channel and thus is expected
to add pools6. The pool assignment does not change anything in the ownership
of the buffers.

Note that the pool assignment procedure is a two phase protocol, where the
other side can veto the assignment request. The steps, as shown in Figure 5.3
are:

1. Application: Either the pool is allocated by the assigning domain or
the pool was received earlier by another domain.

2. Bulk Transfer Library By invoking bulk channel pool assign(..)
the assignment process starts and general checks are done within the li-
brary.

6There is no restriction that the slave endpoint can’t add pools as well.
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3. Backend: After the checks, the backend specific pool assignment handler
is invoked, which sends a pool assignment request to the other endpoint

4. Backend: The other side receives the pool assignment request

5. Bulk Transfer Library: The pool resources are allocated by the bulk
transfer library7 and the pool added to the domain list.

6. Callback: if everything succeeded so far:

(a) Executing of the callback to inform the application about the new
pool

(b) Return value of the callback is either an accept or a veto.

7. Backend: Depending on the return value of the user function, either
cleanup is done or the pool is added to the channel, and the reply sent to
the assigning side.

8. Backend: The pool assignment reply is received and forwarded to the
bulk library

9. Bulk Transfer Library: Depending on the outcome, the pool is added
to the channel.

10. Application: The registered continuation gets executed, informing the
application about the outcome of the assignment request.

It is important to note that the backend is responsible for cleaning up if
the user application vetoed the assignment request. This includes removing the
pool from the domain list if this pool was assigned for the first time.

Reasons for vetoing a pool assignment request may be that a pool has a
wrong memory range or alignment, too small buffer sizes or other reasons from
the application point of view.

5.2.4 Sending and Receiving
There are two operation modes of a channel. Depending on the role and di-
rection, a channel can be seen to operate either in receive master or transmit
master node. With the obligation for the master to provide buffers the two
modes are slightly different:

• Transmit Master: Since, the master is on the transmit side, the buffers
are already present in the sending domain and can be used for transfers.
The receiving side may pass them back.

• Receive Master: In this configuration, the sending side is not neces-
sarily in possession of buffers. Thus the receiver has to pass them first to
the sending domain.

Note that this scenario is rather simple and it may be the case that the
sender gets its buffers from another domain or allocates the resources by its
own. The process of receiving or sending in the different modes can be seen
in Figure 5.4. Without loss of generality, we explain the process at the move
operation while the copy operation works analogously.

7Depending on the channel type and trust level
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Transmit Master Mode

1. Pool Allocation: The transmit side allocates a pool

2. Buffer Allocation : The transmit side allocates a new buffer from the
pool

3. Move Operation: The buffer state is changed in the transmitting
domain and sent over the data channel to the receiver.

4. Receive Event: In the receiving side, the buffer state is changed, the
move received event is triggered and the application gets informed about
the buffer.

5. Pass Operation: Again the state of the buffer is changed and passed
on the control channel back to the transmitting side.

6. Receive Event: In the transmitting side, the state of the buffer is
changed and the buffer received event is triggered. The application
returns the buffer back to the pool.

Receive Master Mode

1. Pool Allocation: The receiving side allocates the pool.

2. Pass Operation: The receiving side allocates all buffers and passes
them to the transmitting side.

3. Receive Event: At the transmit side, the buffers states are changed,
the buffer received event is triggered and the application stores them
in a suitable way.
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Figure 5.4: Bulk Transfer Architecture

4. Sending Data: The needed buffers is taken from the received buffers

5. Move Operation: The state of the buffer is changed and the buffer is
moved over the data channel.

6. Receive Event: At the receiving side, the state of the buffers is changed
and the move received event is triggered. The application decides to
return the buffer to the pool.



Chapter 6

Interface Specification

In the previous Chapters we have defined the terms and semantics of our bulk
transfer infrastructure. In this Chapter we will outline a possible interface which
implements the formal specification of the bulk transfer mechanism. First, we
give an overview of the most important data structures (section 6.2), followed
by the basic channel operations (section 6.3) and last the pool allocator (sec-
tion 6.4).

6.1 Core Functionality
In order to use our bulk transfer infrastructure, we have written a library which
provides a common interface to all backends. This library can be used by
adding the following two inclusions to your code. Note that <BACKEND> has to
be replaced by the backend you want to use.

1 # include <bulk_transfer / bulk_transfer .h>
# include <bulk_transfer /bulk_ <BACKEND >.h>

The bulk transfer.h header file has to be included as soon as the bulk
transfer library is to be used by the application. All the necessary declarations
are contained within this single header file.

The backend specific header file bulk <BACKEND>.h is currently needed to
create the bulk endpoint which is required for the creation or binding process.
See limitations (section 8.5) or future work (section 8.5) for further explanations
on this topic.

6.2 Core Data Structure
Each part of the architecture as described in the previous Sections is reflected
as a data structure in our library. We will explain the most important data
structures in the following Sections. For a complete enumeration of all data
structures please refer to the source files of our implementation.

38
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6.2.1 Enumerations and Constants
As described in the formal specification (chapter 5) the possible states of chan-
nels or buffers and their properties are finite and clearly defined. Listing 6.1
on page 40 shows some of the used enumerations and constants. We want to
highlight and explain some of them.

Channel Roles

The channel role enumeration contains three options. The BULK ROLE GENERIC
can only be used on channel creation. This role is not valid when the channel
is connected. If the creator is generic, its role will be adapted according to the
choice of the binding side.

Trust Level

The interface provides a total of four different trust levels which are applied to
pools and channels.

• BULK TRUST UNINITIALIZED: The trust level is not initialized. This only
applies to pools that have not yet been assigned to any channel yet. This
trust level is invalid for channels.

• BULK TRUST NONE: There is no trust on this channel. All security policies
are applied to guarantee isolation.

• BULK TRUST HALF: An middle ground variant, that unmaps unowned
buffers but does not revoke resources. Does not protect against malicious
users, but against honest mistakes and accidents.

• BULK TRUST FULL: There is complete trust, all security policy changes
are omitted.

Channel State

Each channel is in exactly one of the states defined in this enumeration. Some
actions can only be done when the channel is in a specific state.

• BULK STATE UNINITIALIZED: This channel has not yet been assigned an
endpoint i.e. the creation / binding procedure has not yet been executed.

• BULK STATE INITIALIZED: This channel is initialized i.e. the local end-
point is assigned. (Creator side only)

• BULK STATE BINDING: The remote endpoint has been assigned and the
channel is waiting for a binding reply. (Binding side only)

• BULK STATE BIND NEGOTIATE: The binding has been initiated and the
channel properties are being negotiated.

• BULK STATE CONNECTED: The channel is fully operable.

• BULK STATE TEARDOWN: The teardown message has been sent. Messages
in transit are received. No new messages can be sent.

• BULK STATE CLOSED: The channel is closed and the resources are freed.
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Buffer State

When a buffer is copied, its state changes to read-only. In order to track
which domain the first copy initiated from, we have introduced the buffer state
BULK BUFFER RO OWNED. This enables us to set the buffer to read/write again
when the other copies have been released.

/** Specifies the direction of data flow over a channel . */
2 enum bulk_channel_direction {

BULK_DIRECTION_TX , BULK_DIRECTION_RX
4 };

6 /** Specifies the endpoint role on a channel */
enum bulk_channel_role {

8 BULK_ROLE_GENERIC , BULK_ROLE_MASTER , BULK_ROLE_SLAVE
};

10

/** trust levels of channels and pools */
12 enum bulk_trust_level {

BULK_TRUST_UNINITIALIZED , BULK_TRUST_NONE ,
14 BULK_TRUST_HALF , BULK_TRUST_FULL

};
16

/** channel states */
18 enum bulk_channel_state {

BULK_STATE_UNINITIALIZED , BULK_STATE_INITIALIZED ,
20 BULK_STATE_BINDING , BULK_STATE_BIND_NEGOTIATE ,

BULK_STATE_CONNECTED , BULK_STATE_TEARDOWN ,
22 BULK_STATE_CLOSED

};
24

/** represents the state of a buffer */
26 enum bulk_buffer_state {

BULK_BUFFER_INVALID , BULK_BUFFER_READ_ONLY ,
28 BULK_BUFFER_RO_OWNED , BULK_BUFFER_READ_WRITE

};

Listing 6.1: Bulk Transfer Enumerations

6.2.2 Bulk Channel
In our interface, the bulk channel is the central data structure. It contains the
entire channel state such as trust level, direction or role. In addition to that,
each channel is aware of the pools assigned to it. The complete representation
of a bulk channel can be seen in Listing 6.2. We want to highlight some of the
elements in the channel struct.

Callbacks

The implementation of the channel is event based. If the application wants to
be informed about an event on the channel e.g. the arrival of a buffer, it can
register a callback function which is called when the event occurs.
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Constraints

There may exist some constraints on the channel such as memory alignment or
range of supported physical addresses. This information is stored in the channel
constraints and is used to validate the assignment of pools.

Implementation Data / User State

Each channel also supports additional data to be associated with the channel.
The implementation data is intended to be used by the backend to store backend
specific information. The application has the possibility to store additional state
with the channel.

1 /** Handle / Representation for one end of a bulk transfer channel */
struct bulk_channel {

3 /** callbacks for the channel events */
struct bulk_channel_callbacks * callbacks ;

5 /** the local endpoint for this channel */
struct bulk_endpoint_descriptor *ep;

7 /** the current channel state */
enum bulk_channel_state state ;

9 /** orderd list of assigned pools to this channel */
struct bulk_pool_list * pools ;

11 /** the direction of data flow */
enum bulk_channel_direction direction ;

13 /** role of this side of the channel */
enum bulk_channel_role role;

15 /** the trust level of this channel */
enum bulk_trust_level trust ;

17 /** constraints of this channel */
struct bulk_channel_constraints constraints ;

19 /** the size of the transmitted meta information */
size_t meta_size ;

21 /** the waitset for this channel */
struct waitset * waitset ;

23 /** pointer to user specific state for this channel */
void * user_state ;

25 /** implementation specific data */
void * impl_data ;

27 };

Listing 6.2: Bulk Channel Struct

6.2.3 Bulk Endpoint Descriptors
The bulk endpoints are not represented explicitly with a data structure but are
rather defined by an endpoint descriptor. Endpoint descriptors are backend
specific and we refer to the backend specific part of the documentation or the
source code for the endpoint descriptor specification.

6.2.4 Bulk Pool and Bulk Buffer
The bulk pools and buffers represent the registered memory usable for bulk
transfers. Each buffer belongs to exactly one pool and the pool keeps track of
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Figure 6.1: Pool and Buffer Representation

its buffers. Listings 6.3 and 6.4 show the complete definition. How the data
structures are represented in memory can be seen in Figure 6.1.

Address Ranges

The virtual addresses as well as the physical addresses of the pools and the
buffers stay fixed after the pool has been allocated. This enables the calculation
of the buffer id from its address and the address from the buffer id.

Capabilities

Both the pools as well as the buffers contain a frame capability which represent
the physical memory of the pool or the buffer respectively. The union of all frame
capabilities of the buffers belonging to a pool will match the pool capability
exactly. Depending on the trust level, the pool capability may not be present.

Trust Level

Like the channel, the pool also has a trust level. This is because we do not want
to allow a pool being assigned to channels of different trust levels.
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1 /**
* The bulk pool is a continuous region in ( virtual ) memory that

3 * consists of equally sized buffers .
*/

5 struct bulk_pool {
struct bulk_pool_id id;

7 lvaddr_t base_address ;
size_t buffer_size ;

9 enum bulk_trust_level trust ;
struct capref pool_cap ;

11 size_t num_buffers ;
struct bulk_buffer ** buffers ;

13 };

Listing 6.3: Bulk Pool Struct

1 /**
* a bulk buffer is the base unit for bulk data transfer in the

system
3 */

struct bulk_buffer {
5 void * address ;

uintptr_t phys;
7 struct bulk_pool *pool;

uint32_t bufferid ;
9 struct capref cap;

lpaddr_t cap_offset ;
11 enum bulk_buffer_state state ;

uint32_t local_ref_count ;
13 };

Listing 6.4: Bulk Buffer Struct

6.3 Bulk Channel Operations
Bulk channel operations can be divided into three fundamental categories. First,
we have operations for channel management (subsection 6.3.2), second opera-
tions for pool management (subsection 6.3.3) and third the buffer transfer op-
erations (subsection 6.3.4).

6.3.1 Asynchronous Interfaces
Before we explain the particular interfaces, we emphasize a common character-
istic of all operations on the bulk channel. We decided to have asynchronous
semantics for these operations. If the application wants to be informed about
the outcome of the action, it can register a continuation so it will get an event
when the action is finished. Listing 6.5 below shows the declaration of the
continuation.



CHAPTER 6. INTERFACE SPECIFICATION 44

1 struct bulk_continuation {
void (* handler )( void *arg , errval_t err ,

3 struct bulk_channel * channel );
void *arg;

5 };

Listing 6.5: Bulk Continuation

While all functions have an error code as return value, this error code is only
based on local sanity checks e.g. sending a buffer over a not connected channel
will always fail beforehand.

6.3.2 Channel Initialization and Teardown
The initialization semantics for a bulk channel are similar to those of sock-
ets, where the socket corresponds to the endpoint and the call to listen cor-
responds to the bulk channel create() operation. On the other hand the
bulk channel bind() operation corresponds to the call to connect. Listing 6.6
shows the function signatures for these operations.

1 errval_t bulk_channel_create ( struct bulk_channel *chan ,
struct bulk_endpoint_descriptor *epd ,

3 struct bulk_channel_callbacks *cb ,
struct bulk_channel_setup * setup

);
5

errval_t bulk_channel_bind ( struct bulk_channel *chan ,
7 struct bulk_endpoint_descriptor *rem_ep ,

struct bulk_channel_callbacks *cb ,
9 struct bulk_channel_bind_params *params ,

struct bulk_continuation cont);
11

errval_t bulk_channel_destroy ( struct bulk_channel *chan ,
13 struct bulk_continuation cont);

Listing 6.6: Bulk Channel Operations

Both the create and the bind function take parameters which specify the
initial state values for the channel and are used to negotiate the final channel
properties during the binding process.

Further, there is no continuation for the channel create operation. The
creation does not involve another endpoint and thus only depends on the local
domain. The result of the create procedure is directly signalled via the return
value.

6.3.3 Pool Assignment and Removal
Recall that buffers can only be sent over a channel if the corresponding pool is
assigned to that channel. Assigning a pool to a channel is a two way operation:
only if the other side agrees to the assignment request can the pool be added
to the channel. At assignment time, the necessary resources such as memory
range and data structures are allocated. Thus it is important for an application
to check the error value when the continuation is called (Listing 6.7).
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Note that a pool can not be assigned to the same channel twice.

1 errval_t bulk_channel_assign_pool ( struct bulk_channel *chan ,
struct bulk_pool *pool ,

3 struct bulk_continuation cont);

5 errval_t bulk_channel_remove_pool ( struct bulk_channel *chan ,
struct bulk_pool *pool ,

7 struct bulk_continuation cont);

Listing 6.7: Bulk Pool Operations

6.3.4 Buffer Transfer Operations
The signatures of the actual transfer functions can be seen in Listings 6.8 and
6.9 respectively (each with their counterparts). All four functions take the buffer
to be sent, the channel over which to send it and the continuation as arguments.

In addition to that, there is some meta data that can be transmitted along
with the buffers. The meta data should be small compared to the buffer size
e.g. a block id or request id.

The application has to be aware that when one of these functions is called
on a buffer, the buffer may not be accessible to the application any more, or
just in read-only mode in the case of copy.

1 errval_t bulk_channel_move ( struct bulk_channel *channel ,
struct bulk_buffer *buffer ,

3 void *meta ,
struct bulk_continuation cont);

5

errval_t bulk_channel_pass ( struct bulk_channel *channel ,
7 struct bulk_buffer *buffer ,

void *meta ,
9 struct bulk_continuation cont);

Listing 6.8: Bulk Move Operations

1 errval_t bulk_channel_copy ( struct bulk_channel *channel ,
struct bulk_buffer *buffer ,

3 void *meta ,
struct bulk_continuation cont);

5

errval_t bulk_channel_release ( struct bulk_channel *channel ,
7 struct bulk_buffer *buffer ,

struct bulk_continuation cont);

Listing 6.9: Bulk Copy Operations
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6.4 Pool Allocator
In contrast to the declarations above, the pool allocator is not part of the core
interface. This decision is based on the observation that a domain can use the
bulk transfer library without allocating buffers and pools on its own, receiving
buffers from other domains instead. Therefore, in order to allocate a new pool
of buffers, we need to include the bulk allocator header:

# include <bulk_transfer / bulk_allocator .h>

The following Sections will briefly describe the most important functions of
this header that are needed to allocate a new pool.

6.4.1 Allocator Initialization
Initializing an allocator will create a new pool with the corresponding bulk
buffers. The number and size of the buffers are given by the arguments. List-
ing 6.10 shows the function signature for the initialization.

It is possible to initialize the allocator with additional constraints. These
constraints can set the possible memory range for allocation, the pool trust level
or special alignment constraints for the buffers.

1 errval_t bulk_alloc_init ( struct bulk_allocator *alloc ,
size_t count ,

3 size_t size ,
struct bulk_pool_constraints * constraints )

;

Listing 6.10: Bulk Allocator Initialization

When the allocator initialization is completed, the memory for the pool is
allocated and mapped in the domain.

6.4.2 Allocating and Returning Buffers
As soon as an allocator is initialized, it can be used to get bulk buffers. List-
ing 6.11 shows the signatures of the buffer alloc and free functions.

Notice that the buffers are in fact always there, the allocator only tracks the
unused buffers.

struct bulk_buffer * bulk_alloc_new_buffer (
2 struct bulk_allocator *ac);

4 errval_t bulk_alloc_return_buffer ( struct bulk_allocator *alloc ,
struct bulk_buffer * buffer );

Listing 6.11: Bulk Allocator Initialization

6.5 The Bulk Transfer Library
Recall that the generic part of the bulk transfer library provides a unified in-
terface to the different backends as described earlier in this chapter. Under
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the hood, the library also provides common functionalities that are used by the
different backends. We want to give an overview of these functionalities as they
are useful when developing a new backend.

6.5.1 Contracts of Public Interface Functions
The application calls the backend functions via the public interface as described
in chapter 6. These public interface functions ensure that the preconditions
stated in chapter 5 are satisfied before invoking the backend specific function.
Further, the buffer state is changed according to the invoked operation – this
implies that the backend does not need to deal with buffer state changes and
that the buffer contents may not be accessible any more1.

When getting invoked, the backend can assume that this operation is valid
with the given parameters. In addition to that, the backend may introduce
additional checks related to backend specific state e.g. if there is space left in
the transmit queue and return a proper error code if not.

6.5.2 Buffer Related Functions
There are functions available to query the buffer state, to check e.g. if a buffer
is owned by the domain or if that buffer is a copy. The bulk transfer library pro-
vides functions for mapping, unmapping and changing the protection rights of a
buffer. These functions are accessible from the backends. These operations are
no-ops if the channel is trusted and involve a page table modification otherwise.

We provide a single function that does the corresponding map/unmap/pro-
tect instruction depending on the state transition the buffer is about to make.
The signature of this function is shown in Listing 6.12.

1 errval_t bulk_buffer_change_state ( struct bulk_buffer *buffer ,
enum bulk_buffer_state new_st );

Listing 6.12: Changing a Buffer State

6.5.3 Pool Related Functions
Managing pools and tracking them is one of the core functional requirements of
the bulk transfer library. We provide a set of functions that

• Compare two pool ids and generate a new unique one

• Track the pools assigned to a channel and check if the pool has been
assigned to the channel

• Allocating pool data structures

• Mapping / Unmapping of pools
1In the untrusted case the buffer may be unmapped
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Domain Pool List

As specified in chapter 5, we allow each pool to only be present once in the
domains. To ensure this, the library maintains an ordered list of pools present
in this domain. The policy of this domain pool list is the following:

• Allocators: When allocating a pool, the allocator must make sure that
this pool is inserted into the domain pool list.

• Backends: Upon receiving a pool assign request, the backend must
make sure that a pool is not created twice.

Listing 6.13 shows the interface to the domain pool list. If a pool is not
present in this domain, the getter function will return NULL.

errval_t bulk_pool_domain_list_insert ( struct bulk_pool *pool);
2

struct bulk_pool * bulk_pool_domain_list_get (
4 struct bulk_pool_id *id);

Listing 6.13: Interface to the Domain Pool List
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Application

As a use case of our bulk transfer infrastructure, we implemented a basic block
server which makes use of the different backends. The application setup can
be seen in Figure 7.1. This basically establishes a two hop bulk channel with
different backends.

7.1 Domains
As one can see, the setup consists of tree different domains running on two
different machines.

7.1.1 Network Block Service (NBS)
The network block service domain is located on a different machine than the
other two domains. This domain is responsible for managing the blocks located
on this machine. In our implementation this block store is just a distinct region
in physical memory.

The domain exports two interfaces:

• Service Interface: This interface exports the functionality of the block
service and is used to issue read requests, channel initialization and status
messages. The service layer is implemented as a TCP server.

• Bulk Interface: There are two bulk channels opened during the con-
nection process. The actual data transfer of the blocks is going over these
channels.

7.1.2 Network Block Service Client (NBS Client)
This domain serves as a network client for the block service and does not store
the the blocks locally1. There are two modules in this domain:

• Network Client: This is the counter part to the network server located
in the network block service. When the domain is spawned, the network
client initializes the connections to the network server.

1There is no caching available at this time
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Figure 7.1: Network Proxy using Local Channel

• Machine Local Server: This module provides the block service inter-
face to other domains located on this machine. The interface is imple-
mented as a Flounder service.

The main purpose of this domain is to forward requests and messages received
on the local server over the network client to the network block service and vice
versa.

7.1.3 Block Service User (BS User)
The block service user domain issues read/write requests of blocks and sends
them to the local service interface of the NBS client.

7.2 Connection Initialization
The connection setup between the NBS and the NBS client is done using a
tree-way handshake protocol. When the block service starts, it starts listening
on a well-known port.

1. Connection: Client connects to the TCP server of the block service and
waits until the connection is established.

2. Setup: Client creates the two bulk channels and sends the endpoint in-
formation to the server.

3. Bulk Binding: The NBS binds to the channels. As soon as the binding
is complete, the NBS client exports the Flounder interface.

This connection setup procedure is adapted to the Flounder interface ac-
cordingly when the BS user connects to it.
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7.3 Pool Assignments
Pool assignments are initiated by the BS user domain, which allocates the pools
and assigns them to the channels. The NBS client will eventually receive a pool
assignment request and forward it to the NBS. The pool assignment process is
finished when the pools are assigned over both channels.

7.4 Serving Requests
There are two types of requests that can be executed on the block service.

Read The read request is sent over the service layer and has support for batch
requests. To send the bock, a bulk buffer is allocated and the data copied from
the block into the bulk buffer before sending.

Write The write request is sent directly over the bulk channel. There is no
support for batch writes. The buffer contents are copied from the bulk buffer
into the corresponding block.

7.5 Basic Work Load
As soon as the pools are assigned to the channels, the BS user starts issuing
requests to the block server. As a basic workload, the client issues a write request
by doing a bulk move operation and waits for the acknowledgement (status
message). Then it issues a read request, waits until the data arrives and then
checks the data for integrity. This sample workload is just for demonstration of
correctness.
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Conclusion

8.1 Support for Variable Sized Buffers
The current implementation does not support sending variable sized buffers. All
the buffers belonging to the same pool must have the same size. Depending on
the backend, this may result in quite an overhead, when sending buffers that
are just half full.

A possible way of doing this would be to introduce the length information
in the buffer and provide an interface like Java byte buffers [17] to read or write
the data.

8.2 Enforcing Policies
With the capabilities currently implemented in Barrelfish, a clean enforcement
of the security policies is not always possible. When a pool is allocated there will
be a master capability for this pool. Therefore, the allocator of the pool can map
the pool at any time at another memory location and mess with the data in the
buffers. One way to overcome this issue, would be to have a third trusted domain
which is responsible for allocating pools and just hands the buffer capabilities
out to the domains using the bulk transfer facility. A different approach would
be to use a new type of capability, as it will be introduced in the shared memory
backend report.

8.3 Device Drivers
Many devices, especially block devices like hard drives, deliver a significant
amount of data, have DMA support and are making use of equal sized buffers.

Adapting existing device drivers for disks or the USB stack to support bulk
buffers as backing memory would be a valid option to consider. Building a
file system server which makes use of the block device driver or a usb mass
storage driver and the bulk transfer framework would be an interesting use case
to investigate.
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8.4 Aggregate Objects
As already explained in Section 4.4, having the possibility to send aggregate
objects would simplify the transmission of larger data blocks at once (from an
application point of view). Further having a dynamic aggregate object data
structure also enables to insert / remove blocks of memory within the object.

As an addition, for simplified access the aggregate objects library may pro-
vide the possibility to map the aggregate object as a single contiguous range of
virtual memory. This possibility will lead to the interesting question on how
this would be conform with our formal specification of the bulk buffers: If the
buffer is mapped as part of an aggregate objects it should not be possible to
send it further, otherwise the data of the buffer could be corrupted by writing
to the mapped aggregate location.

8.5 Name Service Integration
With Flounder [3] the domains can export their iref and associate it with a
name in the nameservice, to enable other domains to look them up based on the
service name. A similar approach may also be beneficial with the bulk transfer
endpoints. However, for some endpoints a single iref value is not enough to
fully represent the endpoint.

As an endpoint may only be used by at most one channel anyway, it makes
more sense to have an orthogonal service that the domain exports, which creates
the requested endpoints on the fly. Currently, this is the approach we have
implemented in our block service application, where we use the block service
channel to exchange the endpoint information.

8.6 THC Integration
We have chosen to design and implement the bulk transfer mechanism based
on asynchronous events and waitsets. This design might be easily adaptable
to be integrated into THC [13]. This integration can lead to a unified way of
exchanging messages of different size between domains and even machines.
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Chapter 1

Introduction

With the distributed architecture of today’s computer systems the user’s data
is not just kept on a single machine but is rather stored on multiple machines
in a local network or even on the Internet. The local machine serves as a cache
for frequently accessed files. Storing the files on a remote machine increases the
need for high bandwidth communication to transfer the requested data in an
acceptable time to the client machine.

Data processing may be further distributed among different processes or even
different machines. Once the data arrived on the client machine, the copying
of data should be avoided whenever possible. Applying the zero copy principle
does not only reduce the work for doing the actual copy but also lowers the
memory footprint because the data is only present once. Therefore, a seamless
integration of the bulk transfer mechanisms into the networking framework is
required. In other words, the bulk transfer facility must have a network backend.

As one of the main goals of any bulk transfer implementation the avoidance
of copying data cannot fully be applied to the network: The data will be copied
by the network card during the transmission process. In any case, the network
bulk transfer implementation should be designed in such a way that the data
can be sent or received directly out of the bulk buffers used on the local machine.

The fact, that there is a real copy needed with every operation results in a
slightly different problem description compared to other backends. For instance,
compared to the shared memory backend, data integrity must not be enforced as
the sending application cannot write into the memory of the remote machine1.
However, another problem arises: there must always be enough receive buffers
available in the receive queue of the network card. Otherwise arriving data
cannot be received.

Report Outline In this report, we will first give an overview of related work
(Chapter 2) followed by a brief explanation about the background of networking
and Barrelfish (Chapter 3). The next chapter we will describe our design choices
and implementation details (Chapter 4). The last two chapters of this report
are about the evaluation of our implementation 5 and the conclusions drawn
from the evaluation 6.

1Assuming no remote direct memory access
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Chapter 2

Related Work

This chapter provides an overview of other research work related to different
aspects of our project.

2.1 Transferring Bulk Data over Network
When thinking about moving larger amounts of data over a network, the ob-
vious choice is to use the default socket based network API. But this API is
not particularly well suited for transfers with high performance requirements
[12]. Thus high performance computing (HPC) applications often use different
interfaces, remote direct memory access (RDMA) being one of the more popular
abstract interfaces. Its main benefit is the availability of one-sided operations
and the ability to specify the destination buffer on the sending side. There are a
number of RDMA implementations including Inifinband and also over Ethernet
such as RDMA over converged Ethernet [5]. Portals [7] is another interface that
is designed for low overhead data transport over different technologies from off-
the-shelf Ethernet to proprietary interconnect technologies, and also provides a
shared memory implementation.

2.2 Transport-agnostic Message Passing
In the context of message passing systems the idea of providing an interface that
can be implemented over a wide range of transport mechanisms is well known.
MPI is a standardized interface that is widely used in HPC projects. OpenMPI
[11] by Graham et al. uses a component based architecture to provide flexibility
and supports communication over shared memory as well as a number of differ-
ent networking technologies. The Barrelfish messaging infrastructure based on
Flounder [3], also has a similar goal of allowing different underlying mechanisms
to be used. While Flounder was initially only used for communication within
one machine, Hauenstein et al. [14] extended it by an Ethernet backend, that
allows for communication across machine boundaries.
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2.3 Efficient Send/Receive of Packets
The fact that an API that requires expensive operations in the data path for
sending and receiving packets can significantly impact the overall networking
performance has been recognized early on, and since then there were multiple
attempts for designing more efficient send and receive paths. Von Eicken et al.
with their U-Net project [24] were among the first to propose direct interaction
of applications with the NIC, based on ATM NICs. Applying similar ideas to
Ethernet is a bit more challenging since there the problem of how to demultiplex
packets into different hardware queues cannot be easily solved on L2, since
Ethernet provides packet semantics and thus no flow identifiers akin to the ATM
circuit identifiers are available. This issue was tackled by Pratt and Fraser [18]
based on the Arsenic Gigabit Ethernet NIC and the idea of using filters to steer
packets to queues. The main issue with these approaches is generally that they
require specific hardware providing the respective functionality, and that the
code for accessing the queues is highly NIC-specific. This lead Rizzo to develop
netmap [20], a system for high throughput packet processing that does not rely
on specific hardware and does not require changes to applications.

2.4 Use of Hardware Features
Antoine’s bachelor thesis on low-latency networking [16] is the source of the
Intel 82599 driver in Barrelfish, and showed that the effective use of NIC hard-
ware features can significantly decrease latency. This work was later extended to
investigate the impact of hardware configuration on general networking perfor-
mance by Shinde et al. [23], showing that while hardware features can provide
significant performance improvements, finding an optimal configuration for a
particular scenario is non-trivial. Huggahali et al. [15] quantified the perfor-
mance characteristics of direct cache access. The benefits of jumbo frames for
10Gbit Ethernet were analyzed by Feng et al. in the context of their perfor-
mance analysis of a TCP offload engine [10].



Chapter 3

Background

3.1 Intel 82599 NIC
We decided on focussing on the Intel 82599 10-Gigabit Ethernet card [8] for
our implementation because of the availability of a Barrelfish driver for it and
prior experience. In addition to basic Ethernet functionality the card provides
an interesting set of Hardware features that can be exploited to achieve better
performance or even allow for different designs. In the following section we will
discuss a set of selected features:

3.1.1 Checksum Offload
Hardware checksum offload is one of the most basic offload features. Ethernet
CRC calculation and CRC check have been provided even by cheap 100Mbps
Ethernet NICs such as the Realtek 8139. In addition to Ethernet CRC offload,
the Intel 82599 provides the following checksum offloads both for sending and
receiving: IPv4/6,UDP,TCP (and SCTP). Note that the TCP/UDP checksum
offloads in the send path are not complete, and require the network stack to
calculate the checksum over the pseudo-header in advance and store it in the
checksum field before passing the packet to hardware.

3.1.2 Jumbo Frames
Another common hardware feature is support for jumbo frames, i.e. Ethernet
frames longer than the default of 1500 bytes, thus allowing for larger packets to
be sent. The Intel 82599 supports jumbo frames of a total length of 15.5kB. Note
that jumbo frames need to be supported in all components involved (sender,
receiver, and switch).

By allowing larger frames, the number of frames for sending a fixed amount
of data is reduced, which in term implies fewer interactions with the NIC on
both ends and thus a lower overhead. Jumbo frames can significantly improve
throughput [10].
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3.1.3 Queues
Multiple hardware queues are available on most high-end NICs and increasingly
common on cheaper NICs. They can allow for improved performance and better
quality of service (e.g. isolation of flows). The Intel 82599 provides 128 send and
receive queues. The interaction with these queues is based on memory mapped
descriptor rings and two index (head and tail) registers per queue.

For the send side, using them primarily reduces the need for synchronization
when sending from multiple cores, and can isolate individual flows, depending on
the scheduling algorithm used by the card for sending out packets from multiple
queues.

On the receive side, multiple queues make it easier to distribute incoming
packets to multiple cores, without the bottleneck of a single core fetching and
demultiplexing packets. Another benefit is the possibility of placing packets in
different buffers depending on the queue, which could be used to place packets in
memory from the NUMA domain of the processing core, or to place the packet
data directly in application-specific buffers and thus avoiding copies.

3.1.4 Filters
In order for multiple receive queues to be useful, a mechanism for steering
packets to queues is required. The Intel 82599 provides a number of different
filters, including 128 5-tuple filters: These allow steering packets based on an
ordered set of filters, where each filter can match on the protocols used and
source/destination IP and port with the possibility of specifying a wild-card for
each field. There are a number of other filters supported by this card, but these
are beyond the scope of this report.

3.1.5 Header Split
For certain applications it is desirable to receive the packet payload (e.g. TCP
payload) in a different buffer than the headers. A possible application for this
might be that data should be received directly into application buffers while
the headers stay in kernel buffers. This implies that the payload itself will be
properly aligned in the application buffer, which may simplify further processing.
With the Intel 82599 this can be achieved using the header split feature. It can
split Ethernet, IP, UDP, TCP, SCTP, and even NFS headers.

If header split is disabled, each descriptor in the receive queue only contains
the address of one receive buffer of a size that is fixed per queue. Enabling header
split means that each descriptor will now reference two buffers, a header buffer
and a data buffer, with the size of the header buffer being configured separately
per queue. In addition there is a configuration register specifying which headers
should be split (the card tries to split as many headers as possible, going from
lower to higher layers). When receiving a packet and its header can be split,
the header will be placed in the header buffer and the length of the header will
be reported in the descriptor. If no header can be split, the header buffer will
be left empty (assuming that the "always split" configuration option is disabled,
otherwise the card will first use the header buffer and then the data buffer).
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3.1.6 Direct Cache Access
When a packet arrives from the Intel 82599 usually the cache coherency mech-
anism will make sure that the respective cache lines are invalidated, and thus
the CPU will see a coherent version when looking at the buffer. But this also
means that accessing a buffer for a newly received packet will inevitably lead
to cache misses. Direct cache access allows the NIC to directly write the packet
into the cache of a specific core, and thus prevent these cache misses. This can
lead to significant improvements in latency [15], but can also have an adverse
effect because of cache thrashing if there are many packets arriving that are not
processed immediately.

3.1.7 Virtualization
Another interesting feature of the Intel 82599 is virtualization support using PCI
SR-IOV. If virtualization is enabled, the card will present a configurable num-
ber of virtual PCI functions. The hardware queues are divided among virtual
functions, and each virtual function only allows access to its assigned queues.
Note though that not all filters can be used in combination with virtualization.

3.2 Barrelfish
This section provides a brief outline of the current Barrelfish network subsystem
at the time of writing this report.

3.2.1 Network Stack Concept
The system is based on an Exokernel approach, where the goal is to push the
processing to the application as much as possible, leading to a more flexible
system and better performance.

Network Daemon: netd

netd provides the network services that cannot be implemented on a per ap-
plication basis and will handle all packets not directed to other applications.
Initialization of the network stack using DHCP or from a static configuration
is one of the services provided. Second, ICMP requests (such as ECHO) will
be handled by netd, also it will send out ICMP destination non-reachable mes-
sages for packets not directed to an application and not intended for itself. In
addition netd is responsible for responding to and sending out ARP requests.

Network Device Manager: NDG mng

The network device manager handles requests from applications to allocate un-
used port numbers or to direct traffic with specific destination port numbers to
the application. The latter depends on the respective driver, and could result in
an additional software filter, or a hardware filter being configured by the driver.
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Network Card Driver

A network card driver is responsible for initializing the network card, and gen-
erally interface with the network card. Depending on the hardware this might
be restricted to control plane operations such as initializing the card and regis-
tering hardware filters. For other cards the driver is also involved in the data
path, for receiving and sending packets.

Application

While the Exokernel design allows applications to directly process their network
packets, most Barrelfish applications use the default lightweight IP (lwIP) based
protocol stack. lwIP provides both a POSIX socket interface as well as an lwIP
specific interface that gives the application more control.

3.2.2 Intel 82599 Support
In Barrelfish the Intel 82599 is referred to as e10k (in analogy to the e1000 driver
for Intel 1Gbps NICs). The e10k driver is split up into two separate domains:
e10k cdriver performs initialization of the hardware and is responsible for reg-
istering filters to steer packets to queues on requests from the device manager.
e10k queue provides access to one hardware queue (multiple instances need to
be started if multiple queues are to be used), and provides the generic Barrelfish
queue manager interface, that is used by applications to send and receive pack-
ets. The e10k drivers implement a wide range of hardware features. For this
project support for jumbo frames and header split was added.

While the Intel 82599 does not support safe userspace networking without
virtualization being enabled (since no IO-MMU can be used to protect mem-
ory), the infrastructure does allow unsafe userspace networking where one or
more NIC queues can be directly mapped into an application. This is desirable
since direct access to the queues in the application reduces the communication
overhead that would otherwise be needed for communication with the queue
driver.

3.3 Security Aspects and Encryption
Ensuring data integrity and confidentiality plays an important role especially
when data leaves the machine. By using networking technology the data may
even leave the local network and reach its destination over the Internet.

In our analysis of the options we will completely ignore any security aspects
such as data encryption since this is beyond the scope of this course. The
responsibility of ensuring data integrity and confidence is left to the application
programmer who can encrypt the data before it is written to the buffer.

Just to mention an alternative it would be an option to provide another
backend, which makes use of one of the available security extensions such as
SSL or IPSec. When an application programmer uses that security enabled
interface it is transparent to the programmer that there will a certain overhead
introduced.



Chapter 4

Implementation

In this Chapter we briefly describe the most important points of our network
backend implementation. First we start with a Section describing the ideal
network implementation. Secondly we relate this ideal networking to reality
and outline the arising difficulties. Third, we present the implementation de-
cision and their rationale. The last Section consists of an overview of different
implementation variants.

4.1 Ideal Implementation
A first step towards an implementation of a network backend for the bulk trans-
fer mechanism is to identify the characteristics of an ideal implementation.

4.1.1 Performance
One of the first goals that comes to mind is good performance, so the backend
should reduce the overhead of communication compared to the underlying net-
work mechanism to a minimum. By performance we are generally interested
in latency and throughput. Here the latency is the time delay from when an
operation is issued on one side until it is received and processed on the other
side. And the throughput refers to the number of operations that can be per-
formed over a specific time frame, e.g. when sending move operations over a
10Gbps network the goal is to be able to reach a throughput close to 10Gbps
for transferring the actual data.

4.1.2 Transparency
Another major goal for this project is transparency, i.e. an application using the
bulk transfer mechanism should not need to know what backend it is running on.
One implication of this, that it is not immediately obvious from the specification,
that an application might rely on the fact that there is a correspondence between
memory ranges on both sides representing a single buffer.

For example when an application at an endpoint writes to a buffer for which
it previously received ownership over this channel and moves it back over the
channel, the receiving side could rely on the fact that it received the data in the
same buffer it previously passed. This could be relevant for applications relying
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on specific characteristics of the buffers, such as e.g. the physical address if they
are doing I/O and are providing the other side with some information about
which buffers to use for what.

4.1.3 Reliability
A useful implementation should provide some reliability guarantees, i.e. ideally
we would like all operations to succeed assuming valid parameters are provided.
This means that the backend needs to provide protection against lost and cor-
rupted packets and handle these problems internally invisible to the user. Note
that there are network failures that cannot be hidden in software, such as e.g.
a broken physical link, in which case the operations should fail gracefully.

4.2 Difficulties in Reality
After identifying the goals and characteristics of an ideal implementation, we
can start thinking about how to construct a real implementation and figure out
what problems and constraints are imposed by the given hardware.

4.2.1 Transparency vs. Performance
One point to notice is that stronger transparency guarantees require more com-
munication than weaker ones, thus leading to a performance vs. transparency
trade-off. On one extreme there is a fully transparent channel, where basically
each operation has to be relayed to the other end, such as adding a buffer, or
passing ownership for a buffer. If we are willing to drop most transparency guar-
antees we can come up with a scheme that only requires network interaction for
the actual data operations (i.e. move and copy), but requires the receiver to
allocate its own buffers and provide them to the backend and gives the sender
no control over which buffer the data will end up in (this corresponds to the
proxy implementation described bellow).

4.2.2 Reliability vs. Performance
Another trade-off exists between reliability and performance. Note that this is
a general and well-known problem for networking applications, and the usual
way to handle this is to use different protocols (such as TCP and UDP) that
provide a different set of reliability guarantees, and applications can decide on
what to use, based on their requirements.

4.2.3 Copies
What we ideally would like to have when sending a buffer over the network (e.g.
by doing a move operation) is that the data will directly be stored in the right
buffer by the NIC. This would omit the requirement for additional copying of
data, since copying data around implies additional CPU cycles which are used
to process the receive event. There are basically two ways to achieve this:

Either using an intelligent NIC that can actually select the right buffer based
on the received packet. Note that this requires significant hardware support,
and is similar to an RDMA write, with the difference that we do not need the
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operation to be one-sided. In fact we actually need a notification to let the
receiver know that it received data in this specific buffer. But the only way to
control the destination buffer with our Intel 82599 is basically to use different
hardware queue for every buffer and let the hardware demultiplex the incoming
packets e.g. based on the destination port, but in any realistic use case the 128
hardware queues of the Intel 82599 would not be sufficient.

The other possibility to avoid a copy is to send a packet ahead specifying
the destination buffer for the next packet, allowing the receiver to set up its
receive queue accordingly by making sure that the destination buffer will be in
the first position on the receive queue. First off, note that this basically implies
an additional round-trip for every move/copy operation, since the sending side
needs to wait for an acknowledgement. This also means that data operations
need to be sent sequentially (or batching is needed to include multiple destina-
tion buffers in the announcing message). Note that the overhead imposed here,
will almost certainly outweigh the cost of a copy operation in software. Further,
there need to be a guarantee that no other message arrives at the receiver after
the queue has been setup. This would require a lock on the channel which is
something we want to avoid.

4.2.4 Packet Processing Costs
Previous benchmarks have shown that our hardware allows round-trip times
around 10µs for small packets between two machines. While fast communica-
tion is obviously desirable, this also means that software processing time for
packets is no longer dominated by propagation delays in the network, and thus
the software path also has to be carefully optimized in order to get good per-
formance.

4.2.5 Performance 6= Performance
Another difficulty is that optimizing for one aspect of performance can often
negatively impact other aspects. An example of this is the use of interrupts
for signalling packet arrival: In order to get a minimal latency, it is desirable
to get interrupts as early as possible, and avoid interrupt throttling. For im-
proving throughput on the other hand, interrupt throttling is desirable, since
it reduces the overhead of interrupt processing, and received packets can be
batched. Direct cache access (DCA) is another feature that has similar perfor-
mance characteristics: if there are relatively few requests that are to be handled
with minimal latency, enabling DCA for a queue makes sense since it will make
sure that packets are in the cache before processing starts, thus saving cache
misses. But if a lot of requests are arriving concurrently, DCA can lead to cache
thrashing and thus negatively impact performance of other code running.

4.3 Implementation Decisions
Based the analysis of possibilities in the previous section, we have a clear un-
derstanding what is achievable given our hardware. The question at hand is
now is how to make the best out of this situation and make optimal use of
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the hardware. This section outlines some of our implementation decisions and
provides a rationale for them.

4.3.1 Multiple Implementations
Because of our observations in the previous section, that there is a clear trade-
off between transparency and performance, we decided to implement multiple
versions of a network backend each providing different semantics. Thus allowing
the user to choose the appropriate backend depending on the required trans-
parency guarantees and the desired performance. We ended up implementing 3
different backends (detailed descriptions are provided in the next section):

• Proxy (see 4.4.1)

• Fully Transparent (see 4.4.2)

• No Copy (see 4.4.3)

4.3.2 Directly Mapping Hardware Queues
In order to achieve better performance and better flexibility we decided on
mapping the used hardware queues directly into the application address space.
Note that the Intel 82599 does not support safe user-space networking without
virtualization enabled and the use of an IO-MMU. However, this is a problem
that can be rectified by using hardware that provides better support for user-
space networking, or by relying on virtualization.

The alternative to user-space networking would be to rely on the e10k queue
driver for accessing the queue, which would mean additional overhead for com-
municating with the driver for every send and receive operation. Note that using
a directly mapped receive queue means that the hardware needs to be able to
steer packet intended for our bulk transfer endpoint into our queue (more about
this below).

4.3.3 Alignment of Received Payload
Since one of the goals identified previously, we need a way to ensure that the
buffer-data part of an incoming packet will be copied by the card into the buffer,
starting at the beginning of the buffer. Since the backend implementation does
not control how the buffers are allocated, we cannot avoid this problem simply
by allocating larger buffers, and pointing the receive descriptors to a modified
address.

The first obvious difficulty is posed by the protocol headers that precede the
payload of the packet. But this can be easily addressed by using the Intel 82599
header split feature, causing the headers to be placed in separate buffers (but
this only works for headers of the standard internet protocols such as TCP/IP
or UDP).

Another problem is that the buffers we intend to use are larger than the
1500 bytes that fit in a standard Ethernet frame 1. The usual way to handle
this issue is to rely on fragmentation/segmentation. But this leads to another

1Currently the implementation constrains the buffers to be at least page size and a power
of 2
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Ethernet IP UDP Buffer Meta Data Ethernet
Header Header Header CRC
14 bytes 20 bytes 8 bytes 4096 or 8192 bytes X bytes 4 Bytes

Table 4.1: The Transmitted Packet Format

problem since the payload will now be split over multiple packets. Just doing the
math and adding different offsets to the buffer address and storing it in multiple
successive receive descriptors, only works reliably if we have a guarantee that the
segments/fragments arrive in order and there are no other packets arriving in
between, which is not feasible in practice. Our solution here is to rely on jumbo
frames, which allows us to send buffers of size up to 81922 bytes (assuming a
size of a power of 2) in single Ethernet frames.

The last issue is that in addition to the buffer data, we generally need some
control data, such as a message type and some meta data. Now if we add this
information as a an additional bulk transfer specific header after the default
protocol headers, we destroy all our efforts up until now to get the data nicely
aligned into memory: Only the standard headers can be stripped by the NIC
and thus our additional header will be written to the begin of the buffer. To
avoid this, we decided on using a trailer and storing the control data after the
buffer data. Meaning that it will be stored in the buffer specified by the next
receive descriptor. Assuming we are using a packet-based protocol that provides
the packet length in its headers it is also easy to find the trailer and identify
the message type for variably sized messages by looking at the last byte, which
specifies the message type. Table 4.1 shows the resulting packet format.

4.3.4 Protocol Choice
We decided early on against relying on the Barrelfish default lwIP network
stack, mainly for performance reasons and since it seriously reduces control for
us about how buffers are used for sending and receiving data over the network,
compared to interfacing with the NIC directly.

While TCP might seem like a reasonable choice at the first glance, there are
difficulties: First off, TCP is very complex which makes it hard to implement
correct while still delivering good performance. Another problem is that TCP is
stream based, which means that we do not have any control on how the payload
will be split up into Ethernet frames, which also means that receiving directly
into the buffers is not possible.

This basically leaves us with Ethernet, IP and UDP to choose from. We
ended up deciding on UDP, mainly because it allows for easy demultiplexing of
the packets into the respective hardware queues, using 5-tuple filters that use the
UDP destination port. Note that we could also use IP packets and demultiplex
based on the IP address using 5-tuple filters, but this is less practicable and does
not really offer any advantage over UDP (besides the few bytes saved for the
header), since UDP does not require any protocol processing besides stripping
the header and thus also adds no significant overhead. Directly using Ethernet
frames would make demultiplexing harder, since the 5-tuple filters cannot be
used there, and the only possibility would be to use one of the 8 EtherType

2The maximum supported by the Intel 82599 is actually 15.5kB
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filters, to demultiplex based on the protocol type, which severely limits the
number of queues that can be used.

4.3.5 Prepared Headers
On the send path, the headers involved, Ethernet through UDP, are almost
static. The only fields that potentially change with different payloads are the
IP and UDP length fields and the checksums. This allows us to prepare a header
buffers for each slot in the transmit queue at binding time, and at the time the
buffers are used, only the length fields need to be modified (the checksums
are offloaded to hardware). Not having to fill in the full header for each send
operation saves some CPU cycles.

4.3.6 Reliability
Note that our current implementation does not provide any mechanism for flow
control or handling lost/reordered packets. Since we are mostly doing bench-
marks using machines that are connected back to back, this is not an issue
for our benchmark, but needs to be addressed for practical applications. We
skipped this for the sake of simplicity and due to time constraints.

4.4 Channel Variants
There are several options to implement the network backend of the bulk transfer
infrastructure. Based on the insights gained while analysing the possibilities in
reality we have implemented three different approaches each having its own
benefits and tradeoffs.

4.4.1 Network Proxy
As the name suggests, we have a distinct network endpoint which serves as a
proxy for sending or receiving over the network. This endpoint basically just
listens for data arriving on the bulk channel and forwards them to the network
card or vice versa.

Overview

This particular endpoint can either be a separate domain as shown in Figure
4.2 or in a thread running inside the domain (Figure 4.1). The only thing that
changes is the channel type that connects to the network proxy endpoint.

Using the proxy variant to connect two machines with each other we end
up in having virtually one channel between the client machine and the service
machine, However, there are in fact tree channels under the hood. Each bulk
buffer operation makes three hops till it gets to the destination.

Channel Semantics

The two proxy variants do not fully confirm the channel semantics as described
in the formal specification. Both ends of the virtual channel need to be the
master of their sub channels to the network endpoints. This implies as a channel
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master, both sides need to provide buffers to the channel in order to receive data.
While the role semantics apply to the two sub channels, at the global view of
the virtual channel this does not apply since we virtually have two endpoints
being in master role.

Initialization

On both machines the channel initialization is done similar and involves basically
setting up a channel to the network endpoint located within another thread
(using a local channel) or on another domain (using a shared memory channel).
In the following initialization example we will use a local channel to demonstrate
the steps:

1. Creation of a local endpoint of type local channel

2. bulk channel create() with the local endpoint and the role BULK ROLE MASTER

3. Creation of the remote endpoint of type local channel used by the network
proxy

4. Initialization of the network proxy with the remote endpoint by either
calling connect or listen

(a) network proxy does a channel bind to the local endpoint supplying
its own bulk callback handlers

(b) network proxy initializes the network part by starting the connection
protocol or listen for connection requests

(c) upon connection, the callback from the proxy is called signalling
channel connection

5. the application supplies the network proxy with buffers by passing them
on the local channel.

In contrast to normal channels, when using the proxy additional work has
to be done: in case of the local channel the remote endpoints have to be created
by the application as well. Further there are two additional functions which are
specific to the backend that need to be invoked upon channel creation. These are
shown in Listing 4.1. We have omitted the parameters in this listing, because
of their number.

errval_t bulk_net_proxy_listen ( ... );
2

errval_t bulk_net_proxy_connect ( ... );

Listing 4.1: The Additional Proxy Functions

Usage

After the channels are setup and the proxies connected the channel is ready for
use. From that point on the usage of the bulk channel does not differ much
from any other channel type. However, the application needs to make sure that
there are always enough bulk buffers at the network proxy in order to receive
the arriving data.
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Tradeoffs

There are several tradeoffs with this implementation:

• Transparency: This design goal is clearly not satisfied: the channel
consists of three hops with two master endpoints.

• Complicated Setup: The channel setup needs additional function calls
and differs from the common interface.

Notice, that even though the bulk channels designed to have as little over-
head as possible, every additional hop adds some overhead to the operation.

4.4.2 Transparent Variant
The proxy variant as described in the previous section does not full-fill the
channel semantics specified in the formal specification. We want to provide a
fully transparent channel, which behaves semantically like it is machine local.

Overview

The main goal of this channel implementation is to provide the exact semantics
a bulk channel should have: when a buffer with id = 3 is transmitted, then the
other endpoint will receive the data in the buffer with id = 3. This implies that
we need to establish a one-to-one relationship between the buffers and pools on
one machine and the buffers and pools on the other machine3. An overview can
be seen in Figure 4.3.

Channel Initialization

In contrast to the proxy variant, there is no special way to create the channel.
During the channel establishment process the following steps are executed at
the creating side and the binding side. Notice, that in addition to the points
1 and 2 which are also done in the proxy variant, the allocation of dedicated
receive buffers is also necessary.

1. Initialization of the hardware queue and buffer descriptor rings

2. Installing a hardware filter which associates the port with the queue

3. Allocation of receive buffers of a pre defined size

4. Adding the receive buffers to the receive queues

Pool Assignment

When a new pool is assigned on the channel there are several steps that have
to be done at the other side. The steps that need to be done are depending if
the pool was never been assigned to a channel which has an endpoint in this
domain. In any case, the pool is added to the pool list of the channel in the end
if the application does not veto the assignment request. The following steps are
executed if the pool was not present in this domain:

3Only for assigned pools over the network channel
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Figure 4.3: Transparent Network Channel

1. Allocate a virtual and physical address range.

2. Map the pool depending on the trust level.

It is important to know, that it is only allowed to assign pools with a bulk
buffer size that is equal to the receive buffer size.

Sending a Buffer

The sending process is illustrated on the left hand side of Figure 4.3. When a
buffer is moved or copied over the channel, it is handed over to the bulk transfer
library (1). The network backend adds meta data and the header to the packet
and enqueues the bulk buffer into the transmit queue (2). The NIC processes
the transmit queue (3) and sends the packet onto the Ethernet (4).

Receiving of a Buffer

The receiving process can be seen on the right hand side of figure 4.3. When a
new packet arrives on the network interface. The network hardware splits the
header from the payload and stores the data into the next receive buffer4 (5).
The receive thread gets notified about the receive event and copies the data
into the buffer with the identical id5 of the one that was being sent (6). The
callback to the application is executed (7) and the receive buffer added to the
receive queue (8).

Tradeoffs

• Resource Usage: By strictly following the channel semantics each time a
buffer gets transferred to the other machine, the allocated memory stays

4Notice there are in fact two needed: one for the buffer and one for the meta data.
5Same pool id and same offset
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unavailable at the originating machine even though this memory is not
used.

• Receive Buffers: Allocating receive buffers increases the resource con-
sumption at both sides. Further, the number of allocated receive buffers
must be chosen large enough to handle bursts.

• Required Copy: In the receive process, there is always a copy necessary.

Remarks about the Needed Copy

This variant violates the "zero copy" goal of a bulk transfer implementation.
However, its easy to say that this bad. When we investigate possible use cases
the answer is rather: it depends.

Assume, the data is received in a pass through domain and is never touched
perhaps routed to another channel using the meta data. Because we do an
actually copy the CPU is busy doing the copy which also pollutes the cache.

On the other hand, assume that the data is received in the sink domain.
Because we are doing a copy, the data is expected to be already in the cache
resulting in a lower cash miss rate when actually doing the data processing.
Thus the copy can be viewed as a prefetcher.

4.4.3 No Copy Variant
The third variant we implemented tries to eliminate the need for copying from
a receive buffer into the bulk buffer which was necessary in the transparent
variant as described in the Section above while providing most of the bulk
channel semantics.

Overview

To overcome the need for a copy, the data must be directly written to the
bulk buffer by the network card. Therefore, the buffers must be enqueued into
the receive queue before any data can be received. In contrast of the previous
variants which make use of an in-line control channel, this variant consists of a
distinct control channel. The receive buffers for this control channel are provided
internally. In addition to that, for each pool a data channel where the bulk
buffers serve as receive buffers. Figure 4.4 shows an overview of this variant
from a data channel point of view.

Channel Initialization

In general there is almost no difference in initializing a channel to the procedure
presented with the transparent variant. One thing, that one may optimize is
the number and size of the internal receive buffers: the buffers must not have a
size that is large enough to hold a bulk buffer but just large enough to hold the
control messages and meta data.

Pool Assignment

As already explained in the overview, this variant makes use of distinct data
channels. Therefore every time a new pool is assigned to this channel type



CHAPTER 4. IMPLEMENTATION 77

Client Machine

Application Domain 

libbulk_transfer

bulk buffer
id = 3

NIC

TX
endpoint

Service Machine

Application Domain 

libbulk_transfer

NIC

RX
endpoint

Ethernet

1)

2)

4)

5)

7)

RX Queue

TX Queue

3)

bulk buffer
meta 
bufferbulk buffer

meta 
bufferbulk buffer

meta 
buffer

bulk buffer
id = 7

meta 
buffer

bulk buffer
id = 5

meta 
buffer

Remote ID Local ID

3 5 6)

Figure 4.4: No Copy Variant (Pool View)

the a slightly different "channel setup" procedure needs to be executed. This
establishes a port/queue - pool relationship: knowing the port/queue of a packet
tells exactly which pool it belongs to and vice versa. The direction of the channel
play an important role here, because if it is a transmit type channel the buffers
must be added to the receive queue on the receive side.

Further, we need additional buffers to hold the meta data which also need to
be allocated and added to the receive queue. There exists a one-to-one relation
ship between bulk buffers and meta buffers i.e. foreach bulk buffer there is a
meta buffer. The two buffers types, bulk and meta buffers, are added to the
receive queue in alternating fashion with the bulk buffer first. The reason for
this is can be seen when receiving a buffer (Section 4.4.3 below).

Sending Buffers

Sending a buffer is quite straight forward and basically behaves the same way
as in the transparent variant. However, we must make sure that that we send
the correct buffer id along, thus we need to look it up in the buffer id transla-
tion table6 and send the remote id instead of the local one. This is especially
important, when this buffers was received and passed back as a response.

Receiving Buffers

The receive process is illustrated on the right hand side of Figure 4.4. When a
new packet arrives on the data channel (4) the header gets split away and the
NIC takes the first buffer in the receive queue to fill the payload. (5) Because
the bulk buffer is in the first part of the packet and a bulk buffer is always at
first of the receive queue the bulk data gets written directly into the correct

6when the pool is assigned, on the transmission side the ids are initialized as remote id =
local id.
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destination. When the buffer is full, we are at the beginning of the meta data
part, and the next receive buffer is dequeued (5) which is the internal meta
buffer we allocated.

However, we need to provide correct semantics on a channel: when a appli-
cations sends buffer 3 over a channel and receives it back, it should also get the
buffer 3 back: We need to overcome the fact that the receiving side does not
know which buffer will arrive and just takes the next from the queue. Therefore
we have to maintain a lookup table (6) which stores the local → remote id rela-
tion ship. After this book keeping is done, the application gets informed about
the received data (7).

Potential Benefits

As described above, this variant makes use of a new receive queue per added pool
and an additional one for the control channel. This setup of having multiple
receive queues may be beneficial for the performance. It essentially enables
concurrent processing in contrast to the other variants where all packets arrive
over the same queue.

Problematic Aspects

There are several issues with that approach. First, the library must know exactly
the location of all the buffers belonging to this pool at assign time: The buffers
cannot be added to the receive queue if they are used anywhere else in the
system. If the pool is added to a transmit channel, then the pool can only be
added, if it is not already present in the receiving domain. Otherwise its not
sure which buffers are available and can be added to the receive queue. No
buffers in the queue implies no possibility to receive data.

Secondly, the way the receive queue is set up heavily relies on the packet
layout of arriving data. If there is at some point of time less data arrived than
the size of the bulk buffer, the queue gets out of sync resulting in a corrupted
channel. This can also occur when a malicious machine injects a packet into the
data stream.

Tradeoffs

Avoiding the copying brings certain tradeoffs:

1. Pool Assignments: Not all pools can be assigned to this channel: only
the ones that are first assigned to the network channel.

2. Packet Format: The packets on the data channels must have always
exactly the same format: [Buffer | Meta Data].

3. Resource Usage: There are also additional buffers needed to hold the
meta data and further there is a queue allocated for each pool.



Chapter 5

Evaluation

In this Chapter we present the results from our evaluation. We conducted
experiments for each of the implementation variants described in Chapter 4. As
performance metrics we have chosen throughput (channel bandwidth) and the
round trip time (response time).

5.1 Experiments
5.1.1 Experiment Factors
We have chosen the following factors for the experiment (Table 5.1). As baseline
comparison we have taken the shared memory backend.

Factor Values
Backend Proxy, Transparent, No-Copy
Buffer Size 4kB, 8kB

Table 5.1: Experiment Factors

5.1.2 Genera Experiment Setup
There are two domains involved in this experiment. First we have a server, the
"ECHO" domain which basically replies the request i.e. sending the buffer back.
Secondly there is the test domain, which runs the experiment and measures the
times. There is a single integer value written to the buffer and the value is read
on the receive event. A checksum over these values ensures the correctness.

5.1.3 Throughput
The first response variable we want to estimate is the throughput of the different
backends which we may call channel bandwidth. Since we are using a 10Gb NIC
this will be the upper limit of achievable performance.

79
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Figure 5.1: Channel Throughput

Experiment Setup

The experiment was conducted with a repetition of 1000 runs. Each run consists
of 250 overlapping move operations in both ways. The time was measured from
the point when the first buffer was sent up to receiving back the last buffer. The
trust level of the channel was set to fully trusted. The shared memory channel
as a comparison is run between two different cores.

Results

The measurements of the experiment can be seen in Figure 5.1. The graph shows
the theoretical maximum of the 10Gbps link shows as the dashed horizontal line.
The data points are the medians while the error bars show the 95 percentiles.
One may notice that the measurements are very stable.

We see a slight difference between the 4kB and 8kB buffer size. The through-
put values in the graph are the values of usable data i.e. only the buffer data
is included in the calculations. We see that there is a slight increase in the
throughput when we increase the buffer size. This results in a slight lower over-
head introduced by the headers and trailers per buffer byte transmitted. Overall
we can say that we got close to the maximum available performance.

As an interesting coincidence we see that the throughput values of the 8kB
buffers is almost the same with every implementation. While the proxy backend
has a significantly lower throughput in the 4kB case than the other backends.
We account this to the fact that the received buffers need to be transferred the
local twice.
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5.1.4 Round Trip Time
The second response variable is the roundtrip time (RTT). Notice, that we are
more interested in the delay i.e. the time it takes to move a buffer from one
machine to another. We can estimate the delay by dividing the measured RTT
by two.

Experiment Setup

As with the previous experiment, the RTT experiment was conducted with a
repetition of 1000 runs while each run consists of the measurement of 250 move
operations. In contrast to the throughput, we measure the time it takes to get
the reply back and do not issue overlapping operations.

Results

The experiment results can be seen in Figure 5.2. First of all we see that
the shared memory clearly outperforms the network implementation which is
obvious since there is a significant delay due to the transmission time. The
dashed line shows the base line when sending 4kB over a 10Gbps link without
any overhead.

With the 4kB buffers, we see a very consistent picture. All the three backend
variants perform not significantly different. With 8kB buffer size, there is a dif-
ference, the no-copy variant performs slightly better. 95% of the measurements
in the no copy case are blow the fastest 5% of the other two implementations.
Recall, that there is an additional queue per assigned pool. This enables some
concurrency which may lead to the slightly better RTT.

Further the difference between two buffer sizes is not a factor of two. This
indicates that quite some time is spent processing the packet. Under the as-
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sumption that the processing overhead stays the same with a bigger buffer size,
we get a processing time of about 15-20µ s per request.

5.1.5 Block Service
In addition to the two micro benchmarks above, we also ran an experiment on
our block service implementation. In contrast to the description of the block
service in the common part, we just make use of the NBS client domain that
issues the benchmark requests, because we want examine the the performance
of the network channel.

Experiment Setup

Again the experiment is repeated for 1000 runs. Each run consists of 250 write
or read requests respectively. A write request will allocate a new bulk buffer,
fill the entire buffer with sample data based on the block id we want to write
and then move it over the block server. The read requests are executed as a
batch request of 250 blocks. The contents of the received payloads are examined
and compared to the expected value which was written by the write request to
ensure correctness.

Results

The result of this benchmark are shown in Figure 5.3. Interestingly we come
almost close to the theoretic maximum for the write requests. We measured from
the bulk move request up until we got the pass back of the buffer. In the proxy
case this measures the loop back of the local channel i.e. the time it takes till
the packet is sent which is obviously at 10Gbps. While the transparent channel
provides consistent read and write performance as expected, the no copy variant
delivers has about twice as high write performance than read performance, which
seems a bit suspicious to us. We think that with that benchmark was something
wrong in the measurement process.

Further, since the read request is sent over lwIP TCP connection this may
have an influence on the read performance. Because the TCP/IP processing
usually takes more time.
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Chapter 6

Future Work

6.1 Receive Buffers for Meta Data
If a buffer is transmitted, the received packed always ends up in two receive
buffers: one for the bulk buffer and the other for the meta data. What we not
want is that a packet that arrives, occupies two bulk buffers at the receiving
side (even if temporary). Under the assumption that all pools assigned to a
network channel have equal buffer sizes, for every packet that arrives we know
exactly where the meta data starts. Therefore having a hardware feature that
does not only a header split but also a custom packet split would ensure that
only bulk buffer data part will end up in a bulk buffer. The buffer chaining
with FIFO characteristics of the receive queue may end up in something that
is similar to the desired feature, however relies that the arriving packets have
a specific format and there is no interference with other packets that do not
match this format (e.g. control packets vs. data packets).

6.2 Maximum Buffer Size
Recall Section 3.1.2 about hardware support for jumbo frames and the buffer
size constraints. This two constraints give us a a support only two sizes: 4096
and 8192 bytes for the non-trusted case. Note that the hardware supports a
maximum Ethernet frame size of just below 16kB.

If we just consider the trusted case, we may relax the page size constraint
a bit and allow buffer sizes which are not a multiple of page size. However, by
relaxing this constraints, we give away the possibility to enforce protection by
doing page table manipulations.

6.3 Security Aspects: Use of IO-MMU
We want to give guarantees that at the point a bulk buffer is transferred to
another domain - either copy or move - its contents are not modified by the
sending domain. While this can be enforced by setting the access rights on a
software level, a hardware device does just know about accessing physical mem-
ory directly. Therefore by supplying the hardware with the "wrong" physical
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address can lead to data corruption.
Thus in the non trusted case the use of a IO-MMU should be encouraged

to protect the memory region from malicious DMA access. It may be worth
investigating the influence of performance with changing the IO page tables
in addition to changing the domain page tables. Conceptually, you will need
to adapt the IO page tables whenever a buffer is handed over to the network
backend or arrives on the network backend.

6.4 The No-Copy Variant Issues
There are several limitations with the no copy variant. Recall, the restriction
that a pool can only be assigned to such a channel at maximum once and only
if the pool has not yet been assigned to the domain. This is a hard limitation.
Further that channel does not support any operation that involves removing a
buffer out of the receive queue such as passing a buffer over a transmit channel.

6.5 RDMA Backend
Our implementation using UDP involves a bit of work by the two host machines
i.e. queue manipulations, packet processing and so forth. Accessing the buffer
directly in the main memory of the remote host would be a great way to im-
plement a bulk transfer mechanism across machines. By the use of RDMA, the
contents of a buffer can be precisely loaded into the exact same buffer as on the
other host, which was not the case in our implementations (Sections 4.4.3 and
4.4.2) where we either used buffer id rewriting or a copy. In addition to that,
the meta data can be placed into a designated memory area.

6.6 Extended Network Support
The current support of buffer sizes is rather small and limited (Section 6.2).
To overcome the limitations of 4096 or 8192 byte buffers, the implementation of
fragmentation handling would be a possible step. Having fragmentation support
not only avoids the use of jumbo frames, but also enables bigger buffer sizes.
On the other hand, as explained the use of jumbo frames can lead to a better
performance and the effort dealing with the additional complexity ma not be
worth it.

6.7 Network Stack
Recall, the current network stack makes use of pbufs to receive data and pass it
to the application. As already discussed, the pbufs have some limitations [22].
It may be worth investigating if the network stack could be adapted to deal
with those bulk buffers and what this would mean to performance, protocol
processing and data security.
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6.8 Freeing Up Resources
The current implementation of the network backends do not support the deallo-
cation of resources such as hardware queues or port. Further the backend does
not support the messages for channel teardown and pool removal. This is to be
considered a valid point for future work, to give a full featured implementation
with the possibility to free up resources.
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