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Abstract

A major task in the implementation of new operating systems is writing code for
filesystems, the network stack, and various device drivers, which allow the operating
system to run on a large range of hardware. Using the NetBSD rump kernel, a tool
that allows running parts of the NetBSD kernel in userspace, we show how to reuse
code from the NetBSD operating system in Barrelfish with the goal of avoiding having
to manually port a large amount of code from other operating systems. We implement
a basic hypervisor for the rump kernel which enables using OS components such as
filesystems, the network stack, and PCI device drivers. We additionally show how to
integrate portions of the NetBSD kernel into the Barrelfish ecosystem by wrapping them
inside Barrelfish applications and using RPCs to communicate with them. Finally, we
evaluate the performance of our implementation and show that overheads are typically
kept within reasonable limits.
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Chapter 1

Introduction

Operating systems are arguably the most important piece of software running on any
computer. They provide applications with a simple, standardized view of the platform
they are running on and abstract away all the machine and hardware-specific details
while providing support for a wide range of hardware and software protocols.

Often, the core functionality of an OS (e.g. memory management, interrupt han-
dling, scheduling, etc.) constitutes only a small part of its total codebase, as can be seen
in Figure 1.1. One of the main reasons why implementing an OS from scratch is non-
trivial is because it must support a wide range of hardware and because software expects
the OS to provide a wide range of services, including support for different filesystems
and network protocols.

12959306
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910121

775045

601088
428177
218748
499842

Source Lines of Code (SLOC)
in Linux 5.2.2

Drivers (/drivers, /sound)
Architecture-specific code (/arch)
Filesystem code (/fs)
Network stack (/net)
Headers (/include)
Tools (/tools)
Core kernel (/kernel)
Other

Figure 1.1: SLOC in Linux Kernel version 5.2.2.
Generated using David A. Wheeler’s ‘SLOCCount’.

One of the biggest challenges in writ-
ing new operating systems is therefore
providing OS-specific implementations
for supporting myriad hardware devices
and OS services. In his work The De-
sign and Implementation of the Anykernel
and Rump Kernels [12], Antti Kantee notes
that in almost all cases, these OS compo-
nents follow a rigid protocol, and imple-
menting them involves simply mapping
the functionality of that protocol to the OS
in question. For example, a device driver
adheres to the specification of its device
and translates device commands into an
OS-understandable format so that the OS
can export the services of the device to other applications. An implementation of a
filesystem or network protocol takes the specification of that particular filesystem or
network protocol and implements it using the framework offered by the OS.

This mapping between protocols and OS frameworks constitutes an extremely large
amount of the operating system’s codebase. As can be seen in Figure 1.1, the vast ma-
jority of the codebase of the Linux kernel is dedicated to device drivers, filesystems, and
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network stack code. Implementing a new OS would therefore be much simpler if one
could reuse these components from a different, more mature operating system instead
of having to port or reimplement existing frameworks for each new operating system,
which is often a very monotonous and tedious task due to it simply consisting of trans-
lating various protocols.

In this thesis, we will examine an approach for using components from the NetBSD
operating system in the Barrelfish operating system using a NetBSD architecture called
a rump kernel. More specifically, we seek to answer the following questions:

• Can the NetBSD rump kernel be easily ported to the multikernel architecture of
Barrelfish? What difficulties are involved?

• How can we give the rump kernel the access to the low-level hardware resources
it requires in order to run device drivers?

• How can rump kernels be integrated into the existing Barrelfish frameworks (e.g.
for device drivers) in such a way that they are treated as first-class citizens of the
Barrelfish ecosystem? Which API can regular Barrelfish applications use to access
the OS components provided by a rump kernel?

• What is the performance of NetBSD OS components running on Barrelfish? If
there are sources of substantial overhead, what are they?

To answer these questions, we will proceed in the following manner. Chapter 2 will
present background information to understand the technologies and concepts related to
Barrelfish and the NetBSD rump kernel with the goal of providing sufficient high-level
knowledge to understand the implementation. Chapter 3 will then survey related work
that provides similar functionality to rump kernels as well as examine implementations
of the rump kernel on other platforms. After that, Chapter 4 will discuss the implemen-
tation on Barrelfish and Chapter 5 will present a brief performance evaluation of certain
components. Chapter 6 will discuss the limitations of the current implementation and
list some features that would be interesting to implement in future work. Chapter 7 will
then conclude our discussion.

A Note on Manual Pages and the NetBSD Source Tree

This document references several NetBSD (not Linux!) manual pages. As usual, they
appear in the format tool/library(section), e.g. printf(3). The relevant manual page for
printf(3) can be found by typing man 3 printf on a NetBSD system or by using the
online manpage tool at https://netbsd.gw.com/cgi-bin/man-cgi?.

We also make several references to the NetBSD source tree. The latest version of
the NetBSD source tree can be found under http://cvsweb.netbsd.org/ or checked
out via CVS as explained in https://www.netbsd.org/docs/guide/en/chap-fetch.

html#chap-fetch-cvs-netbsd-release. The version of the NetBSD kernel used for
this document is 7.99.34, and its sources can most easily be obtained by running Hake
on the Barrelfish source tree and then executing make checkout-netbsd. The sources
can then be found in lib/rump/buildrump.sh/src.
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Chapter 2

Background Information

2.1 The Barrelfish Operating System

Barrelfish is a research operating system created from scratch by the Systems Group at
ETH Zürich, Switzerland. Its distinguishing feature is that it treats the machine it runs
on as a distributed system of cores. The motivation behind this is that modern comput-
ers are already so complex they can be viewed as such [8]. The following subsections
aim to introduce the parts of Barrelfish that are relevant to running the NetBSD rump
kernel on Barrelfish.

2.1.1 The multikernel architecture

The Barrelfish kernel is structured as a so-called multikernel. In a conventional operat-
ing systems, the kernel runs on all available cores using mutual exclusion and shared
memory. A multikernel treats the machine as a distributed system of cores by run-
ning independent kernels on each core, and any communication between cores is done
via message passing in userspace [7]. Each core runs a small, non-preemptible kernel
called a CPU driver that does not share any memory with other cores. Instead, each CPU
driver possesses a local copy of the system state, and updates to the system state are
propagated using message passing.

The functions of a CPU driver are very limited compared to the services offered
by monolithic kernels such as Linux. On a per-core basis, CPU drivers are responsible
for receiving hardware interrupts and faults and routing them to user-space handlers,
providing access to hardware resources and certain kernel data structures through capa-
bility invocations (see section 2.1.2), responding to system calls, scheduling user-space
tasks (see section 2.1.3), and providing a form of core-local message passing (see section
2.1.4) [4].

2.1.2 Access control using capabilities

Barrelfish uses capabilities [15] to control access to almost all resources. A capability
can be thought of as an unforgeable token owned by a process that gives it the right
to access the resource referenced by the capability. Examples include capabilities to
regions of raw RAM or capabilities to page tables or I/O ports (on x86). There is a
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specific type capability for each type of resource, and certain types of capabilities may
be retyped to other types following an inheritance tree. Each type of capability supports
various invocations that allow the holder of the capability to use the underlying resource
in various ways [31]. For example, a capability to a mappable chunk of physical memory
(a Frame) may have an invocation to map it into the holder’s virtual address space, and
a capability to an I/O port on x86 may have an invocation to send a 32-bit data word to
that I/O port.

Capabilities allow many of the functions traditionally performed inside the kernel
to be moved to trusted userspace daemons in a spirit similar to that of an exokernel [9].
For example, Barrelfish applications are self-paging: instead of relying on the kernel to
manage their virtual memory address space, they can use capabilities to get the kernel
to install the desired page tables and manage their own page faults (see section 2.1.5).

Each applications’s capabilities are stored in a separate part of its address space
called a capability space or CSpace. The CSpace is organized as a two-level tree of
CNodes. Each application has a pointer to a level 1 CNode, which typically contains
capabilities to Level 2 CNodes. Each level 2 CNode contains capabilities to various
types of resources.

2.1.3 Domains, dispatchers, and scheduling

A Barrelfish application (or domain in Barrelfish parlance) can run on several different
cores and make use of shared memory and user-level threads by using userspace li-
braries. Each domain has one or more dispatchers (one per core) that constitute the core-
local component of that domain. Dispatchers are also the unit of scheduling in Barrelfish
that the CPU driver preemptively switches between.

In addition to preemptive scheduling of dispatchers, Barrelfish employs a schedul-
ing technique known as scheduler activations [2]: once the CPU driver decides to sched-
ule a dispatcher, instead of simply resuming the application code from where it was
when the dispatcher was unscheduled, it upcalls a run() function of that dispatcher.
This function executes user-space thread scheduling and is also responsible for handling
events from the kernel such as page faults or incoming messages from other domains
[4].

For example, assume two threads, thread A and thread B, are running on a single
core (and therefore also a single dispatcher), and that thread A is currently executing.
Once the dispatcher running the two threads gets unscheduled and rescheduled onto
the processor core, it may decide to switch to thread B instead of continuing the execu-
tion of thread A.

2.1.4 Message passing

Since Barrelfish treats the machine as a distributed system of cores, message passing is
an integral part of how the OS performs basic functions. Barrelfish implements several
different backends for message passing (also known as inter-dispatcher communication
or IDC). LMP, inspired by L4 IPC [16], is used for messages between applications on the
same core and is supported by the local CPU driver. UMP is used for messages between
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applications running on different cores and multihop is used for applications running
on different machines connected through a network.

Barrelfish also has a domain-specific language (DSL) called Flounder that, given a
specification for a set of messages, can generate helper methods to route these messages
using any of the aforementioned backends [6].

2.1.5 Virtual memory

As mentioned earlier, Barrelfish domains are self-paging. This means that they can man-
age their virtual address space (VSpace) themselves by obtaining a capability to raw
RAM and retyping it to a mappable Frame or a capability for a page table. They can
then perform invocations on these capabilities, which allow them to install their own
page tables and mappings. Furthermore, domains can register a page fault handler that
the CPU driver upcalls in case of a page fault. However since managing paging is not
necessary for many applications, the library libbarrelfish provides a default paging im-
plementation.

2.1.6 Kaluga, the SKB, and device drivers

To manage hardware resources, Barrelfish has a database (the System Knowledge Base or
SKB) that contains information about the hardware in the system, such as which devices
are connected and which drivers correspond to which devices. The SKB is queried using
Prolog.

Barrelfish also has a device manager, Kaluga, that is responsible for managing the
drivers attached to devices. At system startup, it queries the SKB for attached devices,
finds the appropriate drivers, and starts them. It also hands drivers the necessary capa-
bilities for interacting with their devices from userspace.

Device drivers in Barrelfish are composed of two parts: the driver domain and one or
more driver modules. The driver domain typically simply dispatches events it receives
on a special queue called a waitset, which allows it to receive messages from Kaluga as
well as interrupts from the hardware it is controlling. It is usually statically linked with
a library called driverkit which is responsible for handling messages from Kaluga.

Kaluga may send a create message to a driver domain, which will cause it to start
a driver instance from one of the driver modules embedded into the driver binary. The
driver instance is responsible for actually talking to the device. This way, Kaluga can
dynamically create driver instances depending on the hardware configuration of the
system (or destroy them via the destroy message) [5].

2.1.7 Build system: Hake

The build system for Barrelfish is called Hake. It is written in Haskell and defines a
Haskell-based syntax that allows the user to declaratively (rather than imperatively, as
with Make) specify how to build a library or application for Barrelfish using a special
file called a Hakefile. Hake scans these Hakefiles and generates one large Makefile from
them that is has recipes to build all the components of Barrelfish.
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It does this by scanning the source tree for Hakefiles and then assembling all of them
into one large Haskell expression containing a set of rules. These rules are parsed and
translated into Make recipes [29].

2.2 The NetBSD Operating System

The rump kernel we are interested in running on Barrelfish is based on NetBSD. There-
fore, the relevant features of NetBSD are introduced in this section.

NetBSD is a Unix-like operating system directly descended from the original Unix
through the Berkeley Software Distribution (BSD). It was forked from 386BSD (itself
directly descended from the original BSD) in 1993 [1].

2.2.1 Design principles of NetBSD

The NetBSD project emphasizes clean, high-quality code and the main goal of the NetBSD
OS is to be able to run on as many different architectures as possible. This is why the
slogan of the NetBSD project is “of course it runs NetBSD!” [1].

NetBSD achieves this by strictly dividing the OS into machine-dependent (MD) and
machine-independent (MI) parts. The typical paradigm is that a MI interface is defined
for use by various parts of the kernel, and this interface is implemented by separate
MD implementations for each architecture NetBSD supports. For example, for reading
from/writing to device registers, NetBSD defines the bus space(9) interface, which al-
lows drivers to be MI and not have to be rewritten for each architecture NetBSD runs
on.

2.2.2 NetBSD kernel structure

In contrast to Barrelfish, NetBSD is based on a monolithic kernel: this means that almost
all functions typically fulfilled by an OS (i.e. features that aim to provide abstractions for
hardware and protecting processes from interfering with each other) are implemented
inside the kernel. Therefore, the NetBSD kernel is very large and contains code not
only for managing virtual memory and exceptions, but also for filesystems, the network
stack, device drivers, and more.

2.2.3 Device drivers in NetBSD

As previously mentioned, device drivers in NetBSD run in the kernel. The kernel pro-
vides a large set of MI interfaces for drivers to use to talk to their devices. Besides
bus space(9), there is also bus dma(9) for direct memory access (DMA), pci(9) for PCI
devices, pci msi(9) for message-signaled interrupts (MSI/MSI-X), and various other in-
terfaces for different kinds of buses.
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2.3 The NetBSD Rump Kernel

The focus of this project is to port the NetBSD rump kernel to Barrelfish and use it to run
NetBSD OS components on Barrelfish. Because understanding the NetBSD rump kernel
is key to understanding how it is run on Barrelfish, this section is devoted to explain-
ing the fundamental concepts of the NetBSD rump kernel, based on Antti Kantee’s The
Design and Implementation of the Anykernel and Rump Kernels [12].

2.3.1 What is a rump kernel?

The term rump kernel is closely related to the term anykernel. As such, let us first define
what an anykernel is.

Antti Kantee, who coined these two terms and designed the NetBSD rump ker-
nel, defines an anykernel as “a term describing a kernel-type codebase from which
drivers [...] can be extracted and integrated to any operating system model – or at least
near any – without porting and maintenance work” [12, p. 27]. Here, drivers do not
refer merely to device drivers, but a broader range of driver-like components of an OS,
such as filesystems or the network stack.

A rump kernel is “a time-sharing style kernel from which portions have been re-
moved. What remains are drivers and the basic support routines required for the drivers
to function – synchronization, memory allocators, and so forth. What is gone are the
policies of thread scheduling, virtual memory, application processes, and so forth. Rump
kernels have a well-defined (and small!) portability layer, so they are straightforward to
integrate into various environments.” [12, p. 27].

The relationship between an anykernel and a rump kernel is that a rump kernel is
typically built by selecting and extracting components from an anykernel, and then run
on a certain platform (the host) by using its portability layer (e.g. a set of hypercalls).

2.3.2 Motivations behind rump kernels

The first motivation for rump kernels was to allow easy kernel driver development in
the comfort of userspace, and they are still used by NetBSD for this purpose [10]. How-
ever, rump kernels also have the advantage that they can be fine-tuned to specific use
cases by selecting the required components from an anykernel. As we will see in the
next chapters, this dynamism makes rump kernels ideal for our purposes of running
arbitrary NetBSD OS components in Barrelfish userspace.

2.3.3 Rump kernel structure: factions and components

As mentioned previously, a rump kernel is constructed by selecting different compo-
nents from an anykernel. In this case, the anykernel is NetBSD, which was transformed
into an anykernel during the development of the NetBSD rump kernel. Selecting a
component from NetBSD consists of writing a set of files that define which files of the
NetBSD source tree the component is based on and how to build and initialize the com-
ponent. Based on these definitions, a specialized build script creates C libraries contain-
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ing the specified behavior. A rump kernel is then constructed by (statically or dynam-
ically) linking together all the desired components. Each of the components falls into
three classes or factions, which we will discuss next.

Factions In order to facilitate extracting components from NetBSD, the NetBSD source
tree was divided into a base subsystem and three factions: the device faction, the virtual
filesystem faction, and the network faction. The base subsystem provides basic function-
ality required for all components to run and provides functions such as bootstrapping
the rump kernel. The device (dev), network (net), and virtual filesystem (vfs) factions
are orthogonal libraries (i.e., they do not depend on one another) that each rely on the
base subsystem, and provide basic functionality for device drivers, network stack com-
ponents, and filesystems respectively. This allows components to be defined without
redundantly specifying the same base behavior in each component.

Components A component forms the basic building block of a rump kernel and con-
tains behavior from a specific part of NetBSD. Each component is based upon one or
more of the three factions. For example, a component containing the implementation of
the TCP/IP protocols would be based upon the net faction, a component containing a
driver for a network card would be based upon the dev faction and the net faction, and
a component containing code for using the NTFS filesystem would be based upon the
vfs faction.

2.3.4 Hypercalls

As mentioned in Subsection 2.3.1, kernels are not designed to run independently and
need some form of support from their host, be it a full-fledged operating system or raw
hardware, in the form of a portability layer. In the NetBSD rump kernel, this portabil-
ity layer is implemented in the form of several hypercall interfaces. For example, if the
rump kernel needs to allocate memory, it simply performs a hypercall instead of manu-
ally providing different implementations for different platforms. Hence, porting rump
kernels to a new platform involves simply implementing these hypercalls and turning
them into a library that can be linked with rump kernel components.

2.3.5 Bootstrap

“Booting” the rump kernel consists of initializing all of the components. The base faction
is initialized by calling rump_init(), which initializes all the basic functionality needed
by all components, then proceeds to initialize all the other components included in the
rump kernel. The order of this initialization is specified by the use of different macros
in the files defining that component. If the component is provided as a NetBSD ker-
nel module, initialization simply consists of calling the module’s initialization routine.
For other components, the initialization routine is defined in the file specifying how to
extract the component from the NetBSD source tree.

10



2.3.6 Virtual memory

The rump kernel does not manage its own virtual memory, since this would create a
large amount of overhead with little benefit. Instead, it relies on the host to provide an
address space and uses hypercalls to allocate memory. However, the NetBSD kernel re-
lies on its virtual memory subsystem to perform basic tasks such as reading files. There-
fore, the virtual memory subsystem is reimplemented by the rump kernel, but mostly
consists of empty stubs or identity mappings and functions for allocating memory using
hypercalls.

2.3.7 Kernel threads & scheduling

Like any modern operating system, the rump kernel operates using several threads (or
lightweight processes (LWPs) in NetBSD parlance) in order to perform multiple tasks
concurrently. However, the rump kernel does not include NetBSD’s full preemptive
scheduler and instead uses the host’s thread and scheduling facilities. Since rump kernel
LWPs are effectively mapped to host threads, the host can decide when to schedule and
when to preempt the rump kernel.

To avoid data structure corruption due to LWPs being preempted when they would
normally disable preemption while running on full NetBSD, the rump kernel introduces
the notion of virtual CPUs. Each virtual CPU can only be running one LWP at a time, and
each LWP must be running on exactly one virtual CPU. In other words, virtual CPUs can
be regarded as a resource that an LWP must hold in order to execute code in the rump
kernel. Each LWP runs to completion before it gives up the virtual CPU, or it can also
yield the virtual CPU voluntarily. An internal scheduler then takes care of scheduling
the next idle LWP onto a free virtual CPU. This internal scheduling can be viewed as a
form of cooperative multitasking.

As an example, consider two LWPs, lwp0 and lwp1. Assume lwp0 is currently hold-
ing the (single) virtual CPU. Even if the host unschedules the thread running lwp0 and
wants to schedule the thread running lwp1, lwp1 will not be able to execute in the rump
kernel since lwp0 is still holding the virtual CPU.

2.3.8 Avoiding namespace clashes

The rump kernel contains many symbols that are often already defined on the host such
as printf. To avoid clashes with the host symbols, the rump kernel renames all of
its symbols to be in a unique, separate namespace by prefixing them with rumpns_.
Interfaces exposed by the rump kernel, such as system calls, are also renamed, e.g. the
open(2) system call is renamed to rump_sys_open.

2.3.9 The rump kernel build system

The build system for the rump kernel is very similar to cross-compiling NetBSD. Regular
NetBSD uses a shell script called build.sh which first compiles some tools for building
NetBSD, and then uses a system of Makefiles to build the OS. The rump kernel uses
a shell script called buildrump.sh which does something very similar. It first builds a

11



toolchain for building NetBSD and performs some checks of the compiler specified by
the CC environment variable, and then calls build.sh with the necessary parameters for
building the rump kernel instead of the full kernel.

2.4 PCI

Since a substantial part of this project is devoted to allowing NetBSD PCI drivers to
run on Barrelfish, we will give a brief description of the relevant features of PCI based
on PCI-SIG’s PCI Local Bus Specification (Revision 3.0) [24] and how support for it is
implemented in Barrelfish, NetBSD, and the NetBSD rump kernel.

2.4.1 Basics of PCI

PCI (Peripheral Component Interconnect) is a widely used I/O bus for connecting hard-
ware devices. It allows assigning each device a specific range of addresses in the proces-
sor’s physical address or I/O space such that no device’s address range overlaps with
that of another. Each PCI device on the bus is assigned a specific device number, and
each PCI device may implement multiple functions. Each function appears as a separate
logical device, although they are physically implemented on the same hardware chip.
A PCI device can therefore uniquely be identified by its bus:device:function numbers.
Each physical PCI device is also assigned a unique ID consisting of two main parts: a
unique vendor ID and a unique device ID. Together, these two IDs can be used to deter-
mine the correct device driver for a specific hardware device. PCI also supports bridging,
where a special device to which further PCI devices can be connected can be attached to
the main PCI bus.

A distinguishing feature of PCI compared to other buses is that each device contains
256 kB of configuration space, which is used by the BIOS, firmware, or OS to automatically
configure the devices (e.g. by assigning certain physical address ranges to be used by
each device). Once all the devices have been configured, device drivers can find out
relevant information for their devices (e.g. which address ranges to read from/write to
and which interrupts to service) by reading the configuration space. The configuration
space layout for non-bridge devices is given in Table 2.1. For our purposes, the device
ID, vendor ID, base address registers, interrupt pin, and interrupt line are most relevant;
the others can be ignored.

To start the appropriate device drivers for each PCI device, the PCI bus must be
enumerated. This entails querying the configuration space of each possible bus:device:
function to check if a device is there. Trying to read from the configuration space of
a non-existent device returns 0xFFFFFFFF. If a device is present at a given bus:device:
function, some basic information about it (such as the number of BARs it implements
and sizes of the memory ranges they point to) is recorded. Later, the corresponding
device driver for each device is determined by looking at its vendor and device IDs and
matching it with information provided by the device driver.
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Table 2.1: PCI configuration space layout for non-bridge devices

Offset Bits 31:24 23:16 15:8 7:0
0x00 Device ID Vendor ID
0x04 Status Command
0x08 Class code Subclass Prog IF Revision ID
0x0C BIST 0x001 Latency timer Cacheline size
0x10 Base address register 0 (BAR0)
0x14 Base address register 1 (BAR1)
0x18 Base address register 2 (BAR2)
0x1C Base address register 3 (BAR3)
0x20 Base address register 4 (BAR4)
0x24 Base address register 5 (BAR5)
0x28 CardBus CIS pointer
0x2C Subsystem ID Subsystem vendor ID
0x30 Expansion ROM address
0x34 Reserved Capabilities pointer

0x38 Reserved
0x3C Max latency Min grant Interrupt pin Interrupt line

2.4.2 Memory-mapped and port-mapped I/O for PCI devices

As seen in Table 2.1, the configuration space for each device contains six 32-bit BARs,
or Base Address Registers. There are two types of BARs: I/O BARs, which contain the
start of a range in I/O port space (for x86-based processors) and memory BARs, which
contain the start of a physical address range. These ranges of I/O space or memory are
used by device drivers to talk to their devices. The two types of BARs are distinguished
between by looking at the least-significant bit of the BAR. Tables 2.2 and 2.3 show the
layout of each type of BAR.

Table 2.2: Layout of memory BAR

Bits 31:4 3 2:1 0
16-byte aligned base address Prefetchable Type 0

Table 2.3: Layout of I/O BAR

Bits 31:2 1 0
4-byte aligned base address Reserved 1

The size of the address or I/O port range needed by the device can be determined
as follows: first, one saves the original value of the BAR. Then, one writes all ones
(0xFFFFFFFF) to the BAR and reads back the BAR. Since only the bits of the BAR that
are beyond the range of memory needed by the device can be modified, one can then
determine the amount of memory needed by performing a bitwise NOT and adding 1.
Finally, one restores the original value of the BAR.

1Different for bridge devices
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2.4.3 PCI capabilities

PCI capabilities refer not to a form of access control, but to additional abilities a PCI
device may possess. The configuration header (Table 2.1) contains a capabilities pointer,
which points to a linked list in configuration space. Each item of the linked list contains
an 8-bit capability ID to indicate the type of capability, a pointer to the next capability in
the linked list, and some further data specific to the capability.

2.4.4 Interrupts on PCI devices

PCI devices support three different kinds of interrupts: legacy interrupts, MSI inter-
rupts, and MSI-X interrupts. In the following, we will briefly describe each kind of
interrupt.

Legacy interrupts Legacy interrupts are akin to traditional interrupts on other, non-
PCI devices. Each PCI device possesses an interrupt pin which is asserted if the device
wants to raise an interrupt. The interrupt is then routed via the IOAPIC and LAPIC
to the CPU, which can then execute the appropriate interrupt handler. One issue with
this approach is that several different devices may share interrupt lines, which increases
interrupt handling overhead, since every time an interrupt on that line occurs, all the
handlers associated with that interrupt line must be executed. A further issue is that
race conditions between DMA memory writes and interrupts can occur: for example, if
a device performs DMA and then signals via interrupt that it is done, the interrupt may
arrive before the DMA is actually completed, since the DMA write may be buffered or
otherwise postponed by the memory controller.

MSI interrupts MSI interrupts (Message Signaled Interrupts) aim to solve the above
issues by a mechanism by which the device simply issues a write to a specific memory
address in order to raise an interrupt. This solves the race conditions, interrupt line
sharing issues, and also easily enables a device to generate multiple different interrupts
by writing different data to the MSI interrupt memory address. Since Barrelfish does
not support MSI, we will not provided a detailed explanation of MSI. However, a basic
explanation follows. MSI interrupts are entirely configured in the configuration space
of the device. A device indicates that it supports MSI by providing a capability with
ID 0x05. The MSI capability contains the address to which the device should write
to generate interrupts (typically set by the BIOS, firmware, or OS) as well as the data
that should be written to that address. It also contains a field that specifies how many
different interrupts should be supported. The device generates each of these different
interrupts by changing the least significant bits of the data. For example, if the device
supports 4 interrupts, it will modify the 2 least significant bits of the data to generate
different interrupts.

MSI-X interrupts MSI-X interrupts are an extended version of MSI interrupts. Instead
of being configured solely in the configuration space of the device, they are configured
partially by a PCI capability and partially by a table pointed to by one of the BARs. The
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layout of the capability register is presented in Table 2.4, and the layout of the table is
presented in Table 2.5. The capability ID for MSI-X is 0x11.

Table 2.4: Structure of the MSI-X capability

Offset Bits 31:16 15:8 7:3 2:0
0x00 Message Control Next cap. ptr Capability ID
0x04 Message upper address
0x08 Table offset BIR

Table 2.5: Structure of the MSI-X table

Offset Table contents
0x00 Message address (32 bits) Message data (32 bits)
0x08 Message address (32 bits) Message data (32 bits)

... ...
0x08×(n− 1) Message address (32 bits) Message data (32 bits)

The message upper address in the capability structure contains the upper 32 bits of
the address that is written to to generate interrupts on 64-bit systems. The BIR corre-
sponds to the index of the BAR which contains the base address to access the MSI-X
table. Adding this base address to the table offset gives the base address of the MSI-X
table.

Each MSI-X table entry corresponds to a separate interrupt and contains an address
that must be written to in order to generate that interrupt as well as some message data
to write to that address.

2.4.5 PCI device drivers on Barrelfish

PCI on Barrelfish is handled by a PCI domain that performs basic initialization such
as bus enumeration and populates the SKB with facts about each discovered device.
It initially possesses a capability to the entire PCI device space, which it breaks down
into more fine-grained capabilities for each detected device. PCI device drivers are then
started by Kaluga just like any other driver.

In order to automatically spawn the correct driver domain for each device, the SKB
contains a database of PCI vendor/device IDs and their corresponding driver domains
and modules. Upon startup, Kaluga iterates over all connected PCI devices and queries
the SKB for their corresponding driver. It obtains capabilities for each PCI device’s BARs
and interrupts through the PCI domain, which it stores in a CNode that is handed to the
driver. The driver then uses these capabilities to map the BARs and set up interrupt
handling.

2.4.6 PCI device drivers on NetBSD

NetBSD uses a process called autoconfiguration (see autoconf(9)) which matches devices
to the appropriate driver. Each supported PCI device is listed in a PCI vendor/device
ID database. The driver is then added to a file containing a list of PCI device drivers,
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and the PCI driver is added to the kernel configuration using a special configuration
language (see config(5)).

Each PCI driver contains a function called match() which takes a description of a
PCI device (including its vendor/device IDs) as input and returns true if the driver
supports that device. Finding the driver for a certain device therefore entails calling the
match() function of all registered PCI drivers until one is found that returns true.

The actual programming of the device in NetBSD is done using four MI frameworks
that we have mentioned before: bus space(9), bus dma(9), pci(9), and pci msi(9).

2.4.7 PCI device drivers on the NetBSD rump kernel

The rump kernel has a component that provides PCI bus support. If this component is
linked into the rump kernel, it performs a basic bus enumeration upon initialization and
starts PCI drivers (which are provided in the form of further components) in the same
way as the full NetBSD kernel.

The way the rump kernel provides support for running PCI drivers is by providing
hypercall-based (or emulated) versions of the three frameworks bus space(9), bus dma(9),
and pci(9). Support for pci msi(9) was provided as part of this project; see Chapter 4 for
more details. In Chapter 4, we will also discuss the implementation of the hypercalls for
the three included frameworks.
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Chapter 3

Related Work

In this chapter, we will examine related work that also allows running OS components
from one OS, the source OS, on another OS, the target OS. We will proceed by first ex-
amining various alternative approaches to achieving this and then by going over imple-
mentations of the NetBSD rump kernel on OSes other than Barrelfish.

3.1 Alternative Approaches

In this section, we will examine the various approaches designed with the goal of run-
ning part or all of the source OS on a target OS.

3.1.1 Virtualization and paravirtualization

A conceptually simple way to run components from the source OS on the target OS is
simply to run the entire OS in userspace, providing the illusion of raw access to an en-
tire machine in software. This approach is called virtualization. It has two components:
an unmodified OS, called a guest OS (in this case, this is the source OS), and a virtual-
ization layer called a hypervisor that typically emulates hardware and traps privileged
instructions from the guest OS and simulates their execution in software. It has the ben-
efit guest kernel is running in the environment it expects to run in, i.e. on raw hardware.
This means that guest OS components can be run unmodified and without having to
perform any configuration beyond what would be necessary on real hardware.

There are two types of hypervisors: type 1 hypervisors (such as Xen [3]), which run
directly on raw hardware, and type 2 hypervisors, which run in software on top of an
existing platform such as a general-purpose OS, such as VirtualBox [23].

A similar concept called paravirtualization differs from virtualization in that the guest
OS knows it is not running on real hardware and thus provides special drivers for “de-
vices” that actually rely on host OS components. These “devices” usually appear as
pseudo-devices with similar interfaces to their physical counterparts. An example of
this is the networking interface of Xen.

One drawback to this approach is that implementing such a hypervisor on a new
platform is typically a non-trivial task. Furthermore, without implementing additional
compatibility layers, the guest OS and host are completely isolated from each other and
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thus only applications designed for the guest kernel can use the guest’s OS components,
and data in the guest OS is completely invisible to the host and vice versa. The virtual-
ized guest OS also often runs considerably more slowly than on real hardware.

3.1.2 Porting

A more technically involved method of running OS components from one OS in an-
other is by porting. Porting an OS component involves reading the source code of the
source OS component and rewriting it to conform to the software libraries and conven-
tions of the target OS. The effort involved in doing this varies according to how closely
related the two OSes are. For example, porting OS components between the various
BSDs (FreeBSD, OpenBSD, and NetBSD) is often not very difficult due to their com-
mon BSD core and the fact that they often collaborate on various software interfaces.
However, porting an OS component from NetBSD to Barrelfish is substantially more in-
volved, since the architectures of these two OSes varies considerably. In fact, because
of Barrelfish’s approach to device drivers, porting OS components from other OSes to
Barrelfish often requires completely restructuring the code.

3.1.3 Library operating systems

Not all OS components are necessarily run in the kernel. Even in the case of monolithic
kernels, parts of what can be considered the operating system run in userspace. In order
to use such components on the target OS, a crucial observation can be made: the only
way a regular userspace application can access the kernel is through system calls. Pro-
viding an implementation for these system calls therefore theoretically enables running
userspace OS components from the source OS. This is precisely what library operating
systems aim to do.

An example of such a library OS is Graphene [32], a library OS that allows running
unmodified Linux binaries. The high-level idea of Graphene is quite similar to that of
the NetBSD rump kernel: it provides a set of libraries that emulate Linux system calls,
relying on the host for machine-dependent tasks through a hypercall interface called
the Platform Adaptation Layer (PAL). The difference is that Graphene does not actu-
ally provide an implementation for these system calls by using Linux kernel code but
by providing the machine-independent functionality through a library called libLinux.
Similarly, the Drawbridge library OS [25] transforms Windows 7 into a library OS. This
is achieved by emulating the API exposed to Windows applications and relying on the
host OS to perform tasks whenever possible. This shows that while library OSes are suit-
able for running userspace components or entire applications, their goal is typically not
to provide complete versions of OS components running in kernel, which limits their
usefulness for our purposes, since the most common desktop OSes are monolithic and
run almost all of their components in kernel mode.
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3.1.4 Library emulation

Specific types of OS components often rely on a well-defined subset of the software
interfaces provided by that OS. Reimplementing these software interfaces on a different
OS can therefore provide a means to run such OS components.

One such software interface is the Network Driver Interface Specification (NDIS) by
Microsoft [20]. NDIS is a library that “specifies a standard interface between kernel-
mode network drivers and the operating system [and] a standard interface between
layered network drivers, thereby abstracting lower-level drivers that manage hardware
from upper-level drivers, such as network transports” [20]. NDIS is implemented in
Microsoft’s Windows OS, but has also been ported to various other operating systems
such as Linux (through ndiswrapper [22]) and FreeBSD (through NDISulator [21]).

Additionally, some work has been done on running Linux USB drivers on FreeBSD
[28] by reimplementing several Linux driver interface routines in FreeBSD.

Such approaches allow running unmodified components from other OSes without
considerable overhead, but require writing emulated versions of each possible call an OS
component makes. For arbitrary components, this could be any function in the kernel
(for components of a monolithic kernel) or even any function available in any userspace
library (for OS components implemented in userspace). This makes a generic solution
that allows running a wide range of OS components very difficult to implement, and
therefore library emulation typically only works well for a very restricted subset of OS
components (such as network card drivers in the case of ndiswrapper/NDISulator).

Another option that goes in the direction of library emulation is the UDI project
[26]. Instead of emulating different device driver interfaces from various OSes, device
drivers are written to conform to the UDI specification, which specifies an interface for
performing operations such as memory-mapped I/O, DMA, and handling interrupts.
The UDI libraries can then be ported to any OS, which allows UDI drivers to easily run
across several different OSes. This solution avoids having to emulate hundreds of kernel
routines, but does require drivers to be written to conform to the UDI specification.
However, the main problem with this approach is that there are very few device drivers
of practical value written using UDI.

3.1.5 Formal specifications

If the interface for an OS component, along with the interfaces it depends on, can be
formally defined using some sort of specification language, then it is possible to auto-
matically generate the code for such a component for various OSes. A concrete example
of this is Termite [30]. As input, Termite takes three kinds of specifications: a device
specification describing the device registers and the effects of reading from or writing
to them, a device class specification specifying common behavior exhibited by various
device classes (e.g. a device class specification for an Ethernet controller might specify
that it can transmit a packet), and an OS specification that models the ways in which
an OS interacts with its drivers. It then outputs an automatically-generated driver that
is guaranteed to adhere to the constraints defined in the specifications and complete its
tasks in finite time.
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Reusing components from the source OS therefore becomes easy if they are gener-
ated by a tool like Termite, since writing an OS specification for the target OS suffices to
automatically generate OS components for the target OS.

However, while very promising in theory, such an approach would require that a
large number of device manufacturers and OS developers develop specifications for
their devices or OSes respectively. Since this can be very time-consuming and many
devices already have hand-written drivers for the most popular OSes, there are very
few device drivers available that are automatically generated, which severely impairs
its usefulness for running general OS components from the source OS on the target OS.

3.1.6 Running other kernels in userspace

The idea of running OS kernels in userspace is not new and has been done before. For
example, the Linux Kernel Library (LKL) [27] provides the full, monolithic Linux kernel
as a library that applications can call into via the Linux system call interface. It is quite
similar to the NetBSD rump kernel in that it relies on a hypercall layer to do things like
managing semaphores and thread creation/deletion. It has two main differences com-
pared to the NetBSD rump kernel: it is not modular, i.e. the entire Linux kernel is turned
into one library, and it uses the Linux scheduler for scheduling its own kernel threads,
resulting in two layers of scheduling (the host scheduler and the Linux scheduler).

The benefit of such a library is that the Linux kernel supports a wide array of filesys-
tems and devices, which makes using unmodified Linux components very desirable.
However, the non-modularity of the LKL means that it is not as flexible as the NetBSD
rump kernel, e.g. starting multiple instances of the LKL would consume much more
resources compared to a very slim rump kernel. Also, the two layers of scheduling are
an additional source of overhead.

Another approach which aims to run the full Linux kernel in userspace is the Win-
dows Subsystem for Linux (WSL) [18]. Although its first version simply consisted of
a compatibility layer to translate Linux calls to Windows calls, its second version runs
a full Linux kernel using a highly optimized version of the Hyper-V hypervisor [19].
This allows Linux applications to be run on Windows with minimal performance over-
head and also allows these Linux applications to make use of Linux kernel components.
However, because this approach is essentially a lightweight form of virtualization, it
comes with many of the same drawbacks: native Windows applications cannot use the
resources provided by WSL in the same way as they would use Windows components,
and device drivers do not control physical devices, but only the virtual devices provided
by the hypervisor.

3.2 Rump Kernels on Other Platforms

In the previous subsections, we have examined other approaches to running compo-
nents from the source OS on the target OS. We conclude see that rump kernels pro-
vide one of the easiest and most flexible approaches to this problem, since they allow
easily running unmodified NetBSD kernel code by simply implementing some hyper-
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calls, rely on the NetBSD kernel, for which filesystems and drivers are widely available,
and provide a large degree of flexibility thanks to their modularity. In this section, we
will therefore examine implementations of the rump kernel on other platforms, namely
POSIX-compliant platforms that use ELF binaries and the seL4 microkernel.

3.2.1 POSIX userspace rump kernels

Rump kernels were originally developed to run on NetBSD, so the rumpuser library
could very easily be adapted to run on virtually all POSIX platforms. In fact, the POSIX
implementation of the rumpuser library is available by default in the NetBSD source tree
under lib/librumpuser. Building the NetBSD rump kernel for non-NetBSD platforms
is a different story, however. For several years after the advent of the NetBSD rump
kernel, it could not easily be built for platforms other than NetBSD. It was only after a
comprehensive build script called buildrump.sh (inspired by NetBSD’s cross-platform
build script build.sh) was introduced that building the rump kernel for non-NetBSD
became easily feasible. As we will see later, this build script is also easily usable for
building the NetBSD rump kernel for Barrelfish.

The POSIX implementation for the NetBSD rump kernel also provides several fa-
cilities for making the services of a rump kernel available to other applications. The
basis for this is a server component implemented by the rump kernel that exports a
URL. There is also a client component that can use this URL to communicate with the
rump kernel at that URL using BSD sockets. By linking against a rump kernel client,
applications can issue remote system calls to the rump kernel using the server URL. Dy-
namically linked applications can be “forced” to use a rump kernel by means of system
call hijacking, whereby the dynamic linking process of the application is hijacked to link
system calls to the rump kernel instead of to the host.

3.2.2 Rumprun on seL4

In 2016, the NetBSD rump kernel was also ported to the seL4 OS [17] with the goal
of being able to reuse NetBSD kernel components. seL4 [14] is a formally verified
microkernel-based OS that shares quite a few features with Barrelfish, including the use
of capabilities to manage access to resources. The seL4 rump kernel is fully functional
and provides access to NetBSD filesystems, the network stack, and also allows the use of
basic PCI device drivers by providing the rump kernel with the proper capabilities to ac-
cess the necessary low-level hardware resources. These capabilities are provided to the
rump kernel manually directly from seL4’s root (init) task, which is a trusted userspace
task that initially possesses all capabilities.

One main difference between the seL4 implementation and the implementation pre-
sented in this document is that the seL4 implementation focuses on porting Rumprun
[13], which is a wrapper around the rump kernel that allows running unmodified POSIX
applications on top of the rump kernel by modifying NetBSD’s libc to call into the rump
kernel instead of making system calls. This means that it does not provide an interface
to export the services provided by the rump kernel.
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The seL4 approach has two main limitations from the point of view of the goals of
this thesis: firstly, since the the rump kernel must be manually started from the root task,
the OS cannot dynamically react to the hardware present in the machine by automati-
cally providing capabilities to various devices. Secondly, since the services provided by
the rump kernel are not exported for use by other seL4 applications, only the POSIX
application running on top of the rump kernel can use these services.
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Chapter 4

Implementation

In Subsection 2.3.1, we saw that rump kernels can easily be run on different platforms by
implementing their portability layer. In this case, this consists of two sets of hypercalls:
one set (called rumpuser) for running rump kernel components that do not require direct
access to hardware, and one set of PCI hypercalls for accessing PCI devices. In this
chapter, we will examine the implementation of each of these sets of hypercalls and
describe an extension to the rump kernel that allows it to run drivers that use MSI-X
interrupts.

Moreover, as stated in the introduction, one of the goals of this thesis was to inte-
grate NetBSD OS components into Barrelfish as first-class members of the ecosystem. In
this chapter, we also discuss mechanisms to allow regular Barrelfish applications to use
NetBSD OS components such as the network stack and PCI device drivers in a way very
similar to existing Barrelfish services.

4.1 General Architecture

Let us begin by describing the general architecture of the implementation before ex-
plaining each part in more detail. Figure 4.1 illustrates an example of a rump kernel
running on Barrelfish. As mentioned in Subsection 2.3.3, a rump kernel is run in the
virtual address space of an application, which we call the wrapper application, by linking
together the hypercall layer, the base, zero or more factions, and zero or more compo-
nents. Currently, wrapper applications run over a single dispatcher, which means that
rump kernels cannot take advantage of the true parallelism offered by multiple cores.

Each layer in Figure 4.1 runs independently of the layers above it, except compo-
nents, which may cross-reference each other (for example, the component for the Intel
e1000 network card driver references the PCI driver component and the low-level net-
working component). Porting the rump kernel therefore requires implementing the two
hypercall libraries rumpuser and pci_hyper using the libraries provided by Barrelfish,
which are the only interfaces to the host the rump kernel uses. Section 4.2 will discuss
the former and Section 4.3 will discuss the latter. Finally, in order make the components
running inside a rump kernel hosted inside a wrapper application available to other
Barrelfish applications, we discuss an RPC-based system call approach in Section 4.4.
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Figure 4.1: General architecture of the implementation

4.2 Base, Factions, Filesystems, and Network Stack

We will first describe running the rump kernel base and the three factions as well as
components for filesystems and the network stack. These components are easy to im-
plement because they rely solely on the rumpuser hypercall library and do not require
access to hardware resources. The rumpuser library can be divided into eight categories:
initialization/termination, memory allocation, files and I/O, clocks, parameter retrieval,
randomness, threads, and mutexes.

Almost all of the rumpuser implementation could be adapted from the existing code
for POSIX platforms by using Barrelfish’s posixcompat library and by reusing code from
a previous attempt to port the rump kernel to Barrelfish by Pravin Shinde. Using the
posixcompat library makes sense, since a lot of the hypercalls roughly correspond to
POSIX calls such as open() and close(), and writing those hypercalls from scratch
would have resulted in implementations closely mirroring those of the posixcompat li-
brary anyway. The remaining hypercalls are also closely related to the POSIX versions
but using various (near-)equivalent native Barrelfish APIs. This design choice was made
for two reasons: it simplifies maintenance in case of new versions of the hypercall inter-
face, and it also provides some insurance that the implementations are correct. The issue
is that the hypercall interface is not thoroughly documented besides the rather informal
documentation provided by the rumpuser(3) man page, so mirroring the POSIX imple-
mentation helps guarantee that the hypercalls provide an interface compatible with the
rump kernel.

We will now proceed to describe the various hypercalls. Their implementation can
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be found in the lib/rump/rumpuser directory of the Barrelfish source tree.

4.2.1 Initialization and termination

As discussed in Subsection 2.3.5, to boot the rump kernel, an application calls a func-
tion provided by the rump kernel called rump_init(). This function initializes all the
components and internally performs a hypercall to a function called rumpuser_init().
This is used in order to give the hypervisor a pointer to a struct of function pointers
that allow the hypervisor to manage scheduling on the rump kernel, and also allows the
hypervisor to perform any necessary internal initialization. The reason for the former is
that the hypervisor sometimes needs to manage scheduling; for example, when a rump
kernel LWP performs a blocking hypercall, the hypervisor temporarily unschedules it
from its virtual CPU while the hypercall is blocked in order to allow other LWPs to pro-
ceed. As for the latter, the only extra initialization performed is to initialize threading,
which we will discuss more closely in Subsection 4.2.7, and to initialize the Barrelfish
VFS layer.

Explicit termination of the rump kernel is usually not necessary, as all resources it
occupies are freed when the application hosting it in its address space exits. How-
ever, the rump kernel may need to exit in case of a fatal error or if the application
wants to explicitly shut down the rump kernel. For this purpose, it internally calls the
rumpuser_exit() function, which is essentially just a wrapper around the libc exit()

function.

4.2.2 Memory allocation

All memory allocation in the rump kernel is performed by means of hypercalls. There
are four memory allocation-related hypercalls, as seen in Listing 4.1.

1 int rumpuser_malloc(size_t howmuch, int requested_alignment, void **memp);

2 void rumpuser_free(void *ptr, size_t size);

3 int rumpuser_anonmmap(void *prefaddr, size_t size, int alignbit,

4 int exec, void **memp);

5 void rumpuser_unmap(void *addr, size_t len);

Listing 4.1: Hypercalls for memory allocation

The function rumpuser_malloc() mainly differs from the libc malloc() in that it re-
turns the pointer as an out parameter and also takes a parameter for the alignment. In
the POSIX implementation, this is taken into account by a call to posix_memalign().
However, since this function is not available on Barrelfish, memory alignment must be
performed manually. We use a trick originally from Pravin Shinde’s version of rumpuser,
which involves malloc’ing a region R large enough so that (1) R is guaranteed to con-
tain an address A with the desired alignment; (2) there is enough space between A and
the end of R to satisfy the howmuch parameter; and (3) there is enough space before A
to store a pointer P to the start of R. We will then return A for use by the rump ker-
nel, and internally use P in order to properly free the entire allocated region of memory
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R, since rumpuser_free() will be passed A by the rump kernel for the ptr parameter
(and not P, i.e. the start of the allocated region). Allocating a region of size howmuch +
requested_alignment + sizeof(void *) satisfies this request.

The rumpuser library must also provide a primitive for anonymous memory map-
ping (but not file-based memory mapping). This is easy to implement in Barrelfish, since
libbarrelfish provides the vspace_map_anon_aligned() and vspace_map_anon_fixed()

functions which perform essentially the same thing. The only optimization is that in
order to ensure that even large chunks of virtual memory can be mapped, we try to al-
locate physical frames in sizes of decreasing powers of two until the allocation request
is fulfilled. We pagefault on each frame so it can be added to the memobj returned by
one of the vspace_map_anon_*() functions. rumpuser_unmap() is then just a wrapper
around vregion_destroy().

4.2.3 Files and I/O

Listing 4.2 shows the hypercalls related to files and I/O. Notice that many of the hyper-
calls are quite similar to POSIX calls. In fact, in the POSIX implementation, all of these
hypercalls are implemented using standard POSIX functions such as open(), close(),
read(), write(), fsync(), and stat() that are also available in the posixcompat li-
brary, meaning that these functions could all be copied verbatim from the POSIX im-
plementation. The only difficulty was that the posixcompat did not implement the
POSIX readv() and writev() calls (which are required for the rumpuser_iovread()

and rumpuser_iovwrite() hypercalls), so they had to be implemented to allow this ap-
proach to work. Because the approach is the same as the POSIX version, we will not
provide an extensive discussion here but advise the reader to consult the POSIX imple-
mentation in the NetBSD source tree under lib/librumpuser/rumpuser_file.c and to
read the rumpuser(3) manual page.

1 void rumpuser_putchar(int c);

2 void rumpuser_dprintf(const char *format, ...); // debug printf

3 int rumpuser_getfileinfo(const char *path, uint64_t *sizep, int *ftp);

4 int rumpuser_open(const char *path, int ruflags, int *fdp);

5 int rumpuser_close(int fd);

6 int rumpuser_iovread(int fd, struct rumpuser_iovec *ruiov, size_t iovlen,

7 int64_t roff, size_t *retp);

8 int rumpuser_iovwrite(int fd, const struct rumpuser_iovec *ruiov,

9 size_t iovlen, int64_t roff, size_t *retp);

10 int rumpuser_syncfd(int fd, int flags, uint64_t start, uint64_t len);

Listing 4.2: File and I/O hypercalls

4.2.4 Clocks

The hypervisor must provide two clocks to the rump kernel: one which provides wall
time, and one monotonically increasing clock (relative to some reference). According to
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the rumpuser(3) man page, if this is not possible, “the hypervisor must make a reason-
able effort to maintain semantics”. Listing 4.3 lists the relevant hypercalls.

1 int rumpuser_clock_gettime(int enum_rumpclock, int64_t *sec, long *nsec);

2 int rumpuser_clock_sleep(int enum_rumpclock, int64_t sec, long nsec);

Listing 4.3: Clock-related hypercalls

The two different types of clock are distinguished by the enum_rumpclock param-
eter. In our implementation, for simplicity, we do not make a distinction between the
two types This is a valid design choice because (1) for the rumpuser_clock_gettime()

hypercall, the POSIX implementation also does not make a distinction between the two
on some platforms and (2) for the rumpuser_clock_sleep() hypercall, what matters is
that the calling thread sleeps for a given amount of time, no matter the type of the clock.

4.2.5 Parameter retrieval

The rump kernel can be configured by a number of parameters which it can get using the
hypercall int rumpuser_getparam(const char *name, void *buf, size_t blen). In
the Barrelfish implementation, we support two parameters: RUMPUSER PARAM NCPU, the
number of virtual CPUs available to the rump kernel, and RUMPUSER_PARAM_HOSTNAME,
which returns a descriptive name for the rump kernel. For now, we always only use
one virtual CPU (since we are only running on one dispatcher, we cannot use multiple
physical cores anyway), and the hostname is set to rump-<dispatcher name>-<core

id>-<thread id>. There are further parameters (e.g. a parameter that regulates the
verbosity of the rump kernel’s output), but as these are not necessary for supporting the
core functionality of the rump kernel, we did not implement them.

4.2.6 Randomness

The rump kernel needs a way to obtain random bytes of data. The function
int rumpuser_getrandom(void *buf, size_t buflen, int flags, size_t *retp)

is responsible for this. It basically calls the libc function random() repeatedly until
enough randomness is generated.

4.2.7 Threads

As mentioned previously, the rump kernel manages its LWPs (kernel threads) through
hypercalls. The hypervisor must therefore provide primitives for (1) creating and de-
stroying threads, (2) joining threads, and (3) for managing thread-local storage (TLS).
The threading implementation is done using pthreads on Barrelfish, since this allows
the POSIX implementation to be closely followed (thereby reducing the chance of im-
plementation bugs), and pthreads also provide an easy way to manage TLS, as we will
see.

Creating, destroying, and joining threads is done through an interface very similar
to pthreads, as can be seen in Listing 4.4. The call for creating a thread takes some
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additional parameters that cannot be directly passed to pthread_create(), such as set-
ting a thread’s priority and whether it is joinable or not. In our implementation, setting
the priority is not supported, since there does not appear to be a simple interface for
doing so using pthreads on Barrelfish. The joinable bit simply specifies whether to
return the ID of the created thread in ptcookie and is easy to support. The cpuidx bit
is also ignored, since in our implementation, the rump kernel is only running over one
dispatcher and cannot support true multicore execution. rumpuser_thread_exit() and
rumpuser_thread_join() are just wrappers around pthread_exit() and pthread_join()

respectively.

1 int rumpuser_thread_create(void *(*f)(void *), void *arg,

2 const char *thrname, int joinable, int priority,

3 int cpuidx, void **ptcookie);

4 __dead void rumpuser_thread_exit(void);

5 int rumpuser_thread_join(void *ptcookie);

Listing 4.4: Rump kernel thread creation, deletion, and joining

The rump kernel requires two hypercalls to manage its TLS, as seen in Listing 4.5.
Rump kernel threads (i.e. LWPs) store their TLS in the form of a struct lwp. The mech-
anism we use for managing it is through pthread keys, which allow each pthread to
have their own chunk of memory to use for TLS. Upon initializing the hypervisor us-
ing rumpuser_init() (see Subsection 4.2.1), we issue a call to pthread_key_create(),
which sets up a key that each thread can use to access its TLS. The use of the library
functions pthread_getspecific() and pthread_setspecific() then allows easily set-
ting/getting the TLS, which is what is required by the calls in Listing 4.5.

1 void rumpuser_curlwpop(int enum_rumplwpop, struct lwp *l);

2 struct lwp *rumpuser_curlwp(void);

Listing 4.5: Rump kernel TLS management hypercalls

4.2.8 Mutexes

The rump kernel requires the hypervisor to provide three kinds of mutexes: (1) stan-
dard “lock/unlock” type mutexes, (2) reader-writer locks, and (3) condition variables.
We will describe the implementation of each of these three kinds in the following. In all
cases, the implementation again closely mirrors the POSIX implementation. This design
choice is particularly suitable for this part of the implementation, as bugs in this area
of the code are very difficult to find and debug and following the POSIX implemen-
tation provides some reassurance that the implementation is correct. Moreover, there
is no precise documentation on the multitude of hypercalls necessary to properly sup-
port the various mutexes, making a self-designed implementation difficult to get right
without thoroughly reading the POSIX implementation and understanding all the cor-
ner cases brought about by the use of various POSIX library functions. Pursuing an idea
set forth by Pravin Shinde in the previous implementation, we also replace pthread
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mutex types such as pthread_mutex_t with ones from the Barrelfish threading library
wherever possible, since the Barrelfish pthread implementation internally relies on the
Barrelfish threading library anyway.

1 struct rumpuser_mtx {

2 struct thread_mutex bf_mutex;

3 struct lwp *owner;

4 int flags;

5 };

Listing 4.6: The Barrelfish rumpuser mtx

Standard mutexes Standard “lock/unlock”
mutexes are implemented in the rump kernel
using an opaque (i.e., hypervisor-specified)
struct rumpuser_mtx. On Barrelfish, this
struct contains three fields, as seen in List-
ing 4.6. This allows easily implementing the
required features, namely initializing, acquir-
ing/releasing the mutex, and finding out who

owns the mutex. The implementation is mostly identical to the POSIX implementation,
with the exception that any calls related to pthread_mutexes are replaced by equivalent
calls using thread_mutexes. For example, by using the thread_mutex_trylock() func-
tion instead of the pthread_mutex_trylock() function, we are able to support blocking
on mutex acquisition by unscheduling the calling LWP from the virtual CPU if the mu-
tex is currently held by someone else.

Reader-writer locks Similarly to standard mutexes, reader-writer locks are implemented
using an opaque struct rumpuser_rw. On Barrelfish, this struct is defined identically
to the POSIX version, since we use have to use pthread_rwlock_ts because Barrelfish
does not natively provide reader-writer locks in its threading library. The code is there-
fore essentially identical to the POSIX implementation, just with some POSIX calls (e.g.
nanosleep()) replaced by (near-)equivalent Barrelfish ones (e.g. barrelfish_usleep())
and some system-specific #ifdefs removed. Because of the extreme similarity of the two
implementations, we will not provide a detailed description of the code here but instead
advise the reader to refer to the POSIX implementation, which is well-commented and
can be found in the NetBSD source tree under lib/rumpuser/rumpuser_pth.c.

Condition variables Once again, condition variables are implemented using an opaque
struct rumpuser_cv which contains two members: a host condition variable and a
count of the number of threads waiting on the condition variable. For this part, we can
use native Barrelfish thread_conds instead of pthread_cond_ts as a backend for the
implementation. We again follow the pattern of replacing the pthread_cond_t-related
calls in the POSIX implementation with equivalent Barrelfish thread_cond-related ones
and replacing the few POSIX calls with equivalent Barrelfish ones, and advise the reader
to refer to the POSIX implementation for a detailed description.

4.3 NetBSD PCI Drivers and the PCI Hypercall Library

While the above implementation of the rumpuser library is sufficient for running a broad
range of NetBSD OS components, running PCI drivers cannot be done using only the
rumpuser library, since PCI device drivers need access to their hardware devices. A
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considerable portion of time therefore had to be spent implementing the additional sup-
port necessary to accomplish this, which is why this section is specifically devoted to
PCI-related support routines. The task was made easier by the face that the rump kernel
supports PCI devices by using an undocumented, unnamed PCI hypercall library which
we have named pci_hyper for our implementation. This hypercall library contains the
hypercalls used by the rump kernel reimplementations of bus space(9), bus dma(9), and
pci(9) referred to in Subsection 2.4.7. In its default form, this hypercall library pro-
vides support for reading from/writing to PCI configuration space, performing port
and memory-mapped I/O, handling (legacy) interrupts, and doing non-scatter-gather
DMA. In addition, the PCI hypercall library was extended with hypercalls for initializa-
tion and supporting MSI-X interrupts, thereby allowing drivers to use pci msi(9).

4.3.1 Initialization and architecture

Currently, the pci_hyper library is limited to controlling one device at a time, which
means that a running rump kernel can only be running a device driver for one PCI de-
vice at a time. This is because doing so makes obtaining capabilities and device informa-
tion easy by using Kaluga to start a driver wrapper, which performs initialization and
starts the rump kernel (see Subsection 4.4.3), and Kaluga is only able to provide capabil-
ities and device information for one device at a time. However, further PCI devices can
be supported by starting multiple rump kernels, although using multiple instances of
the same driver module is not supported because the rump kernel internally uses many
static variables and because there can only be one rump kernel per address space.

The pci_hyper library expects to be initialized with a struct bfdriver_instance

(typically obtained through Kaluga; Subsection 4.4.3 will describe the typical process
for doing this). This bfdriver_instance contains all the necessary device memory and
interrupt capabilities as well as information about the PCI address of the device and
which types of interrupts it supports. It also contains a capability to connect to the
Barrelfish PCI server, which the PCI hypercall library makes use of upon initialization
to perform the connection to the PCI server.

Upon initialization, we also pass a flags bitmask (which currently only contains an
option to use polling instead of interrupts) and a waitset on which interrupts are dis-
patched.

4.3.2 PCI configuration space

The PCI hypercall library needs to support accessing PCI configuration space for sev-
eral reasons: (1) to perform the basic bus enumeration mentioned in Subsection 2.4.7,
(2) to provide support for the NetBSD PCI libraries which need to access the configura-
tion space for the implementations of various library functions (for example, the library
function for mapping device memory needs to read the BARs), and (3) to allow NetBSD
device drivers to access the configuration space of their devices, which may be required
for them to find out certain device-specific information.

The basic mechanism for reading from/writing to the configuration space is by using
RPCs to the PCI server. However, there are two issues which must be mitigated before
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making the RPC. First, NetBSD indexes the configuration space by byte offset, whereas
Barrelfish indexes it by 32-bit register offset, meaning we must convert the NetBSD off-
set to a Barrelfish offset by dividing by 4 (the NetBSD offset is always 4-byte-aligned,
so this does not cause any compatibility issues). Secondly, the rump kernel does not
initially know which device it must start drivers for, which is why it does a bus enu-
meration, which involves trying to read from the configuration space of all possible PCI
devices, but the specific device whose configuration space the PCI server reads from is
“hardwired” in the capability used while connecting to it. This means we must check
the PCI address whose configuration space is being accessed and only perform the RPC
if this address matches the address in the bfdriver_instance received upon initial-
ization. Otherwise, upon reads, we return 0xFFFFFFFF to tell the rump kernel that no
device that it should control is connected at that address.

4.3.3 Memory-mapped I/O

Memory-mapped I/O is one of the most important features the PCI hypercall library
must support, since this is the mechanism used by device drivers to configure and issue
commands to their devices. The PCI hypercall library implements a hypercall to map
device memory into the address space used by the rump kernel. This is easy because the
bfdriver_instance received upon initialization contains capabilities to map all of the
device’s BARs. The only complication is that the NetBSD driver does not know about
this and instead directly passes the address which should be mapped. We therefore
need to iterate over all the BAR capabilities to find the one which contains the right
address and then map it read/write/non-cacheable using Barrelfish’s VSpace mapping
functions.

4.3.4 Direct memory access

In order to support DMA, the PCI hypercall library must support four primitives: (1) al-
locating physically contiguous memory for DMA use, (2) freeing this memory, (3) map-
ping this memory into the rump kernel’s virtual address space, and (4) converting vir-
tual addresses to physical addresses.

Primitive (1) is easy to implement in Barrelfish. It is simply a matter of making use
of frame_alloc() to allocate a physically contiguous chunk of memory. We also follow
the model of the Linux implementation of this library by already mapping this frame
into the rump kernel’s virtual address space, since in almost all cases, the driver will do
this immediately afterwards anyway.

Primitive (2) is therefore also easy to implement. It can be accomplished by revers-
ing all the steps taken while allocating and mapping the memory, i.e. destroying the
mapping and frame.

Since we already map the memory while allocating it, the only thing that must be
implemented in primitive (3) is returning the mapping.

Primitive (4) is conceptually easy to implement, since Barrelfish theoretically pro-
vides mechanisms to find the physical address of a given virtual address by using
frame_identify() to find the base address of the frame the virtual address maps to
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and the lookup() function of the pmap to find the offset within that frame. However,
there appears to be a bug in the implementation of this lookup() function (at least on
x86 64) that causes it to almost always return 0. We work around this bug by using the
following property. Assume v to be the virtual address for which we wish to find the
corresponding physical address p. Let p0 be the base address of the frame v is mapped
to (obtained through frame_identify()). Assume v0 is the virtual address closest to v
that maps to the physical address p0. Then, assuming there is no address between v0

and v that also maps to p0, v− v0 = p− p0, i.e. the virtual and physical offsets within
the frame are the same.

We therefore use the algorithm presented in Listing 4.7 to discover v0 and recover
p by calculating p = p0 + (v− v0). This algorithm, starting at v, iterates backwards in
page-sized increments until it finds a virtual address that maps to a different frame or
until it finds an unmapped virtual address. This means that the previous iterate was
the virtual base address of the frame, i.e. v0. As an optimization, instead of executing
this entire algorithm every time we need to find the virtual base address of a frame, we
cache the already-found base virtual addresses in a linked list. This saves time because
executing frame_identify() several times means executing several system calls, which
is inefficient. Instead of performing the iteration, if the base virtual address for a frame is
already cached, we can just directly use it. In practice, the cache typically only contains
a few items (in the order of 10), so iterating over the linked list does not create too much
overhead.

1 algorithm virt to phys(v):
2 c← capability for frame v is in;

3 p0 ← frame identify(c);
4 v0 ← undefined;

5 for (vi ← v; v0 = undefined; vi ← vi − pagesize):

6 ci ← capability for frame vi is in;

7 pi ← frame identify(ci);

8 if pi 6= p0 or error occurred:

9 v0 ← vi + pagesize;

10 return p0 + (v− v0);

Listing 4.7: Virtual address translation workaround

4.3.5 Legacy interrupts

Many devices signal that events have occurred by issuing an interrupt. If interrupts are
enabled, they preempt whatever the processor is doing and the processor starts execut-
ing code for one or more handlers (or interrupt service routines) associated with that
interrupt. This preemption poses a challenge for our purposes because the rump kernel
cannot be preempted. In the following, we describe a method to handle interrupts by
scheduling the interrupt handlers onto a rump virtual CPU like any other rump LWP.

The PCI hypercall library keeps a linked list of struct irqs (see Listing 4.8) to keep
track of the interrupts it has to handle. If a NetBSD driver wants to register for an
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interrupt and receive interrupts, the execution flow is as follows (see Figure 4.2 for a
graphical depiction):

1. The NetBSD driver wants to register an interrupt and calls intr_alloc() with a
parameter designating the desired type of interrupt.

2. The rump kernel’s emulated version of the NetBSD PCI library internally makes a
hypercall to rumpcomp_pci_irq_map(), passing a unique identifier (cookie), which
creates a struct irq for the new interrupt and inserts it into the list of interrupts.
The emulated PCI library returns a handle to the interrupt (i.e. the cookie).

3. After a while, the NetBSD driver is ready to receive and handle interrupts, so
it calls intr_establish() with the previously returned handle and provides a
handler and pointer to a handler argument.

4. The emulated PCI library makes a hypercall to rumpcomp_pci_irq_establish().
This function finds the struct irq for the specified interrupt and associates the
handler and argument with it.

5. In the case of legacy interrupts, rumpcomp_pci_establish() creates a new thread
with the struct irq as its argument which will create a rump kernel thread con-
text for itself and then block on the condition variable inside the struct irq. The
original thread also registers an interrupt with the Barrelfish interrupt routing ser-
vice, and sets the handler for this interrupt to a function called intrhandler()

with the struct irq as its argument.
6. If an interrupt occurs, intrhandler() will lock the mutex inside the struct irq,

signal the condition variable to wake up the interrupt handling thread, and release
the mutex.

7. The interrupt handling thread unblocks, schedules itself onto a free rump virtual
CPU, executes the actual handler, unschedules itself, and blocks again.

1 struct irq {

2 int type; // Legacy, MSI, or MSI-X

3 unsigned cookie; // Unique identifier

4 int (*handler)(void *arg); // Interrupt handler

5 void *arg; // Argument to interrupt handler

6 struct thread_cond cond; // To signal if an interrupt arrives

7 struct thread_mutex mutex; // Mutex associated with cond

8 int msix_index; // Index in MSI-X table (only for MSI-X)

9 int msix_bir; // Index of BAR where MSI-X table resides

10 int intr_occurred; // 1 if interrupt occurred

11 struct irq *next; // Next irq in list

12 };

13

Listing 4.8: IRQ struct
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Figure 4.2: Diagram of interrupt allocation, establishment, and delivery.
The blue numbers correspond to the steps in the execution flow.

4.3.6 MSI-X interrupts

As many PCI devices nowadays can take advantage of the benefits of MSI-X (as dis-
cussed in Subsection 2.4.4), it makes sense to support them. However, by default, the
rump kernel does not emulate the necessary calls to support MSI-X (i.e. the pci msi(9)
interface). Therefore, we implemented extensions to the rump kernel PCI library and
extensions to the PCI hypercall interface to allow using MSI-X interrupts.

Extensions to the rump kernel PCI library

The rump kernel PCI library needed to be extended to support the pci msi(9) interface.
The relevant functions are implemented as part of the emulated PCI library, but in a
new file. Most of the functions cannot be implemented directly without support from
the hypervisor, so they are essentially wrappers around new hypercalls, which we will
introduce shortly. There are certain convenience functions that can be directly imple-
mented without hypercalls, such as intr_alloc(), which takes an array expressing a
list of types of interrupts (MSI-X, MSI, or legacy) in order of decreasing preference from
the driver and tries to satisfy the driver’s request to the best extent by calling various
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other functions from the pci msi(9) interface. Since the pci msi(9) interface contains
functions related both to MSI and MSI-X functions, we also use macros for conditional
compilation in case the host supports one type of interrupt but not the other, as is the
case in Barrelfish, which supports MSI-X but not MSI. By not specifying any of these
macros, the new interface is also fully backwards-compatible with the non-extended
version of the emulated PCI library.

Extensions to the PCI hypercall interface

A summary of the new hypercalls is presented in Listing 4.9. These are very similar
to the equivalent calls in the pci msi(9) interface. In addition to these, the hypercall
rumpcomp_pci_intr_establish() had to be extended to not only support establishing
legacy, but (in our case) MSI-X interrupts. To illustrate how a driver can use MSI-X
interrupts, we present an execution flow, referring back to the execution flow presented
in the case of legacy interrupts in Subsection 4.3.5 in case of identical behavior. The
execution flow is, in fact, very similar to that of legacy interrupts:

1. See step 1 of previous execution flow.
2. The emulated PCI library tries to satisfy the driver’s request by calling the function

for requesting the preferred type of interrupt. Assume that the driver prefers MSI-
X interrupts.

3. The emulated PCI library makes a hypercall to rumpcomp_pci_msix_alloc(), pass-
ing how many interrupts are to be allocated and unique handles (cookies) for each
of them along with the index of the BAR containing the address of the MSI-X table
(found in the MSI-X capability).

4. rumpcomp_pci_msix_alloc() allocates a struct irq for each of the interrupts
and inserts it into the list of interrupts. The emulated PCI library returns an ar-
ray of handles (cookies) to the allocated interrupts.

5. See steps 3 and 4 of the previous execution flow.
6. For MSI-X interrupts, rumpcomp_pci_establish() follows a similar process to

legacy interrupts. It uses Barrelfish’s MSI-X service to establish an MSI-X inter-
rupt with the same intrhandler() function as the handler and the struct irq as
the handler argument, which requires mapping the MSI-X table in the virtual ad-
dress space. It then creates a new thread for handling interrupts that does exactly
the same thing as the thread for legacy interrupts.

7. If an interrupt occurs, the same things happen as in steps 6 and 7 of the previous
execution flow.

Since supporting other types of interrupts is so straightforward, we also provide the
possibility to not use interrupts at all and instead use polling to execute the interrupt
handler at regular intervals. This mode can be activated by passing a flag to the PCI
hypercall library upon initialization and does almost the same thing as in the case of
legacy and MSI-X interrupts, except instead of the interrupt thread being unblocked
upon interrupts, it periodically schedules itself onto a rump virtual CPU, executes the
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interrupt handler, and then unschedules itself and sleeps for a while. This mode can be
used in case of unexpected behavior when using regular interrupts and for debugging.

Step 3 of this execution flow specifies that the emulated PCI library passes the hy-
percall library the index of the BAR containing the address of the MSI-X table. As we
saw in Subsection 2.4.4, this is stored in the MSI-X capability as the BIR. However, there
is currently a bug on Barrelfish where the capabilities to the BARs passed to PCI drivers
from Kaluga do not correspond to the actual BAR numbers if some of the BARs are BARs
to I/O space, which means that the BIR in the MSI-X capability may correspond to the
right BAR number in hardware, but not in the list of capabilities passed by Kaluga. A
concrete of example of this is the Intel 82574 (e1000e) network card, which has four BARs
[11, p. 264]: BAR0 contains the base memory address for performing memory-mapped
I/O, BAR1 is a flash BAR (a memory BAR), BAR2 contains the base I/O port address
for performing port-mapped I/O, and BAR3 contains the base memory address of the
MSI-X table. However, a PCI driver will receive the following capabilities from Kaluga:
BAR0 and BAR1 will correspond to the hardware versions and BAR2 will be the BAR for
the MSI-X table. Notice that the hardware BAR2 (an I/O BAR) is skipped, which messes
up the BAR numbering so that the MSI-X table, from a driver’s point of view, is at BAR2
instead of BAR3 as indicated by the BIR. Therefore, for the Barrelfish implementation of
the PCI hypercall interface, we cannot trust the BIR. We work around this by providing
a way to manually communicate the proper BAR number to the PCI hypercall interface
when it is initialized by means of a flag.

1 // Given a handle (cookie), determine which type (MSI-X/MSI/legacy)

2 // of interrupt is referred to by that handle

3 unsigned rumpcomp_pci_irq_type(unsigned cookie);

4

5 // Request one or more MSI interrupts

6 int rumpcomp_pci_msi_alloc(unsigned bus, unsigned dev, unsigned fun,

7 int *cookies, int count, int *retcount);

8

9 // Request one or more MSI-X interrupts

10 int rumpcomp_pci_msix_alloc(unsigned bus, unsigned dev, unsigned fun,

11 int bir, int *cookies, int count, int *retc);

12

13 // Cancel a request for an interrupt (typically used in case not

14 // enough MSI-X or MSI interupts could be allocated)

15 int rumpcomp_pci_irq_release(unsigned bus, unsigned dev, unsigned fun,

16 unsigned cookie);

Listing 4.9: New pci msi(9)-related hypercalls
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4.4 Integrating the Rump Kernel with Barrelfish

Now that we have seen how the rump kernel is implemented on Barrelfish, we need
a way to use the rump kernel seamlessly within Barrelfish. This entails the following
objectives:

Source tree and build system integration. The rump kernel uses a radically different
build system than Barrelfish. However, to make the rump kernel easier to work with in
Barrelfish, it is desirable to somehow integrate the two different build systems such that
the Barrelfish build system (Hake) can be “tricked” into executing the rump kernel build
system (buildrump.sh). In essence, the goal is to be able to provide the rump kernel as
a regular Barrelfish library that can be used as any other Barrelfish library, i.e. compiled
into the lib directory of the build tree and referenced in Hakefiles of other applications.
We accomplish this by means of shell scripts and custom Hake rules.

Barrelfish application integration. As stated in the introduction, one of the goals of this
thesis is to provide regular Barrelfish applications with a means to access the services of
NetBSD OS components. Since the rump kernel runs in the address space of one (and
only one) Barrelfish application, we need a way to share the services of a rump kernel
with other applications. Naively, one could just let each application desiring to use
NetBSD services start their own rump kernel, but this does not work. Consider the case
of device drivers: having multiple device drivers controlling a single device is a recipe
for disaster, and there is no easy way to provide a rump kernel with the capabilities to
arbitrary devices from within a regular Barrelfish application.

In this section, we will analyze how to achieve these two objectives to the highest
possible degree.

4.4.1 Source tree and build system integration

Before starting our discussion for this subsection, let us first present the general work-
flow when manually (i.e. without using Hake) compiling the rump kernel.

1. Clone the buildrump.sh repository, which contains the script needed to compile
the rump kernel.

2. Run the buildrump.sh script, which does the following:

(a) Clones a subset of the NetBSD source tree stripped of unnecessary userspace
utilities.

(b) Builds the tools to compile the rump kernel. This entails running some test
on the compiler provided in the CC environment variable.

(c) Invokes build.sh to build the rump kernel libraries.

3. If needed, copy the generated libraries to a suitable location.

For step 1, we provide the buildrump.sh repository as a git submodule in the Bar-
relfish source tree. This simplifies maintenance due to the fact that a git submodule
is linked to a specific commit of the buildrump.sh repository, and each commit of the
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buildrump.sh repository is linked to a specific version of the NetBSD sources. This
means that future commits to the buildrump.sh repository do not break the functional-
ity of the implementation discussed in this report, and future commits can be gradually
pulled in and tested for compatibility.

The general idea to automate step 2 is to write shell scripts to execute each of the
subitems 2a, 2b, and 2c by invoking buildrump.sh with the appropriate arguments. We
then write Hake rules which generate phony Make recipes that execute the shell scripts.
For the sake of convenience, each of the shell scripts checks to see if the subitems that
precede it have been executed and executes them if this is not the case.

However, there are a few issues which must be resolved before building the rump
kernel libraries, namely that a default run of buildrump.sh does not build any PCI-
related libraries and that we have made quite a few modifications to the rump kernel
sources (e.g. extending the emulated PCI library). The resolution to the former is to
edit the Makefile of the rump kernel’s PCI library, and the latter requires adding code to
various existing files and adding new files. We can solve both of these issues by using
git patches which are applied to the rump kernel sources immediately before building
the rump kernel libraries.

Step 3 is implemented by passing a flag to buildrump.sh to tell it where to put the
generated libraries. In this case, we pass the path to the lib directory of the build tree.

This approach is sufficient to satisfy our requirements of being able to use Hake/-
Make for building the rump kernel libraries and of being able to use rump libraries
in Hakefiles of other applications. However, one limitation is that changing the rump
kernel sources does not propagate down to applications using the rump libraries, i.e.
Make will not realize that a dependency of those applications has changed and needs
to be recompiled. However, in practice, changes to the rump kernel sources are infre-
quent enough that manually recompiling the libraries after source code changes is not
burdensome to the programmer.

4.4.2 Barrelfish application integration

As mentioned earlier, we need a way for Barrelfish applications to communicate with a
rump kernel running inside the address space of another application. In Subsection
3.2.1, we mentioned a mechanism for other applications on POSIX platforms to use
rump kernel services using BSD sockets and system call hijacking. Because Barrelfish
does not provide BSD sockets and because it does not support dynamic linking, these
features are unusable on Barrelfish. However, because Barrelfish is a multikernel, it al-
ready provides excellent primitives for inter-domain communication, as we have seen
in Subsection 2.1.4. We will see how we can use these to easily implement an interface
to allow full integration of rump kernels with Barrelfish applications.

As with the POSIX implementation, the interface we will expose to Barrelfish appli-
cations is the system call interface. The reason for this is threefold: first, regular applica-
tions on NetBSD would also use this interface to interact with the kernel and therefore
it is expressive enough to perform any required tasks, second, this interface is general
enough to be suitable for interacting with a broad range of OS components, and third,
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the system call interface is very stable and unlikely to change.
The implementation consists of two parts: a server part and a client part. Each of

them uses a Flounder interface to send messages to the other part. This Flounder inter-
face is basically just the system call interface translated into Flounder syntax. The client
exposes an interface nearly identical to the POSIX system call interface and translates
these into RPCs using the Flounder interface. The server receives RPCs from the client,
executes the relevant system calls on the rump kernel, and returns the result to the client,
which then returns it to the caller. In order to distinguish between different wrappers
responsible for different OS components and to allow clients to find the right server, the
server part registers itself with the name service using a unique name. This paradigm
is very similar to regular Barrelfish services such as the SKB, PCI service, or interrupt
routing service, which allows rump kernel components to be seamlessly integrated with
Barrelfish as first-class citizens of the ecosystem.

Despite the advantage of good integration, this approach does have some draw-
backs. The main one is that the large amount of system calls makes translating each one
to Flounder syntax very tedious, but the syntax of Flounder is not quite rich enough to
easily automate this task. One might think that a workaround would be to implement
the syscall(2) system call as an RPC to avoid defining each system call in Flounder, but
this does not work, as Flounder does not support passing arguments that could be ei-
ther integers or pointers to data. We illustrate the problem with an example: consider
the read(2) system call and the open(2) system call. The read(2) system call takes a file
descriptor (an integer), a path to a file (a string), and a parameter indicating how many
bytes to read (an integer). It then returns an integer indicating how many bytes were
read. The open(2) call takes a file path (a string), an integer representing some flags,
and an optional mode parameter used to determine the mode a file should be created in.
Here are the Flounder definitions for these two system calls:

1 rpc read(in int d, out uint8 buf[readbytes, 4096], in uint64 nbytes);

2 rpc open(in String path[4096], in int flags, out int fd);

These two system calls present the following challenges to automatic generation.
For read(2), the return value is the size of the returned buffer, whereas for open(2), it is
a regular integer. It is difficult to automatically decide based on the C interface what the
return value is and how to specify it in Flounder (as the size of a buffer or a separate
out parameter). Also, pointers to memory must be viewed as arrays of bytes (meaning
that a lot of ugly casting must be done by the client and server), and one must specify a
maximum size for this array, which can be difficult to do automatically. Finally, the mode
parameter is completely absent from the open() RPC, as (1) it cannot be inferred from
the C implementation, where it is hidden by the variadic declaration of the function (as
“...”) and (2) Flounder does not support variadic RPCs. Because of these difficulties, all
system calls must currently be implemented manually in the Flounder interface, server
part, and client part. Because this is a lot of monotonous work, only certain interesting
system calls related to files and sockets have been implemented. However, implement-
ing others if needed is easy.
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4.4.3 Putting everything together: rump kernel wrappers

Now that we have seen how the rump kernel is implemented and how other Barrelfish
applications can communicate with it, let us see how to provide a NetBSD OS compo-
nent to other Barrelfish applications. The idea is that the NetBSD component will be
provided as part of a rump kernel. A special Barrelfish application called a wrapper
will be responsible for initializing the rump kernel and any other necessary libraries. It
then uses the rump kernel server API to expose its rump kernel’s system calls to other
applications (of course, it can also define its own RPC interface in case the system call in-
terface is not sufficient). In the case of OS components that do not require any additional
capabilities, this is easy: just implement the wrapper and run it. For OS components that
need additional capabilities (in our case, PCI drivers), we need a method to provide the
capabilities. We use Kaluga for this.

Starting PCI driver wrappers with Kaluga

PCI drivers present two challenges: (1) they require capabilities to properly access their
devices and (2) they cannot be started if their corresponding device is not present in the
machine. We therefore need a mechanism to start wrappers for PCI drivers that solves
these two challenges. An obvious choice is Kaluga and Barrelfish driver domains/mod-
ules (as discussed in Subsection 2.1.6), since Kaluga automatically only starts driver
domains for devices that are present in the system and provides drivers with all the
necessary capabilities to their devices. This has the additional benefit that drivers run-
ning in the rump kernel are identical to regular Barrelfish drivers from the point of view
of Kaluga and other Barrelfish applications, making them first-class citizens of the Bar-
relfish ecosystem.

The architecture of a PCI driver wrapper is slightly different from a regular wrapper
because it must interact with Kaluga, dispatch interrupts, and possibly perform some
additional device configuration (e.g. use DHCP to obtain an IP address for network
card driver wrappers). As is typical for device drivers started by Kaluga, the wrapper is
structured as two parts: a driver domain and a driver module.

As usual, the driver domain is linked with driverkit and dispatches events on its
default waitset in order to communicate with Kaluga. In addition to this, the driver
domain also dispatches events on a separate interrupt waitset. The reason for this sep-
arate waitset is that when performing additional configuration within the driver upon
initialization (such as using DHCP), the driver may expect interrupts (e.g. for incoming
packets), but since it is still in the process of being initialized (i.e. the driver module
creation message from Kaluga is still being processed), no events are dispatched on the
default waitset and therefore, using the default waitset for dispatching interrupts in
such a situation results in a deadlock.

The driver module must implement all the necessary functions required by a driver
module, although all of them except the init() function simply return SYS_ERR_OK

without doing anything. The init() function is responsible for initializing the PCI
hypercall library with the appropriate struct bfdriver_instance (which it is passed
from Kaluga), bootstrapping the rump kernel, initializing the rump server API, and per-
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forming any other necessary configuration, as shown in Figure 4.3.
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Figure 4.3: Simplified diagram of driver start procedure

Finally, a new entry should be created in Barrelfish’s PCI device database device_db.pl
to make sure that Kaluga knows the wrapper provides a driver for a PCI device with a
specific vendor/device ID, similarly to native Barrelfish PCI drivers.
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Chapter 5

Performance Evaluation

In this chapter, we will attempt to evaluate the performance of the Barrelfish port of the
NetBSD rump kernel. It is important to note that code running in the rump kernel which
does not rely on hypercalls is running directly on Barrelfish just like a normal Barrelfish
application. Therefore, the only difference between such components running on an-
other host as compared to Barrelfish is the way the scheduling policy of the host affects
the execution order of the code. It is beyond the scope of this work to perform a detailed
analysis of how the scheduling policy of various operating systems affects the execution
time of non-hypercall-based OS components, but Kantee’s The Design and Implementation
of the Anykernel and Rump Kernels [12] mentions that using a rump kernel-based network
stack (which uses very few hypercalls except at the bottom of the network stack) as the
backend for the Firefox web browser results in no perceptible loss of performance for
day-to-day browsing. Instead, we will focus on those OS components that rely on host-
specific hypercalls to perform their tasks, which entails measuring the performance of
various hypercalls and attempting to establish which of them may be bottlenecks. Due
to a lack of time and for reasons documented below, not all of the hypercalls were ex-
tensively benchmarked. In addition, we were unable to perform benchmarks related to
the network stack, since there is currently a bug that makes the network stack unusable
on real hardware (although it works in QEMU). However, since the network stack uses
very few hypercalls beyond those performed at the network card driver level, we do
not expect its speed to differ significantly from the speed of implementations on other
platforms.

5.1 Storage Overhead of PCI Driver Wrappers

Let us commence by analyzing the difference in binary size between native Barrelfish
drivers and equivalent ones provided by the rump kernel. Since drivers using a rump
kernel must contain a non-negligible portion of the NetBSD kernel within their binaries
due to the fact that Barrelfish is statically linked, almost any driver using a rump kernel
will be bigger than an equivalent native Barrelfish one. The precise amount of NetBSD
kernel code required to be included in the binary depends on how many and which
components are required to allow the driver to run and be used.
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As an example, we consider the driver for the Intel e1000 network card, since there
is a native Barrelfish driver available for it and it is also a large, complex driver that
requires several rump kernel components to be able to be run and used properly. The
rump kernel-based version of this driver must contain components necessary for the
driver itself and for the network stack1, since there is no easy way to communicate with
the driver other than going through the network stack at the system call level. Because
each wrapper must include several components, but the linker is able to save space by
removing any unnecessary symbols, it cannot be predicted based on the sizes of the
individual components how big a wrapper is going to be. For example, the static library
for the rump kernel base is over 13 MB (13’125’228 bytes) in size, but the wrapper for
the e1000 driver, which contains many more components than just the base, is only 6.99
MB (6’994’576 bytes) in size. For comparison, the native Barrelfish driver is 2.74 MB
(2’738’320 bytes). As expected, the rump kernel-based driver is larger, but surprisingly
not excessively so, considering the rump kernel driver packs a complete basic network
stack in addition the NetBSD e1000 driver, which is significantly more feature-rich than
the Barrelfish one. We can conclude that if the number of components linked into a
wrapper is kept minimal, rump kernels are typically small enough that the additional
size of the wrapper binaries is kept within very reasonable bounds.

5.2 Performance of the rumpuser Hypercalls

In Section 4.2, we discussed eight categories of hypercalls for the rumpuser library: ini-
tialization/termination, memory allocation, files and I/O, clocks, parameter retrieval,
randomness, threads, and mutexes. Some of these categories, such as parameter re-
trieval and randomness, are used very infrequently by the rump kernel and therefore
benchmarking and optimizing them has little benefit. Most of the hypercalls are very
primitive and are direct wrappers for primitives offered by the host, so benchmarking
them would be equivalent to benchmarking the host. Examples of this are the hyper-
calls for memory allocation (especially rumpuser_malloc(), rumpuser_anonmmap() is
not actually used by any components tested as part of this work), files and I/O (the
posixcompat functions we use for this part are themselves wrappers around equiv-
alent functions of Barrelfish’s VFS layer), and threads. The hypercalls in the mutex
category are combinations of wrappers around host mutexes and pre-optimized, host-
independent algorithms also used in the POSIX implementation.

It is also worth noting that many of these hypercalls are directly used to implement
equivalent functions inside the rump kernel. For example, the rumpuser_malloc() call
is directly used to implement NetBSD’s kmem_alloc() (kernel memory allocator) func-
tion. Benchmarking such rump kernel functions is therefore equivalent the benchmark-
ing the hypercalls, which in turn is equivalent to benchmarking host primitives. The
only hypercalls which do not fall under this category are the ones for initialization and
for file I/O. Therefore, it is interesting to see how much overhead is incurred by using

1List of factions and components: rump, rumpuser, rumpnet, rumpdev, rumpvfs, rumpnet net,
rumpnet netinet, rumpnet netinet6, rumpnet config, rumpdev bpf, rumpdev pci, rumpdev pci hyper,
rumpdev miiphy, rumpdev pci if wm
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components that use these hypercalls compared to doing the same thing on Barrelfish.

5.2.1 Initialization

To test how much overhead is incurred by an application initializing the rump kernel in
its address space, the execution time of rump_init() was tested with various different
configurations using different factions and components. Figure 5.1 shows the results.
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Figure 5.1: Execution times of rump init() using several different configurations

Here, the base configuration is the rump kernel base without anything else linked
in, the base+net configuration includes the net faction, the base+vfs configuration in-
cludes the vfs faction, the base+vfs+dev faction includes the dev and vfs factions (there
seems to be a bug in the rump kernel that causes the dev faction to require the vfs fac-
tion), the base+all configuration includes all the factions, the dev random configuration
includes the vfs and dev functions as well as a component for the Unix /dev/random

driver, the FAT configuration contains the factions and components necessary for sup-
porting the FAT filesystem (base, vfs, dev and two other components rumpdev_disk

and rumpfs_msdos), and the basic network stack configuration contains all the com-
ponents necessary for a network stack that supports TCP/IPv4 and IPv6 (base, net,
and four other components rumpnet_net, rumpnet_netinet, rumpnet_netinet6, and
rumpnet_config).

As expected, the more components we add into a rump kernel, the longer it takes
to initialize them. It is particularly noteworthy that initializing the vfs faction seems
to take much more time than the other two factions, and initializing various network
protocols also takes a lot of time compared to initializing basic drivers for dev_random
and the FAT filesystem.

5.2.2 File I/O

It was previously mentioned that file I/O does not directly use the relevant hypercalls.
This is because the rump kernel implements its own VFS layer, so performing operations
on a file on the host requires going through the VFS layer of the rump kernel as well as
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the VFS layer of the host. Table 5.1 and Figure 5.2 show how much overhead is incurred
by going through two VFS layers.

Table 5.1: Execution times for opening files

Barrelfish VFS Rump kernel VFS Both VFS layers
time for open() (µs) 10 18 212
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Figure 5.2: Execution times of file read/write operations on rump kernel vs. Barrelfish

We can see that for opening files, remaining within only one VFS layer (of either
Barrelfish or the rump kernel) incurs similar overheads, although this must be taken
with a grain of salt because the underlying file systems are not the same in each case
(on Barrelfish, we open a real file, whereas we open the /dev/random pseudo-device on
the rump kernel). However, going through both VFS layers incurs a large amount of
overhead, far more than simply the sum of the overheads of both VFS layers. This may
be due to the fact that the rump kernel is using a special file system2 to access files on
the host which incurs its own overhead.

For reading and writing files, we refrain from using only the rump kernel VFS layer
because, as mentioned earlier, it cannot directly be compared to the Barrelfish VFS layer.
We see that for reading host files from the rump kernel, there is a fairly constant over-
head corresponding to the time necessary to traverse the rump kernel VFS layer. For
writing host files, the overhead depends on the amount of data written. This could be
an indication that the rump kernel VFS layer performs its own copying of the data before
executing the hypercall to the Barrelfish VFS layer.

5.2.3 Conclusions

We are able to conclude that rump kernel initialization is negligible for most applications
(less than 50 ms), meaning that users should not see a significant difference in launch
time between applications that use a rump kernel and applications that do not. We
can also see that applications that execute components that stay within the rump kernel
or only use hypercalls (such as rumpuser_malloc()) that directly implement NetBSD
kernel routines should not incur significant overhead. However, attempting to control

2The Extra-Terrestrial File System (ETFS), see rump etfs(3)
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host resources such as files from a rump kernel incurs some overhead and should be
avoided if possible.

5.3 Performance of the PCI Hypercalls

Using host files from a rump kernel incurs some overhead, but can the same be said
about host devices? This is clearly not the case, as our implementation discussed in
Section 4.3 allows the rump kernel access devices directly, almost completely bypassing
the host. Only interrupts must be routed through the host kernel to the rump kernel.
In the following subsections, we review and assess all possible sources of additional
overheads.

5.3.1 Initialization

One area that may incur overhead is initialization of PCI devices drivers. In Subsection
2.4.7, we discussed that the rump kernel performs a bus enumeration to discover devices
and start drivers. Figure 5.3 shows how long it takes to initialize various rump kernels
containing support for PCI and other components.
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Figure 5.3: Execution times of rump init() for rump ker-
nels using the PCI component

In Figure 5.3, the vfs+dev+pci config-
uration describes a configuration with the
rump kernel base, vfs and dev factions,
and the PCI component. The pci+basic
network stack configuration is the same,
but with the same basic network stack as
in Subsection 5.2.1, and the e1000 con-
figuration adds a component for a driver
for the Intel e1000 network card. We
can see from the execution time for the
vfs+dev+pci configuration that the PCI
bus enumeration does not add a signifi-
cant amount of overhead compared to just
using the vfs and dev factions. Adding the network stack adds the expected amount of
overhead, but adding the e1000 driver adds a significant amount of overhead. This is
most likely due to the fact that the e1000 is very complex and initializing it requires
accessing the device registers several times as well as establishing an interrupt routine.

5.3.2 Direct memory access

Subsection 4.3.4 discussed hypercalls for allocating, mapping, and freeing DMA mem-
ory as well as translating virtual addresses to physical addresses. The first three hy-
percalls directly use Barrelfish’s facilities and are typically only used when the driver
is initializing, and it therefore makes little sense to test them. The latter is used very
frequently, and Kent McLeod mentions in his bachelor’s thesis [17] that optimizing this
hypercall in the seL4 implementation of the rump kernel led to significant improve-
ments in efficiency of the network stack. The Barrelfish implementation has the unfor-
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tunate circumstance that due to a bug in the pmap lookup() function, we have to use
the workaround presented in Listing 4.7. To evaluate the efficiency of this hypercall, we
compare three approaches: (1) the initial approach using the pmap lookup() function
that could not be used due to the bug (referred to as the optimal approach), (2) the ap-
proach presented in Listing 4.7 (without caching, referred to as the naive approach), and
(3) the same approach with caching (referred to as the cached approach).

Table 5.2 shows the average execution time for a single lookup. For the cached ap-
proach, we consider the execution time on a cache miss and on a cache hit.

Table 5.2: Execution times for virtual address translation using various approaches

optimal naive cached (cache miss) cached (cache hit)
Execution time (µs) 0.64 100.90 102.14 0.48

The optimal approach requires a single system call and a call to the lookup() func-
tion, which is comparable to the cached approach with a cache hit, which performs a
single system call and a cache lookup. On a cache miss, the cached approach is simi-
lar to the naive approach (in fact, slightly worse because it must also perform a cache
lookup). Both the cached (cache miss) and naive approaches are much worse than the
optimal approach. The hope is that the cached method will have minimal cache misses,
making it comparable to the optimal approach. We validate this by measuring the aver-
age execution time for several translations. The data is generated by malloc’ing several
addresses and performing address translation on all of them, similarly to what happens
when using the network stack with the e1000 driver.
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Figure 5.4: Execution times for several translations. The plot on the left shows the cached and naive approaches
compared to the naive approach. The plot on the right compares the cached and optimal approaches. The numbers next
to the cached values represent the size of the cache.

Figure 5.4 shows that, as expected, the naive approach is several orders of magni-
tude slower than the cached and optimal approaches. The execution time of the cached
approach (with a mix of cache hits and cache misses) is slightly slower than the optimal
approach, but kept within reasonable bounds. The size of the cache is equal to the num-
ber of cache misses, so we can see that the number of cache misses for most scenarios
is kept fairly small even for large amounts of translated addresses, as stated in Subsec-
tion 4.3.4. Besides cache misses, a reason why the cached approach is still slower than
the optimal approach is that the cache must be safe against concurrent use by multiple
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rump kernel LWPs, so it must be protected with a mutex. One optimization would be to
use reader-writer locks to protect the cache, since it is very seldom updated. However,
there was no time to test this idea.

5.3.3 Interrupts

Especially for interrupt-intensive devices such as network cards, it is important that the
interrupt handling latency be kept small to increase performance. A potential source
of overhead is that interrupts must be routed from the host kernel to the PCI hypercall
library and then scheduled onto a rump virtual CPU. We therefore measure the time
between the instant the interrupt arrives from the host kernel at the PCI hypercall library
and the instant the rump kernel interrupt handler is called. There was not much time
to take a large amount of measurements, but the measurements that were taken (of
which some examples are shown in Table 5.3) demonstrate that this overhead is typically
around 5 ms, but could be larger, presumably due to either the interrupt handler thread
not being scheduled in a timely fashion or the fact that no virtual CPU was available.
One way to attempt to reduce this would be to provide the rump kernel with more
virtual CPUs, but due to time constraints, this was not tested.

Table 5.3: Some samples of measured interrupt latencies

Times in ms
5.83 11.97 5.63 5.60 5.61 5.62 27.47 12.00 5.63 5.60 5.60 5.64
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Chapter 6

Limitations and Future Work

We have shown a working and complete implementation of the rump kernel on Bar-
relfish. However, several limitations exist and much could be improved and extended.
In this chapter, we will review the implementation and demonstrate these limitations as
well as discuss possible extensions.

More in-depth performance evaluation Due to a lack of time, we have only performed
very basic benchmarks of the rump kernel. To gain a deeper understanding of the effi-
ciency issues, it would be necessary to perform more in-depth benchmarks. This would
allow identifying bottlenecks and fine-tuning the hypercalls to avoid them as much as
possible. In fact, a more in-depth performance evaluation may even reveal that the ap-
proach we have taken to follow the POSIX implementation as closely as possible when
implementing the rumpuser hypercalls (for the sake of correctness) is a huge perfor-
mance drain on Barrelfish. Moreover, a detailed performance evaluation would provide
a more in-depth understanding of how what could be considered a POSIX compatibility
layer performs on Barrelfish.

Fix bugs with RPCs There is currently an unresolved bug where using RPCs to com-
municate with a rump kernel through system calls sometimes causes interrupts to com-
pletely stop arriving. Since using RPCs to communicate with rump kernels is an impor-
tant aspect of being able to use NetBSD OS components on Barrelfish, fixing this would
be an important part of future work and is a major limitation of the current implemen-
tation.

Fix bugs on real hardware There is another unresolved bug related to using network
drivers and the network stack while using real hardware (it works fine on QEMU).
When trying to communicate over a network through a gateway, the bug causes the
ARP reply from the gateway to not be recognized by the network stack, although the
driver receives the packet, which means that no packets can be sent. MSI-X interrupts
also currently do not work on real hardware, although this is likely a limitation of the
Barrelfish MSI-X service and not specific to the rump kernel. Also, more testing on real
hardware would be beneficial, since there was not much time to do this.
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Testing of other drivers and OS components The work done on the rump kernel
in this thesis placed a heavy focus on network card drivers. While those now seem to
be working properly, more testing of other types of PCI drivers is needed in order to
verify that the PCI hypercall implementation as well as the current architecture of PCI
driver wrappers work correctly for their intended purposes. Testing other types of OS
components would also be a good test of the rumpuser hypercall interface. Due to time
constraints and since there are a very large variety of different drivers and OS compo-
nents available for NetBSD, testing a multitude of different drivers and OS components
was not feasible within the time allotted for this project.

Decouple network stack from network card drivers The rump kernel provides a mech-
anism (the virtif interface) to use the NetBSD network stack, but actually send out
packets over the network using the host’s facilities. Currently, it is impossible to use the
NetBSD network stack without also using a NetBSD network card driver. Implementing
the virtif interface would therefore allow decoupling the network stack from NetBSD
network card drivers and using it as a drop-in replacement for the current Barrelfish net-
work stack, which would be an interesting feature to have on Barrelfish, especially con-
sidering that the NetBSD network stack is more feature-complete, more heavily tested,
and more heavily fine-tuned and optimized than the current lwIP-based network stack.

Decouple network card drivers from network stack The inverse decoupling, i.e. de-
coupling NetBSD network card drivers from the network stack, would also be interest-
ing, since it would allow using the native Barrelfish network stack together with NetBSD
drivers instead of having to use the Barrelfish network stack for Barrelfish drivers and
NetBSD network stack for NetBSD drivers. Unfortunately, this is not as easy as decou-
pling the network stack from network drivers. Since NetBSD network card drivers rely
on certain link-layer functions in the NetBSD network stack, doing this would involve
emulating those link-layer functions while also presenting an interface compatible with
the Barrelfish network stack.

Add more system calls to Flounder interface As mentioned in Subsection 4.4.2, only
certain interesting system calls related to file I/O and BSD sockets were implemented
using the Flounder-based RPC mechanism. Interacting with arbitrary NetBSD OS com-
ponents would require implementing all or most of the NetBSD system calls as RPCs.

Support for multiple drivers per rump kernel Another feature that would be useful to
have is the ability to run multiple PCI drivers within a single rump kernel. This would
be more efficient compared to running a separate rump kernel for each driver, although
it does come with the drawback that a crash of the rump kernel would affect all the
drivers running in it. This is currently not possible because Kaluga only hands us ca-
pabilities for one device and always starts one driver domain per device. This would
be particularly useful in case there are multiple copies of the same device installed in a
system. For example, using a rump kernel-based driver on many of the ETH Zürich Sys-
tems Group’s machines currently results in an error, since they contain multiple e1000
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network cards and the rump kernel-based driver does not support multiple instances of
the driver module.

Support scatter-gather DMA The current version of the PCI hypercall interface does
not support scatter-gather DMA. This means that devices and device drivers that rely
on this function cannot be used on the rump kernel. It is therefore in the interest of
compatibility with a broad range of PCI devices and device drivers to extend the PCI
hypercall library to support this.

Support devices using I/O BARs It is currently not possible to use PCI devices whose
BARs only point to I/O space. However, this is not a limitation of the rump kernel or
PCI hypercall interface but a limitation of Barrelfish’s PCI support. There is currently no
method to get capabilities for specific I/O ports in Barrelfish and Kaluga does not pass
drivers capabilities to I/O port BARs. This is especially important for supporting legacy
devices that do not support memory-mapped I/O.

Port Rumprun to Barrelfish Another interesting item of future work would be to port
the Rumprun framework [13] to Barrelfish, which would allow running unmodified
POSIX applications on top of a rump kernel running on Barrelfish. This is especially
interesting considering the wide availability of POSIX software as opposed to Barrelfish
software and since the main building block (the kernel itself) is already ported. Further-
more, it would interesting to compare this approach with other approaches currently
available on Barrelfish, e.g. Graphene [32].

Support for multi-dispatcher rump kernels The rump kernel is currently limited to
running on a single core and cannot take advantage of parallelism to speed up tasks.
Modifying the implementation to run within a single domain but over several dispatch-
ers would therefore be an interesting extension potentially leading to large increases in
efficiency of the rump kernel.
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Chapter 7

Conclusion

The goal of this thesis, as presented in the introduction, was to port the NetBSD rump
kernel to Barrelfish in order to support running a broad range of NetBSD OS compo-
nents on Barrelfish which can be integrated into the Barrelfish ecosystem. We saw how
this goal can be achieved by implementing two sets of hypercalls: the rumpuser hy-
percalls, which provide the main support for the rump kernel, and the PCI hypercalls,
which provide support specifically for running NetBSD PCI drivers on Barrelfish.

The rumpuser implementation was heavily inspired by the equivalent implemen-
tation for POSIX platforms in order to provide some measure of insurance that the
rump kernel operates as expected on Barrelfish. We illustrated how using Barrelfish’s
posixcompat library enabled us to reuse large portions of the POSIX implementation,
sometimes even without modification. Where needed, implementations were also pos-
sible using functions and libraries equivalent to POSIX libraries.

The PCI hypercall implementation was made particularly easy by the fact that all
drivers in Barrelfish run in userspace. By using the capabilities provided to us by Kaluga
and the functions provided to all PCI drivers by various Barrelfish services, we were eas-
ily able to implement all the required features and were even able to extend the hypercall
library to provide support for MSI-X interrupts.

We also saw how regular Barrelfish applications could interact with rump kernel
components. We discussed a client/server, Flounder RPC-based interface which pro-
vides Barrelfish applications with easy access to the NetBSD system call interface, which
should in theory grant them the same abilities as applications running on a regular
NetBSD system. Furthermore, we mentioned how wrappers could be used to encap-
sulate NetBSD OS components inside regular Barrelfish applications, and demonstrated
which special features were necessary in the case of wrappers for PCI device drivers to
have them started automatically by Kaluga.

Finally, we saw how the current implementation has some bugs and has the poten-
tial to become even more powerful if additional work is invested in implementing new
features.

However, all in all, we would say that the goal of this thesis has been met and a solid
foundation for using NetBSD OS components on Barrelfish has been laid.
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