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Abstract

Current multicore OS benchmarks do not provide

workloads that sufficiently reflect real-world use: they

typically run a single application, whereas real work-

loads consist of multiple concurrent programs. In this

paper we show that this lack of mixed workloads leads

to benchmarks that do not fully exercise the OS and

are therefore inadequate at predicting real-world behav-

ior. This implies that effective multicore OS benchmarks

must include mixed workloads, but the main design chal-

lenge is choosing an appropriate mix. We present a prin-

cipled approachwhich treats benchmark design as an op-

timization problem. Our solution leads to a workload

mix that uses as much of a system’s resources as possi-

ble, while also selecting applications whose performance

is most sensitive to the availability of those resources.

1 Introduction

We argue that benchmarks used in the Operating Sys-

tems literature for evaluating new designs and techniques

are fundamentally unrealistic: they ignore the common

case of running multiple applications (or subsystems) on

the same machine. Bluntly, we are measuring the wrong

thing. We show, using existing OS benchmarks running

concurrently, how traditional benchmarks lead to unre-

alistic results, and propose composing benchmarks so as

to obtain more useful information about how well an OS

can multiplex the machine among competing programs.

The purpose of an OS is to allocate and share machine

resources between applications in a controlled way. The

mismatch between what an OS should do, and which

properties we currently measure about it, becomes more
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serious in the case of multiple, parallel workloads on

modern and future multicore processors, where the in-

teraction between competing multithreaded workloads is

poorly understood and hard to analyze. As research into

OS designs suitable for multicore processors continues

apace [2, 4, 10, 12], it is high time we fixed this problem.

Multicore workloads fall into three categories: High-

performance computing (HPC) workloads are long-

running applications that split work into parallel tasks

executed across all the system’s cores. Server applica-

tions are characterized by continuous execution of short,

independent jobs in response to incoming requests. Scal-

ability here is often a matter of executing many jobs con-

currently. Finally, dynamic workloads, in desktop and

other interactive systems, run a changing mix of appli-

cations concurrently. Currently we see interactive appli-

cations competing with background applications such as

security scanners, indexers, and backup systems. In the

future we can expect a much broader range of concurrent

activity as so-called mining, recognition, and synthesis

(RMS) applications become more prevalent [1].

Existing benchmarks focus on static HPC and server

scenarios, using single applications, and neglect the

mixed workloads typical of interactive systems. Hence,

they fail to exercise or evaluate the performance isolation

capabilities of a multicore OS, and are of limited use in

validating novel techniques to improve performance and

scalability of an OS in non-HPC or server scenarios.

We claim a good multicore OS benchmark suite must

provide a mixed workload to be useful in analyzing how

an OS performs what is, after all, its main purpose.

In the next section we review the benchmarking

methodology used in recent OS research papers, and

show that such benchmarks fail to capture important as-

pects of how an OS manages resources under a mixed

workload. We then introduce a new approach for such

benchmarks which provides detailed information about

how the OS deals with a mixed workload, and describe

some initial work on how to interpret the results.



OS m + µ S+H+D Scale Perf Mixed

Tornado [8] 0 + 8 0 + 0 + 0 8 4 0

HeliOS [10] 2 + 4 1 + 0 + 1 0 6 1

Corey [4] 2 + 4 1 + 1 + 0 5 6 0

fos [12, 13] 1 + 6 1 + 0 + 0 0 7 0

Barrelfish [2] 3 + 3 1 + 2 + 0 3 6 0

Linux [5] 7 + 0 4 + 2 + 1 7 0 0

Table 1: Some recent multicore OS research benchmarks

2 The current way

Multicore OS benchmarks principally evaluate how ap-

plication performance over the OS scales with the num-

ber of available cores. The goal is a workload that accu-

rately reflects expected application behavior and exposes

both the explicit and implicit effects of the OS.

We survey benchmarks used in recent publications

on multicore OSes, and show how modifying one such

benchmark to include mixed workloads exposes scala-

bility issues missed by the original. We are certainly not

the first to critique OS benchmarking [9,11], but our con-

cerns here are orthogonal and focus on multicore issues.

2.1 Recent multicore OS benchmarking

OS research custom is to use real-world benchmarks to

evaluate overall OS performance and micro-benchmarks

to stress particular subsystems for further analysis.

Table 1 shows the number and types of benchmarks

used in recent multicore OS publications. Column (m +

µ) breaks down the benchmarks into macro- and micro-

benchmarks. Macro-benchmarks are further classified

as Server, HPC, or Desktop workload respectively (S +

H + D). Scale shows how many benchmarks measured

the system’s scalability and Perf counts those comparing

OS performance to existing OS (typically Linux); some

benchmarks are counted in both classes. Mixed shows

benchmarks run in combination with other applications.

Most papers use a few macro-benchmarks and ver-

ify their results with further micro-benchmarks, with a

clear bias towards server workloads. Desktop and mixed

workloads seem mostly ignored by the research commu-

nity; the only mixed workload used is by HeliOS to mea-

sure isolation between two desktop applications.

Mixed workloads do appear in research that does not

directly evaluate OS scalability. For example, in Fracht-

enberg and Etsion’s study of OS mis-scheduling [7],

mixed workloads are used as cases where existing sched-

ulers perform poorly. This work uses synthetic load gen-

erators and does not aim at realistic workload mixing.

The few mixed-workload that are used are generally

chosen based on intuition of what is expected to run on a

real system, but these choices do not necessarily lead to

workload 1 w1 cores workload 2 w2 cores

psearchy 1,2,4,6,8 gmake 6

postgres 1,2,4,6,8 gmake 6

gmake 1,2,4,6,8 gmake 6

Table 2: Configurations of MOSBENCHworkloads used

mixes that best exercise the OS.

Overall, despite the fact that a multicore OS should

provide isolation between running applications, most re-

search does not use benchmarks which evaluate this.

2.2 Case Study: MOSBENCH

To provide a concrete example of why a mixed workload

is necessary, we modified the public version of the MOS-

BENCH [5] suite to run multiple instances at once, and

compared the result of running a mixed workload with a

single workload. MOSBENCH is a benchmark suite for

multicore OSes that includes a wide variety of applica-

tions, but only runs one program at a time.

We modified the MOSBENCH harness to start and

monitor two workloads at once. MOSBENCH divides

a workload into a startup stage, a waiting and collecting

stage, and a stopping stage. We ensured that both work-

loads would run through the stages in synchrony (i.e.,

both would execute the start stage in parallel, then the

wait stage in parallel, and then the stop stage). Through-

out the runs, we pinned the workloads to a disjoint set of

cores, to reduce interference due to contention for cores.

This is not strictly necessary (part of a multicore OS’s

job is to schedule applications on cores) but it simplifies

interpreting the results. We also added a dummy work-

load that performs no work, to compare the results of a

mixed workload to a single workload. We used a 16 core,

4 socket AMD Shanghai machine with 16GB RAM run-

ning Linux 2.6.32.

We present a principled approach to workload selec-

tion in the next section of this paper, but for this exper-

iment we tried a number of arbitrary combinations of

programs from the MOSBENCH suite, and we present

a subset of the results in Table 2. In all experiments,

workload 2 uses a fixed 6 cores, while we vary work-

load 1 from its minimum to maximum core count. For

each such two-load configuration we also ran with work-

load 2 replaced by the dummy workload, providing both

“mixed” and “non-mixed” results.

Figure 1 shows the slowdown of the mixed workload

relative to the corresponding non-mixed run (calculated

as (nonmixed − mixed)/nonmixed, where nonmixed and

mixed denote jobs per second). For some workloads

there is little or no slowdown, but for others resource

contention significantly impacts performance. Note that
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Figure 1: Slowdown for mixed MOSBENCH workloads

while the differences may be modest, they point to an

isolation problem that none of the individual workloads

uncovered, and one that would unlikely be uncovered by

a different single-application load.

In summary, both performance isolation and scalabil-

ity are affected by mixed workloads. This means that

single-workload benchmarks alone are unlikely to pro-

vide sufficient insight into the working of the OS. Next,

we determine what kinds of workload mixes yield the

most information when used to evaluate a multicore OS.

3 A better way

We have argued and shown evidence that a good multi-

core OS benchmark should provide a mixed workload.

The problem, however, is that it is not directly obvious

what kind of mix should be used, since as we saw previ-

ously, not all workload combinations provide interesting

results. The key questions that must be answered when

choosing a workload mix include:

• Which applications to choose?

• Which application workloads and configurations to

choose?

• Which combinations of applications to run?

Here we discuss an approach to answering these ques-

tions. Our work is inspired by work on the DaCapo

benchmark suite [3], and the vector-based approach to

benchmarking developed by Seltzer et al. [11]. Note that,

while our approach may seem complex at first, much of

it can be automated, greatly simplifying its application.

Our goal is to design mixed workloads that can re-

veal information about the scalability and performance

isolation provided by an OS. Since such information is

gained by pushing the OS to its limits, an effective mix

should use as much of a system’s resources as possible,

and devote those resources to applications whose perfor-

mance is sensitive to their allocation. In this way, any ef-

fect of the OS on those resources will be highlighted by

the benchmark, making it easier to trace anomalous ap-

plication performance back to the OS, or to interactions

among OS subsystems.

Because there is no single metric of performancewhen

multiple applications are run concurrently, evaluating the

results of a mixed workload is also a problem. There-

fore, we must incorporate into our approach application-

specific measures of goodness, which we use both to

evaluate benchmark results, and to guide the choice of

a workload mix itself.

3.1 Optimal mix selection

In our approach, we solve an optimization problem

where the constraints derive from the resources con-

sumed by benchmark applications when run alone, along

with the sensitivity of their performance to changes in

resource availability. We explain how we derive the con-

straints, and how we use the solutions to compose mixed

workloads. We also discuss how to evaluate scalability,

performance isolation, and performance degradation in

the face of resource overcommitment. Finally, we iden-

tify conditions under which the technique is valid.

To show why this is a plausible approach, consider a

hypothetical mixed workload composed of typical desk-

top applications: a game, a web browser, and an anti-

virus scanner – a common desktop scenario. Each ap-

plication accepts many possible inputs, but for our ap-

proach we need only consider the set of inputs for which

the proportion of system resources used varies as much

as possible. We can also force the resources used by a

benchmark to vary by placing external limits on an ap-

plication. We assume that a suitable range of inputs and

constraints is supplied by the benchmark designer.

Furthermore, we assume that the benchmark designer

provides a way to score the results of a run according

to some goodness function. For a game this might be a

combination of graphics fidelity and frame rate. For a

browser, it might be a function of the average page load

latency, and for an anti-virus scanner, a function of the

number of files scanned in some fixed time period.

With a variety of inputs and a function for scoring the

results for each of the benchmarks, we derive the con-

straints for our optimization problem in two steps. First,

we run the benchmark applications alone on all the pro-

vided inputs, measuring resource usage, and scoring the

results with the goodness functions. Then, for each ap-

plication we perform a sensitivity analysis to determine

which resources were important for performance.

For example, suppose that our example benchmarks

are provided with inputs that result in the resource con-

sumption and performance as indicated in Table 3 (this

is hypothetical data and not based on measured results).

In this table, the rows give the proportion of a resource



mix CPU cache mem disk netwk score

game1 0.25 0.25 0.25 0.1 0.1 0.25

...

gameN 1.0 1.0 0.5 0.5 0.5 0.75

webb1 0.25 0.25 0.1 0.0 0.5 0.2

...

webbN 1.0 1.0 0.75 0.0 0.75 0.6

antiv1 0.1 0.1 0.1 0.6 0.0 0.6

...

antivN 0.1 0.1 0.1 0.8 0.0 0.8

Table 3: Hypothetical resource usage and performance

for our benchmark applications.

bmark CPU cache mem disk netwk

game 0.8 0.8 0.6 0.4 0.1

webb 0.8 0.7 0.5 0.1 0.5

antiv 0.2 0.5 0.4 0.8 0.0

Table 4: Example results of a sensitivity analysis.

used by a benchmark on one of N different inputs. For

example, themem entry for game1 is 0.25, indicating that

the game uses a quarter of the system’s memory with in-

put 1. The score column of the table gives the application

specific goodness score, which is calculated for each of

the runs. When the game uses 0.25 of the CPU, 0.25 of

the cache, 0.25 of main memory, 0.1 of the disk, and 0.1

of the network, it achieves an goodness score of 0.25.

Using this data we can now perform a sensitivity anal-

ysis for each of the benchmark applications. The results

of the analysis are a sensitivity score for each resource

that show, on a scale of 0 to 1, how sensitive an applica-

tion’s performance is to changes in each resource. Exam-

ple results of a sensitivity analysis are given in Table 4.

This table shows hypothetical sensitivities to resource al-

locations of our example applications. For example, the

CPU (at 0.8) is more important for the game’s perfor-

mance than the network (at 0.1).

We now have all the data necessary to compose the

optimization constraints. We phrase the optimization

problem as an integer linear program. The solution to

the optimization problem tells us which benchmark ap-

plications running on which inputs should compose the

mixed workload. Let xi be the integer variable for the

i’th benchmark/input pair. The solution to the optimiza-

tion problem will be an assignment of the xi’s indicating

how many of each benchmark/input pair should be run

as part of the mixed workload.

For each pair, we know the resource usage. Let ri j
be the proportion of the j’th resource used by bench-

mark/input pair i. We also know the sensitivity of each

benchmark to changes in resources. Let σi j be the sensi-

tivity of the benchmark in benchmark/resource pair i to

changes in resource j. The problem is as follows:

maximize
∑

j

∑

i

xiri jσi j (1)

subject to ∀ j .
∑

i

xiri j ≤ 1 (2)

Intuitively, what this means is that, without overcom-

mitting the system, solutions will devote as many system

resources as possible to benchmark applications that are

sensitive to their allocation. In (1) ri jσi j is a heuristic that

can be thought of as the sensitivity of a benchmark to a

resource, written in terms of the amount of a resource

that the benchmark productively uses. It is large if a

benchmark is sensitive to and uses a lot of a resource,

moderate if it is sensitive to the small amount it uses or

is not sensitive to the large amount it uses, and small if it

is neither sensitive to nor needs very much of a resource.

We sum over all of the resources in the maximization

condition. If the potential constituent benchmarks are

sensitive to each of the system resources, then this maxi-

mization condition will result in solutions that use every

resource as much as possible. Inspecting the resulting so-

lution will indicate whether or not the set of constituent

benchmarks is complete enough.

Finally, using this optimization problem we create a

mixed workload that uses only the 6 runs listed explic-

itly in Table 3. Using this sensitivity data to generate the

optimization problem yields the following mixed work-

load results: {game1, game1, webb1, antivN}. This uses

85% of CPU, 85% of cache, 70% of memory, 100% of

disk, and 70% of the network, and includes benchmarks

that together are sensitive to all of the resources.

3.2 Interpreting Results

Once we have composed a goodmixed workload, we can

compare the results of individual benchmarks in the non-

mixed and mixed settings. Also, we can examine aggre-

gate results in order to expose OS performance issues.

Identifying Bottlenecks: Ideally, a mixed workload

should consume the same resources as the sum of those

consumed by each constituent benchmark running alone.

Deviations from this ideal may indicate subsystems, or

interactions among subsystems, for which the OS is hav-

ing trouble allocating resources when under load.

Performance isolation: Since we know how well

each of these benchmarks performedwhen running alone

on the system, we can compare against the performance

when they are run all together. In particular, we can cal-

culate the percent difference between the sum of perfor-

mance scores of the benchmarks run alone, and run as

part of the mix. If the percent difference is smaller, then

the OS provides better performance isolation.



Scalability: It is also useful to see how an individual

benchmark application scales up when others are run-

ning at the same time. To accomplish this, we can use

the same optimization problem, with the additional con-

straint that one of the applications chosen must be the

one we care about. If we choose inputs that show scala-

bility when the benchmark is run alone, the same inputs

should also scale when run as part of a mixed workload.

Resource overcommitment: We can also construct a

sequence of mixed workloads in which system resources

become increasingly overcommitted. In particular in (2)

above, we can replace the requirement that the sum of

resources used by all the benchmarks is less than one,

with a more general constraint. That is, instead of using

1 as the upper bound of resource usage, we can use other

values, even different values for different resources.

Validity of this approach: We also propose a test for

determining whether or not this technique will yield con-

sistent, meaningful results. Given a sufficiently large set

of benchmark/input pairs, the optimization problems we

described above will have several solutions with simi-

lar, near-optimal values of the objective function. If our

approach is valid, then these solutions will give similar

results. In particular, we can perform the performance

isolation test for each mix, and obtain a set of percent dif-

ferences in performance scores. If the variance of this set

is small, then we can have confidence in our approach.

Discussion: If the variance in performance differences

across mixes is small, then we will have also shown that,

so long as a mix is near-optimal, its precise composition

is not important: our approach has the potential to obvi-

ate the need for “standard” workload mixes, which may

be biased toward particular architectures or systems. In

the future we wish to show that this technique can tailor

mixed workloads for particular systems in such a way

that we can both obtain useful diagnostic results for a

single system while comparing results across systems.

We can mitigate the complexity of this approach us-

ing a tool we are presently building that automates the

entire process. Additionally, we can rely on previous

work in IO benchmarking, e.g. the work on self-scaling

workloads [6], to guide our interpretation of the results

of sampling a large parameter space.

4 Conclusion

We claim that current benchmarks for multicore OSes do

not reflect a realistic workload. In particular, they neglect

mixed workloads consisting of several applications run-

ning concurrently. However, the difficulty with designing

mixed workload benchmarks is in choosing an appropri-

ate mix. We propose a principled approach to designing

good mixes based on treating it as an optimization prob-

lem. The key advantages are that we can target specific

resources of interest and gain a better understanding of

how the mix is expected to behave.

In the future, we intend to further develop and evalu-

ate our approach. Choosing a good mix is, however, only

part of the problem, and we will address other problems,

such as portability of benchmarks, burstiness, and dy-

namic workloads, as well. It is our intention to work to-

gether with others from the OS community to further de-

velop this work, in particular to develop a framework for

producing multicore OS benchmark suites, and to pro-

duce a standard suite that can be used for further OS re-

search.
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