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Chapter 1

Introduction

Concurrency is one of the keywords of the last years, regarding hardware
and software for Network Interface Cards (NICs). The increasing number
of applications accessing the card, can lead to low performance with tradi-
tional NICs that offer only a single hardware queue. Following the trend of
increasing the core count, hardware designers of modern high-performance
cards raise the number of queues that can send and receive, opening up sev-
eral possibilities on how to assign them to applications. One of the most
promising options is the dedication of a hardware queue to an application.
Additionally to the increased queue count, features like TCP offload, virtual-
ization extension etc. were introduced to reduce the load onto the cores and
improving isolation for applications using the network. Having such complex
cards leads to a trend to remove the operating system from the datapath and
giving applications more flexible ways to use the network.

As a basis for this thesis a high performance card, in particular the So-
larflare SEN5122F dual-port 10GbE server adapter, is used to investigate
the benefits regarding performance and isolation on the Barrelfish operating
system. In this project, a driver for the Barrelfish operating system was
developed. Currently there is a large effort around Barrelfish to make a step
forward from traditional operating system structure that still have single
queue NICs in mind and building an infrastructure to manage today’s high
performance network cards.



Chapter 2

Related Work

There is not much research into the direction of resource dedication, but
still a lot of research is targeting the efficient use of hardware resources and
features to not let them go to waste. Looking at what modern network
cards are capable of today, having multiple hardware queues and also more
functionality in these queues, software seems to be lacking somehow. There
are a lot of different approaches to use hardware resources more efficiently.
First of all, there are the user-level approaches to networking that may reduce
latency tremendously. Further, ideas were introduced to offload functionality
to the network card or the reverse strategy by onloading more onto the CPU.
Additionally, a lot of concepts were presented in respect to how the operating
systems needs to be built up, to efficiently implement network protocols.

2.1 User-level networking

2.1.1 Arsenic

Arsenic [13] is a Gigabit Ethernet NIC which exports an extended interface to
both the operating system and application. The NIC implements functions
that demultiplex packets (based on filters) and provides memory protection.
Through transmit traffic shaping and scheduling mechanisms it is possible to
control the bandwidth for each application. All the functionality provided
by the NIC, enables applications to send and receive packets without the
operating system’s interaction.



2.1.2 Xok/ExOS’s application-level networking

In the paper "Fast and Flexible Application-Level Networking on Exokernel
Systems" [5] Ganger et al. describe the Xok/ExOS’s exokernel [4] system
and their approach to networking. The main idea is to reduce the abstraction
i.e. FreeBSD sockets and give more flexibility to the application to specialize
how the network is used. As a result, applications have an increased inclusion
in the process of sending and receiving data.

2.1.3 The Packet Filter

Having networking protocols implemented in user space can lead to an over-
head compared to a kernel implementation. Mogul, Rashid and Acetta [12]
believe that the key to a good performance is the mechanism used to de-
multiplex packets to user applications. In their early paper they describe
the Packet Filter, a packet demultiplexer in the kernel with the aim to re-
duce system calls and context switches and improve the performance using
a user-level implementation of networking protocols.

2.2 OffHoading

The more complex NICs get, the more functionality can be offloaded from
the CPU to the NICs. Even the most rudimentary cards support offloading
features like verifying checksums. One of the most controversial topics in
regard to offloading is a TCP offload engine [11], short TOE. In order to
reduce CPU utilization, the TCP/IP network stack processing is moved to
the network card. It is called a full TCP offload if also the connection
management is maintained by the TOE.

2.2.1 NICOS

As far as offloading goes there are actually attempts to modify or replace the
operating system of a programmable high-end NIC [22], so that the resources
given by the NIC can be used directly by an application. In this manner,
applications can directly give tasks to the NIC and use the onboard CPU to
increase performance. As a part of NICOS Weisenberg et al. implemented
a scheduler that can preempt tasks running on the NIC.



2.3 Operating system architecture

2.3.1 x-Kernel

The x-Kernel [6] is an operating system kernel tailored towards efficient con-
struction and composition of network protocols. It defines three primitive
communication objects: protocols, sessions and messages. Each of the pro-
tocol objects describes a network protocol e.g. TCP, UDP. The relationship
between protocols is defined when the kernel is configured. Session objects
contain an instance of a protocol object and other data structures that rep-
resent the state of a network connection. Messages represent the protocol
headers and the user data that is required by the session and protocol ob-
jects.

2.3.2 Dragonet

As a part of Barrelfish, Dragonet [17] is developed. Having modern NICs in
mind, Dragonet is trying to allocate and dedicate hardware resources based
on a Physical Resource Graph (PRG). The PRG lets the operating system
reason about abilities of the card. The second critical part of Dragonet is
the Logical Protocol Graph (LPG). Similar to the x-Kernel [6], the network
stack is seen as a graph of protocol operations. Using the PRG and LPG,
Barrelfish can get the global view of the systems state that is missed in other
operating systems.



Chapter 3

Background

3.1 Barrelfish

Barrelfish [2] is a research operating system built from scratch to explore how
the structure of operating systems need to be changed to efficiently use multi-
and many core systems. It is based on a multikernel approach. Each core
runs a so called CPU driver (or kernel) in privileged-mode and an user-mode
monitor process. Because Barrelfish is based on a shared nothing architecture
the different CPU drivers do not share any state. Communication is based on
message passing and thus the system itself can be seen as a network of cores.
Through the multikernel architecture, Barrelfish can support heterogeneous
systems.

3.1.1 Capabilities

Following the microkernel [10] philosophy and thus reducing the functionality
of the kernel to a minimum, Barrelfish uses a capability [18] approach for
managing memory and system resources. In other words, not only does user
space allocate and manage memory for their own objects, but for the kernel
as well. Operations on capabilities are carried out by a system call to the
CPU driver.

3.1.2 Inter-dispatcher communication

Similar to L4 kernel’s IPC [9], Barrelfish uses inter-dispatcher communica-
tion or short IDC [1] to implement communication between different services
and applications. IDC is based on message passing. The message format can



be defined and thus the number and type of arguments can vary. The possi-
bility to transfer capabilities enables the sharing of memory regions. Various
forms of communication are realized by using different back ends. The main
criteria for choosing the back end is based on the cores that the services or
applications are running on. If they are running on the same core (core-local
communication), the local message passing (LMP) back end is used. Com-
munication between dispatchers (kernel threads) on different cores is handled
by the user-level message passing (UMP), which is based on sharing memory
regions mainly in user space. In order to establish a connection that the two
dispatchers can communicate, a process called binding is required. Binding
basically assigns an object to each of the endpoints of the communication
channel. For the binding itself, objects called interface references (or iref)
are obtained by using a name service query so each service can be identified.
As a result of the binding process an object is returned that represents the
interface exposed by the service. If one of these functions of the interface is
called, the opposite endpoint responds to the call based on which function
was used.

3.1.3 Network architecture

As in exokernel [4] or microkernel systems, Barrelfish has most of the net-
work functionality provided by an user space networking library (IwIP [3]
for Barrelfish). Building on the services provided by IwIP, netd (networking
daemon)|14| is responsible for running DHCP, thus getting an IP address for
the NIC. Netd also handles ARP lookups and the traffic which no other ap-
plication is responsible for. For each network device an instance of the device
manager is running. The device manager is responsible for the port man-
agement, which includes software filters and if supported hardware filters.
Additionally, the driver starts for each hardware queue a queue manager by
calling its main function (ethersrv_init()).

LwIP

LwIP is a lightweight implementation of the TCP/IP stack and is currently
used by Barrelfish. LwIP not only supports TCP and UDP but also a bunch
of other protocols like DHCP, DNS, ARP and ICMP. The client side supports
the well known BSD socket interface and two lower level APIs for integrat-
ing applications more with the TCP/IP code. To receive/send packets the
application and netd connect to lwIP. Internally lwIP uses pbufs to repre-
sent the memory used for receiving and sending. Normally the pbufs would



have a size of 1600 bytes but due to the current implementation the buffers
have a size of 2 KB. The service that provides the functionality, is running
in user space and thereby in combination with Barrelfish a good basis for
enabling an easy implementation of user-level networking when compared to
Linux/FreeBSD. As an example, for the SEN5122F user-level networking is
implemented through OpenOunload [19]. To provide a working solution for
Linux they implement the network protocol stack themselves [15] and run it
in user space.

Device manager

For each NIC an instance of the device manager is running. The device
manager is responsible for managing application access to ports, software
and hardware filtering (if supported by the card). The type of filtering i.e.
hardware or software can be chosen through an argument given to the device
manager. If more than one hardware queue is allocated, the device manager
has an argument called "totalqueues” that is required. The important parts
of the interface for software filters are described in listing 3.1.

There are two types of filters: ARP and port filters. Currently hardware
filters use a similar interface format but exposed by the card. To imple-
ment hardware filtering two parts are needed: a hardware specific part in
the driver and a part that communicates from the device manager to the
driver.



interface net_soft_filters
"Software based filter Interface" {
call register_filter_request(uint64 id,
uint64 len_rx,
uint64 len_tx,
uint64 buffer_id_rx,
uint64 buffer_id_tx,
uint64 filter_type,
uint64 paused);
response register_filter_response(uint64 id,
errval err,
uint64 filter_id,
uint64 buffer_id_rx,
uint64 buffer_id_tx,
uint64 filter_type);

call register_arp_filter_request(uint64 id,
uint64 len_rx,
uint64 len_tx);

response register_arp_filter_response(uint64 id,
errval err);

call deregister_filter_request(uint64 filter_id);
response deregister_filter_response(errval err,
uint64 filter_id);

Listing 3.1: Interface exposed by device manager

Netd

Netd is normally started at boot time. It is responsible for the setup and
maintenance for networking. There is only a single instance of the netd
service. Netd connects to all device managers and their shared queues and
runs DHCP on them. Furthermore, for each NIC an ARP cache is maintained
to run ARP lookups if requested by an application. If there is no application
responsible for a packet, it is handled by netd. Netd takes various arguments.
At least the card name is needed for which it is responsible for. Optional
arguments are there to assigning a static IP to the card, define a gateway,
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set the network mask and if DHCP should be run or not.

Queue manager

A queue manager is responsible for managing a single hardware queue, thus
for each hardware queue a queue manager is running. A part of a queue
manager is the function ethersrv_init (). Listing 3.2 provides an overview
of ethersrv_init () and the functions a driver needs to implement.

void ethersrv_init (
char *service_name, uint64_t queueid,
ether_get_mac_address_t get_mac_ptr,
ether_terminate_queue terminate_queue_ptr,
ether_transmit_pbuf_list_t transmit_ptr,
ether_get_tx_free_slots tx_free_slots_ptr,
ether_handle_free_TX_slot handle_free_tx_slot_ptr
size_t rx_bufsz,
ether_rx_register_buffer rx_register_buffer_ptr,
ether_rx_get_free_slots rx_get_free_slots_ptr)

void (*ether_get_mac_address_t)(uint8_t #*mac);

void (*ether_terminate_queue) (void);

errval_t (xether_transmit_pbuf_list_t)(

struct driver_buffer xbuffers,

size_t count,

void *opaque);

uint64_t (*ether_get_tx_free_slots)(void);

bool (*ether_handle_free_tx_slot)(void);

errval_t (*xether_rx_register_buffer)(
uintptr_t paddr,
void *vaddr,
void *opaque);

uint64_t (xether_rx_get_free_slots)(void);

Listing 3.2: ethersrv_init () function and signature for the function pointer

Ethersrv_init () is the main function of a queue manager. In the current
implementation each queue needs to register the functions to provide the
following functionality: get the MAC address, terminate a queue, transmit
a buffer list, get the number of free transmit/receive slots, register a free re-
ceive buffer and a function to clean up the transmit queue of used descriptors.
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Additionally, a queue manager exposes an interface that is used as a part of
the datapath. Listing 3.3 only shows the part of the interface that is relevant
to the datapath and the initialization.

interface net_queue_manager
"Ethernet hardware RX/TX queue manager" {
call register_buffer (cap buf,
cap sp,
uint64 queueid,
uint64 slots,
uint8 role);
response new_buffer_id(errval err,
uint64 queueid,
uint64 idx);

call raw_add_buffer(uint64 offset,
uint64 length,
uint64 more);
response raw_xmit_done(uint64 offset,
uint64 length);

call terminate_queue ();

Listing 3.3: Queue manager interface

Initialization and datapath

Let us have a closer look at how the initialization is performed. As part of
netd’s main function it starts an instance of lwIP and the ARP lookup ser-
vice. When IwIP is initialized, it connects to the ARP lookup service from
netd and sets up the connection. Likewise, it initialize all the services 1wIP
provides and allocates a big chunk of memory that internally is split up into
pbufs. The memory is allocated for both receiving and sending. Besides these
things, there is a more Barrelfish specific part. LwIP calls net_if_init ()
of the raw interface that indirectly connects to the driver through the queue
manager. Performing an IDC call (register_buffer()), the memory allo-
cated for receiving and sending is registered to the queue manager, yield-
ing back a queue ID and a buffer ID (new_buffer_id()). For each empty
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buffer IwIP calls buffer_rx_add() of the raw interface. Then an IDC call
(raw_add_buffer()) to the queue manager is executed, which in turn adds
these buffers as descriptors into the receive queue managed by the queue
manager. The function to add descriptors to the receive queue is part of the
information given to the queue manager by the function ethersrv_init ().
At this stage, all the buffers that are needed at the beginning are defined.

Receiving datapath

If the card receives a packet, the following information is known: the offset
into the memory chunk (allocated by IwIP), the length of the data and if the
packet is broken up into more than one buffer. The driver hands over the
information through a function call (process_received_packet()) to the
queue manager. The queue manager on his part does some housekeeping and
propagates the length and an offset to the raw interface. The raw interface
computes the pbuf ID based on the offset and calls handle_incoming(). Ac-
cording to the information given to lwlP, it processes the buffer. Each used
buffer is replaced by a new free buffer and is added in the same way as the re-
ceive queue is populated at the beginning i.e. an IDC call raw_add_buffer ().

Transmitting datapath

Whenever a packet must be sent, IwIP propagates the information required
to the raw interface (buffer_tx_add()) and from the raw interface to the
queue manager using an IDC call (raw_add_buffer()). From IwIP the fol-
lowing information is known: the ID of the pbuf used for the data to be
sent, the offset into the pbuf and the length of the data sent. The queue
manager converts the information to a data struct called driver_buffer
and updates the state of the buffers. The driver_buffer stores the length,
the physical address and the virtual address of the buffer. The struct is
then handed over to the function transmit_pbuf_list() that was regis-
tered calling ethersrv_init (). When the driver signals that a transmission
is completed, it calls the function handle_tx_done () from the queue man-
ager, which does the housekeeping. The queue manager performs an IDC call
(raw_xmit_done()) to the raw interface which in turn then calls handle_tx
_done () from IwIP.

3.1.4 Dedicating queues

Before an application can use the network in Barrelfish, it should be ini-
tialized. The initialization is handled by either calling lwip_init(char
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Figure 3.1: Overview of datapath and initialization

*card_name, uint64_t qid) or lwip_init_auto() from IwIP. Since the
arguments to the function call are a card name and a queue 1D, it is transpar-
ent to the user which hardware resources are used. In the case of lwip_init
_auto() the card name is guessed automatically and the queue ID is set to
zero. A queue ID of zero is assumed a safe option, but may have drawbacks
because it is a shared queue. In this way, a queue is bound to an application.
There is currently no other way in Barrelfish than to dedicate a queue to an
application.

What are the reasons for dedicating queues to applications? First of all
improved performance. By dedicating a queue to an application, one can
also imagine having customization options for the network stack per queue.
Additionally to the performance benefits, a better quality of service for ap-
plications is expected.
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3.2 Mackerel

Mackerel [16] is a hardware description language for devices that use memory
mapped registers. Fven data structures like descriptors or tables can be
described. Mackerel is designed for an easy translation of hardware data
books or programmers reference manuals etc.. The description in Mackerel
is compiled to an output C header file that contains a large number of C
inline functions which can be called to manipulate the content of a register.
In order to use these functions, the device must be initialized with a base
address (in the case of a NIC from a PCI base address registers or short PCI
BAR).

3.3 Network Controller

This section provides an overview of the Solarflare SFN5122F network adapter
|20] and some of the features it provides. The SFN5122F is part of the
SFx902x controller family, which supports 10 Gigabit Ethernet, PCI express
2.0, one PCI function per port which can be increased if virtualization is en-
abled. The communication from the driver to the card is based on memory
mapped registers. The registers are written to configure the card and access
the tables where the state of hardware queues and filters are stored.

3.3.1 Buffer Address Translation

The SFN5122F implements a buffer address translation, which allows the
safe use of virtual NICs in combination with untrusted software. The basics
behind the address translation is to match attributes that identify a buffer
uniquely and as a result of the translation, output the physical address of
this buffer. The card uses IDs to identify the buffer and its owner. This
prevents applications from using buffers they do not have the permission to
access, are not allocated yet or are out of range. The address translation is
used for user-level networking, for conventional kernel mode drivers it is not
necessary.

3.3.2 Multiple Queues

The network controller supports up to 1024 hardware queues. Each hardware
queue consists of a receive queue, a transmit queue and an event queue.
Analogous to other modern network cards the queues use descriptor rings
(event entry rings in the case of event queues) with a size of up to 4096
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descriptors or 32768 event entries. The format and size are dependant on
the mode the queues operate in and the type of the queue. There are two
modes: physical mode and buffer mode.

Receive Queues

For receive queues in physical mode the descriptors have a size of 8 bytes
and contain the information about the size of the received data, the physical
address and the address region. When updating a queue tail there is the
possibility to push an additional descriptor with the tail update. In physical
mode the receive queue can be set into header split mode. If header split
mode is enabled, the packets are received by two queues called header queue
and payload queue. The header queue only receives the header of the packet,
while the payload queue receives the data of the packet. In buffer mode
the descriptor size is reduced to 4 bytes and the information stored is an
offset from the base address of the buffer and a buffer ID. The rest of the
information to process the descriptors is encoded in RX events (see Event
Queues).

Transmit Queues

Transmit queues in physical mode have a descriptor size of 8 bytes. The
descriptors contain the information about the physical address, the address
region, the length and a bit that indicates if a packet is split over several
descriptors. More than 16 descriptors per packet is considered a software
error. As receive queues, transmit queues have the same possibility to push
a descriptor with the tail update. In buffer mode the size of the descriptor is
reduced to 6 byte. The descriptors contain information about the length, the
buffer ID, offset into the buffer and the same bit that indicates continuation
of the packet as in physical mode. Alike to the receive descriptors more
information is encoded in TX events (see Event Queues). In both modes
transmit pacing can be enabled to limit the pace at which a queue sends
packets.

Event Queues

Event queues are circular ring buffer data structures similar to receive/trans-
mit queues. The Solarflare card has 1024 event queues. Events report status
asynchronously to the driver and are encoded into a 64 bit EVENT_ENTRY.
Sizes of up to 32768 entries are supported. There are six different possible
events:

16



Event ‘ Code ‘ Description

RX 0 Event when a packet is received. Has enough in-
formation to free processed descriptors and may
signal if a packet has an error

X 2 Event when a packet is received. Has enough in-
formation to free processed descriptors and may
signal an error when sending a packet

Driver 5 Event if e.g. the queues are flushed, SRAM up-
dates are done, timer events etc.

Global 6 Basically only physical layer (PHY) events

Driver Gen- | 7 Event that is generated from the driver

erated

MCDI 12 Event when the link changes, the card is rebooted
etc.

RX and TX events encode more information about receiving and sending
than there is in the descriptors itself. As an example, the descriptors do not
have any information about their state i.e. if they are already processed or
not. Interrupts for an event queue can be handled in two ways. Either the
interrupt occurs immediately or it can be hold for an user defined time.

Filters

Filter for both sending and receiving are implemented in hardware. The
filters are kept track of using four filter tables. There are 512 entries for MAC
based filters and 8192 for IP based filters. The filters provide demultiplexing
for the queues on the following criteria:

e Ethernet filtering

— Ethernet frame filtering based on the MAC destination address
and VLAN ID

— Ethernet frame filtering based on the MAC destination address

e IPv4 filtering

— TCP wildcard match using destination IPv4 address and port
number

— TCP full match using source and destination IPv4 addresses and

port number

17



— UDP wildcard match using destination IPv4 address

— UDP full match using source and destination IPv4 addresses and
port number

The depth to which the filter tables are looked up can be configured for both
wildcard and full matches.

Receive side scaling (RSS)

If receive side scaling is enabled the data received can be spread over multiple
queues. Each queue can then be processed by a different CPU core. To not
disturb network flows, hashing is performed to always target the same queue.
The card takes a 32 byte hash that may be used in combination with different
hashing methods.

3.3.3 Virtualization (SR-IOV)

The NIC features the possibility to enable virtualization and use up to 127
virtual functions per physical function. Virtual NICs can be bound to virtual
functions, therefore allowing a partition of resources. While physical func-
tions provide an interface to control the whole card, virtual functions provide
an interface to control only a part of a virtual NIC. Virtual functions only
support MSI-X whereas physical functions support all three interrupt modes.

3.3.4 Interrupts

There are different sources that can raise an interrupt. First of all, event
queues can cause an interrupt if new events are written into memory. Next,
the controller itself can report a fatal interrupt which signals that an error
like memory parity error or buffer translation error occurred. The interrupts
can be raised in different modes. On one hand, we have the PCl-legacy
mode that maps the two physical functions to IntA and IntB of the PCI
express bus. A limitation of legacy interrupts is that not all queues generate
interrupts. On the other hand, we have MSI and MSI-X which are message
based. To support MSI-X an additional PCI BAR needs to be mapped to
access the MSI-X vector table. Each queue has one entry in this table and
can also raise interrupts.
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3.3.5 Management-Controller-to-Driver Interface (M CDI)

The Solarflare card implements a Management-Controller-to-Driver Interface
short MCDI, which is a simple remote procedure call protocol. The protocol
is implemented using a shared memory region called MC_TREG_SMEM. There
is a wide variety of commands the protocol can execute e.g. setting the
MAC settings, setting the link settings, let the card DMA MAC statistics
into host memory. When mapping the card into the virtual space of the
driver, the registers mapped do not contain the registers that are required
to configure the physical layer (PHY) and the media access control (MAC).
Consequently it is mandatory to implement this protocol to get a working
driver. The protocol works the following way:

1. The request to execute a command starts with the MCDI header, which
is a 32 bit structure with a format according to:

‘ Bits ‘ Name Description
6:0 Code The code for the command to be executed
77 Resync The resync bit is always set
15:8 Len The length of the input buffer used for argu-
ments to the command
19:16 | Seq Sequence number
21:19 | Rsvd Reserved bits
22:22 | Err Set if an error occurred while executing
23:23 | Response | Set if the command is finished executing
31:24 | Xflags Set if the response should be through an event

2. Write the command and the input buffer into the shared memory region
according to an offset depending on the port number.

3. Write a distinct value into the shared memory region according to
an offset depending on the port number. This is called "Ringing the
Doorbell".

4. Wait until the response bit is set, but caution needs to be taken if the
memory of the card is reset. In this case, the response bit is set but
the command is not yet executed.

5. Extract from the MCDI header if an error occurred and the length of
the output.

6. Retrieve the output of the RPC call.
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3.3.6 Offloading

To reduce the CPU cycles utilized for packet processing, the controller im-
plements three packet checking functions in hardware:

e [Pv4 header checksum
e TCP/UDP checksum
e iSCSI header and data digest

The results of the hardware functions are encapsulated in the RX event that
is generated on reception. If a received packet failed one of the verification
functions, a bit is set that indicates an error. To narrow down the cause
of the failure various other bits indicate which of the hardware verification
functions failed.

3.3.7 User-level networking

By bypassing the kernel, user-level networking can reduce the latency by a
great margin. To guarantee safety of accesses to memory, the card itself is
required to implement similar features for memory protection as a kernel.
The basic feature the card implements to guarantee safe memory access, is a
possibility to translate something similar to virtual addresses to physical ad-
dress while not violating access permissions. The translation should prevent
malicious software from reading/writing memory locations that are either
not allocated or the software has no permission to access. The Solarflare
card implements this property with the buffer address translation. Addi-
tionally, the translation also introduces a form of isolation for applications.
For queues allocated in buffer mode i.e. used for user-level networking, it
is mandatory to assign it a number to identify the owner of the queue and
as well define the buffers that the queue may used to receive and transmit
packets.
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Chapter 4

Approach

4.1 Driver

Driver implementations are always a special thing. The hardware can not
be controlled directly (just through registers) and the response to certain
configurations may be unpredictable. Even a single bit that is set wrong, can
lead to the driver not working correctly. The huge configuration space does
not make it easier to write a driver for a network card. Furthermore, even
having the documentation for the card, may not be enough for implementing
a functional driver. There always might be some missing parts or mistakes in
the documentation. One of the positive aspect that is helpful when writing
a driver is, when the source code for another operating system is available.
For the Solarflare card there are two existing drivers for Linux and FreeBSD
for which the source code is available.

4.1.1 1/0

At first, we had the intention to port the BSD-licensed HAL (hardware
abstraction layer) library from the FreeBSD driver to Barrelfish to get the
I/0O to the card working. Browsing through the code of the library, it looked
a bit overwhelming for the first task of this project. Having Barrelfish as
an operating system, the implementation of the I/O to the card could be
realized with Mackerel. Looking through the documentation of Mackerel, it
seemed more natural to implement the I/O in this manner and it is more
the "Barrelfish style" to do it. So the first actual task was to translate the
documentation which described the hardware registers into Mackerel. To
confirm that the Mackerel bindings were correct, it is the easiest to read a
constant register. For writing registers, the best way to verify is to first write
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the register and then read it. After knowing that the Mackerel bindings are
working, the next step was to implement a single queue driver.

4.1.2 Single queue driver

The simplest driver for a network card is one that only uses a single queue and
legacy interrupts. There are several steps on the way to a functional single
queue driver. The first step is to initialize the hardware to a known state.
Normally when writing a simple driver a good part of the code is dealing
with the initialization of the device. Since this part is one of the most error
prone, it is a source for a lot of debugging hours. Part of the initialization is
reading the MAC address that is necessary as a part to register the card to
the operating system. When the card is configured, it can only be tested by
setting up hardware queues. After that, the different functions for processing
a queue may be registered to the operating system. The card should now be
ready to receive and send some packets. At first, assuming the receive queue
is working, a lot of packets should be received that are flying on the wire. To
verify that transmitting is working tools like Tepdump [21] and Wireshark
[23] come in handy.

4.1.3 Multiple queues and filters

The main decisions to make, for converting the single queue driver into a
multi-queue driver, is how to get the event loops running that check for new
packets. For each queue, a queue manager must be started through the
ethersrv_init() function. Likewise, for demultiplexing packets sent/re-
ceived to different queues, hardware filtering and the communication to the
device manager responsible for filtering need to be implemented. We decided
to implement a driver similar to the Intel 82599 |7| from Barrelfish [8] and
splitting up the driver into two parts: a card driver and a queue driver.

4.1.4 User-level networking

User-level networking has the advantage of a certain isolation from other
applications and not to mention the performance benefits. Hence, the im-
plementation of user-level networking with the SFN5122F was the next step
to take. On the hardware side there are only two parts to change. The
memory that is used for the receiving/sending needs to be predefined before
using the queues in buffer mode. Therefore, the card requires a big chunk
of memory from somewhere that can be added as 4 KB buffers to the buffer
table of the card. The other part is a way to identify for which queue and
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for which application the memory is allocated, so safety of memory access
through the buffer address translation can be guaranteed.

On the side of the operating system, there is more to think about. The
main effort to enable user-level networking is in removing the queue man-
ager from the datapath. This implies that the functions that are registered
with ethersrv_init() are no longer on the datapath. Basically, we want
IwIP to almost directly add descriptors to the receive/transmit queues. To
let lwIP communicate with the rest of the networking code, there is currently
a raw interface. This interface connects indirectly to the driver through the
queue manager. In the end, we need to remove or avoid this connection and
use a direct path to the driver using an IDC interface. The information we
get from IwIP are a pbuf ID, an offset into the pbuf and a length for the
sending side. For the receiving side there is only a pbuf ID. Having two dif-
ferent structures at hand, we need a way to translate the pbuf IDs to buffer
table IDs of the card. These are the changes that are required to remove the
queue manager from the datapath from lwIP to the card, but there is still
the other direction. When user-level networking is not enabled, the driver
responds to the queue manager when a packet is sent or received. Eventually
we need to remove the call to the queue manager and do it more directly.
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Chapter 5

Implementation

This chapter presents the implementation of the driver, the changes done to
the Barrelfish network stack to enable user-level networking.

5.1 Driver implementation

The basis for the implementation of the driver is an internal document from
Solarflare that is under a non-disclosure agreement. Additionally, two drivers
(Linux and FreeBSD) and their source code are available. With the two
drivers, we were able to fill in the missing information from the internal
documentation.

5.1.1 Single queue

The first problem we encountered on the way to a single queue driver was
with Mackerel. Mackerel does not support 128 bit registers, so we split up
the registers into two 64 bit registers. Sometimes, a dummy register was
added even though there were no bits that could have been written. For an
explanation to this, see section 5.2.1. The documentation seemed to miss
some parts, so we were left with the two drivers for which the source code was
available. Looking through the drivers we first noticed the MCDI requests
to the card. Using the drivers as a reference, we were able to implement
a working version of the protocol. The same approach was taken for the
initialization of the card. One of the differences to traditional cards is, that
the SFN5122F has event queues. The event queues change the way the driver
is checking for new packets. With the Solarflare card, the interaction is event
based. When initializing event queues, all of the bits making up the queue
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are set to one (all zeros is a valid event). In the current implementation the
driver is polling for new events. Each event has a code and for every event
code a function is implemented that handles a specific event type. As an
example for cleaning up the descriptor queue when a packet is sent, there
is a function that is registered to the queue manager via ethsrv_init().
When we implemented the function for the Solarflare card it can only return
false i.e. there is nothing to clean up, because the driver is actually waiting
for an TX event that indicates when a descriptor is done and the packet
is sent. When implementing the single queue driver, we lost a lot of time
debugging, and ensuring that the packets were sent/received correctly (see
section 5.2.3).

5.1.2 Multiple queues and filters

For the implementation of a driver that makes use of multiple queues, we
took the current Intel 82599 [7] [8] as a reference. Basically, the driver is
split up into two parts.

Card driver

One part is the card driver that is responsible for setting up the I/O and
initializing the card and hardware queues. The card driver has all the in-
formation about the queues i.e. memory location, size etc. and about all
the filters currently enabled. It exposes an interface to which every queue
driver connects when starting. Furthermore, the interface exposes functions
to register port filters. The card actually has four tables for hardware filters:
MAC filters and IPv4 filters for both sending and receiving. In the current
implementation there are only filters for ports or in other terms "wildcard"
filters (no IP address required) for the receiving side. The filters are imple-
mented by an IDC call from the device manager to the card driver containing
the information to fill in a table entry. The MAC filter table could be used
to implement ARP filters, but we thought it makes sense to leave it at port
filters for the beginning.

Queue driver

The queue driver has all the functions implemented to manage a queue on
the hardware level. A queue driver is static, hence either it is defined that it
should be started at the beginning or it is not started at all. It connects to
the interface exposed by the card driver. Using the interface it performs an
IDC call to the card driver to get the capability of the registers, thus making
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it possible for the queue driver to write the registers. The queue driver then
allocates a receive, transmit and event queue and registers the capabilities of
the queues to the card driver where the queues get initialized in hardware.
After the queues are initialized in hardware, a queue manager for the queue
is started by calling ethersrv_init(). At this stage, the queue driver is
polling for events and handling events according to their type. A queue
driver can only be terminated by the card driver.

5.1.3 User-level networking

User-level networking is currently not working, but most of the changes de-
scribed here are implemented. On the driver side there is not that much
to change to enable user-level networking. User-level networking can be en-
abled by an argument. If this argument is set, the queues are allocated with
the reduced size (smaller descriptors) in buffer mode. To start up the queues
in buffer mode there is only a single bit to change and the owner ID must
have a non zero value. Furthermore, the functions registered to the queue
manager are mainly dummy functions.

Getting the memory needed for user-level networking is our next concern.
When IwIP registers the big memory chunk used for either sending or re-
ceiving to the queue manager, it seemed the easiest to propagate this in-
formation further to the driver. We decided to add a function pointer to
ethersrv_init() that adds entries to the buffer table having the owner ID
set to the queue ID plus one. As a return value of this function the queue
manager gets the ID of the first buffer table entry making up the memory
used. The queue manager then propagates this offset into the buffer table to
the raw interface. The 2 KB pbufs of IwIP can now be directly translated to
4 KB buffer table entries of the card. To translate a pbuf ID to a buffer table
ID, the pbuf ID is divide by two, round up and the initial offset is added.
The offset into the pbuf is the same for the buffer table entry, except when
the pbuf ID is odd. Then 2048 is added for the offset into the buffer table
entry.

To remove the queue manager from the datapath, the raw interface needs to
add descriptors directly into the receive/transmit queues. Either we could
add descriptors by IDC calls or the queue could be set up in the raw interface
itself. We decided on the second approach to remove the latency added by
IDC. We added a function to the IDC interface of the card (get_queue())
that sends the capabilities of the transmit /receive queues and the registers of
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Figure 5.1: Overview of revised implementation

the card. With the virtual address of the base of the queue, descriptors can
be added directly from the raw interface (sfn5122f_add_tx_descriptor()).
After the descriptor is added, the queue tail is written to notify the card that
there is work to do. For the other direction IwIP is informed from the driver
that a packet is sent/received by translating a buffer ID to a pbuf ID and
using the functions from the raw interface (tx_done()/rx_done()).

5.2 Problems during implementation

This section presents the most important problems faced during implemen-
tation and their attempted solution.

5.2.1 Writing registers of the card

When we used Mackerel for describing the hardware, there were some prob-
lems because Mackerel does not support 128 bit registers. The easy solution
was to split up the register into two 64 bit registers. The splitting of reg-
isters led to another problem when writing only the first or the second half

27



of the 128 bit register. Reading the value from the register after a write, it
seemed like the write did not happen at all. Due to a hardware specific im-
plementation that first accumulates the writes before they are written down
to the register, the value of the register stays unchanged. As a result of the
accumulation, some of the registers are only written (with no difference) just
to fulfill the constraint that all parts of the register are written.

5.2.2 Reading registers of the card

In some cases, reads may return a value that is out of date. The SFx902x
controller family performs reads using a shadow register, which works like a
single entry cache. On a read of the first 64 bits, the current value is fetched
and placed in the shadow register. All subsequent reads take the value from
the shadow register. Only after the whole register was read, the subsequent
reads return the current value of the register.

5.2.3 Packet transmission

Shortly after getting the hardware queues up and running, we tried to verify
that the packets are sent and received correctly. The receiving side looked
fine, broadcasted packets were received correctly (and some other packets
that needed to be discarded). Monitoring the traffic using tools like Tcp-
dump [21] and Whireshark [23] there was no indication of any packets that
were sent by the card. Additionally, a flag in the TX event was set indicating
that the transmission should be completed. The first thing in mind was to
further compare our implementation with the Linux driver if something was
missing.

After finding small differences, which did not lead to the solution of the
problem, we compiled the Linux driver ourselves. By adding debugging
statements we could get further insight. On one of the development servers
we tried to compile the latest version of the driver without success. Looking
at the kernel version of the server, we concluded that it may be easier to
compile an older version of the driver. To get as near as possible to the
version running on the servers, we chose the version from the Linux kernel
2.6.33. After compilation without any problems, the server crashed when
the driver was inserted as a kernel module. The server crashed because the
traffic to maintain the connection to the server was by default running on
one of the card’s interfaces. When inserting the module, the connection to
the server failed and thus the only way to proceed was to restart the server.
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After some brainstorming we tried to first give the same IP to another port
of another card and then taking the two ports of the Solarflare card down.
This was the solution to a running Linux driver. After getting the driver to
work, we printed out all registers that are written during the initialization.
Comparing the values, there were no major mismatches that could have pre-
vented the card from sending packets. Looking at the MCDI requests, there
seemed to be no difference at all in terms of the input buffers. To further
assimilate the initial situation, we forced the driver to work with legacy in-
terrupts. There was almost no change of the values that were written to
the registers or the driver’s behavior. In turn to reduce debugging efforts,
we connected two servers directly. If anything was on the wire, we would
see it now without any other traffic. To further rule out possible sources of
an error, we inspected the different flags that had something to do with the
MAC or the link. We obtained the flags by a MCDI request we added to
the Linux driver. There was no difference at all, even though some of these
flags seemed strange. In conclusion after looking over the cards configuration
everything seemed fine.

We looked more carefully at the values written into the descriptor rings.
The descriptors itself seemed all right i.e. the continuation flag was not set
and the physical address and the size seemed reasonable. We were not sure
about the physical address. In the Linux driver there is a comment that
indicates that buffers need to be aligned to 4 KB boundaries. To embrace
all the possibilities that the physical address may be a source for the errors,
it seemed reasonable to allocate the buffers ourselves. We copied the data
into the buffers and then gave this physical address to the card. To give
a changing physical address to the card, the buffers were allocated similar
to the descriptor queues as a ring buffer. Having noticed no difference, we
could eliminate the physical address as a source for an error.

Knowing that the driver sends a DHCP request at the beginning and re-
tries because there is no response, we tried to send more than a single packet
at a time. We allocated a buffer and sent its content repeatedly. After trying
to send other packet types like ICMP or ARP packets with no success, there
seemed to be no problem with the contents or the quantity of the packets.

To avoid sending a DHCP request, we set the card’s IP address statically.
When starting Netd there is a possibility to give it an IP address, a network
mask, a gateway and a flag if DHCP should be run or not. The first packet
that is sent when not running DHCP, is a single ARP packet. It did not
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yield any additional information to what could be wrong.

Having in mind that there was some sort of completion event for the sending
side, we tried to get the MAC statistics up and running. From the MAC
statistics we could infer, if the completion event is counted as a sent packet
or if it is not counted at all. In order to get the statics, it required a MCDI
request that takes a physical address pointing to a buffer, and some other
arguments regarding the frequency of DMA of the statistics. Using the same
arguments as for the Linux driver, we got an error from the MCDI request
indicating that the arguments were invalid.

After a lot of debugging on other parts of our code, we had a closer look at
the implementation of the MCDI protocol. Most of the time, we assumed
it worked correctly because all of the calls succeeded except the one for the
DMA statistics. Hence, we were looking for the error in the arguments to
the call and not in the implementation of the MCDI protocol. Still there
was an error that was unnoticed a long time and prevented writing out all
arguments from the input buffer to the card. Fixing this bug solved most of
the problems and the driver was finally working.

5.3 Unresolved Issues

Due to time being a constraint, there are still unresolved issues we could not
approach regarding the driver itself. The driver is not tested thoroughly and
more issues may arise.

5.3.1 Gottardo

When the card driver is started on gottardo, there may occur a page fault on
the first line of code. We did not find the cause for this yet, but the driver
seems to function correctly.

5.3.2 Filters

The hardware filters from the SFN5122F may require a destination IP ad-
dress, but at the moment there is only the information available for port
filters that do not require an IP address.
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5.3.3 User-level networking

As mentioned before in section 5.1.3 the user-level networking part of the
driver needs debugging. When a queue is started in buffer mode it seems
like the event queues are not working correctly. There are some events that
are reported at the beginning but after a certain time no events occur.
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Chapter 6

Evaluation

Due to the time we have lost debugging the driver, there was only time left
for an initial performance evaluation. The performance benefits of dedicat-
ing queues to applications would need more complex benchmarking. The
complexity comes from the assumption that the effects of dedicating queues
become more visible, when having multiple network flows in the system. In
Barrelfish there is currently no other alternative than to dedicate a queue
to an application, which leaves us with no option to compare to except for
Linux.

6.1 Comparison with Linux

First, we compared the performance of the SFN5122F driver from Barrelfish
to the performance of the Linux driver. The setup is as following: On
gottardo a server is running that just echoes back the packets. On the other
side, there is ziger2 running the client side sending packets of different sizes.
We measured the time on the client side until the response is received. The
figures below are the average over 1000 packets sent/received for different
payload sizes. In comparison with Linux, the performance does not look
that bad. For bigger payload sizes the latency increases more for Barrelfish
than for Linux.
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Figure 6.1: Comparison Barrelfish vs. Linux

6.2 OpenOnload

To give a performance hint of what we expect from our implementation of
user-level networking, we did a second set of measurements using OpenOn-
load [19] from Solarflare. OpenOnload removes the Operating System from
the datapath and implements a high performance network protocol stack in
user space.
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Figure 6.2: Comparison Linux vs. Linux using OpenOnload

With the usage of OpenOnload, the round trip time can be reduced by up
to 8us. When converting the results from Linux to Barrelfish, we can expect
machine to machine latency of less than 10us.
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Chapter 7

Conclusion

Having spent most of the time debugging the driver (around 200 hours)
there was not that much time left for anything other than a simple latency
performance test. Nevertheless, I learned a lot of things during the imple-
mentation of the driver and obtained a good knowledge about the Solarflare
card, but also about the Barrelfish infrastructure. Looking at the different
ways to implement a network card driver from the different operating sys-
tems (Linux, FreeBSD and Barrelfish) was interesting. This showed some
of the limitations of the networking architectures of the current operating
systems that still have their network stack in kernel space.

7.1 Further work

There is still a lot of work regarding the driver. First of all, the part that
handles the user-level networking needs debugging. This would be the most
beneficial part for Barrelfish and it would also make the best use of the
multikernel architecture of Barrelfish. The driver uses a similar architecture
like the driver for the Intel 82599 [7| that is quiet static. Making this more
dynamic that queues could be allocated on demand, would open up more
possibilities to further investigate benefits of different ways to assign hard-
ware queues, but also make the driver more practical. Furthermore, there
are a lot of hardware features that could be implemented and made use of.
An other direction that may be interesting is to introduce the possibility for
a more configurable network stack based on needs of an application.
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Pushing the limits of Mackerel and its compiler pointed out some of the
shortcomings regarding modern high performance cards. Having tables as
big as 140’000 leads to long compile times even when changing the definition
of a single register. Additionally support for 128 bits would be desirable and
also make sense regarding newer hardware.
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