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Abstract

Dynamic linking and loading capabilities are an integral part of most modern
operating systems. They make the system more modular, enable independent
updates of system resources and client applications and save space.

This work describes the design and implementation of dynamic linking
and loading in Barrelfish – a multikernel research operating system – using
its native APIs and build toolchain.

The evaluation shows that space can be saved for executables compared
to a static linked binary if more than 37 applications share the same set of
libraries. A threshold easily met if mandatory system libraries are shared.
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Chapter 1

Introduction

Today, most operating systems, such as Linux, OS X, FreeBSD and Windows,
provide a way to use so-called shared libraries (also dynamic libraries or
DLLs). These libraries contain functionality which is reused by many di↵erent
applications at runtime. Shared libraries get linked into the executable
implicitly at program startup – dynamic linking – or they can be loaded
explicitly inside the application – dynamic loading [37, 38]. This way of
linking libraries brings many benefits over statically linked libraries besides
the reuse of code achieved with both ways of linking.

The three main advantages of shared libraries compared to statically
linked libraries are the following:

1. The shared library has to be stored just once on a machine and is not
part of every program binary that links to it. This saves disk space
since the executable files are smaller in size.

2. Bugfixes and changes in shared libraries just need a recompilation and
redistribution of the updated library. Every application that links to it
gets the benefit of the update directly without any action needed by
the author of the dependent application.

3. With virtual memory, a shared library only needs to be loaded once
into physical memory and the read only parts then can be shared by all
applications using this library. This saves memory. Sharing of writable
sections is possible, but normally not intended.

There are also drawbacks of using shared libraries. The main disadvantages
are described by the umbrella term “Dependency hell” [35]. First, one program
can depend on many shared libraries. It might be necessary to install them
in a specific order. If there is no such thing as a packet manager, this needs
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to be done manually and can be tedious. Second, if there exists a long chain
of dependencies, program startup can take significantly longer than for a
statically linked program. Third, there might exist conflicting dependencies.
Meaning, one application depends on a certain version of a shared library
and another depends on the same library, but on a newer or older version
with changed application binary interface (ABI) or application programming
interface (API). The system might have a versioning solution to cope with this
challenge. But then one loses the benefit of having just one library installed
and needs to store and load di↵erent versions of the library. The benefit
of security updates to shared libraries does not apply automatically to all
clients. Finally, one needs to load complete shared libraries into memory,
even though the application calls just one function of it. When using static
libraries however, only the needed object files get linked into the executable.
This might be amortized if multiple applications access the same library and
its read only sections are shared in physical memory.

Barrelfish, a multikernel research operating system, does not support
dynamic linking and loading capabilities and shared libraries at the time.
This work gives Barrelfish the capability of distributing and updating system
libraries with the operating system and building and distributing applications
independently. It o↵ers all the advantages (and disadvantages) described
earlier in this chapter.

This work starts with background about dynamic linking and loading by
showing how this capability is implemented in di↵erent operating systems.
This background chapter also provides information about standards in dy-
namic loading and describes a binary file format that is used by many open
source operating systems for executables and shared libraries. Finally there
is an introduction to Barrelfish, the research operating systems extended
with this work. The design chapter describes what the dynamic linking and
loading in Barrelfish should look like and the implementation chapters shows
how it is implemented. The implementation is evaluated by comparing the
size of binary files and the speed of specific functions. In the chapter about
future work missing features in the implementation and possible extensions
are discussed.
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Chapter 2

Background

The implementation of dynamic linking and loading in modern operating
systems di↵ers in many ways between operating systems. This chapter starts
with the general infrastructure every dynamic linker and loader needs and
provides. Then an overview of binary formats used by the discussed operating
systems is given, followed by the description of the Portable Operating
System Interface (POSIX) a standard for dynamic loading. Afterwards the
implementations in Linux, FreeBSD and Windows are explored. These three
operating system provide a broad view of the landscape of todays operating
systems. They all have di↵erent histories and depending on that have di↵erent
implementations of dynamic linking and loading capabilities. At the end of
this chapter the base of this work – Barrelfish and its static linking capabilities
– is described.

2.1 Infrastructure

A dynamic linking and loading infrastructure needs a format for shared
libraries. All the operating systems discussed here, use the format they use
for executables also for shared libraries with additional data that is provided
to make loading and linking at runtime possible. This makes it easier for
operating system developers, because they need to write only one runtime
loader for executables and shared libraries [40]. One main di↵erence compared
to an executable is the fact that shared libraries need to be aware of the fact
that they might not be always loaded at the same virtual address. Some
formats solve this problem with position independent code, others rewrite
the absolute addresses if the intended addresses are not available. Fixed
unchangeable addresses for every library would be hard to maintain. In such
an environment a – most likely central – authority has to define at which
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particular address a library is loaded and the authority is well advised to
leave some spare space after the library for future versions. Otherwise every
update that increases the size of a library has to be assigned another address
leading to fragmentation of the address space and the number of libraries
that can exist is limited to the number of slots available in the address space.

The operating systems provide a program linker to create shared libraries
and to link them against executables. This ensures that the runtime linker is
aware which shared libraries to load at program startup. The runtime linker
is the key component for shared libraries. It runs at program startup, searches
for the required shared libraries, does relocations and symbol resolution and
thus enables that every part of the program can call the functions and access
the data it needs. In more detail the runtime linker needs to do the following
steps in this specific order whenever it loads a new shared object:

1. Load the defined shared object and collect its dependencies.

2. Load all the dependent shared libraries recursively.

3. Create a breath-first dependency graph for symbol resolution.

4. Relocate all loaded shared objects.

Step 3 might be done together with 2, because the load order normally
reflects a breadth-first order of the dependencies.

Since shared libraries are often intended to be used by di↵erent programs
and to be updated independent of them, the operating systems have global
directories where the runtime linker searches for depending libraries. Addi-
tionally the environment and shared library can provide more search paths.
The operating system also handles sharing of read only parts in physical
memory via virtual memory.

2.2 Binary formats

2.2.1 ELF

Linux and FreeBSD as well as Barrelfish use the Executable and Linkable
Format (ELF) for their executables and shared libraries. Thus, we start
with an overview of ELF and how its specification defines shared libraries
independent from the implementations in di↵erent operating systems.

ELF is a container format for a lot of di↵erent binary formats. Figure 2.1
show how an ELF file is structured. It o↵ers two views of its contents.
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ELF header

program header

section header

.hash

.plt

.text

.dynamic

.got

.data

Figure 2.1: Structure of an ELF file

One view is based on sections defined by the section header. They are used
to group code (.text), global variables (.data, . . . ) and more together and
they are used by the program linker to merge these sections when combining
multiple object files. Segments, on the other hand, are defined in the program
header table and used by the dynamic linker and loader. It points to segments
containing multiple section that need to be loaded into memory and also shows
where the dynamic section is. The dynamic section contains all information
the dynamic linker needs for running. For all possible entries see [17].

There exist two essential tables in every dynamically linked executable
and shared library to access global data and functions (i.e. every shared
object has its own set of tables). The tables help to limit the number of
runtime relocations needed and the places where they have to be done. More
precisely, relocations are only necessary in the global o↵set table (GOT). This
keeps the .text section and procedure linkage table (PLT) unmodified (i.e.
relocation free) and these sections can be shared between di↵erent processes
via virtual memory. The assembly code accesses these tables relative to the
current instruction position, thus they are not dependent on where in memory
they get loaded. Only the o↵set to the tables is required to stay the same.
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Global O↵set Table (GOT)

The global o↵set table (GOT) enables relative addressing by storing absolute
addresses to globally accessible data and functions. All entries are relocated
at runtime before anything is called in the shared object unless they are
function calls, which might be relocated lazily (see PLT). Global variables
are accessed by loading the address of the variable from the GOT entry and
then accessing the data at this address.

The first three entries of the GOT have special purposes on the x86-64
architecture. The first entry (i.e. GOT[0]) holds the address of the dynamic
section. The second and third entry are initialized by the runtime linker
to a value that is needed for the call back into the runtime linker and the
entry address of the runtime linker, respectively [34]. They are used for lazy
relocated function calls via PLT.

Procedure Linkage Table (PLT)

The procedure linkage table (PLT) has an entry for every global function with
a special entry at the beginning of the table. All position independent global
function calls are done via the PLT. Because most of the applications have
many more function definitions than global data and most of the functions
never get called, the relocations for function calls are done lazily by default.
This speeds up startup time if many shared libraries are loaded. Every PLT
entry has a corresponding GOT entry for relocation, thus the PLT can be
mapped into a read only and shared region in memory.

PLT

GOT

foo

bar

baz

GOT[0]

GOT[1]

GOT[2]

foo

baz

bar

foo()

bar()

Figure 2.2: How function calls via PLT work. Red: first call. Green: subse-
quent calls.
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Every PLT entry starts with an indirect jump to the address in the
corresponding GOT entry (foo() and bar() in Figure 2.2). If the PLT
relocations were done at loading time or the function was already called
before, the GOT entry points to the address of the function and it gets called
with just one additional jump, compared to a direct function call (green
arrows in Figure 2.2). Otherwise the GOT entry just points to the address
after the first instruction in the PLT entry. This instruction pushes the o↵set
of the relocation entry to the stack and jumps to the first entry in the PLT.

The first PLT entry pushes the second GOT entry to the stack and moves
the control flow to the third GOT entries’ address which is initialized to the
entry point of the runtime linker (red arrows in Figure 2.2). The runtime
linker then relocates the GOT entry for this PLT entry and afterwards calls
the function. Later function calls jump directly to the function, because the
GOT entry points now to the function.

2.2.2 PE

The Portable Executable (PE) format is used in Windows and based on the
Unix Common Object File Format (COFF). Like ELF it contains di↵erent
load sections each having its own permissions. These are referenced by headers
in the PE file. The import address table (IAT) is the equivalent to the PLT,
but the function addresses are written directly into this table and they can be
referenced by name or ordinal (a number). The main di↵erence to the ELF
format are relocations. PE has no position independent code. The shared
libraries (DLLs) are compiled for a preferred base address. If at runtime
this address is already used, a rebase is needed. This rewrites all absolute
addresses, which is a huge penalty. If there on the other hand is no rebase
needed, it runs significant faster than a position independent ELF file [41].

2.3 POSIX - a standard

To make source code more portable between di↵erent platforms, a joint group
from IEEE and The Open Group defined standard terms, concepts and
interfaces, the Portable Operating System Interface (POSIX) standard. The
current version is POSIX.1-2008 2013 Edition1 [23] and is implemented in
big parts by most of todays operating systems. For dynamic loading, they
define an interface and parts of the implementation [20].

1
Also known as POSIX.1-2013 [25].

11



2.3.1 Interface

The interface is defined by the four functions shown in Listing 1 as declared
in the header file dlfcn.h [20].

void *dlopen(const char *file, int mode);
void *dlsym(void *restrict handle, const char *restrict name);
int dlclose(void *handle);
char *dlerror(void);

Listing 1: Dynamic linking functions defined by POSIX

This interface can be used to load a shared library into the running
program, call a function or access data and unloading the library. Listing 2
show an example using the shared library libfoo.so and accesses function
bar() (error handling is omitted for better readability).

void *handle;
handle = dlopen("libfoo.so", RTLD_LAZY);
int (*bar)(void);
*(void **) (&bar) = dlsym(handle, "bar");
bar();
dlclose(handle);

Listing 2: Example using the POSIX interface

dlopen()

dlopen() takes as arguments a filename or filepath of a shared library available
to be loaded into the address space of the process and mode flags defining
specific behaviors for symbol availability and relocation. On success, the
function returns a pointer to a handler that is used in subsequent calls to
dlsym() and dlclose(), otherwise a NULL pointer is returned and an error
message can be accessed through dlerror().

In a special case when file is the NULL pointer, dlopen() returns a handle
for the global symbol table, which contains all executable and shared libraries
loaded at program startup and through dlopen() in global mode. Otherwise
just the shared library is searched. The flags passed through mode define how
relocation should happen and optionally if the loaded symbols are globally
available or not. On subsequent dlopen() invocations for the same shared
library the same handler is returned, but mode is interpreted every time [21].
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dlsym()

dlsym() takes a handle obtained through dlopen() and searches for the
symbol named name. It returns a pointer to the function or data referenced
by the passed symbol name. This pointer can be casted to the type of the
function or data that is accessed. If the symbol was not found or the handler
was not valid, it returns NULL and an error message through dlerror().

The constants RTLD DEFAULT and RTLD NEXT are reserved by the standard,
but are not standardized. A conversion from a void * pointer to a function
pointer is not defined in the ISO C standard, but to conform to this standard,
this conversation has to work correctly [22].

dlclose()

dlclose() informs the system that the handle is no longer used. Unloading
of the shared library by the system is not required, but may be done, except
a relocation from another place points to it. This can happen if the shared
library was opened in global mode. Relocations are defined such that once
carried out, they should never change. The dependency of a relocation is only
removed after the unloading of the referencing object. If an error occurs a
message is available through dlerror() [18].

dlerror()

dlerror() returns the most recent error in any dlfcn as null-terminated
string. If no error occurred at all or since the last call to dlerror(), NULL is
returned [19].

2.3.2 Symbol resolution

POSIX defines two ways of symbol resolution in the dlopen() standard [21].

Load order

Load order resolves the symbols in the order of loading. The order starts
at the executable followed by its dependencies loaded at program startups
and continues with shared libraries loaded later on (e.g. through dlopen()).
Symbol resolution in the relocation phase and symbol lookup in the global
symbol space is done using load ordering.
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Dependency order

Dependency order starts at the given executable and then uses a breadth-first
order of all its dependent shared libraries, their dependencies and so on.
dlsym() uses dependency order for symbol lookup, expect that it searches
the global symbol space (obtained by passing NULL as file to dlopen()).

2.4 Implementations

2.4.1 FreeBSD

Dynamic loading and linking in FreeBSD is implemented by the run-time
link-editor (rtld). rtld itself is implemented as a shared library. It gets loaded
by the kernel together with any dynamically linked program. The control is
then transferred to the rtld which loads all dependent shared libraries and
resolves all dynamic symbols. Afterwards, it transfers control to the program
itself [3].

Data structures

To manage loaded ELF files, rtld uses a struct called Obj Entry, where all
information about the executable or shared library are stored and can be
queried. It contains information about file system references, mappings,
dependencies, pointers to relocations and various booleans that indicate if
certain steps are already done or something is available in this object file.
This is the main data structure that gets passed around for di↵erent actions
and in function calls [4].

For dependencies, load order and other related data rtld uses linked lists
implemented as structs, containing a pointer to the current object and the
next element in the linked list [4].

Relocations

There are di↵erent relocations that either need to be performed immediately
or can be deferred. Mandatory relocations are those in the .text section
(which normally do not exist) and in the GOT related to global data. On
x86 architectures, every PLT entry has a corresponding GOT entry. These
GOT entries do not need to be relocated at load time but changed to reflect
the o↵set in memory the new shared object is loaded into. They nevertheless
need a sort of relocation, but no symbol lookup is needed, which makes
the relocation fast. To make PLT relocations at program runtime possible,
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the second and third special entry in the GOT need to be set at this time,
too. For x86-64 on FreeBSD (called AMD64 in FreeBSD), GOT[1] contains a
pointer to the Obj Entry of the shared object itself and GOT[2] is a pointer
to rtld bind start –– the entry function into rtld. If it is indicated that
the PLT relocations should happen at loading and not deferred (e.g. through
the runtime variable LD BIND NOW), this is done as a final step of relocation.
Because relocations are architecture specific, their interface is declared in the
rtld header file (rtld.h) and they are implemented in processor specific relo-
cation files (ARCH/reloc.c) that get linked during program linking depending
on the target archtitecture.

Lazy relocations If not disabled via environment variables, flags or pa-
rameters, FreeBSD does lazy relocation of function calls. Prior to the first
function call, rtld is invoked. This happens through an architecture specific
label rtld bind start that saves, for x86-64, the current registers and then
calls rtld bind. This generic function looks up the symbol, relocates the
appropriate GOT entry and returns the function address. rtld bind start
then restores the registers and stack and calls the function. On the next
invocation of the same function, it gets called directly through the PLT entry.

Symbol resolution

Symbol resolution is implemented by a bunch of functions starting with
symlook . Their first argument is a pointer to a struct called SymLook
containing information about the symbol’s name, it’s hashes and the defining
symbol and object, if those exist.

Most of the queries into the symbol tables start at symlook default().
If the library was symbolically linked2, it starts searching inside the shared li-
brary itself. Otherwise, it directly calls into symlook global(). If the symbol
does not exist in the global symbol space or is just defined as weak, all depen-
dency graphs (opened with dlopen()) this shared object is contained in are
searched. Finally, if there was no successful lookup yet, symlook default()
searches the rtld itself. dlopen() is defined there, for example.

symlook global() searches in two places. First, the list of shared objects
loaded at startup. If nothing or just weak definitions were found, all depen-
dency graphs of shared objects opened with dlopen() with global availability
are searched. This final result is returned to the caller.

The public API for symbol lookup is find symdef(). It takes the symbol
number (symnum) and the referencing object (refobj) and returns the defining

2
Meaning, the visibility of a global symbol is just within its shared library. It is enabled

with -Bsymbolic. [16]
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symbol and its object entry in defobj out, if the symbol was found (NULL
otherwise). This interface is used for symbol resolution in relocations.

Before doing a complete symbol lookup, find symdef() tests if the symbol
is defined locally (STB LOCAL), meaning it defines itself. Otherwise, a symbol
lookup through symlook default() starts. To make lookup faster, already
found symbols are stored in a cache.

Load order lookups after the POSIX standard can be done using find
symdef(). Dependency order is achieved through the function symlook
list() by providing the list of all dependent objects in dependency order. It
goes over a list and looks for the symbol in every member’s object.

Mapping of new file

rtld has a single function to map a new ELF file into memory and create its
corresponding Obj Entry.

To get information about the ELF file in general and about the segments
one needs the ELF header and the program header. They are at the beginning
of the ELF file. FreeBSD optimizes for space by exploiting this fact and that
the headers normally are smaller than one page. Thus rtld just maps this
part into memory.

After digesting the program header, the mapping function creates a con-
tiguous region in the virtual memory, maps all load segments into memory and
sets the rights for every segment. After a successful mapping, an Obj Entry
is created, where values such as the load address and relocation base address
are stored.

Runtime API

Dynamic loading is also handled by rtld. The implementation is POSIX-
compliant, but the API provides some additional functionality and functions.
To open a new shared library, FreeBSD has a fdlopen() function in addition
to dlopen(). Instead of a path name, fdlopen() takes a file descriptor (fd)
that is used to load the object into the address space. Setting the fd to -1
has the same e↵ect as passing NULL to dlopen() [2]. The default visibility
of the symbols is local if the global flag is not present. Additionally, three
more flags can be passed to those functions. RTLD TRACE causes the runtime
linker to exit and print all absolute path names of all shared objects after it
has loaded all needed objects. RTLD NODELETE prevents the unloading of the
object after passing the handler to dlclose(). RTLD NOLOAD prevents the
runtime linker to load the shared object, if it is not already loaded. When the
same shared object is loaded again through dlopen(), a counter is used to
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decide when the last handle is closed with dlclose() and the shared object
can be unloaded [2].

dlsym() on FreeBSD supports some flags passed as a handle. Passing
NULL is interpreted as a lookup in the calling shared object’s symbol table
itself. Passing RTLD DEFAULT causes the use of the default load order search
algorithm for symbol lookup (see 2.4.1). RTLD SELF and RTLD NEXT cause
a search at the object itself or the next loaded object, respectively and
searches through all object loaded afterwards [2]. dlsym() – like dlopen()
– has a sibling called dlfunc(), returning a function pointer to the search
symbol instead of generic pointer (i.e. dlfunc t instead of void *) to prevent
conflicts with undefined function pointer casts in the ISO C standard.

Two additional functions are provided by FreeBSD. dladdr() lets one
query about the shared object at a specified address and it nearest run-time
symbol [1]. dlinfo() gives one information about the passed symbol handle
from dlopen(), such as its entry in the link map or the search path used [42].

2.4.2 Linux

The dynamic linker/loader (ld-linux.so) for ELF files used by most Linux
distributions are part of the GNU C Library (glibc) [6]. Their implementation
is very similar to the FreeBSD one. Significant di↵erences are explained in
this section.

Namespaces

ld-linux.so introduces the concept of namespaces. Up to 16 of them can be
used to limit visibility and search space for symbols. These namespaces are
relevant for data structures, symbol resolution and the Runtime API.

Data structures

Every namespace has its own struct link namespaces, which contains in-
formation about the loaded objects and a search list for global symbols in
a particular namespace. The array of namespaces itself is part of a bigger
struct (struct rtld global) containing information about the global state
of dynamically loaded objects in the executables’ current space [5].

Like FreeBSD’s rtld, ld-linux.so uses one main data structure to manage
loaded executables and shared libraries. It is called struct link map. Its
contents largely match the FreeBSD implementation. One di↵erence is that the
first four entries of struct link map are also part of the publicly accessible
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struct link map that is returned in some calls to the runtime API, but the
rest is private and might change without notice.

For storage of depending data, ld-linux.so often uses lists. These are, in
contrast to FreeBSD’s linked lists, implemented using arrays as underlying
structure.

Relocations

Relocations are more architecture-specific than platform-specific. Meaning,
relocations are done the same way as in FreeBSD.

Symbol resolution

Symbol resolution order is the same as in FreeBSD and defined in POSIX,
but Linux has a di↵erent implementation with respect to namespaces.

The interface for a symbol lookup is dl lookup symbol x(). Every call
goes through this function. Besides the name, reference link map and other
information, it takes a list of lists containing struct link maps of loaded
shared objects to go through. There are two lists, both stored inside struct
link map of the referencing symbol. One is for global symbol lookups inside
its namespace (defined in POSIX as load order) used for relocation. The
other one is for local lookups inside the shared object and its dependencies
(defined in POSIX as dependency order) used for dlsym() and dlvsym(). On
success, it returns struct link map of the defining shared object and the
symbol is saved in the relf parameter [6].

To speed up symbol lookup, ld-linux.so also tests if the symbol defines
itself before starting a full search. Also, the latest lookup is stored in the
referencing struct link map.

Runtime API

The runtime API for dynamic loading, symbol lookup and information query-
ing is also implemented in ld-linux.so. The basic API is POSIX-compliant.
More functions are available – many of them equivalent to FreeBSD’s addi-
tions.

To make use of the namespaces, Linux provides dlmopen(). It works
like dlopen() and additionally takes an argument defining the namespace
it should be loaded into. An existing namespace or two special flags can be
passed. LM ID BASE is the initial namespace of the application – containing at
least the executable and its dependencies. LM ID NEWLM creates a new empty
namespace. dlopen() loads the shared library inside the namespace of the
calling object. Mode flags are the same as in FreeBSD, with the addition of
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RTLD DEEPBIND, which enforces looking for unresolved symbols in the shared
object itself before looking at the global namespace scope [25].

dlsym() has a sibling called dlvsym() which takes a version string of the
searched symbol as an additional argument. Possible special handles are just
RTLD DEFAULT and RTLD NEXT with the same meaning as in FreeBSD [27].

Other functions are dladdr(), dladdr1() and dlinfo(), which pro-
vide the same information as their FreeBSD equivalents and more: [24,
26]. dladdr1() has an additional parameter (comparied to dladdr()) that
provides either the ELF symbol data structure or the public link map for the
symbol at the provided address [24].

2.4.3 Windows

Shared libraries on Windows are called Dynamic-Link Libraries (DLLs). The
operating system was built around that concept ever since its beginning.
System APIs are exposed through exported methods (e.g. Kernel32.dll)
and core functionality is imported through third-party DLLs (e.g. printer
drivers) [36]. Windows has its own binary format (PE) that is used, like ELF,
for executables and DLLs.

DLLs are loaded in the virtual address space of their calling process.
Variables defined as global inside a DLL are global inside its process, but not
shared between di↵erent processes, unless explicitly defined as such [12].

Exporting methods in a DLL

Methods are private until they are defined as exported. Windows provides
two methods to export methods [29]. Is it needed that additionally methods
can be exported later on or can the client applications be rebuild easily [28]
Those are some of the aspects to be considered when deciding which method
to use.

.def file All exported methods are defined in an extra file, called module-
definition file. It is a text file with the extension .def and at least two
sections. LIBRARY is followed by the DLL name. EXPORT lists all method
names (mangled, if they are in C++) and optionally the ordinal value following
the name and prefixed with @. The ordinal value needs to be between 1 and
N, where N is the number of exported methods [31]. Listing 3 is an example
of such a file [31].
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LIBRARY AVLTREE
EXPORTS

Create @1
Insert @2
Delete @3
Find @4

Listing 3: Example of a .def file for the DLL AVLTREE

Using .def files, one can add a new exported method and use the highest
ordinal value. This does prevent an API change and the rebuild of all client
applications. One can also use the the NONAME attribute to omit method
names in the generated import library resulting in smaller DLL files for a
large number of exported methods. On the other hand, one needs to put
the decorated names for C++ methods into the .def file. The issue is that
di↵erent compiler (versions) might generate di↵erent decorated names [28].

declspec(dllexport) Instead of using an extra file, one can annotate
methods with declspec(dllexport) to export them. This is especially
useful when exporting C++ methods. To prevent cluttering of the definitions,
these annotations appear often at the method declaration in the header file.
Features such as ordinals or NONAME cannot be used with this approach, but
it can be mixed it with an additional .def file to gain those advantages [30].
The main problem of this annotation is the fact that the complete API might
change when using another compiler or adding a new function. This also
requires a rebuild of all DLL’s client applications [28].

Link/Import methods

When linking a DLL, the linker (LINK) creates two files: the DLL itself (e.g.
DLLNAME.dll) and an import library (e.g. DLLNAME.lib). When linking
another program or library depending on a DLL, it needs to pass the .lib
file to the linker. The linker then links the DLL against this executable or
library [11].

Resolving circular dependencies If two DLLs depend on each other,
Windows o↵ers the following solution: First, one runs LIB for the first DLL
including the .def file and/or the /EXPORT attribute. This creates an import
library (.lib) and a export file (.exp). Now one links (with LINK) the second
library using the the import library that was just created. Finally, one links
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the first library by passing the .exp file instead of a .def file or the /EXPORT
argument [33].

Load-time dynamic linking

At program startup, the operating system does load-time dynamic linking. It
looks up all depending DLLs and maps them into the virtual address space.
But it does not load them into physical memory until their first use. If a DLL
is not found, the process terminates and displays a dialog box [13].

Delay loading Starting with the Visual C++ linker 6.0, Windows also
supports delay loading of DLLs. This means, needed libraries can be defined
at link time and then marked as “delay load import”. At runtime, the DLL
gets transparently loaded via LoadLibrary() and GetProcAddress() when
a function is called the first time [32].

Run-time dynamic linking

The provided runtime API of Windows is similar to the POSIX standard, but
has completely di↵erent function names. LoadLibrary() and LoadLibraryEx()
are used to look for and load a new DLL. To obtain the exported function or
value, GetProcAddress() is provided. Finally to close the opened DLL the
module is handed to FreeLibrary() and unloaded if it was the last reference
[14].

DLL hell

DLL hell is the name for problems that occur when using DLLs. Microsoft
started to acknowledge these problems and there exist multiple solutions
depending on the problem. The two main problems are incompatible versions
and DLL overwriting. Because no versioning system for DLLs existed, every
installation overwrote the previous DLL with the same name no matter
if it was a newer or older version (DLL overwriting). Some applications
depending on another version broke, because the older or newer version had
an incompatible change.

Today, many solutions exist to prevent overwriting, enabling coexistence
of multiple versions and roll-back if the installation brakes some applications.
The simplest solution is to just statically link the libraries. This removes all
advantages of shared libraries. System DLLs are now protected and cannot
just be overridden by anyone. Side-by-side assemblies enable having multiple
versions of the same DLL (even 32 and 64 bit) installed on one system [35].
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2.5 Barrelfish

Barrelfish is a research operating system developed by ETH Zürich in co-
operation with Microsoft Research. It is a multikernel operating system
[10], meaning that on every core, a small independent kernel is running, in
Barrelfish called CPU driver. The rest of the operating system is structured
as a distributed system without shared memory. The communication only
happens via local and remote message passing [7].

2.5.1 Static linking in Barrelfish

Barrelfish is not self-hosting. This means that another operating system is
necessary to build it (cross-compiling). The current toolchain for Barrelfish
only supports static linking. Every library needed by a program, including all
default system libraries, are linked statically by the program linker at compile
time. More than the default set of libraries, can be added by listing them in
the Hakefile.

Static linking ensures that all necessary functions and global data are
available at link time and it takes most of the relocation burden away from
the running system. Also, there is no need for dependency and symbol
resolution. A simple ELF library handles all the loading and relocation of a
newly spawned program. It provides simple symbol lookup functions using
the single global symbol table available.

2.5.2 Hake

Hake is the build system for Barrelfish. It defines a Haskell embedded
domain-specific language (DSL) to be used in Hakefiles. Every program or
library directory needs a Hakefile to define the building rules. Hake collects
all Hakefiles and generates one large Makefile out of it to compile every
component of the system [9].

Listing 4 shows a Hakefile to build two static libraries and one depends
on the other.
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[
build library {

target = "foo",
cFiles = [ "foo.c" ],
addLibraries = libDeps [ "bar" ]

},
build library {

target = "bar",
cFiles = [ "bar.c" ]

}
]

Listing 4: Example of a Hakefile for two static libraries

2.5.3 Error handling

Barrelfish uses errno.h for error handling. The the error file is generated by
a small DSL called Fugu. It generates the error codes and functions for error
checks and error message retrieval. It also implements a simple error stack
[8]. Barrelfish-specific functions always return error values (errval t). For
other return values, pointers are used.
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Chapter 3

Design

The following chapter describes the design for dynamic linking and loading in
Barrelfish. Parts are still a vision. What is already implemented and what
not is explained in detail in chapters 4 and 6. The design of Barrelfish’s
runtime linker (rtld) is inspired by the ELF runtime linkers of FreeBSD and
glibc (used in Linux). The main component is a rtld library (librtld) depiced
in the center of Figure 3.1.

libreloclibelf
libbarrelfish

libvfs

librtld

libposixcompat application or
library

Figure 3.1: Library and application dependencies for librtld

librtld depends on two new libraries: an ELF library (libelf) and a
relocation library (libreloc) as well as two system libraries: the Barrelfish
library OS (libbarrelfish) and a virtual file system library (libvfs). librtld
is used by libreloc, the POSIX compatibility library (libposixcompat) and
directly or indirectly by applications or other libraries.

The split of the functions for dynamic linking and loading into the three
libraries librtld, libelf and libreloc is chosen to reuse code for ELF parsing
and relocations in di↵erent parts of the operating system and to use common
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libraries from other developers. Directly integrating all functionality into
librtld would make it hard to reuse parts of the functionality. All these
libraries are designed to be architecture independent.

This chapter shows what the purpose and interfaces of libelf, libreloc,
librtld, libposixcompat and other applications and libraries is, and how they
interoperate with each other.

3.1 ELF library

Barrelfish has a libelf currently used for parsing, loading and relocating all
executables. However, the library does not implement a standard interface to
just parse ELF files. This is useful because di↵erent parts of the system need
ELF parsing capabilities and open source common libelf implementations
exist for that purpose. Using a common library takes the implementation
burden away from the Barrelfish team and provides an interface first seen in
Solaris and implemented in many common libelf implementations [15].

This design is based on the decision to continue to use the ELF format
for executable in Barrelfish and to start using it for shared libraries too. ELF
is the format supported by the existing tool chain for building and executing
shared objects and used in many open source and closed source operating
systems today [39].

3.2 Relocation library

Relocations are also needed at di↵erent places in the operating system. A
common library providing this functionality does, however, not exist. But
the Barrelfish team is motivated to build such a library that implements the
architecture specific relocations and provides a simple interface to this.

libreloc defines four functions for its clients. reloc rel() does all reloca-
tions needed before anything in the shared object can be executed. These
relocations are for position independent code primary global data relocations
in the GOT. reloc plt fixup() is used when lazy (function) relocations
are used. This sets the correct first two GOT entries and updates the
GOT entries for the corresponding PLT entries to point to the right address.
reloc plt entry() is used to do the relocation of a specific PLT entry at
runtime. Finally reloc plt() is used when the PLT is not relocated lazily.

Many relocations need to look up symbols. libreloc expects this func-
tionality to be provided by its clients who need to provide an appropriate
function.
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3.3 rtld library

librtld is a shared library provided by Barrelfish that is loaded together with
the executable and then called before the program’s entry point. Started by
the operating system librtld sets up itself and then runs the steps provided
on page 8 with the executable as the defined shared object.

At runtime, librtld defines an API for dynamic loading of shared libraries.
This API is Barrelfish specific using its own error handling system (fugu) but
borrows most functions defined in POSIX. This provides an interface familiar
to may programmers, but uses specific error extensions provided by Barrelfish.
The following functions are available: rtld dlopen(), rtld dlsym() and
rtld dlclose(). rtld dlerror() does not exist, because an error message
can be obtained from the returned error values. The steps for opening are
the same as starting a new executable (see page 8). Symbol lookup via
rtld dlsym() wraps find symbol dependency order() looking for symbols
in the loaded shared object itself and all its dependencies. For the executable
additionally all shared objects loaded with global availability are searched.

For ELF parsing, librtld calls into libelf and for all the relocation libreloc is
used. Starting with reloc rel() and then depending on the modes provided
via environment variables or mode flags in rtld dlopen() the lazy relocation
function or the other is called.

For symbol lookup librtld provides the lookup symbol() function – doing
a load order symbol lookup – for libreloc. For runtime lookups by other
clients rtld dlsym() is provided (see above for more details).

3.4 POSIX compatibility library

In order to provide a POSIX-compliant interface, libposixcompat provides
a wrapper around the runtime functions provided by librtld. This makes
porting applications from other platforms convenient, because no changes are
needed as long as they only use the standardized functions and constants.

3.5 Application/Library

Applications and libraries can choose between the public interface of librtld
or libposixcompat to load dynamically shared libraries, look up symbols
and close them afterwards. Both APIs are similar. The librtld interface
integrates more into Barrelfish and provides a familiar API with native error
handling. The libposixcompat keeps an application more portable by using
the standardized interface.
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Chapter 4

Implementation

The implementation is heavily influenced by FreeBSD’s rtld and Barrelfish’s
current libelf and libspawndomain. Barrelfish’s libraries help to understand
how operating system specific APIs work and FreeBSD’s rtld shows how
a lightweight implementation of a runtime linker might be designed and
implemented. The current implementation works with shared libraries that
are dynamically loaded at runtime using the runtime API. Shared libraries
might have static or dynamic dependencies that are automatically loaded and
relocated if needed. However, this implementation only works on the x86-64
architecture and does not cover the complete design. To see what is missing
consult chapter 6.

This chapter starts with the di↵erent approaches leading to the final choice
and then covers di↵erent aspects of the implementation. The description
of the final implementation starts with the data structures and memory
allocation used. It continues describing how symbols and dependencies are
resolved and how the runtime APIs look and work. And finally describes the
changes made to Hake and requirements for the shared library ELF file.

This chapter covers just the implementation of librtld, because libreloc
and libelf are not part of this work. Nevertheless, librtld is implemented with
those in mind.

4.1 History

The implementation started with code in a single application that dynamically
loaded a shared library. This code was then moved into a pseudo implementa-
tion of the dynamic loading POSIX interface, already part of Barrelfish. Both
implementations depended on an alternative load function implementation in
the current libelf. The default implementation had two problems. It allocated
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memory for each load segment independently and did relocation after each
mapping of a load segment. This is not suitable for shared libraries. First
because position independent code depends on fixed o↵sets the allocated
space for the library needs to be contiguous to accommodate all load seg-
ments. Second relocation should happen the earliest after all segments are
loaded, because there is one relocation table for all segments and needed data
structures during relocation might be part of another segment.

In order to check what the current implementation supports, di↵erent
shared libraries were used. The simplest was a shared library that did not
depend on any other library. This test case worked from the beginning.
The more advanced version was a shared library statically linked to its
dependencies. In this case relocations were needed for global functions and
data, but just one symbol table existed. So no symbol lookup in multiple
tables and dependency resolution is needed. This case worked also from the
start with additional changes to the load function regarding load order and
more supported relocations. Finally the last test case was a shared library
depending on another shared library. To implement startup of a dynamically
linked executable the same functionality is needed with custom initialization.
To get this working, all steps described on page 8 need to be done in this
specific order. This use case did not work with the first two implementations,
because no dependency resolution and advanced symbol lookup was possible.

Significant changes would have been needed for libelf implementing these
steps in this particular order, breaking most of the operating system’s func-
tionality. Barrelfish depends heavily on the current libelf implementation.
Instead, a new library – librtld – was implemented.

4.2 Data structures

In order to support lists containing an undefined number of objects, di↵erent
structs exist depending on the information stored at each entry. struct
shared object name is used to store a name at every entry. To point to
a shared object and its name o↵set into the string table struct shared
object needed is used. And finally struct open object is a linked list
pointing to a shared object at every entry. Normally the pointer to the first
entry is stored in a variable, but sometimes also a pointer to the tail to make
appending at the end of the list faster.

The main data structure used is struct shared object info containing
all needed information for a shared object loaded by librtld. Figure 4.1 shows
the di↵erent information segments inside struct shared object info.

The first section of information contains a linked list oft struct shared
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names & reference counters

struct shared_object_info {

}

mapping addresses & structures

dynamic object information

booleans indicating the state

dependencies

Figure 4.1: Information contained in struct shared object info

object name where all names and paths are stored that were used to reference
this shared object. If a client requests the loading of a new shared object first
every name in all objects is checked in order to prevent the loading of the same
shared library again. The section also contains reference counters containing
the number of references to this object (ref count) and the number of
openings through rtld dlopen() (dlopen count). These are used to decide
if a shared object can be unloaded or is still in use. At the end there is a
pointer to the next loaded shared object. This pointer is used for load order
symbol lookups and to load all needed objects.

The second section is populated by load shared object() and map
shared object(). The path is used for debug outputs. The base address
in memory (map base), the requested size (map size), the base address of
the virtual addresses in the ELF file (vaddr base) and the relocations base
address (reloc base) are used for relocation and debugging. The pointer
to the dynamic section is important because it contains information used
to populate the third section of this struct. memobj, vregion, frames and
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no of frames store the Barrelfish specific information regarding allocated
memory and are used to destroy the allocated space. entry pt stores the
entry point of the shared object. This is normally only useful for program
executables and points to the location where execution should start. It
might be used to initialize a shared library, but this should be done with init
functions (currently not implemented).

The next section contains information extracted from the dynamic ELF
segment and filled in by digest dynamic(). It stores a linked list of all needed
objects (needed), the address of the PLT or GOT table (pltgot), symbol
and string table (symtab, symtab count, strtab & strtab size), links to
the relocations required at load time (rela & rela size) and relocations
that can be delayed (plt rela & plt rela size) and information about the
hash table (buckets, nbuckets, chains & nchains). All this information is
needed for dependency resolution, relocation and symbol lookups.

A linked list of all dependencies in breadth-first order (dependencies) is
needed for dependency order symbol resolution. And dlopenroots contains
the roots of the dependency graphs this shared object is part of. These roots
are used for load order symbol lookups (e.g. at relocation).

Finally booleans are used to indicate if it is an executable (main exec
– for future use), if the shared object is already relocated (rela relocated
& plt relocated), if a valid hash table exists (valid hash tab) and if a
dependency graph exists (dep created).

4.3 Memory allocation

Memory allocation for a new shared library is based on the x86 implementation
of elf allocate() and part of the map shared object() function. It first
optimized the size of the allocated space, because a single frame is always a
multiple of two. After a memory object is created it is mapped into a virtual
address space and filled with the allocated frames. Finally the load segments
are copied into the virtual address space and its range is set to the rights
defined for this segment.

4.4 Dependency resolution

The needed dependencies are declared in the dynamic section and stored
in a linked list starting at the needed entry. The list consists of struct
shared object info. load needed objects() iterates over this list and
loads the dependencies and then the dependencies of the dependencies and so
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on until the complete dependency graph is loaded in breadth-first order. By
only checking the dependencies of new loaded objects, the function prevents
infinite loops for circular dependencies.

4.5 Symbol resolution

The two symbol resolution modes described in the POSIX standard are
supported [21]. find symbol load order() does a load order lookup for
relocation or global symbol searches. Starting with all shared objects that are
loaded with rtld dlopen() in global mode it then checks all the dependency
graphs the referencing shared object is part of. If no matching symbol was
found or the found definition is weak. find symbol dependency order()
searches itself and its dependencies in breadth-first order and is used by
rtld dlsym().

In order to prevent multiple lookups in the same symbol table both
functions keep a struct checked objects containing an array of all visited
objects.

4.6 Runtime API

librtld provides a native runtime API based on the POSIX interface with
implementation and Barrelfish specific adaptions. libposixcompat implements
a wrapper around this API to provide a POSIX-compliant implementation.

4.6.1 Native API

The native interface has the public functions shown in Listing 5.

errval_t rtld_dlopen(const char *filename, int32_t flags,
struct shared_object_info **obj);

errval_t rtld_dlsym(struct shared_object_info *obj,
const char *restrict symbol,
lvaddr_t *addr);

errval_t rtld_dlclose(struct shared_object_info *obj);

Listing 5: Public API of librtld

The public functions return an error value starting with RTLD ERR or
RELOC ERR . It is a native Barrelfish error and indicates the success or failure
of the called function.
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rtld dlopen() is used to load a new shared object located at filename
or obtain the reference to an already loaded object. On success obj is filled
with the pointer to the corresponding struct shared object info. The
only flag currently implemented is RTLD GLOBAL to make the shared object
globally available in future relocations.

rtld dlsym() can be used to look up the address of a global function
or object by name (symbol). The provided struct shared object info
is valid if librtld knows this object and the shared library is opened via
rtld dlopen(). The return value indicates if a symbol was successfully found
and the address is returned through addr.

rtld dlclose() decrements the reference pointer and unloads the passed
obj if it is no more referenced.

4.6.2 POSIX API

The POSIX interface wraps the native API by redirecting the error to
dlerror() and casting the object and address to and from void * pointers.
It has the same limitation for flags like rtld dlopen().

4.7 Hake

Hake was extended to build shared libraries and add them as dependencies
to other build targets.

To build a shared library one defines a new build target using build
sharedLibrary. This creates a target for lib + targetname.so in the lib
folder. The new target is achieved by introducing a new linker in Hake called
dynLinker. It works like the existing linker, but takes another set of flags –
optLdDynFlags. The default flags defined by ldDynFlags exclude standard
libraries from gcc and add -shared needed to compile shared libraries and
-Wl,--hash-style=both to create symbol hash tables in ELF and GNU style1.
This linker currently only creates targets for the x86-64 architecture and there
it adds -fPIC to all build targets, because shared libraries need to be position
independent code and no problem was observed to use this with executables,
too.

The standard to build a static library was to define it with build library.
This target is now extended to create targets for static and shared libraries.
To only create a static library the newly defined build staticLibrary target
is used.

1
As default gcc only creates the GNU style hash tables.
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If a build target depends on another shared library it can now define that
by using the addSharedLibraries keyword. It works like addLibraries for
static libraries.

If we take the example from Listing 4 and make the libraries dynamically
loaded we get Listing 6.

[
build library {

target = "foo",
cFiles = [ "foo.c" ],
addSharedLibraries = libDeps [ "bar" ]

},
build library {

target = "bar",
cFiles = [ "bar.c" ]

}
]

Listing 6: Example of a Hakefile for two shared libraries

4.8 ELF requirements

The current implementation of Barrelfish’s librtld requires some segments
to be in any shared library: First every shared library with any global
symbol needs to contain a .hash section (DT HASH entry in the dynamic
section) that contains a hash table defined by the ELF-64 Object File Format
definition [17]. The GNU hash table format (.hash.gnu section referenced
by the DT GNU HASH entry in the dynamic section) is currently not supported.
Additionally to make symbol lookup possible there needs to be a symbol table
and a string table. Finally it is assumed that any other needed shared library
has a DT NEEDED entry in the dynamic section.
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Chapter 5

Evaluation

For the evaluation section an application was created to demonstrate and
test the functionally currently implemented (Demo1). Figure 5.1 shows the
shared objects involved and the dependency graph. The main application
calls dlopen() for every of its dependencies. The other dependencies are
loaded automatically. Via dlsym() various data and functions are retrieved
and accessed or called. Before returning the application will close all its
dependencies.

libglobal.so

Demo1
(application) liblocal.so

liblocal_err_over.so

lib42.so

libreturn_hello.so

lib1.so

lib2.so

Figure 5.1: Demo application (Demo1) and its dependency graph

In the first section of this chapter binary sizes of statically and dynamically
linked binaries are compared and the second section compares the speed of
dlopen() in Barrelfish and Linux.
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5.1 Binary sizes

Comparing binary sizes of statically linked applications to the size of the
same applications dynamically linked and each dynamic library leads to
problems with the current Hake implementation. There does not exist a way
to completely dynamically link an executable to the default system libraries
as well as libbarrelfish and libnewlib (two of the default system libraries)
currently do not compile as shared libraries. These are the reasons no simple
applications exclusively depending on system libraries are compared, but the
demo application (Demo1) and a second application (Demo2) depending on
a set of other shared libraries. Demo2 only depends on the general library.
The resulting file sizes are shown in Table 5.1.

Name static linked dynamic linked
Demo1 8974406 8972887
Demo2 8972433 8971536
libglobal.so 7452
liblocal.so 7512
liblocal err over.so 7094
lib42.so 6396
libreturn hello.so 6764
lib1.so 7281
lib2.so 7077

Sum 17948812 17993999

Table 5.1: File sizes (in bytes) for static and dynamic linked Demo1 & Demo2

The dynamically linked libraries are smaller than the equivalent statically
linked libraries, but the di↵erence are only a few kilobytes. Summing all up
for just a Demo1 and Demo2 application dynamically linked they need more
space. If the di↵erence between the the sums (45187 bytes) is taken and
divided by the saved space of every additional Demo1 and Demo2 application
(2419 bytes) it results in 19 Demo1 and 19 Demo2 applications needed to
save space compared to the statically linked applications. Because only non-
system libraries are compared this result is much more significant if all system
libraries can be dynamically linked. Then every library needs to be stored
only once and the binaries will get even smaller compared to their statically
linked counterparts. Having more than 37 applications (all depending on the
same system libraries) is to be expected in a normal setting.
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5.2 Speed of dlopen()

The speed of dlopen() was compared on Linux (Ubuntu 14.04 LTS) and
Barrelfish with the new librtld and libposixcompat implementation. The
benchmark was run on the test machine “babybel4”. The hardware specifica-
tion can be found in Table 5.2.

CPU Intel R� Xeon R� CPU E5-2670 v2
Cores 2 x 10 Cores
Frequency 2.5 GHz
Main memory 16 x 16 GB

Table 5.2: Hardware specification of “babybel4”

5.2.1 Methodology

The libraries libglobal and liblocal from the demo application were loaded via
dlopen(). The cycles needed to open both libraries after one another was
measured. Then the handles were closed (not measured). This was repeated
30 times and the average of cycles was calculated.

5.2.2 Results

The benchmark was run on each operating system seven times. The average
of each benchmark and the average over all runs are listed in Table 5.3. On
average dlopen() is about 44 times faster in Linux compared to Barrelfish.

Run Linux Barrelfish
1 363165 15917151
2 351449 16305795
3 352272 14828584
4 343797 14573419
5 347121 14621588
6 347707 15534010
7 345303 16603307

Average 350116 15483408

Table 5.3: Average of cycles at every benchmark and average over all runs
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5.2.3 Discussion

The results show that dlopen() is about 44 times faster in Linux. Two
reasons that support this result are: First dynamic loading (and linking) is a
central part of Linux to run any program. Many applications today would
not run without this feature. Second the librtld implementation in its first
implementation was not optimized for speed but rather to function in the
Barrelfish environment and to be improved and extended in the future.
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Chapter 6

Future work

This chapter contains two parts. Missing implementation of parts that are
already described in the current design throughout this work and design and
implementation ideas to extend the current functionality.

6.1 Missing implementation of design features

6.1.1 librtld

librtld has some major and minor features missing in the current implemen-
tation.

The first big missing part is the loading and invocation of librtld at
program startup. This enables dynamic linking for executables and global
symbol lookups starting at the executable. To implement this feature an entry
function needs to be implemented that sets up the rtld itself, the executable
and its dependencies. The operating system needs to be aware of this and
needs to call into the rtld before the entry point of the executable is called.
However, most of the infrastructure already exists. Functions for loading of
shared objects, dependency resolution, symbol lookup and relocation already
exist.

Additionally there are currently problems to load libbarrelfish dynamically.
This needs some further investigation, before a program and its dependencies
can be dynamic linked and loaded.

The second big feature missing are lazy relocations. Implementation of
this feature could improve startup time of shared objects, because it does not
relocate functions that are never called. To support this feature a runtime
entry function needs to be implemented to call into librtld and relocate the
appropriate function. During the relocation at loading also the second and
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third GOT entries need to be set to the right address as well as all GOT
entries corresponding to a PLT entry need to be updated with the relocated
PLT entry addresses by adding the relocation o↵set to the each entry.

Because of these two missing features, dlopen() lacks flags that are
needed to achieve POSIX-compliance. With dynamic linking, passing of NULL
could return a global symbol table and lazy relocations could be enabled
with RTLD LAZY or the current implementation enforced with RTLD NOW. Even
though they are not part of the standard, support for the special handles
RTLD DEFAULT and RTLD NEXT in dlsym() would be useful. The first handle
starts the lookup in the global scope and the second starts the lookup in
loading order after the shared object calling dlsym().

Multithreading is not directly mentioned in the design, but is needed
to have a full featured implementation of a runtime linker. The current
implementation has no locks to prevent race conditions in librtld if two
threads from of the same application access it. An implementation of reader
and writer locks can solve this situation. Access to the same resource for
reading is no problem, but writes should not interleave with reading access
and writes should be atomic.

Minor features missing are the support for init and fini functions that are
called before executing any code in a shared object and before unloading the
object respectively. The implementation of this feature needs lists to keep
tracks of init and fini functions in the order they need to be called and two
functions that call these functions.

6.1.2 libelf & libreloc

libelf and libreloc are not part of this work and as such currently do not exist
in Barrelfish. However, it is planned to add them to Barrelfish in the future
and librtld is implemented with these libraries in mind. The relocation code
is in a extra reloc.c file using and providing the API described in the design
chapter. On the other hand, libelf will be integrated much more tightly and
thus the current implementation lacks complete separation of ELF parsing
from the rest. Refactoring is needed to integrate with the future libelf.

6.2 Extensions

Three extensions with small impact on the design are:

• Tracing or debugging is not possible in the current implementation and
environments variables to enable these and more features are missing,
too.
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• An elaborate search order for shared libraries is missing in the cur-
rent design and implementation. The implementation works like this:
/x86 64/lib is added in front of the file string if its a name or relative
path and the provided path is used as it is if it is absolute. A more
sophisticated search order that takes environment variables and rpath
or runpath into account would be useful to have for more locations to
store libraries.

• To speed up symbol lookup GNU hash tables where introduced by the
GNU team. In comparison to the standard ELF hash algorithm it has
a bloom filter before accessing the hash table to minimize the length of
the hash chain and enable a better distribution of the entries.

More elaborate extensions are described in the following three sections.

6.2.1 Sharing of read only segments

One benefit of shared libraries on Linux, FreeBSD and Windows is the sharing
of read only segments. This is a useful feature in Barrelfish, too. But some
research needs to be done to learn when sharing of these sections is useful.
Probably only sharing of code running on the same core is useful, because
every process has the same local memory. The benefits might be lower between
di↵erent cores, because they have di↵erent local memory and access of remote
memory introduces takes more time than for local memory.

6.2.2 Symbol versions

Linux and FreeBSD have the concept for symbol versions to mark incom-
patible changes in the API by bumping the version of the a↵ected symbols.
Dependencies in shared libraries then depend on a specific version of such a
symbol and the runtime linker check at symbol lookup if the right version
is available. This makes API changes more easily to handle and should
be taken into consideration when extending the current librtld design and
implementation.

6.2.3 Namespaces

Namespaces is a concept introduced by Linux for the dynamic loading mech-
anism. It allows encapsulation of dynamically loaded libraries with no depen-
dencies on already loaded shared objects in other namespaces. This could be
useful for loading untrusted code (e.g. plugins or drivers).
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Chapter 7

Conclusion

The first step was the exploration of the implementation of dynamic linking
and loading capabilities in di↵erent operating systems, which showed that
there is a big variety of implementation details. Nevertheless, operating sys-
tems that use the same binary format have similar implementations sometimes
also defined by the binary file.

The design showed that a new set of libraries is needed in Barrelfish to
implement a full featured runtime linker and how the implementation used
many concepts from other operating systems and adapted them to run well
integrated with Barrelfish. The results on binary sizes are promising that
in the future space can be reduced on disk and in memory. However, the
measurements and missing implemented features show, that there is still
engineering work needed in order to provide a full featured rtld in Barrelfish.
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Glossary

ABI application binary interface. 6

API application programming interface. 6, 18–21, 26, 27, 31, 32, 39, 40, 50

COFF Unix Common Object File Format. 11

DLL Dynamic-Link Library. 19–21, 50

DSL domain-specific language. 22, 23

dynamic linking Loading and linking during load time of a new program.
Ensures that all shared libraries exist and are loaded und linked until the
execution is passed to the program. Otherwise the execution normally
stops and the running of the program fails. It increases startup time,
because all is loaded before any execution of the program itself. (e.g.
in C dynamic liking happens before main is called). 5, 42

dynamic loading Loading and linking during execution (i.e. at runtime) of
a program. Done via system calls. One can speed up startup time by
loading libraries only later when they are used or they are not essential
for the program. One can also handle the case that the shared library
does not exist. This cannot be done for dynamic linking. 5, 7, 11, 16,
18, 26

ELF Executable and Linkable Format. 8, 9, 11, 16, 17, 19, 22, 24–27, 29, 30,
32, 39, 40, 43, 48

glibc GNU C Library. 17, 24

GOT global o↵set table. 9–11, 14, 15, 25, 30, 39

IAT import address table. 11
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ld-linux.so dynamic linker/loader. 17, 18

libbarrelfish Barrelfish library OS. 24, 35, 38

libelf ELF library. 24–28, 39

libposixcompat POSIX compatibility library. 24–26, 31, 36

libreloc relocation library. 24–27, 39

librtld rtld library. 24–28, 31–33, 36–40, 48, 50

libvfs virtual file system library. 24

PE Portable Executable. 11, 19

PLT procedure linkage table. 9–11, 14, 15, 25, 30, 39, 48

POSIX Portable Operating System Interface. 7, 11–13, 16, 18, 21, 24, 26,
27, 31, 32, 39, 43, 50

program linker O✏ine linker that links the object files into an executable.
gcc for example automatically invokes the program linker after compi-
lation. 8, 22

rtld run-time link-editor. 14–17, 27

rtld runtime linker. 24, 38, 41

runtime linker Also dynamic linker. Linker invoked at runtime to handle
dynamically loaded executables and shared libraries. 8, 11

shared object An executable or shared library. 8–10, 14–17, 25, 26, 28–31,
34, 38–40
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