
Bachelor’s Thesis Nr. 208b

Systems Group, Department of Computer Science, ETH Zurich

System Modeling Co-Design

by

Sven Knobloch

Supervised by

Reto Achermann, Lukas Humbel, Prof. Dr. Timothy Roscoe

Sept. 16, 2018

Contents

1 Abstract iii

2 Introduction 1

3 Background 3
3.1 Existing Work . 3

3.1.1 VHDL[5] & Verilog[6] . 3
3.1.2 SystemC[7] . 3
3.1.3 gem5[8] . 3

3.2 Sockeye[1, 2] . 3
3.2.1 Sockeye’s Use Case . 4
3.2.2 Sockeye Concepts . 4
3.2.3 Goals using Sockeye . 4

3.3 LISA and LISA+[11] . 5
3.3.1 LISA+ Concepts . 5
3.3.2 ARM Fast Models[9] . 6

4 ARM Server Base System Architecture 7
4.0.1 Architecture . 7
4.0.2 Importance to Barrelfish 7

4.1 Translation of the SBSA . 8
4.2 Conclusion . 9

5 Design & Implementation 11
5.1 Restrictions & Assumptions . 11
5.2 Mappings . 12
5.3 Existing Sockeye Framework . 15
5.4 Existing LISA+ Framework . 15
5.5 Additional Utilities . 15
5.6 Extension of Sockeye Syntax . 15
5.7 Auxiliary File . 16

6 Results & Discussion 18
6.1 Evaluation . 18
6.2 Dynamic Components . 18
6.3 Efficiency . 18
6.4 LISA+ . 18
6.5 Closing Remarks . 19

7 Future Work 21
7.1 Integration with Mackerel[3] . 21
7.2 Extension of Library Components 21
7.3 Power Domain . 21

8 Appendix 22
8.1 SBSA Sockeye Files . 22

8.1.1 SBSA . 22
8.1.2 Processing Element . 23
8.1.3 Generic Interrupt Controller 23

i

8.1.4 Generic Watchdog . 24
8.1.5 Generic UART . 24
8.1.6 Generic Timer . 25

8.2 Minimal System Image . 26
8.2.1 Sockeye Description . 26
8.2.2 Auxiliary File . 31

ii

1 Abstract

In recent years, hardware systems and systems on a chip (SoCs) have become in-
creasingly diverse. In order to build software for such a large variety of systems,
better ways have to be found to target and test software for these platforms.
One such solution is hardware simulation, which allows for quick, efficient and
inexpensive experimentation of software with a large variety of systems. In ad-
dition, simulation allows software developers to better integrate their software
with specific hardware platforms to increase performance, efficiency and overall
interoperability.

The Barrelfish group as operating system developers are extremely interested
in increasing performance and compatibility with a large variety of systems.
They have developed a domain specific specification language, Sockeye[1, 2], to
describe system models as a hardware decoding net to query for addresses and
interrupt information at runtime. This project evaluates the viability of Sock-
eye as a language to generate system models from and successfully demonstrates
how to generate valid hardware simulators from these models using ARM’s Fast
Models[9] framework and their modeling language LISA+[11]. ARM has also
published their Server Base System Architecture[4], which defines a common
standard for ARMv8 platforms. This project also analyzes and evaluates the
Server Base System Architecture and determines its compatibility with the Bar-
relfish ecosystem, specifically how well it integrates with Sockeye for system
modeling. The Server Base System Architecture is found to be a good start-
ing point for a standard but is too loose in its restrictions to provide concrete
information to developers.

iii

2 Introduction

In recent years, hardware systems and systems on a chip (SoCs) have become
increasingly diverse. Since these systems are not homogeneous, developers have
a hard time writing and maintaining code for so many different platforms that
each have varying instruction sets and system capabilities. Additionally, tar-
geting all these platforms without simulation is not only difficult and time con-
suming, but also expensive. With all these different systems out there each one
would have to be purchased and tested individually. However, simulating these
systems has negligible costs and testing can easily be automated, making con-
tinuous integration simple and efficient as well. Specifically for operating system
and embedded developers this is beneficial because platform coverage and hard-
ware interoperability is crucial to the viability of software. They are also able
to interact more closely with a large variety of different types of hardware to
provide better performance and optimizations.

Additionally, modeling and general hardware software co-design can lead to
more efficient, performant and compatible systems. In the past, these systems
scaled up with the introduction of newer and faster hardware, but the pace of
these advancements is slowing due to natural physical limitations. These limita-
tions forced developers to find new, better ways to improve the performance of
their systems and thus the concept of hardware software co-design was formed.

Figure 1: The hardware software co-design process.

Hardware software co-design allows software developers to work more closely
with targeted hardware, so it becomes much simpler to optimize performance
overhead. These optimizations include reducing memory usage, power consump-
tion, processing time for tasks, resource contention, etc. These performance
gains are significant and are the next step in improving future generations of
hardware and software.

Barrelfish is a multikernel based research operating system being developed
at ETH Zürich that focuses primarily on systems with a numerous cores in
order to address the rising demand for scalability as well as to run on a large
variety of systems and architectures. The Barrelfish group utilizes hardware
software co-design tools, like the ARM Fixed Virtual Platforms[10], to aid in the
development of its operating system. These tools are mainly utilized to fit the
software to existing and upcoming hardware since the Barrelfish group targets a
large variety of platforms. Internally, the group has developed additional tools,
including Sockeye[1, 2] and Mackerel[3], to facilitate the development process

1

and help formally reason about these systems.
This project concerns itself with Barrelfish and expanding its usage of hard-

ware software co-design tools, namely hardware modeling and simulation. This
is done by using an existing Barrelfish specific design language, Sockeye, and
determining its feasibility as a hardware software co-design tool by planning and
constructing a compiler that can build a working system simulator from a given
model. Additionally, the ARM Server Base System Architecture[4] is also in-
vestigated and analyzed for its overall viability and more specifically how well it
can be represented in Sockeye. The first section will cover background informa-
tion, including existing hardware software co-design tools, internal and external
to Barrelfish, followed by the review of the Server Base System Architecture
in the second section. This is then followed by a comprehensive description of
mappings of language constructs from Sockeye to LISA+. These mappings are
used to construct a compiler that generates working system models in LISA+
from Sockeye descriptions files. Finally, a minimal system model is shown and
evaluated, followed by a final overview of the entire project in addition to some
recommended future work that can be done to expand on these results.

2

3 Background

3.1 Existing Work

Work in the field of hardware software co-design includes everything ranging
from system modeling to automatic hardware synthesis and software verifica-
tion. This project focuses on modeling and system simulation, therefore existing
hardware modeling and simulation tools, including low level hardware descrip-
tion languages like VHDL and Verilog as well as full fledged system simulators
like gem5, are examined. These tools are considered as possible targets for this
project to use for system simulation.

3.1.1 VHDL[5] & Verilog[6]

VHDL and Verilog are hardware description languages used to model electronic
systems and digital circuits. These languages are low level and are frequently
used for designing physical hardware and cover many finer levels of detail such
as propagation time, signal edges and blocking/non-blocking assignments. In
terms of hardware software co-design there exist various hardware simulators
that use these languages to define hardware and then run other programs on
the generated system.

3.1.2 SystemC[7]

SystemC is set of C++ classes and macros that can be used to construct a
hardware simulator. It relates closely to VHDL and Verilog in regards to low
level implementation details but also provides a higher level of abstraction to
facilitate understanding and workflow, classifying it as a system level modeling
language rather than a hardware one. It also provides additional utilities that
can be used to measure power and energy. SystemC is often used as a base for
other system modeling tools, for example LISA+.

3.1.3 gem5[8]

gem5 is a combination of two older simulators, M5 and GEMS. It provides a
modular architecture and high level abstractions to facilitate modeling. There
is also a large set of predefined architectures, including x86, ARM, MIPS, Pow-
erPC and SPARC, which makes it a very attractive option for operating system
developers that wish to target multiple platforms. Configuration is done via
Python but the simulator itself is implemented in C++ to provide a performant
and accurate system. Additionally, gem5 provides integration with existing Sys-
temC projects, which can be used to co-simulate additional functionality on top
of the existing system.

3.2 Sockeye[1, 2]

Sockeye is declarative domain specific language developed by the Barrelfish
group to describe systems on a chip. The language is used to describe what
is known as a hardware decoding net. This is essentially a model of a hardware

3

system that encapsulates the interactions between systems, in particular mem-
ory and interrupts but also has support for other domains like clock systems
and power.

3.2.1 Sockeye’s Use Case

The Barrelfish group uses Sockeye to describe systems that the operating system
targets. At its core, Sockeye translates to a series of Prolog statements, a logic
programming language, that can be queried for information about the system.
Barrelfish’s internal system knowledge base is built on top of these statements.
This is used by the operating system during runtime to query hardware sys-
tem properties and perform appropriate tasks based on the results, i.e. system
component and peripheral discovery. Another use of this specification is formal
verification of systems. Sockeye can also be used to construct a model in Is-
abelle, a formal verification language, which in combination with the Barrelfish
implementation can provide guarantees about system safety and performance.

3.2.2 Sockeye Concepts

Nodes Sockeye provides an extensive system to describe what are called nodes.
These nodes represent components in a hardware system and can be connected
to one another, just like hardware. Nodes cover multiple domains, including
memory, interrupts, power and clocks, which help to describe the type of con-
nections a node has as well as its functionality. Each node also has definitions
as to how it behaves: accepting, which implies that the node is end destination
for a set of addresses, and mapping, which implies that the node translates one
set of addresses to another.

Modules Sockeye organizes these nodes into modules. Modules contain nodes
and definitions on how these nodes connect to others. Additionally, modules can
also instantiate sub-modules and bind to their input and output ports. This al-
lows for mapping and passing address domains into and out of components to
model the given system. In fact, the entire system is modeled as one top-level
module, usually with various other sub-modules. The ability to instantiate sub-
modules also allows for reuse of common components such as UARTs, DRAM,
etc.

3.2.3 Goals using Sockeye

Sockeye was chosen for this project not only because it can provide a compre-
hensive description of a system, but also because of its convenience, since the
Barrelfish group already has systems modeled in it. The goal is to be able to take
these files and generate a working system image that can then be used to run
and debug the operating system as well as allow testing on multiple platforms
with little to no overhead. Additionally this can be used to test systems that do
not physically exist from hardware manufacturers yet, but have a preliminary
specification so that Barrelfish can already be compatible when the system is
released.

4

3.3 LISA and LISA+[11]

LISA, the Language for Instruction Set Architectures, is a language developed
by ARM to describe instruction set architectures. This was later extended
to LISA+ which added the capability to model entire systems as well as the
individual components that they are comprised of, like Sockeye does. LISA+ is
closely tied to the C and C++ languages, utilizing them to define behaviors. In
contrast to Sockeye’s hardware decoding net, LISA+ focuses primarily on more
hierarchal physical descriptions and overall system structure, interactions and
behaviors.

3.3.1 LISA+ Concepts

Components LISA+ uses components to represent a system. Each compo-
nent can have a multiple subcomponents that comprise further functionality.
Each component includes the following sections: resources, includes, composi-
tion, behavior, ports and connections.

Resources The resources section contains all local resources declarations
that belong to a component. These declarations fall into one of three classes:
registers, memory and parameters. Registers define a resource that stores data.
They represent the physical registers in hardware and have support for var-
ious attributes and annotations, including read/write access limitations, bit
width and address. Memory defines a range of space where data can be stored.
It represents physical memory banks and also can be annotated with various
attributes such as read/write access limitations, endianness and minimum ad-
dressable size. Parameters give a way increase component configurability by
abstracting values to be defined at a later point, such as compile time or even
run-time. They can be given default values to use that can then be overridden
at a later point.

Includes The includes section is a place to put #include preprocessor
statements. Similar to the C/C++ preprocessor it will insert the linked files
and behaviors where specified.

Composition The composition section is where subcomponents can be
defined. This section exists to provide a way to construct a system component
hierarchy in order to utilize the reusable components. In addition, the parameter
values of the subcomponents can be specified here. The parameters are specified
by name, meaning values can be left to their given defaults or overridden with
another desired value. These parameter values can also be other parameters,
allowing a component to pass configuration to a higher level.

Behavior The behavior section defines the behavior of the component.
Multiple different behaviors can be specified in this section, similar to functions,
which are called at the appropriate times. There are also several special purpose
behaviors that act like hooks for specific system actions, such as initialization,
reset or termination. It also provides behaviors that can control the simulation
itself, such as starting or stopping. These behaviors are written with C like
syntax and can also be connected to external C or C++ code.

5

Ports Ports allow components to communicate with one another. There
are three different types of ports: internal, master and slave. Internal ports
are not exposed externally and can be used to wire together subcomponents
inside of the component. Master ports are external ports that can be used to
request read or write accesses on a connection. In contrast, the slave ports
are also external ports but they respond to these read or write accesses. Ports
communicate using protocols and a master and slave must implement the same
protocol if they are connected. Ports can also be marked as addressable, which
allows partial connections and connections to multiple other ports.

Connections Connections permit the wiring of component ports with one
another. The connections are limited to the internal ports of a component or any
ports of included subcomponents from the composition section. Here address
ranges can be specified if the port is addressable.

Protocols Protocols specify the behavior of connections and how ports may
interact. The behaviors are written similar to the component behaviors men-
tioned in the previous section. Each protocol behavior can be specified as op-
tional, meaning there exists a default implementation, and as master or slave,
corresponding to what type of port this behavior targets. The most used pro-
tocols are the PVBus, Signal and ClockSignal protocols, which are used for
memory IO, interrupts and clock signals, respectively. Other examples of pro-
tocols include SerialData for serial communication and VirtualEthernet for
ethernet communication.

3.3.2 ARM Fast Models[9]

ARM provides a framework, built on top of LISA+, to build system models,
known as ARM Fast Models. This was first released with their Fixed Virtual
Platforms[10], which provide explicit platform definitions that developers can
run as a simulator. With the Fast Models, developers can specify their own
systems instead of relying on the standard platforms that ARM provides. The
framework comes with a set of standard library components that reflect specific
hardware that ARM has released, such as the PL011 UART or the GICv3. Since
ARMv8 is one of the platforms Barrelfish targets, it makes sense to use a frame-
work provided by the manufacturer as well as their predefined components.

6

4 ARM Server Base System Architecture

ARM is working on providing a standardized hardware system architecture us-
ing the ARMv8 architecture. This platform is known as the ARM Server Base
System Architecture, or ARM SBSA for short. The intention of this stan-
dardized system is to provide a simplified hardware interface to firmware and
operating system developers to increase reliability, portability and compatibil-
ity amongst independently developed hardware and software systems. This is in
direct response to the disorder of the ARMv7 systems which had no such unify-
ing specification. It is an optional specification but ARM anticipates hardware
manufacturers will follow it in order to ensure their systems’ interoperability.
Additionally, the manufacturers are free to add additional functionality as they
see fit as ARM does not want to restrict these platforms, only provide a common
interface.

4.0.1 Architecture

The server base is divided into multiple tiers of functionality, each level building
off of the previous. As of right now, the first three levels (0, 1, and 2) have been
removed from the specification, making level 3 the newest standard, and levels 4
and 5 have been added. The level 3 specification provides a list of various com-
ponents and functionality that a system must provide in order to comply with
the standard. It includes specification of processing elements, memory maps,
interrupt assignments, I/O virtualization, clock/timer subsystems, watchdogs
and peripherals. It also describes the behavior of the wakeup and power sys-
tems. There also exists an optional additional specification, known as level 3
firmware, which further specifies some of the previously mentioned components
and behaviors. The next level, level 4, adds additional requirements for the
processing elements as well as additional MMU and PCI Express requirements.
Level 5 goes on to refine the processing element requirements even further and
also touches on the interrupt controller, the MMU and the clock.

More specifically, the level 3 specification provides a list of various feature
requirements that processing elements must provide in order to comply. These
requirements include being ARMv8 compatible and supporting features such
as paging/superpaging support, being little endian and having individual PPIs,
or private peripheral interrupts. The PPIs are given specific interrupts IDs as
well. It also requires the use of secure execution levels by the system firmware
to ensure firmware integrity. The interrupt controller has to conform to ARM’s
GICv3 standard. If the I/O virtualization is implemented, the system must
include a compatible stage 2 system MMU, in the form of an SMMUv2 or
SMMUv3. For clock and timer purposes, the system must provide a generic
timer that holds the system counter and runs at least at a frequency of 10MHz
and does not roll over within 10 years. It goes into detail about the wakeup
behavior of the processors and timers, specifying that these timers must be able
to wake the processors via private peripheral interrupts.

4.0.2 Importance to Barrelfish

As operating system developers, the Barrelfish group is extremely interested
in the SBSA. Being able to target one system architecture specification and

7

then being able to run on all compliant systems saves time and effort as well
as increasing the overall appeal of the operating system. Part of this research
focuses on analysis and critique of the SBSA. This includes discussing how the
SBSA can be integrated into the Barrelfish ecosystem, what sort of issues and
incompatibilities may be present between the two systems as things stand, and
some recommendations as to what would improve the SBSA. The aim is to be
able to provide comprehensive feedback on the usefulness of the SBSA to ARM.

4.1 Translation of the SBSA

For the description of the SBSA in Sockeye, the individual component require-
ments are inspected and translated as closely as can be represented in Sockeye.
One recurring problem that is seen is the fact that most of these components
require concrete implementations to actually be used in a system. This means
the behavior and physical addresses must be defined before the system can be
instantiated. However, the representation of the SBSA is still translated to
Sockeye to demonstrate how such a system would look. A concrete implemen-
tation is presented in a later section that utilizes components from the ARM
Fast Models standard library in place of the generic components mentioned in
the SBSA to create a concrete system model.

PE Architecture The processing elements are mostly described in a behav-
ioral fashion, something that Sockeye is not designed to deal with. Nevertheless,
the connections of the individual elements are representable. One thing to note
however is that the additional behavioral requirements, such as cryptography
support, presented by levels 4 and 5 are unable to be represented differently
than the level 3. This makes it impossible to differentiate which level the given
Sockeye description is for. See the processing element entry in the appendix for
an example.

Memory Map The memory map is a more complicated issue. The specifi-
cation states that there is no mandated standard memory map, but that the
system memory map is left to the firmware data. This is problematic for trying
to generalize over the SBSA itself because Sockeye as well as LISA and simula-
tors in general require a well defined description of a system in order to model
it properly. Sockeye is able to represent these individual components, like the
UART, Watchdog or optionally the SMMU, but cannot instantiate a working
system without specified concrete addresses. The fact that the entire address
space is mappable is possible to represent in Sockeye but again is not of much
use without a concrete memory map.

Interrupt Controller The interrupt controller is fairly straightforward to
translate to Sockeye. Interrupts are already representable using the interrupt
domain and the interrupt mappings are well defined and simple to express using
Sockeye as well. See the generic interrupt controller entry in the appendix for
an example.

I/O Virtualization I/O virtualization is an issue as well, similar to the mem-
ory map. Primarily, support for it is implementation specific and therefore op-

8

tional. However if it is present, the system has to include an SMMU which is
modelable in Sockeye, butthe address of the SMMU is determined from the sys-
tem firmware and therefore also requires a concrete system image. Additionally,
if the system supports virtualization, all memory must be rerouted through the
SMMU, which changes the layout of the entire system. Having something this
fundamental be optional can lead to further inconsistencies amongst implemen-
tations and make it more difficult to model properly.

Clock and Timer Subsystem Clocks are well defined in Sockeye so this
representation is also fairly straightforward using the clock and interrupt do-
mains. These connections are simple and can therefore be easily modeled. See
the generic timer entry in the appendix for an example.

Wakeup Semantics & Power State Semantics Wakeup semantics and
power state semantics are primarily behavioral aspects of the specification. Since
Sockeye does not deal with component behavior, these specifications are just
assumed to work correctly with the corresponding component connections that
are included in the clocks and processing elements. Additionally, the power
domain is currently undergoing some changes to provide a more comprehensive
representation of these systems and therefore this will be deferred until that
work is concluded.

Watchdogs The generic watchdog requires the clock and interrupt domains.
Just like the clock and timer subsystems, these are already present and therefore
trivial to represent in Sockeye. See the generic watchdog entry in the appendix
for an example.

Peripheral Subsystems The peripheral subsystem is also mostly implemen-
tation specific. It requires the adherence to certain standards, such as XHCI
and TPM, if the system components are present. These are all behavioral at-
tributes and therefore are not of much relevance to Sockeye. However, one thing
it does specify is the inclusion of a UART. This is fairly trivial to express but, as
previously stated, the specification has some minor details, including that the
UART has to be non-secure and how to route the interrupt, but no information
about concrete placement. See the generic uart entry in the appendix for an
example.

4.2 Conclusion

Overall there are several up and down sides to the SBSA as well as some incom-
patibilities with Sockeye. The SBSA gives us certain guarantees about what
system functionality is to be expected, like a UART or a watchdog timer, but
information on accessing these services is left to the system firmware. This can
be useful when including precompiled software that relies on these components
as they are guaranteed to work. However, specification also relies heavily on
optional or implementation specific constructs, which not being able to rely on
certain services being present defeats the purpose of having a standard. Addi-
tionally, there are some other features that would greatly help operating system

9

developers adapt to the SBSA and more specifically help representation of the
server base in languages like Sockeye.

Secure State In the specification it is mentioned that the systems are ex-
pected to use secure state. The fact that this is expected and not required is
somewhat problematic. This can lead to inconsistencies amongst hardware and
software implementations for the server base.

Memory Map There is no standard memory map given in the specification.
This means that system models cannot actually represent a generic implemen-
tation of the SBSA without making assumptions about concrete addresses and
mappings. Having to make these assumptions severely limits the utility that the
specification provides because they may conflict with actual implementations.
Having to utilize the system firmware to retrieve memory mappings is what
systems are currently doing, using ACPI and the like. The type of firmware is
not specified either, leaving interaction with the system to be implementation
specific as well. Since the specification is fairly vague in this regard, it ends up
providing little to no additional information and reliability in terms of system
capabilities.

I/O Virtualization I/O virtualization is completely optional. Having an
important system such as virtualization be optional prevents developers from
being able to rely on its benefits. Therefore, developers do not gain any actual
advantage from the SBSA and have to plan for determining support on their
own.

Level 3 - Firmware Just like I/O virtualization, the level 3 firmware exten-
sion is also optional and suffers from the same pitfalls. In addition, it seems
inconsistent with the multi-tier structure. Why not make this another tier of the
architecture? Also, do higher tiers have the option to implement this as well, e.g.
how is a level 4 system that is also compliant with the level 3 firmware extension
expressed any differently than a standard level 4 system? These inconsistencies
should definitely be defined in a more clear and structured way.

Final Thoughts In summary, the SBSA needs a stricter set of requirements.
This should include a well defined method of interacting with the system firmware,
such as mandating ACPI compliance or some other common firmware interface.
Having the firmware and the actual system details both be implementation
specific leaves a large amount of room for uncertainty and incompatibility. Fur-
thermore, the behavioral specifications and component requirements are only
beneficial to a limited extent. ACPI and other system firmware interfaces al-
ready provide mechanisms for peripheral discovery and the like and the SBSA
provides little benefit on top of this. Also, the lack of a concrete memory map
becomes impossible to formally reason about and represent a system this ab-
stract, further limiting it’s use.

10

5 Design & Implementation

Even though Sockeye and LISA+ are not designed for the same purpose, there
still exists significant overlap in the language concepts. Nevertheless, there
are still some parts of Sockeye that do not exist directly in LISA+ and have
to be mapped in some other way or can not be represented at all. For the
sake of simplicity, Sockeye is translated to LISA+ in a syntactic manner rather
than from the instantiated model of the hardware decoding net. This greatly
simplifies the conversion because of the similarities in the syntax and prevents
the need to re-extract details such as module instantiations from the decoding
net model. This section covers what subset of Sockeye is covered by this project
as well as what assumptions are made for some of the language constructs. It
also talks about the mappings that do exist between these languages and how
they are constructed.

5.1 Restrictions & Assumptions

Property Expressions In Sockeye, it is possible to annotate certain node
definitions with parameters in the form of boolean expressions, for example
read && !write. This provides additional information for the connection but
this cannot be represented in LISA+. While LISA+ does support read and
write annotations, it does this on the individual memory nodes and registers
rather than per connection. Property expressions are therefore ignored.

Conversion Nodes Sockeye provides a way to convert domains via conversion
nodes. Since LISA+ uses protocols to define connections and connected nodes
need the same protocol in order to communicate, this is not representable with
the current tools. LISA+ does do some conversions internally but these are
implemented with behaviors and would require custom component behavior,
which this project does not cover. Conversion nodes will cause an error at
compile time since it has undefined behavior.

Power Domain In parallel to this project, the power domain in Sockeye is
being re-examined and redefined to make sure that it properly captures all the
desired functionality. Since power is still under construction, implementation of
this domain is deferred and will be revisited when that work is concluded.

Wildcards Wildcards in Sockeye are used as syntactic sugar to speed up
writing the specification files. They ideally should represent the original address
range that was specified in a node’s declaration but are repurposed for use with
LISA+. LISA+ differentiates between addressable and non-addressable ports,
where it is invalid to access a non-addressable port with an address. This mainly
affects the clock domain and parts of the interrupt domain but also plays into
how the memory nodes were translated. In this new context, wildcards will
be translated as specifying no address, which represents a direct connection
between nodes. Since this change affects memory nodes as well, any definitions
for memory nodes should explicitly state the address range they target and
should avoid using wildcards outside of the previously mentioned context. On
the other hand, clocks have to use wildcards to be mapped properly. Interrupts
vary by case, depending on if the interrupt is a single line or a vector.

11

Accepting Sockeye allows all nodes to accept, meaning that the node is the
endpoint for that range of addresses. In Sockeye, it makes sense to list nodes as
endpoints for clocks, interrupts and memory but in LISA+ these interactions
are defined by behavior. For example, if a node accepts some interrupt vector, it
will provide some functionality that is tied to the port to deal with the incoming
interrupt. This works well for generic memory since it just store some data and
has no real behavior behind it, but other domains cannot be expressed without
behaviors. For this reason, accepts for the memory domain are handled but are
ignored for interrupts and clocks.

Forall Statements Forall statements are another problem for LISA+. Sock-
eye’s forall statement can be used to condense descriptions and make them
easier to read. However, when this is coupled with parameterization, it can lead
to issues for LISA+. In most cases the statements can be unrolled into other
statements, but many descriptions parameterize foralls. Since the parameters
are unknown at compile time, it becomes impossible to unroll them and LISA+
has no similar language construct to represent them either.

Module Array Instantiations Similarly to the forall statements, module
array instantiations have issues with parameters. Normally, the instantiations
could be flattened or prefixed in some way in order to emulate the effect, but this
again becomes an issue with parameterization. In many cases descriptions can
have a variable number of cores which are instantiated in this way but LISA+
does not support any form of array instantiation.

Node Arrays Unlike the modules, nodes are translated to ports instead of
components, which do support array instantiation. Nevertheless there is an
issue with the way array sizes are represented in Sockeye vs LISA+. Sockeye
lets the user specify a range whereas LISA+ only lets the user specify an array
size. Additionally, these sizes cannot be parametrized or include expressions.
Because of this, node arrays in Sockeye should provide a base/limit range that
starts at 0 and ends at the desired size.

Integer Overflow The translation from Sockeye to LISA+ uses natural num-
ber operations to maintain the use of parameters in ranges and expressions.
LISA+ supports these expressions but calculates them using 64 bit integers.
Therefore some expressions may overflow, such as a (0 bits 64) because of a
64 bit shift.

Named Types The current Sockeye parser has a small bug in the way it
parses named types. It reads them as a singleton range with a constant value
rather than a named type, which cannot be properly parsed. Since this parsing
is not working correctly, translation of the named types to LISA+ will have to
wait until the underlying parser implementation is fixed.

5.2 Mappings

Natural Number Operations Sockeye supports several different types of
expressions to manipulate natural numbers. Some of these expressions are di-

12

rectly supported by LISA+, more specifically: Literals, Addition, Subtraction,
and Multiplication. Since certain expressions are parameterized and these pa-
rameters can change at runtime, any expressions are translated to expressions
that LISA+ can also evaluate at runtime. LISA+ supports expressions in most
places, these operations are translated so that they can then be evaluated at
LISA+’s runtime. Further operations are defined as follow:

Slice The slice operation takes an expression and a range to specify which
bits to extract. In essence, this represents a bitwise shift followed by a bitmask.
Note that the ranges are inclusive. The pseudocode is as follows:

fn slice(value, range_low, range_high) {

shift = value >> range_low;

mask = (1 << (range_high - range_low + 1)) - 1;

return shift & mask;

}

Concat The concat operation takes an expression and a slice operation to
specify what to concatenate. This can be expressed as a shift and a bitwise or.
Note that the ranges are inclusive. The pseudocode is as follows:

fn concat(value, concat, range_low, range_high) {

shift = value << (range_high - range_low + 1);

return shift | concat;

}

Address Ranges Sockeye provides multiple formats for specifying addresses.
These are: Singleton Range, Base/Limit Range and Bits Range. LISA+ ranges
are written as a minimum address and a maximum address and therefore the
ranges must be converted into this format. These are implemented as follows:

Singleton Range The singleton range specifies a range with a single value.
This value is interpreted as a vector index for the purposes of interrupts.

Base/Limit Range The base/limit range specifies a range given a base
address and a limit address. The base is used as the minimum address and the
limit is used as the maximum.

Bits Range The bits range specifies a base address and a number of bits
that can be specified. The base is used as the minimum address and the maxi-
mum is the given by base address + ((1 << bits) - 1).

Address Sets Sockeye permits address sets as well as single address ranges.
Since LISA+ does not have support for sets, these addresses must be flattened
to a single range. This is done by multiplying out the minimums to get the
set’s minimum and the maximums to get the set’s maximum. The individual
addresses require knowing the max ranges of the node definition.

13

Node Definitions Node definitions are represented as LISA+ ports. In-
put/Output nodes are translated to slave/master ports, respectively. Internal
ports remain internal ports in LISA+. Since ports require protocols in LISA+,
each used domain is assigned a matching protocol. The clock domain maps to
the ClockSignal protocol, the interrupt domain maps to the Signal protocol
and the memory domain maps to the PVBus protocol.

Maps Mapping for the clock domain is very straightforward. The ad-
dresses are all wildcards since the clock is a signal in LISA+ and not a range.
For interrupts there exists the option of mapping directly or optionally speci-
fying a singleton range to specify the vector index that is to be mapped. The
memory addresses are slightly more complicated. Memory ranges in LISA+ can-
not simply be routed using a port, but must use the PVBusDecoder component
from the standard library to map the ranges. Therefore, whenever a memory
node is defined and provides some mapping, a new subcomponent is added to
the composition section with the well known DECODER suffix and the entire node
is routed to the decoder component. Any mappings are then mapped from the
decoder instead of the node itself.

Accepts Accepts are implemented for memory only. When a memory
node accepts, an instance of RAMDevice is created for the node, with the suffix
MEMORY, that has the same size as the accepting node. Since the node may

provide arbitrary mappings to this memory, a PVBusDecoder must exist for it,
either being newly created or reused if one already exists for this node. The
addresses can then be freely mapped from the node to the instantiated memory.

Overlays Overlays are supported for all domains. Connection ranges in
LISA+ may overlap one another but later connections override previous ones.
This is convenient to implement overlays with, since putting overlays first will
allow other mappings or accepts to simply override part of the connection as
needed. The overlay connections cover the entire range of the node.

Binds Binds are simple to represent in LISA+ as well. A bind creates a
connection from the target port to the internal port on the component, with an
optionally specified address range.

Constants Constants are translated as parameters in LISA+. Since LISA+
has support for parameters default values, these can be conveniently used as
constants since this parameter is not publicly exposed and therefore will not be
overridden. The parameter is of type int as the constants in Sockeye must be
natural numbers.

Modules Modules are represented as components in LISA+. They are in-
stantiated in a very similar way to Sockeye and can be directly mapped over.

Parameters Parameters are slightly more tricky but not too much. LISA+
component arguments require names. Since the names are given in the module
declaration in Sockeye, they can just be added in order of declaration to the
arguments given to the instantiation.

14

5.3 Existing Sockeye Framework

Sockeye’s existing implementation is written in Haskell. Primarily, it acts as
a parser for .soc files that returns an abstract syntax tree. There is also a
backend implementation for both Prolog and Isabelle which takes the abstract
syntax tree and transforms it into code for the respective language. In a similar
fashion, the new addition will take the form of a LISA backend and output
code that can then be used to generate a system model. One thing to note,
however, is that as of right now the parser does not perform any linking or
symbol interpretation. Languages like Prolog do not require this as they can
figure out the linking themselves, however this is not necessarily the case for
LISA and can affect the implementation details.

5.4 Existing LISA+ Framework

A large part of the utility of LISA+ comes from its existing library of standard
components. This project relies on a variety of those components in order to
work properly and also greatly facilitated the development. At the core of the
library sit the multiple processor models that ARM provides. For testing, the
ARMCortexA57x1CT component was used. The PVBusDecoder and RAMDevice

components were used to implement accepting and mapping for memory nodes.
Additionally there are provided examples in the form of the ARM Fixed Virtual
Platforms, which are standard system implementations from ARM built using
LISA+. These were instrumental to the understanding of LISA+ and used to
reverse engineering an initial working system image.

5.5 Additional Utilities

In addition to the Sockeye compiler, this project uses various other utilities
to help generate the system and boot Barrelfish. The bootloader and UEFI
implementations are provided by Linaro, a company that specializes in tools
for the ARM ecosystem. Additionally, another Barrelfish internal tool, Hagfish,
is used to bootload the kernel with the expected multiboot structure. Since
Hagfish can be booted as an UEFI application, using the Linaro bootloader and
UEFI implementations make the boot process very straightforward and simple
to do.

5.6 Extension of Sockeye Syntax

In order to utilize all of the functionality that LISA provides, support for extern
modules was added. This serves to incorporate the existing components that
are provided by the LISA standard component library. The proposed extern
syntax is as follows:

’extern’ ’module’ Ident ’(’ (Address Ident)* ’)’ ’{’

// input/output node definitions

’}’

The extern modules support both named parameters and input/output ports
but no internal nodes or node definitions. The named parameters are supported
by LISA and the ports help to define the I/O of the module. In essence it allows

15

for binding to external modules/components without having to know or specify
the internal implementation. Since the standard module also contains nodes
and node definitions, these can be safely ignored inside an external module.
In the future this can also be checked in the semantic checker to prevent such
definitions.

5.7 Auxiliary File

The majority of mappings from Sockeye to LISA+ work very well, but there
are some exceptions. Primarily these exceptions stem from attempting to repre-
sent certain LISA+ constructs in Sockeye when trying to work with the library
components. For example, LISA+ components can have required parameters of
types other than natural numbers, including strings and booleans. Since Sock-
eye cannot represent these parameters another solution is needed. One solution
would be to introduce these argument types to the language but the whole idea
of this project is to map the language, not slowly change it into LISA+. The
solution that was chosen was to have an auxiliary file, in the form of a JSON
file, to provide the additional information.

The format of the file reflects the issues that it covers. The first is the men-
tioned parameter issue. The JSON lets the user specify the component instance
and module by name and can optionally redefine the value that should be given
in LISA+. Another issue that arose is the fact that Sockeye identifiers do not
cover the same set of characters, like the ”-” character, which is interpreted as
a minus symbol in Sockeye. In addition to replacing the parameter value, there
is also the option to change the name of the given parameter. A third issue
that arose was mapping connections that utilize protocols other than PVBus,
ClockSignal or Signal, like UARTs, which use the SerialData protocol. In
the JSON, there is a section to specify connections directly by giving the name,
port and optionally an address. The syntax of the JSON file is as follows:

{

"connections": [// Multiple connections are allowed

{

"moduleName": /* string */,

"source": {

"name": /* string */,

"port": /* string */,

"address": /* optional string */

},

"target": {

"name": /* string */

"port": /* string */,

"address": /* optional string */

}

}

],

"parameters": [// Multiple parameters are allowed

{

"moduleName": /* string */,

"component": /* string */,

16

"name": /* string */,

"translation": /* optional string */,

"value": /* optional string */

}

]

}

17

6 Results & Discussion

6.1 Evaluation

Overall the translation from Sockeye to LISA+ is successful. The generated
system image boots into UEFI using the Linaro bootloader. There are some
minor complaints from the system about missing components that were stripped
away but nothing that leads to a system failure. It then proceeds into the
UEFI subsystem, where it can load the kernel using the Hagfish bootloader.
The terminal outputs the standard Barrelfish boot information and successfully
allocates a RAM capability to initialize the system. See the appendix for a
description of the minimal system image.

6.2 Dynamic Components

In order to check the robustness of the implementation, components were moved
around. The system image that was used has two UARTs which are each at-
tached to their own telnet consoles. When booted, the bootloader and kernel
output using the UART connected to terminal. To show that the system re-
sponds to component changes, the UARTs were swapped. As expected, the
new system output to the other UART, which is connected to terminal1. Ad-
ditionally, another image was tried with reduced memory regions. When these
addresses are unavailable, the kernel fails to allocate a RAM capability and
panics accordingly. Clearly the system generated responds to the changes in
the system description in expected ways.

6.3 Efficiency

While the generated models are very good in terms of performance and com-
ponent mapping, they are not perfect. The generated system model produce
unneeded components, specifically the additional internal ports, memory de-
coders and RAM devices. Many of these connections are a result of Sockeye
only being able to map submodule nodes to internal nodes. LISA+ supports
directly mapping submodules ports to other submodule ports and therefore can
circumvent the need for internal utility nodes. The impact of these additional
connections is yet to be profiled. The efficiency of the compilation process itself
is negligible in comparison to the rest of the Barrelfish build process. The com-
piler time is in the milliseconds range whereas the build process is more towards
the minutes range.

6.4 LISA+

LISA+ provides a comprehensive set of language constructs and other utilities
required to model a system. The language itself is fairly straightforward and
simple to use and several of the provided library of components are extremely
useful to have. Additionally, debugging with the built in debugger frequently
comes in handy when inspecting memory layouts. Not all of the language aspects
were used, like behaviors, but rest was extremely helpful for this project.

There is however one minor complaint concerning the components in the
standard library. First off, there are several components used in the Fixed Vir-
tual Platforms that aren’t included in the standard library. One of these is

18

the IntelStrataFlashJ3. This component is already implemented by ARM
and wouldn’t have to be reimplemented or downloaded independently. Further-
more, the standard library provides certain components without the required
associated components, for example, the FlashLoader component. This com-
ponent requires some flash memory that uses the FlashLoaderPort protocol to
load in data but no components, like the IntelStrataFlashJ3, are included
in the standard library order to utilize it. Finally, there are several compo-
nents that behave like some magical black box with inputs and outputs. The
GICv3IRI Filter component has externally defined behavior and just lists a
series of input and output ports. Since this component is more or less just an
aggregate of smaller subcomponents and their behaviors, it would be beneficial
to implement this component in a more idiomatic way using subcomponents,
internal behavior and the like. Not only would this benefit developers more
since they then have the opportunity to inspect these components to debug
functionality as well as learn from the implementation, but in general it would
also be clearer as to what the expected behavior and usage of this component
is from the system’s perspective.

6.5 Closing Remarks

The goal of translating a Sockeye model into a fully functional LISA+ simulator
was successfully achieved. There are limitations on both ends that cause some
problems with the translation, which may require special attention to choices
of syntax or prevent the translation altogether, but a large subset of Sockeye
works for this purpose. Also, a slight modification to Sockeye itself was made in
the form of the new extern syntax. Using these tools a minimal system image
was modeled in Sockeye and translated into a fully functional LISA+ simula-
tor. This model was also used to test the compiler’s robustness by swapping
components, like the UARTs, around as well as restricting memory address to
check behavior under these conditions. In both cases, the model functioned
as expected, properly swapping which terminal the system was communicating
with and panicking on the missing addresses, respectively. In addition to the
compiler, the ARM System Server Base Architecture was also evaluated. Over-
all the specification was found to be a solid basis for behavioral requirements
but provided too much freedom for implementations, leading to uncertainty
regarding available features from a developer’s perspective.

19

F
ig

u
re

2
:

T
h

e
b

a
re

b
o
n

es
sy

st
em

im
a
g
e

in
L

IS
A

+
.

20

7 Future Work

7.1 Integration with Mackerel[3]

In addition to Sockeye, the Barrelfish group has developed several other tools
to aid with hardware/software co-design. Among these is Mackerel, a device
specific language used to describe hardware devices, specifically register formats
and hardware data structures. These descriptions can be used to generate C
header files that can be included directly in the source code of Barrelfish itself.

One future extension to Sockeye could be the integration of Mackerel into
module descriptions to further specify the physical register layouts of the indi-
vidual components. For example, in the SBSA the register formats are given for
the watchdog and UART. Using Mackerel, these registers could be specified to
provide a more comprehensive model of the system as well as to then generate
the corresponding registers in LISA as well.

7.2 Extension of Library Components

Since the behavior of the models used in this project depends solely on the
existing library components, it would be potentially beneficial to write a custom
library to describe other behaviors not found in the standard library. This
could include new components that are not necessarily from ARM, such as x86
systems, just additional crucial system components that are needed by a more
complex system model or just add some basic utility components that can be
included for something like protocol conversions.

7.3 Power Domain

As previously stated, the power domain is currently undergoing some fundamen-
tal changes. As soon as these changes are implemented, a future improvement
would be to figure out how to map the concepts over and reflect these changes
in the existing code base.

21

8 Appendix

8.1 SBSA Sockeye Files

8.1.1 SBSA

module SBSA(nat cores,

nat uartbase,

nat gicbase,

nat rfbase,

nat cfbase) {

instance TIMER of GenericTimer

TIMER instantiates GenericTimer(cores)

TIMER binds [

CNTNSIRQ[*] to CNTNSIRQ[*];

CNTSIRQ[*] to CNTNSIRQ[*];

CNTHPIRQ[*] to CNTHPIRQ[*];

CNTVIRQ[*] to CNTVIRQ[*]

]

intr (0) CNTNSIRQ[0 to cores - 1]

intr (0) CNTSIRQ[0 to cores - 1]

intr (0) CNTHPIRQ[0 to cores - 1]

intr (0) CNTVIRQ[0 to cores - 1]

forall core in (0 to cores - 1) {

PROCESSING_ELEMENTS[core] binds [

MEMORY to MEMORY

]

CNTNSIRQ[core] maps [

(*) to PROCESSING_ELEMENTS[core].CNTNSIRQ at (*)

]

CNTSIRQ[core] maps [

(*) to PROCESSING_ELEMENTS[core].CNTSIRQ at (*)

]

CNTHPIRQ[core] maps [

(*) to PROCESSING_ELEMENTS[core].CNTHPIRQ at (*)

]

CNTVIRQ[core] maps [

(*) to PROCESSING_ELEMENTS[core].CNTVIRQ at (*)

]

}

instance PROCESSING_ELEMENTS[0 to cores - 1] of ProcessingElement

PROCESSING_ELEMENTS[*] instantiates ProcessingElement

22

instance GIC of GenericInterruptController

GIC instantiates GenericInterruptController

instance UART of GenericUART(uartbase)

UART instantiates GenericUART

instance WATCHDOG of GenericWatchdog(rfbase, cfbase)

WATCHDOG instantiates GenericWatchdog

memory (0 bits 64) MEMORY

MEMORY maps [

(0 bits 15) to GIC.MEMORY at (gicbase bits 15);

(0 bits 12) to WATCHDOG at (rfbase bits 12);

(0 bits 12) to WATCHDOG at (cfbase bits 12);

(0 bits 6) to UART at (uartbase bits 6)

]

}

8.1.2 Processing Element

module ProcessingElement {

input intr (0) CNTNSIRQ

input intr (0) CNTSIRQ

input intr (0) CNTHPIRQ

input intr (0) CNTVIRQ

output(0 bits 64) MEMORY

}

8.1.3 Generic Interrupt Controller

module GenericInterruptController {

input memory (0 bits 15) MEMORY

MEMORY maps [

(0x1000) to DISTRIBUTOR at (0 bits 12);

(0x2000) to CPU_INTERFACE at (0 bits 13);

(0x4000) to VIRTUAL_INTERFACE_CONTROL at (0 bits 12);

(0x5000) to VIRTUAL_INTERFACE_CONTROL_CPU at (0 bits 12);

(0x6000) to VIRTUAL_CPU_INTERFACE at (0 bits 13)

]

memory (0 bits 12) DISTRIBUTOR

DISTRIBUTOR accepts [

(*)

]

memory (0 bits 13) CPU_INTERFACE

23

CPU_INTERFACE accepts[

(*)

]

memory (0 bits 12) VIRTUAL_INTERFACE_CONTROL

VIRTUAL_INTERFACE_CONTROL accepts [

(*)

]

memory (0 bits 12) VIRTUAL_INTERFACE_CONTROL_CPU

VIRTUAL_INTERFACE_CONTROL_CPU accepts [

(*)

]

memory (0 bits 13) VIRTUAL_CPU_INTERFACE

VIRTUAL_CPU_INTERFACE accepts [

(*)

]

}

8.1.4 Generic Watchdog

module GenericWatchdog {

input memory (0 bits 12) REFRESH_FRAME

REFRESH_FRAME accepts [

(*)

]

input memory (0 bits 12) CONTROL_FRAME

CONTROL_FRAME accepts [

(*)

]

}

8.1.5 Generic UART

module GenericUART {

output intr (0) UARTINTR

input memory (0 bits 6) MEMORY

MEMORY maps [

(*) to UART_FRAME at (0 bits 6)

]

memory (0 bits 6) UART_FRAME

UART_FRAME accepts [

(*)

]

}

24

8.1.6 Generic Timer

module GenericTimer(nat cores) {

output memory (0 bits 64) CNTVALUEB

output intr (0) CNTNSIRQ[0 to cores - 1]

output intr (0) CNTSIRQ[0 to cores - 1]

output intr (0) CNTHPIRQ[0 to cores - 1]

output intr (0) CNTVIRQ[0 to cores - 1]

}

25

8.2 Minimal System Image

8.2.1 Sockeye Description

extern module ClockDivider((0 bits 64) mul) {

input clock (0) clk_in

output clock (0) clk_out

}

extern module MMC {

input clock (0) clk_in

input memory (0 bits 64) mmc

output intr (0) card_present

}

extern module PL180_MCI {

input memory (0 bits 64) pvbus

output memory (0 bits 64) mmc_m

}

extern module IntelStrataFlashJ3((0 bits 64) size) {

input memory (0 bits 64) pvbus

}

extern module TZC_400((0 bits 64) master_id_from_label) {

input memory (0 bits 64) apbslave_s

}

extern module TelnetTerminal {

input memory (0 bits 64) serial_in

}

extern module PL011_Uart {

input clock (0) clk_in_ref

input memory (0 bits 64) pvbus

}

extern module GICv3IRI_Filter ((0 bits 64) reg_base, (0 bits 64) reg_base_per_redistributor, (0 bits 64) GICD_alias, (0 bits 64) gicv2_only, (0 bits 64) SPI_count, (0 bits 64) ITS0_base, (0 bits 64) ITS_TRANSLATE64R) {

input intr (0) ppi_in_0[0 to 15]

input memory (0 bits 64) pvbus_s

output memory (0 bits 64) pvbus_filtermiss_m

output memory (0 bits 64) pvbus_m

output intr (0) redistributor_m

}

extern module CCI400((0 bits 64) cache_state_modelled, (0 bits 64) broadcastcachemain, (0 bits 64) acchannelen, (0 bits 64) barrierterminate, (0 bits 64) bufferableoverride, (0 bits 64) periphbase) {

input memory (0 bits 64) pvbus_s_ace_3

input memory (0 bits 64) pvbus_s_ace_lite_plus_dvm_2

output memory (0 bits 64) pvbus_m

}

extern module SP805_Watchdog {

input clock (0) clk_in

input memory (0 bits 64) pvbus_s

}

26

extern module VE_SysRegs((0 bits 64) sys_proc_id0, (0 bits 64) sys_proc_id1, (0 bits 64) sys_proc_id2, (0 bits 64) sys_proc_id3, (0 bits 64) sys_id_variant) {

input memory (0 bits 64) pvbus

input clock (0) clock_100HZ

input clock (0) clock_24Mhz

input intr (0) mmc_card_present

}

extern module ARMCortexA57x1CT((0 bits 64) CLUSTER_ID, (0 bits 64) dcache_state_modelled, (0 bits 64) icache_state_modelled, (0 bits 64) PERIPHBASE, (0 bits 64) GICDISABLE, (0 bits 64) BROADCASTINNER, (0 bits 64) BROADCASTOUTER, (0 bits 64) BROADCASTCACHEMAINT) {

input clock (0) clk_in

input intr (0) gicv3_redistributor_s

output memory (0 bits 64) pvbus_m0

output intr (0) CNTPNSIRQ

}

extern module MasterClock {

output clock (0) clk_out

}

module Barebones {

/* Composition */

// Clocks

instance masterclock of MasterClock

masterclock instantiates MasterClock

instance clk100Hz of ClockDivider

clk100Hz instantiates ClockDivider(100)

instance clk32KHz of ClockDivider

clk32KHz instantiates ClockDivider(32000)

instance clk24MHz of ClockDivider

clk24MHz instantiates ClockDivider(24000000)

instance clk100MHz of ClockDivider

clk100MHz instantiates ClockDivider(100000000)

// Memory

instance flash of IntelStrataFlashJ3

flash instantiates IntelStrataFlashJ3(0x4000000)

instance mci of PL180_MCI

mci instantiates PL180_MCI

instance mmc of MMC

mmc instantiates MMC

// Serial

instance uart of PL011_Uart

uart instantiates PL011_Uart

27

instance terminal of TelnetTerminal

terminal instantiates TelnetTerminal

instance uart1 of PL011_Uart

uart1 instantiates PL011_Uart

instance terminal1 of TelnetTerminal

terminal1 instantiates TelnetTerminal

// GIC

instance gic of GICv3IRI_Filter

gic instantiates GICv3IRI_Filter(

0x2f000000,

0,

0,

0,

224,

0x2f020000,

1

)

// Processor

instance core of ARMCortexA57x1CT

core instantiates ARMCortexA57x1CT(

0,

0,

0,

0x2C000000,

0,

1,

1,

1

)

// Watchdog

instance watchdog of SP805_Watchdog

watchdog instantiates SP805_Watchdog

// Miscellaneous

instance cci of CCI400

cci instantiates CCI400(

0,

0x0,

0x8,

0x7,

0x0,

0x2C000000

)

28

instance sysregs of VE_SysRegs

sysregs instantiates VE_SysRegs(

0x07330477,

0xff000000,

0xff000000,

0xff000000,

1

)

instance tzc of TZC_400

tzc instantiates TZC_400(

1

)

/* Local Nodes */

clock (0) MASTER_CLOCK_BUS

clock (0) CLK100HZ_BUS

clock (0) CLK32KHZ_BUS

clock (0) CLK24MHZ_BUS

clock (0) CLK100MHZ_BUS

memory (0 bits 48) MEMORY_BUS

memory (0 bits 48) CORE_TO_CCI_BUS

memory (0 bits 48) GIC_TO_CCI_BUS

memory (0 bits 48) CCI_TO_GIC_BUS

memory (0 bits 48) DRAM

intr (0) PPI[0 to 15]

/* Connection */

// Clocks

masterclock binds [clk_out to MASTER_CLOCK_BUS]

clk100Hz binds [clk_out to CLK100HZ_BUS]

clk32KHz binds [clk_out to CLK32KHZ_BUS]

clk24MHz binds [clk_out to CLK24MHZ_BUS]

clk100MHz binds [clk_out to CLK100MHZ_BUS]

MASTER_CLOCK_BUS maps [

(*) to clk100Hz.clk_in at (*);

(*) to clk32KHz.clk_in at (*);

(*) to clk24MHz.clk_in at (*);

(*) to clk100MHz.clk_in at (*)

]

CLK100HZ_BUS maps [

(*) to sysregs.clock_100Hz at (*)

]

CLK100HZ_BUS maps [

29

(*) to sysregs.clock_100Hz at (*)

]

CLK32KHZ_BUS maps [

(*) to watchdog.clk_in at (*)

]

CLK24MHZ_BUS maps [

(*) to uart.clk_in_ref at (*);

(*) to uart1.clk_in_ref at (*);

(*) to sysregs.clock_24Mhz at (*);

(*) to mmc.clk_in at (*)

]

CLK100MHZ_BUS maps [

(*) to core.clk_in at (*)

]

// Memory

gic binds [

pvbus_m to GIC_TO_CCI_BUS;

pvbus_filtermiss_m to MEMORY_BUS

]

core binds [

pvbus_m0 to CORE_TO_CCI_BUS;

CNTPNSIRQ to PPI

]

cci binds [

pvbus_m to CCI_TO_GIC_BUS

]

CORE_TO_CCI_BUS maps [

(0 bits 48) to cci.pvbus_s_ace_3 at (0 bits 48)

]

GIC_TO_CCI_BUS maps [

(0 bits 48) to cci.pvbus_s_ace_lite_plus_dvm_2 at (0 bits 48)

]

CCI_TO_GIC_BUS maps [

(0 bits 48) to gic.pvbus_s at (0 bits 48)

]

PPI[0] maps [

(*) to gic.ppi_in_0[14] at (*)

]

30

MEMORY_BUS maps [

(0x000C000000 to 0x000FFFffff) to flash.pvbus at (*);

(0x001C050000 to 0x001C05ffff) to mci.pvbus at (*);

(0x001C090000 to 0x001C09ffff) to uart.pvbus at (*);

(0x001C010000 to 0x001C01ffff) to sysregs.pvbus at (*);

(0x001C0A0000 to 0x001C0Affff) to uart1.pvbus at (*);

(0x002A490000 to 0x002A49ffff) to watchdog.pvbus_s at (*);

(0x002A4A0000 to 0x002A4A0fff) to tzc.apbslave_s at (*)

]

MEMORY_BUS overlays DRAM

DRAM accepts [

(0 bits 48)

]

}

8.2.2 Auxiliary File

{

"connections": [

{

"moduleName": "Barebones",

"source": {

"name": "uart",

"port": "serial_out"

},

"target": {

"name": "terminal",

"port": "serial"

}

},

{

"moduleName": "Barebones",

"source": {

"name": "uart1",

"port": "serial_out"

},

"target": {

"name": "terminal1",

"port": "serial"

}

},

{

"moduleName": "Barebones",

"source": {

"name": "gic",

"port": "redistributor_m",

"address": "0"

31

},

"target": {

"name": "core",

"port": "gicv3_redistributor_s",

"address": "0"

}

},

{

"moduleName": "Barebones",

"source": {

"name": "mci",

"port": "mmc_m"

},

"target": {

"name": "mmc",

"port": "mmc"

}

},

{

"moduleName": "Barebones",

"source": {

"name": "mmc",

"port": "card_present"

},

"target": {

"name": "sysregs",

"port": "mmc_card_present"

}

}

],

"parameters": [

{

"moduleName": "Barebones",

"component": "gic",

"name": "reg_base",

"translation": "reg-base"

},

{

"moduleName": "Barebones",

"component": "gic",

"name": "reg_base_per_redistributor",

"translation": "reg-base-per-redistributor",

"value": "\"0.0.0.0=0x2f100000\""

},

{

"moduleName": "Barebones",

"component": "gic",

"name": "GICD_alias",

"translation": "GICD-alias"

},

32

{

"moduleName": "Barebones",

"component": "gic",

"name": "gicv2_only",

"translation": "gicv2-only"

},

{

"moduleName": "Barebones",

"component": "gic",

"name": "SPI_count",

"translation": "SPI-count"

},

{

"moduleName": "Barebones",

"component": "gic",

"name": "ITS0_base",

"translation": "ITS0-base"

},

{

"moduleName": "Barebones",

"component": "gic",

"name": "ITS_TRANSLATE64R",

"translation": "ITS-TRANSLATE64R"

},

{

"moduleName": "Barebones",

"component": "core",

"name": "dcache_state_modelled",

"translation": "dcache-state_modelled"

},

{

"moduleName": "Barebones",

"component": "core",

"name": "icache_state_modelled",

"translation": "icache-state_modelled"

}

]

}

33

References

[1] Daniel Schwyn Hardware Configuration With Dynamically-Queried Formal
Models http://www.barrelfish.org/publications/ma-schwyda-hwconf.pdf
October 2017

[2] The Barrelfish Group Sockeye in Barrelfish - Technical Note 025
http://www.barrelfish.org/publications/TN-025-Sockeye.pdf August 2017

[3] The Barrelfish Group Mackerel User Guide - Technical Note 2
http://www.barrelfish.org/publications/TN-002-Mackerel.pdf May 2013

[4] ARM ARM Server Base System Architecture 5.0 - Platform
Design Document https://static.docs.arm.com/den0029/50/Q1-
DEN0029B SBSA 5.0.pdf 2018

[5] VHDL http://www.vhdl.org

[6] Verilog https://ieeexplore.ieee.org/document/1620780/

[7] System C http://www.systemc.org/home/

[8] gem5 http://gem5.org

[9] ARM Fast Models https://developer.arm.com/products/system-
design/fast-models

[10] ARM Fixed Virtual Platforms https://developer.arm.com/products/system-
design/fixed-virtual-platforms

[11] LISA+ https://developer.arm.com/docs/101092/latest

34

http://www.barrelfish.org/publications/ma-schwyda-hwconf.pdf
http://www.barrelfish.org/publications/TN-025-Sockeye.pdf
http://www.barrelfish.org/publications/TN-002-Mackerel.pdf
https://static.docs.arm.com/den0029/50/Q1-DEN0029B_SBSA_5.0.pdf
https://static.docs.arm.com/den0029/50/Q1-DEN0029B_SBSA_5.0.pdf
http://www.vhdl.org
https://ieeexplore.ieee.org/document/1620780/
http://www.systemc.org/home/
http://gem5.org
https://developer.arm.com/products/system-design/fast-models
https://developer.arm.com/products/system-design/fast-models
https://developer.arm.com/products/system-design/fixed-virtual-platforms
https://developer.arm.com/products/system-design/fixed-virtual-platforms
https://developer.arm.com/docs/101092/latest

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

SYSTEM MODELING CO-DESIGN

KNOBLOCH SVEN

ZÜRICH, SEPTEMBER 15th 2018

	Abstract
	Introduction
	Background
	Existing Work
	VHDLvhdl & Verilogverilog
	SystemCsystemc
	gem5gem5

	Sockeyesockeye-thesis, sockeye-technical
	Sockeye's Use Case
	Sockeye Concepts
	Goals using Sockeye

	LISA and LISA+lisa
	LISA+ Concepts
	ARM Fast Modelsfast-models

	ARM Server Base System Architecture
	Architecture
	Importance to Barrelfish

	Translation of the SBSA
	Conclusion

	Design & Implementation
	Restrictions & Assumptions
	Mappings
	Existing Sockeye Framework
	Existing LISA+ Framework
	Additional Utilities
	Extension of Sockeye Syntax
	Auxiliary File

	Results & Discussion
	Evaluation
	Dynamic Components
	Efficiency
	LISA+
	Closing Remarks

	Future Work
	Integration with Mackerelmackerel-technical
	Extension of Library Components
	Power Domain

	Appendix
	SBSA Sockeye Files
	SBSA
	Processing Element
	Generic Interrupt Controller
	Generic Watchdog
	Generic UART
	Generic Timer

	Minimal System Image
	Sockeye Description
	Auxiliary File

