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Introduction

The Filet-o-Fish contains a battered fish patty
made mostly from pollock and/or hoki.

Wikipedia

Filet-o-Fish, abbreviated FoF hereafter, is a tool for the working language designer. Developed in the
context of Barrelfish[5], FoF aims at easing the development of Domain-Specific Languages (DSL) as
well as enhancing their safety. As a side effect of FoF’s design, it also becomes easier for the user of a
DSL to understand “what is going on”.

To achieve this goal, Filet-o-Fish defines a set of combinators. A combinator is a Haskell function ma-
nipulating some Haskell data-types. In this case, our combinators manipulate an abstraction of the C
language constructs, such as integers, floats, structures, arrays, etc. Altogether, this set of combina-
tors defines an embedded language in Haskell. To avoid the confusion with the DSLs we are willing to
implement, we term this embedded language the meta-language.

You seems confused now. Listen. The Hamlet compiler is implemented with Filet-o-Fish. Hamlet is a
Domain-Specific Language. In Hamlet’s compiler, we use FoF to get the job done, ie. to get the actual C
code out of our capability system description. Hence, the Hamlet compiler is partly developed in the
FoF meta-language. Understood?

However, Filet-o-Fish is much more than a language to get the job done: being able to compile the
meta-language to C is just one side-effect of our work. By writing a DSL compiler with FoF, you actually
define the semantics of the DSL. Whereas the syntax defines the set of legal expressions of a language,
the semantics assign a meaning to the terms of the language. Note that the C language does not have
any formal semantics. And, no, this is not normal. This is Evil.

For a DSL, the benefit of having a formal semantics is twofold. First, the semantics of your DSL is the
most precise and accurate description of the behavior of your domain-specific constructs. An informal,
in-English specification of the DSL might fail to capture some specific points. The formal semantics is
an ultimate documentation, which doesn’t lie. Second, defining a formal semantics is a necessary step
before any compiler correctness proof, be it mechanized or on paper. Therefore, thanks to FoF, you get
a formal, mechanized semantics of your DSL. And this is for free.

Finally, this document is the literate Haskell code of Filet-o-Fish: the code described in the following
pages is the one that is compiled by the Haskell compiler. Therefore, this is the most accurate, up-to-date
documentation of Fof’s internals.

So much marketing, let us look at the code.
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Part I

The Filet-o-Fish Language
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The Filet-O-Fish Language

Give me back that Filet-O-Fish, Give me back
that Filet-O-Fish, . . .

Frankie the Fish

Filet-o-Fish is organized in a modular way. This is reflected by the definition of the syntax of the lan-
guage in Chapter 1. Indeed, the language is organized around the purely functional core of C, as de-
scribed in Section 1.1. This core is extended by several constructs that are the operationally rich building
blocks of the language, as described in Section 1.2.

The functional semantics of this language is then implemented in Chapter 2. Following the modular
definition of the language, we first implement an interpreter for the core language (Section 2.1). In
Section 2.2, we gather the per-construct interpreter under one general function. In Section 2.3, we build
the machinery to automatically compute an interpreter and a compiler for the whole language.

Further, in Chapter 3, we implement the interpreter and Filet-o-Fish interpretation of the constructs.
Similarly, Chapter 4 and Chapter 5, we define foreign functions mirroring the C library and the bar-
relfish library. These chapters are bound to be extended as long as foreign functions are needed. This is
a natural process made easy by the modular design of the syntax and semantics of Filet-o-Fish.
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Chapter 1

Filet-o-Fish Syntax

- None shall pass.
- I have no quarrel with you, good Sir Knight,
but I must cross this bridge.
- Then you shall die.

Monty Python

1.1 Filet-o-Fish pure expressions

The core of Filet-o-Fish is organized around the purely functional core of C. It consists of C types as well
as C expressions.

1.1.1 Types

Data-type Definitions

The TypeExpr data-type encompasses the following types:

• Void,

• Integers, of various signedness and size,

• Float,

• Named structures and unions,

• Named pointers, ie. a pointer recurring in a structure or union,

• Arrays, and

• Pointers

Note that a value of type TInt or TFloat is a constant, like 2, 3/7, or sizeof(struct foo). In FoF
meta-language, a C variable is not a value – but a construct. So, the type of the variable x defined by
int32_t x = 4 is not TInt Signed TInt32 .

data TypeExpr = TVoid
| TInt Signedness Size
| TFloat
| TChar
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| TStruct AllocStruct String TFieldList
| TUnion AllocUnion String TFieldList
| TCompPointer String
| TEnum String [(String , Int)]
| TArray AllocArray TypeExpr
| TPointer TypeExpr Mode
| TTypedef TypeExpr String
| TFun String Function TypeExpr [(TypeExpr ,Maybe String)]
deriving (Eq ,Show)

Functions A function is represented by an Haskell function, taking a list of arguments and computing
the body of the function. In the jargon, this is called an higher-order abstract syntax. So, the function
definition is represented by the following type:

data Function = Fun ([PureExpr ]→ FoFCode PureExpr)

Because TypeExpr is showable, Function has to be showable too. While we could define a more com-
plete Show instance for Function , we will not do so here and simply return an opaque name.

instance Show Function where
show = "<fun>"

Concerning equality, this becomes more tricky. We would have to define what ”equality” means and if
that definition is decidable. Here, we consider syntactic equality and although we could decide whether
two functions are syntactically equal or not, we will not do so for the moment. We simply consider
functions as always distinct.

instance Eq Function where
≡ = False

Composed data-types Composed data-types have several allocation policies: they might be declared
dynamically, using malloc, or statically, on the stack. This is reflected by the following definitions. We
chose to use differents definitions for each kind of data-type because they are likely to evolve in future
versions and diverge from this common scheme.

data AllocStruct = StaticStruct
| DynamicStruct
deriving (Eq ,Show)

data AllocUnion = StaticUnion
| DynamicUnion
deriving (Eq ,Show)

data AllocArray = StaticArray Int
| DynamicArray
deriving (Eq ,Show)

Both Structures and Unions rely on the TFieldList synonym. Basically, the type of a Structure corre-
sponds to its name as well as the list of its field names and respective types.

type TFieldList = [(String ,TypeExpr)]
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Integers Signedness and size of integers is defined as usual. An integer is either signed or unsigned
and its size may vary from 8 to 64 bits. Interestingly, we derive Ord on these data-types: Ord provides
us with a comparison function on the signedness and size. In practice, we can check that a cast is a
correct downcasting by enforcing that the sign and size we cast to is bigger than the original sign and
size.

data Signedness = Unsigned
| Signed
deriving (Eq ,Ord ,Show)

data Size = TInt8
| TInt16
| TInt32
| TInt64
deriving (Eq ,Ord ,Show)

Pointers As we understand that the suspense is unbearable, we are going to reveal you the type of
x defined above. Actually, the type of x is TPointer (TInt Signed TInt32 ) Avail . A pointer? Indeed,
a variable does actually points to a location in memory. This choice allows us to capture the notion of
variables and pointers in a single abstraction, called a reference cell.

A reference cell can be in one of the following states: either Available or Read . This distinction makes
sense during the compilation process, it can ignored otherwise.

data Mode = Avail
| Read
deriving (Eq ,Show)

Smart Constructors

In some circumstances, it is necessary to explicitly write the type of an expression. However, explicitly
combining the previously defined types can be quite cumbersome. For example, we can naturally define
the base types as follow:

voidT :: TypeExpr
voidT = TVoid

uint8T , uint16T , uint32T , uint64T :: TypeExpr
uint8T = TInt Unsigned TInt8
uint16T = TInt Unsigned TInt16
uint32T = TInt Unsigned TInt32
uint64T = TInt Unsigned TInt64

int8T , int16T , int32T , int64T :: TypeExpr
int8T = TInt Signed TInt8
int16T = TInt Signed TInt16
int32T = TInt Signed TInt32
int64T = TInt Signed TInt64

floatT :: TypeExpr
floatT = TFloat

charT :: TypeExpr
charT = TChar

uintptrT :: TypeExpr
uintptrT = TCompPointer "void"
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And, similarly, we can build up composed types by applying them on smaller types:

arrayDT :: TypeExpr → TypeExpr
arrayDT typ = TArray DynamicArray typ

arrayST :: Int → TypeExpr → TypeExpr
arrayST size typ = TArray (StaticArray size) typ

ptrT :: TypeExpr → TypeExpr
ptrT typ = TPointer typ Avail

structDT , unionDT ,
structST , unionST :: String → TFieldList → TypeExpr

structDT name fields = TStruct DynamicStruct name fields
unionDT name fields = TUnion DynamicUnion name fields
structST name fields = TStruct StaticStruct name fields
unionST name fields = TUnion StaticUnion name fields

enumT :: String → [(String , Int)]→ TypeExpr
enumT name fields = TEnum name fields

typedef :: TypeExpr → String → TypeExpr
typedef typ name = TTypedef typ name

Finally, the named pointer – which is actually a fix-point – takes as input the name of the structure or
union it refers to.

cptrT :: String → TypeExpr
cptrT id = TCompPointer id

1.1.2 Pure Expressions

In a first step, we are going to define the expressions composing FoF meta-language. As for types, this
consists in a data-type, PureExpr , capturing the syntax of expressions. Then, we also define some smart
constructors.

Data-type Definitions

An expression is one of the following object:

• void , the only object populating the type Void ,

• an integer, of specific signedness and size,

• a float,

• a reference to an object in memory,

• a unary operation, applied to an object,

• a binary operation, applied on two objects,

• the sizeof operator, applied to a type,

• a conditional expression, testing an object against 0, returning one of two objects, and

• a cast operator, casting an object to a given type

data PureExpr = Void
| CLInteger Signedness Size Integer
| CLFloat Float
| CLChar Char
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| CLRef Origin TypeExpr VarName
| Unary UnaryOp PureExpr
| Binary BinaryOp PureExpr PureExpr
| Sizeof TypeExpr
| Test PureExpr PureExpr PureExpr
| Cast TypeExpr PureExpr
| Quote String
deriving (Eq ,Show)

Variable names A reference is identified by a name. A Generated name has been forged by FoF. A
Provided name has been defined by the compiler designer. An Inherited name results from an operation
performed on another variable. We carefully track the origin of names for compilation purpose: for
example, if a variable name has been Generated , we should try to eliminate it, to make the compiled
code more readable.

data VarName = Generated String
| Provided String
| Inherited Int VarName
deriving (Show ,Eq)

A reference is also decorated by its origin. This field is used by the compiler to identify the scope of
variables. Therefore, the compiler can enforce some safety checks, such as verifying that the address
of a local variable is not assigned to a global one, for example. Sadly, this information is not always
precisely maintained nor correctly used in the current implementation. More care and more checks
should be added in the future, to ensure the correctness of the generated code.

data Origin = Local
| Global
| Param
| Dynamic
deriving (Eq ,Show)

Unary operations The unary operations are either the arithmetic minus operation, or the logic comple-
ment operation, or the logic negation operation.

data UnaryOp = Minus | Complement | Negation
deriving (Eq ,Show)

Binary operations The binary operations are either arithmetic operators (+, −, ×, /, and %), Boolean
operators (<<, >>, &, bitwise-or, and ˆ), or comparison operators (<, <=, >, >=, ==, and ! =).

data BinaryOp = Plus | Sub | Mul | Div | Mod
| Shl | Shr | AndBit | OrBit | XorBit
| Le | Leq | Ge | Geq | Eq | Neq
deriving (Eq ,Show)

Smart Constructors

As usual, we define some constructors for the C programmer to feel at home with FoF. Let us start with
the constants first:
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void :: PureExpr
void = Void

int8 , int16 , int32 , int64 :: Integer → PureExpr
int8 x = CLInteger Signed TInt8 x
int16 x = CLInteger Signed TInt16 x
int32 x = CLInteger Signed TInt32 x
int64 x = CLInteger Signed TInt64 x

uint8 , uint16 , uint32 , uint64 :: Integer → PureExpr
uint8 x = CLInteger Unsigned TInt8 x
uint16 x = CLInteger Unsigned TInt16 x
uint32 x = CLInteger Unsigned TInt32 x
uint64 x = CLInteger Unsigned TInt64 x

charc :: Char → PureExpr
charc x = CLInteger Unsigned TInt8 (toInteger $ ord x )

float :: Float → PureExpr
float x = CLFloat x

cchar :: Char → PureExpr
cchar x = CLChar x

opaque :: TypeExpr → String → PureExpr
opaque t s = CLRef Local t (Provided s)

Then come the unary operators:

minus, comp,neg :: PureExpr → PureExpr
minus = Unary Minus
comp = Unary Complement
neg = Unary Negation

And the binary operators. Note that they are defined infix. Therefore, it becomes possible to write the
following code:

exampleInfix :: PureExpr
exampleInfix = (uint8 1) . < . ((uint8 2) .+ . (uint8 4))

Although not specified yet, we could have set up the left/right associativity and precedence rules of
these operators. This would reduce the parenthesizing overhead. It is just a matter of doing it.

(.+ .), (.− .), (. ∗ .), (./.), (.%.),
(. << .), (. >> .), (.&.), (.|.), (.ˆ.),
(. < .), (. <= .), (. > .),
(. >= .), (. == .), (.! = .) :: PureExpr → PureExpr → PureExpr

(.+ .) = Binary Plus
(.− .) = Binary Sub
(. ∗ .) = Binary Mul
(./.) = Binary Div
(.%.) = Binary Mod
(. << .) = Binary Shl
(. >> .) = Binary Shr
(.&.) = Binary AndBit
(.|.) = Binary OrBit
(.ˆ.) = Binary XorBit
(. < .) = Binary Le
(. <= .) = Binary Leq
(. > .) = Binary Ge
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(. >= .) = Binary Geq
(. == .) = Binary Eq
(.! = .) = Binary Neq

Finally, sizeof , conditionals, and cast have their straightforward alter-ego in FoF:

sizeof :: TypeExpr → PureExpr
sizeof t = Sizeof t

test :: PureExpr → PureExpr → PureExpr → PureExpr
test c ift iff = Test c ift iff

cast :: TypeExpr → PureExpr → PureExpr
cast t e = Cast t e

When compiling foreign function calls, one might need to turn a (Haskell) string into a FoF quote object.
This is achieved by the following combinator. One must avoid using this operation as much as possible:
this quotation has no semantic meaning, therefore one should use it only when we are really sure we
are not interested in the quoted semantic anymore.

quote :: String → PureExpr
quote s = Quote s

1.2 Filet-o-Fish standard constructs

The FoF language is defined by the syntax tree below. It gathers every constructs defined in the
Constructs directory as well as foreign functions defined in the Libc and Libbarrelfish directories.

data FoFConst a

Foreign-call to libc Assert:

= Assert PureExpr a

Foreign-call to libc Printf:

| Printf String [PureExpr ] a

Foreign-call to libarrelfish has descendants :

| HasDescendants (Maybe String) PureExpr (PureExpr → a)

Foreign-call to libarrelfish mem to phys :

| MemToPhys (Maybe String) PureExpr (PureExpr → a)

Foreign-call to Hamlet get address :

| GetAddress (Maybe String) PureExpr (PureExpr → a)

Support for Union:

| NewUnion (Maybe String) AllocUnion String [(String ,TypeExpr)] (String ,Data) (Loc → a)
| ReadUnion Loc String (Data → a)
|WriteUnion Loc String Data a

Support for Typedef:
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| Typedef TypeExpr a
| TypedefE String TypeExpr a

Support for Structures:

| NewStruct (Maybe String) AllocStruct String [(String , (TypeExpr ,Data))] (Loc → a)
| ReadStruct Loc String (Data → a)
|WriteStruct Loc String Data a

Support for Strings:

| NewString (Maybe String) String (Loc → a)

Support for Reference cells:

| NewRef (Maybe String) Data (Loc → a)
| ReadRef Loc (Data → a)
|WriteRef Loc Data a

Support for Functions:

| NewDef [FunAttr ] String Function TypeExpr [(TypeExpr ,Maybe String)]
(PureExpr → a)
| CallDef (Maybe String) PureExpr [PureExpr ]
(PureExpr → a)
| Return PureExpr

Support for Enumerations:

| NewEnum (Maybe String) String Enumeration String (Loc → a)

Support for Conditionals:

| If (FoFCode PureExpr)
(FoFCode PureExpr)
(FoFCode PureExpr) a
| For (FoFCode PureExpr)
(FoFCode PureExpr)
(FoFCode PureExpr)
(FoFCode PureExpr) a
|While (FoFCode PureExpr)
(FoFCode PureExpr) a
| DoWhile (FoFCode PureExpr)
(FoFCode PureExpr) a
| Switch PureExpr
[(PureExpr ,FoFCode PureExpr)]
(FoFCode PureExpr) a
| Break
| Continue

Support for Arrays:

| NewArray (Maybe String) AllocArray [Data ] (Loc → a)
| ReadArray Loc Index (Data → a)
|WriteArray Loc Index Data a

The following type synonyms have been used above as a documentation purpose. A Data represents a
value used to initialize a data-structure. A Loc represents a reference. An Index is a value used to index
an array.

type Data = PureExpr
type Loc = PureExpr
type Index = PureExpr
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Function attributes A function can be characterized by the following attributes, following their C
semantics:

data FunAttr = Static
| Inline
deriving (Eq)

instance Show FunAttr where
show Static = "static"

show Inline = "inline"

Enumeration When defining an enumeration, we use the following type synonym to describe the list
of pair name-value:

type Enumeration = [(String , Int)]

1.2.1 Functor instance

A crucial specificity of FoFConst is that it defines a functor. This functor is defined as follow.

instance Functor FoFConst where
fmap f (Assert a b) = Assert a (f b)
fmap f (Printf a b c) = Printf a b (f c)
fmap f (HasDescendants a b c) = HasDescendants a b (f ◦ c)
fmap f (MemToPhys a b c) = MemToPhys a b (f ◦ c)
fmap f (GetAddress a b c) = GetAddress a b (f ◦ c)
fmap f (NewUnion a b c d e g) = NewUnion a b c d e (f ◦ g)
fmap f (ReadUnion a b c) = ReadUnion a b (f ◦ c)
fmap f (WriteUnion a b c d) = WriteUnion a b c (f d)
fmap f (Typedef a c) = Typedef a (f c)
fmap f (TypedefE a b c) = TypedefE a b (f c)
fmap f (NewStruct a b c d e) = NewStruct a b c d (f ◦ e)
fmap f (ReadStruct a b c) = ReadStruct a b (f ◦ c)
fmap f (WriteStruct a b c d) = WriteStruct a b c (f d)
fmap f (NewString a b c) = NewString a b (f ◦ c)
fmap f (NewRef a b c) = NewRef a b (f ◦ c)
fmap f (ReadRef a b) = ReadRef a (f ◦ b)
fmap f (WriteRef a b c) = WriteRef a b (f c)
fmap g (NewDef a b c d e f ) = NewDef a b c d e (g ◦ f )
fmap f (CallDef a b c d) = CallDef a b c (f ◦ d)
fmap f (Return a) = Return a
fmap f (NewEnum a b c d e) = NewEnum a b c d (f ◦ e)
fmap f (If a b c d) = If a b c (f d)
fmap f (For a b c d e) = For a b c d (f e)
fmap f (While a b c) = While a b (f c)
fmap f (DoWhile a b c) = DoWhile a b (f c)
fmap f (Switch a b c d) = Switch a b c (f d)
fmap f Break = Break
fmap f Continue = Continue
fmap f (NewArray a b c d) = NewArray a b c (f ◦ d)
fmap f (ReadArray a b c) = ReadArray a b (f ◦ c)
fmap f (WriteArray a b c d) = WriteArray a b c (f d)
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Thanks to this functor structure, it makes sense to embed FoFConst in a Semantics : the machinery we
build in Chapter 2.3 will take care of transforming this functor into a free monad. Hence the following
type synonym.

type FoFCode a = Semantics FoFConst a

FiletOFish - 18 Barrelfish TN-024



Chapter 2

Filet-o-Fish Semantics

So, logically...
If...
she...
weighs...
the same as a duck,...
she’s made of wood.

Monty Python

2.1 Functional core interpreter

In this Section, we implement an expression evaluator. Given any (correct) expression, it will compute
the corresponding value. The implementation is decomposed in several steps. In Section 2.1, we evalu-
ate top-level expressions. Doing so, we rely on case-specific evaluators. This includes unary operators
(Section 2.1), binary operators (Section 2.1), the sizeof operation (Section 2.1), the conditional operation
(Section 2.1), and the cast operation (Section 2.1).

Note that the following functions are partial: not all expressions can be successfully evaluated. Indeed,
some operations are simply meaningless. For example, computing the sum of a structure and a float
is illegal. Currently, we are simply ignore these errors and this might result in run-time errors of the
DSL compiler. Satisfactory solutions of this problem exist, though. For example, we could implement
a type-checker that would ensure the absence of run-time errors. Another approach would be improve
our error handling code.

Top-level Evaluation

The purpose of this section is implement the following function:

symbEval :: PureExpr → PureExpr

That reduces a given expression to a value. Hence, for values, this is trivial:

symbEval Void = Void
symbEval x@(CLInteger ) = x
symbEval x@(CLFloat ) = x
symbEval x@(CLRef ) = x

Then, for inductive constructions, we rely on the specific functions implemented in the following sec-
tions.
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symbEval (Unary op x ) =
symbEvalUnary op x ′

where x ′ = symbEval x

symbEval (Binary op x y) =
symbEvalBinary op x ′ y ′

where x ′ = symbEval x
y ′ = symbEval y

symbEval (Sizeof typ) = symbEvalSizeof typ

symbEval (Test x y z ) =
symbEvalTest x ′ y z
where x ′ = symbEval x

symbEval (Cast t x ) =
symbEvalCast t x ′

where x ′ = symbEval x

Unary Operator Evaluation

For unary operators, we need to implement the following function:

symbEvalUnary :: UnaryOp → PureExpr → PureExpr

Hence the following code:

symbEvalUnary Minus x =
case x of

CLInteger Signed size x → CLInteger Signed size (−x )
CLFloat x → CLFloat (−x )
→ error "symbEvalUnary: minus on wrong type"

symbEvalUnary Complement x =
case x of

CLInteger sg sz x → CLInteger sg sz (complement x )
→ error "symbEvalUnary: complement on wrong type"

symbEvalUnary Negation x =
case x of

CLInteger sg sz 0→ CLInteger sg sz 1
CLInteger sg sz → CLInteger sg sz 0
→ error "symbEvalUnary: negation on wrong type"

Binary Operator Evaluation

For binary operators, here is our goal:

symbEvalBinary :: BinaryOp → PureExpr → PureExpr → PureExpr

Achieved by the following, messy codes.

Arithmetic Operations
symbEvalBinary Plus (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x + y)
| otherwise = error "symbEvalBinary: Plus undefined"

symbEvalBinary Plus (CLInteger x ) (CLFloat y) =
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CLFloat ((fromRational $ toRational x ) + y)
symbEvalBinary Plus (CLFloat x ) (CLInteger y) =

CLFloat (x + (fromRational $ toRational y))
symbEvalBinary Plus (CLFloat x ) (CLFloat y) = CLFloat (x + y)
symbEvalBinary Plus = error "symbEvalBinary: Plus undefined"

More checks should be added here. For examples, we should ensure that the result of the subtraction
of two unsigned numbers is still positive, or make it wrap.

symbEvalBinary Sub (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x − y)
| otherwise = error "symbEvalBinary: Sub undefined"

symbEvalBinary Sub (CLInteger x ) (CLFloat y) =
CLFloat ((fromRational $ toRational x )− y)

symbEvalBinary Sub (CLFloat x ) (CLInteger y) =
CLFloat (x − (fromRational $ toRational y))

symbEvalBinary Sub (CLFloat x ) (CLFloat y) = CLFloat (x − y)
symbEvalBinary Sub = error "symbEvalBinary: Sub undefined"

symbEvalBinary Mul (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x ∗ y)
| otherwise = error "symbEvalBinary: Mul undefined"

symbEvalBinary Mul (CLInteger x ) (CLFloat y) =
CLFloat ((fromRational $ toRational x ) ∗ y)

symbEvalBinary Mul (CLFloat x ) (CLInteger y) =
CLFloat (x ∗ (fromRational $ toRational y))

symbEvalBinary Mul (CLFloat x ) (CLFloat y) = CLFloat (x ∗ y)
symbEvalBinary Mul = error "symbEvalBinary: Mul undefined"

symbEvalBinary Div (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x ‘div ‘ y)
| otherwise = error "symbEvalBinary: Div undefined"

symbEvalBinary Div (CLInteger x ) (CLFloat y) =
CLFloat ((fromRational $ toRational x ) / y)

symbEvalBinary Div (CLFloat x ) (CLInteger y) =
CLFloat (x / (fromRational $ toRational y))

symbEvalBinary Div (CLFloat x ) (CLFloat y) = CLFloat (x / y)
symbEvalBinary Div = error "symbEvalBinary: Div undefined"

symbEvalBinary Mod (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x ‘mod ‘ y)
| otherwise = error "symbEvalBinary: Mod undefined"

symbEvalBinary Mod = error "symbEvalBinary: Mod undefined"

Boolean Operations
symbEvalBinary Shl (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (shiftL x (fromInteger y))
| otherwise = error "symbEvalBinary: Shl undefined"

symbEvalBinary Shl = error "symbEvalBinary: Shl undefined"

symbEvalBinary Shr (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (shiftR x (fromInteger y))
| otherwise = error "symbEvalBinary: Shr undefined"

symbEvalBinary Shr = error "symbEvalBinary: Shr undefined"

symbEvalBinary AndBit (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x B ..|. y)
| otherwise = error "symbEvalBinary: And undefined"
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symbEvalBinary AndBit = error "symbEvalBinary: And undefined"

symbEvalBinary OrBit (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x B ..&. y)
| otherwise = error "symbEvalBinary: Or undefined"

symbEvalBinary OrBit = error "symbEvalBinary: Or undefined"

symbEvalBinary XorBit (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = CLInteger sg si (x ‘xor ‘ y)
| otherwise = error "symbEvalBinary: Xor undefined"

symbEvalBinary XorBit = error "symbEvalBinary: Xor undefined"

Comparison Operations
symbEvalBinary op (CLInteger sg si x ) (CLInteger sg ′ si ′ y)
| sg ≡ sg ′ ∧ si ≡ si ′ = symbEvalComp op x y
| otherwise = error ("symbEvalBinary: "++ show op ++ " undefined")

symbEvalBinary op (CLInteger x ) (CLFloat y) =
symbEvalComp op (fromRational $ toRational x ) y

symbEvalBinary op (CLFloat x ) (CLInteger y) =
symbEvalComp op x (fromRational $ toRational y)

symbEvalBinary op (CLFloat x ) (CLFloat y) = symbEvalComp op x y

symbEvalBinary Le = error "symbEvalBinary: Le undefined"

symbEvalBinary Leq = error "symbEvalBinary: Leq undefined"

symbEvalBinary Ge = error "symbEvalBinary: Leq undefined"

symbEvalBinary Geq = error "symbEvalBinary: Leq undefined"

symbEvalBinary Eq = error "symbEvalBinary: Leq undefined"

symbEvalBinary Neq = error "symbEvalBinary: Leq undefined"

symbEvalComp :: (Ord a,Num a)⇒ BinaryOp → a → a → PureExpr
symbEvalComp op x y =
let cmp = case op of

Le → (<)
Leq → (6)
Ge → (>)
Geq → (>)
Eq → (≡)
Neq → (6≡) in
if cmp x y then

CLInteger Unsigned TInt64 1
else CLInteger Unsigned TInt64 0

Sizeof Evaluation

Our sizeof operator follows the corresponding C operation:

symbEvalSizeof :: TypeExpr → PureExpr
symbEvalSizeof TVoid = CLInteger Unsigned TInt64 1
symbEvalSizeof (TInt TInt8 ) = CLInteger Unsigned TInt64 1
symbEvalSizeof (TInt TInt16 ) = CLInteger Unsigned TInt64 2
symbEvalSizeof (TInt TInt32 ) = CLInteger Unsigned TInt64 4
symbEvalSizeof (TInt TInt64 ) = CLInteger Unsigned TInt64 8
symbEvalSizeof TFloat = CLInteger Unsigned TInt64 4
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symbEvalSizeof (TPointer ) = CLInteger Unsigned TInt64 8
symbEvalSizeof (TCompPointer ) = CLInteger Unsigned TInt64 8
symbEvalSizeof (TArray typ) = CLInteger Unsigned TInt64 8
symbEvalSizeof (TStruct fields) = CLInteger Unsigned TInt64 8
symbEvalSizeof (TUnion fields) = CLInteger Unsigned TInt64 8

Conditionals Evaluation

The semantics of the conditional mimics a restricted version of the C standard: True corresponds to
everything which is not a float or integer equal to zero. Hence, we evaluate the corresponding branch
accordingly.

symbEvalTest :: PureExpr → PureExpr → PureExpr → PureExpr
symbEvalTest (CLInteger 0) y = symbEval y
symbEvalTest (CLFloat 0) y = symbEval y
symbEvalTest x = symbEval x

Cast Evaluation

Here is our stripped-down version of cast . It will probably deserve some work in the future, as it is
quite restrictive. Also, it should ensure that the type modification are reflected on the data: converting
a signed, negative number to an unsigned form changes the value of this number. This is currently
unsupported.

symbEvalCast :: TypeExpr → PureExpr → PureExpr
symbEvalCast (TInt sg sz ) (CLInteger sg ′ sz ′ x )
| sg ′ < sg ∧ sz ′ < sz = CLInteger sg sz x
| otherwise = error "symbEvalCast: illegal integer cast"

symbEvalCast TFloat (CLInteger x ) =
CLFloat (fromRational $ toRational x )

symbEvalCast TFloat vx@(CLFloat x ) = vx
symbEvalCast =

error "symbEvalCast: Not yet implemented/undefined cast"

2.2 Building the FoF interpreter and compiler

In this section, we glue together the constructs of the FoF language, defined in the Constructs, Libc,
and Libbarrelfish directories. This gluing builds a one-step interpreter for FoF, compileAlgebra (Sec-
tion 2.2.1), and a one-step compiler, compileAlgebra (Section 2.2.2). We rely on the machinery defined in
Section 2.3 to automatically build an interpreter and a compiler from these functions.

2.2.1 Gluing the Interpreter

The run-time is actually quite simple. It is described by a heap, in which we first store fresh identifiers,
freshLoc, freshSLoc, and freshALoc. When we want to store a value in memory, we pick a fresh identifier
and, respectively update the refMap, strMap, or arrayMap with a new map from the identifier to the
value. Similarly, we can read and modify these mappings. Intuitively, the Heap is a representation of
the machine’s memory.
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These different maps have different purposes: refMap maps an identifier to a single value, strMap maps
an identifier to a mapping from strings to values (modelling a structure or union), and arrayMap maps
an identifier to a bounded array of values.

data Heap = Hp {freshLoc :: Int ,
refMap :: [(VarName,Data)],
freshSLoc :: Int ,
strMap :: [(VarName, [(String ,Data)])],
freshALoc :: Int ,
arrayMap :: [(VarName, [Data ])]}

Then, the one-step interpreter takes a FoF term, a Heap, and returns a pair of value and resulting heap.
This is simply implemented by matching the term and calling the corresponding construct-specific in-
terpreter.

runAlgebra :: FoFConst (Heap → (PureExpr ,Heap))→ Heap → (PureExpr ,Heap)
runAlgebra x@(NewArray ) = runArrays x
runAlgebra x@(ReadArray ) = runArrays x
runAlgebra x@(WriteArray ) = runArrays x
runAlgebra x@(If ) = runConditionals x
runAlgebra x@(For ) = runConditionals x
runAlgebra x@(While ) = runConditionals x
runAlgebra x@(DoWhile ) = runConditionals x
runAlgebra x@(Switch ) = runConditionals x
runAlgebra x@Break = runConditionals x
runAlgebra x@Continue = runConditionals x
runAlgebra x@(NewEnum ) = runEnumerations x
runAlgebra x@(NewDef ) = runFunctions x
runAlgebra x@(CallDef ) = runFunctions x
runAlgebra x@(Return ) = runFunctions x
runAlgebra x@(NewRef ) = runReferences x
runAlgebra x@(ReadRef ) = runReferences x
runAlgebra x@(WriteRef ) = runReferences x
runAlgebra x@(NewString ) = runString x
runAlgebra x@(Typedef ) = runTypedef x
runAlgebra x@(TypedefE ) = runTypedef x
runAlgebra x@(NewStruct ) = runStructures x
runAlgebra x@(ReadStruct ) = runStructures x
runAlgebra x@(WriteStruct ) = runStructures x
runAlgebra x@(NewUnion ) = runUnions x
runAlgebra x@(ReadUnion ) = runUnions x
runAlgebra x@(WriteUnion ) = runUnions x
runAlgebra x@(Assert ) = runAssert x
runAlgebra x@(Printf ) = runPrintf x
runAlgebra x@(HasDescendants ) = runHasDescendants x
runAlgebra x@(MemToPhys ) = runMemToPhys x
runAlgebra x@(GetAddress ) = runGetAddress x

2.2.2 Gluing the Compiler

Similarly, the one-step compiler is organized around the notion of Binding environment: this environ-
ment is carried over the compilation process. Hence, the Binding represents the compiler’s state:

• freshVar is a free identifier, used to generate unique variable names,

• def ... maps the defined structure names with their type

FiletOFish - 24 Barrelfish TN-024



data Binding = Binding {freshVar :: Int ,
defStructs :: [(String ,TypeExpr)],
defUnions :: [(String ,TypeExpr)],
defEnums :: [(String , [(String , Int)])]}

This binding is then modified by the one-step compiler, which takes a term, a binding, and return an
FoF expression as well as an updated binding.

compileAlgebra :: FoFConst (Binding → (ILFoF ,Binding))→
(Binding → (ILFoF ,Binding))

compileAlgebra x@(NewArray ) = compileArrays x
compileAlgebra x@(ReadArray ) = compileArrays x
compileAlgebra x@(WriteArray ) = compileArrays x
compileAlgebra x@(If ) = compileConditionals x
compileAlgebra x@(For ) = compileConditionals x
compileAlgebra x@(While ) = compileConditionals x
compileAlgebra x@(DoWhile ) = compileConditionals x
compileAlgebra x@(Switch ) = compileConditionals x
compileAlgebra x@Break = compileConditionals x
compileAlgebra x@Continue = compileConditionals x
compileAlgebra x@(NewDef ) = compileFunctions x
compileAlgebra x@(CallDef ) = compileFunctions x
compileAlgebra x@(Return ) = compileFunctions x
compileAlgebra x@(NewEnum ) = compileEnumerations x
compileAlgebra x@(NewRef ) = compileReferences x
compileAlgebra x@(ReadRef ) = compileReferences x
compileAlgebra x@(WriteRef ) = compileReferences x
compileAlgebra x@(NewString ) = compileString x
compileAlgebra x@(Typedef ) = compileTypedef x
compileAlgebra x@(TypedefE ) = compileTypedef x
compileAlgebra x@(NewStruct ) = compileStructures x
compileAlgebra x@(ReadStruct ) = compileStructures x
compileAlgebra x@(WriteStruct ) = compileStructures x
compileAlgebra x@(NewUnion ) = compileUnions x
compileAlgebra x@(ReadUnion ) = compileUnions x
compileAlgebra x@(WriteUnion ) = compileUnions x
compileAlgebra x@(Assert ) = compileAssert x
compileAlgebra x@(Printf ) = compilePrintf x
compileAlgebra x@(HasDescendants ) = compileHasDescendants x
compileAlgebra x@(MemToPhys ) = compileMemToPhys x
compileAlgebra x@(GetAddress ) = compileGetAddress x

2.3 Plumbing Machinery

The material presented in this chapter relies on some hairy concepts from Category Theory. If you are
curious about these things, Edward Kmett wrote a nice blog post [2] on the subject. The first version
of FoF, and in particular this file, relied on Wouter Swierstra solution to the expression problem [6].
However, the burden of this approach on the type-system was unbearable for our users.

Our motivation is to build a monad in which one can naturally write sequential code, just as an imper-
ative language. Each construct of the language is defined in Constructs by the FoFConst data-type.
Purposely, this data-type implements a functor. The code below generically turn a functor f into a
Semantics f monad. Hence, in Constructs, we apply this machinery to make a monad out of FoFConst .

Barrelfish TN-024 FiletOFish - 25



2.3.1 The Semantics Monad

We build a monad Semantics f out of a function f thanks to the following data-type:

data Semantics f a = Pure a
| Impure (f (Semantics f a))

First of all, we show that this defines a functor:

instance Functor f ⇒ Functor (Semantics f ) where
fmap f (Pure x ) = Pure (f x )
fmap f (Impure t) = Impure (fmap (fmap f ) t)

We need to (as of GHC 7.10) implement Applicative

instance (Functor f )⇒ Applicative (Semantics f ) where
pure = return
(< ∗ >) = ap

Then, we obtain the monad:

instance Functor f ⇒ Monad (Semantics f ) where
return = Pure
(Pure x )>>= f = f x
(Impure t)>>= f = Impure (fmap (>>=f ) t)

Terms are embedded into the monad thanks the following function:

inject :: f (Semantics f a)→ Semantics f a
inject x = Impure x

2.3.2 Folding the Free Monad

Finally, once we have built the monad, we will need to manipulate its content. For example, we will
be willing to evaluate it, or to compile it, etc. All these operations can be implemented by folding over
the monadic code, that is traversing the constructs in their definition order and computing an output of
type b. Note that we have to distinguish Pure terms, which are simply values, from Impure ones, which
are the embedded constructs.

foldSemantics :: Functor f ⇒ (a → b)→ (f b → b)→ Semantics f a → b
foldSemantics pure imp (Pure x ) = pure x
foldSemantics pure imp (Impure t) = imp $ fmap (foldSemantics pure imp) t

2.3.3 Sequencing in the Free Monad

Provided a list of monadic code, we are able to turn them into a single monadic code returning a list of
terms. This corresponds to the sequence function in the IO monad:

sequenceSem ms = foldr k (return [ ]) ms
where k m m ′ =
do

x ← m
xs ← m ′

return (x : xs)
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Chapter 3

Filet-o-Fish Operators

Listen.
Strange women lying in ponds distributing
swords is no basis for a system of
government. Supreme executive power
derives from a mandate from the masses, not
from some farcical aquatic ceremony.

Monty Python

3.1 Arrays

The Array construct, as well as the subsequent constructs, is organized as follow. First, we define some
smart constructors, which are directly used by the DSL designer when implementing the compiler.
Then, we implement the one-step interpreter and compiler to FoF.

Array offers an abstraction over C arrays, both statically defined or statically allocated. Hence, it offers
the possibility to create, read from, and write into arrays.

3.1.1 Smart Constructors

We can create dynamic and static anonymous arrays using the following combinators:

newArray :: [Data ]→ FoFCode Loc
newArray value = inject (NewArray Nothing DynamicArray value return)

newStaticArray :: [Data ]→ FoFCode Loc
newStaticArray value = inject (NewArray Nothing (StaticArray $ length value) value return)

Similarly, they can be named:

newArrayN :: String → [Data ]→ FoFCode Loc
newArrayN name value = inject (NewArray (Just name) DynamicArray value return)

newStaticArrayN :: String → [Data ]→ FoFCode Loc
newStaticArrayN name value = inject (NewArray (Just name) (StaticArray $ length value) value return)

Then, we can read the content of an array:
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readArray :: Loc → Index → FoFCode Data
readArray l f = inject (ReadArray l f return)

As well as write some data in a cell:

writeArray :: Loc → Index → Data → FoFCode ()
writeArray l f d = inject (WriteArray l f d (return ()))

3.1.2 Run Instantiation

The interpretation of an array operation is dispatched by the following code.

runArrays :: FoFConst (Heap → (a,Heap))→ (Heap → (a,Heap))
runArrays (NewArray a b c r) heap = uncurry r $ runNewArray b c heap
runArrays (ReadArray a b r) heap = uncurry r $ runReadArray a b heap
runArrays (WriteArray a b c r) heap = r $ runWriteArray a b c heap

Creating, reading, and writing to or from an array are trivially implemented by the following code:

runNewArray :: AllocArray → [Data ]→ Heap → (Loc,Heap)
runNewArray alloc initData heap =
let loc = freshALoc heap in
let sizeInt = length initData in
let name = makeVarName Dynamic loc in
let ref = CLRef Dynamic (TArray alloc $ typeOf $ head initData) name in
let heap1 = heap {freshALoc = loc + 1,

arrayMap = (name, initData) : (arrayMap heap)} in
(ref , heap1 )

runReadArray :: Loc → Index → Heap → (Data,Heap)
runReadArray (CLRef (TArray ) loc) index heap =
let array = fromJust $ loc ‘lookup‘ (arrayMap heap) in
let (CLInteger indexInt) = symbEval index in
let val = array !! (fromInteger indexInt) in
(val , heap)

runWriteArray :: Loc → Index → Data → Heap → Heap
runWriteArray (CLRef (TArray ) loc) index dat heap =
let array = fromJust $ loc ‘lookup‘ (arrayMap heap) in
let (CLInteger indexInt) = symbEval index in
let (arrayBegin, arrayEnd) = splitAt (fromInteger indexInt) array in
let array1 = arrayBegin ++ (dat : tail arrayEnd) in
let heap1 = heap {arrayMap = (loc, array1 ) : arrayMap heap} in
heap1

3.1.3 Compile Instantiation

Similarly, the compilation of array operations consists in implementing the following function:

compileArrays :: FoFConst (Binding → (ILFoF ,Binding))→
(Binding → (ILFoF ,Binding))

The translation from the FoFConst terms to FoF terms is almost automatic. The added value of this
process consists in generating or deriving names for the references.
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compileArrays (NewArray name allocArray dat r) binding =
let scopeVar

= case allocArray of
DynamicArray → Dynamic
StaticArray → Global in

let (publicName, binding1 )
= case name of

Just x → (Provided x , binding)
Nothing →
let (loc, binding1 ) = getFreshVar binding in
(makeVarName scopeVar loc,

binding1 ) in
let typeOfDat = typeOf $ head dat in
let ret = CLRef Dynamic (TArray allocArray typeOfDat) publicName in
let (cont , binding2 ) = r ret binding in
(FStatement (FNewArray publicName allocArray dat) cont ,

binding2 )

compileArrays (ReadArray ref @(CLRef origin (TArray arrayAlloc typ) xloc) index r) binding =
let (loc,name, binding1 ) = heritVarName binding xloc in
let ret = CLRef Dynamic (readOf typ) name in
let (cont , binding2 ) = r ret binding1 in
(FStatement (FReadArray name ref index ) cont ,

binding2 )

compileArrays (WriteArray ref @(CLRef origin
(TArray arrayAlloc typ)
xloc)
index dat r) binding =
let (cont , binding1 ) = r binding in
(FStatement (FWriteArray ref index dat) cont ,

binding1 )

3.2 Conditionals

The Conditionals constructs consist of all control-flow operators defined in the C language, excepted
the goto statement and fall-through switches.

3.2.1 Smart Constructors

We provide the DSL designer with all standard C control-flow operators. Hence, we define the follow-
ing combinators: ifc, for , while , doWhile , break , and continue .

ifc :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr

ifc cond ifTrue ifFalse =
inject (If cond ifTrue ifFalse (return Void))

for :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr

Barrelfish TN-024 FiletOFish - 29



for init cond incr loop =
inject (For init cond incr loop (return Void))

while :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr

while cond loop =
inject (While cond loop (return Void))

doWhile :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr

doWhile loop cond =
inject (DoWhile loop cond (return Void))

break :: FoFCode PureExpr
break = inject Break

continue :: FoFCode PureExpr
continue = inject Continue

The switch statement is slightly different from the C one: every case is automatically terminated by a
break statement. Hence, it is impossible to fall through a case.

switch :: PureExpr →
[(PureExpr ,FoFCode PureExpr)]→
FoFCode PureExpr →
FoFCode PureExpr

switch cond cases defaultCase =
inject (Switch cond cases defaultCase (return Void))

3.2.2 Compile Instantiation

The compilation step is mostly standard. Note that we often have to compile sub-blocks of code. There-
fore, we need to carefully update the relevant binding states, so as to ensure the freshness of generated
names while respecting the scope of locally defined variables.

compileConditionals (If condi ifTrue ifFalse r) binding =
(FIf compCond compIfTrue compIfFalse cont ,

binding2 )
where (compCond , binding1 ) = compileSemtoFoF ′ condi binding
(compIfTrue, binding1 ′) = compileSemtoFoF ′ ifTrue binding1
(compIfFalse, binding1 ′′) = compileSemtoFoF ′ ifFalse
(binding1 ′ |− > binding1 )

(cont , binding2 ) = r (binding1 ′′ |− > binding)

compileConditionals (While condW loop r) binding =
(FWhile compCond compLoop cont ,

binding3 )
where (compCond , binding1 ) = compileSemtoFoF ′ condW binding
(compLoop, binding2 ) = compileSemtoFoF ′ loop binding1
(cont , binding3 ) = r (binding2 |− > binding)

compileConditionals (DoWhile loop condD r) binding =
(FDoWhile compLoop compCond cont ,

binding3 )
where (compLoop, binding1 ) = compileSemtoFoF ′ loop binding
(compCond , binding2 ) = compileSemtoFoF ′ condD

(binding1 |− > binding)
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(cont , binding3 ) = r (binding2 |− > binding)

compileConditionals (For init test inc loop r) binding =
(FFor compInit compTest compInc compLoop cont ,

binding5 )
where (compInit , binding1 ) = compileSemtoFoF ′ init binding
(compTest , binding2 ) = compileSemtoFoF ′ test binding1
(compInc, binding3 ) = compileSemtoFoF ′ inc binding2
(compLoop, binding4 ) = compileSemtoFoF ′ loop

(binding1 |− > binding3 )
(cont , binding5 ) = r (binding4 |− > binding)

compileConditionals (Switch test cases defaultC r) binding =
(FSwitch test compCases compDefault cont ,

binding3 )
where compileCase (compCodes, binding) (i , code) =

((i , compCode) : compCodes,
(binding1 |− > binding))

where (compCode, binding1 ) = compileSemtoFoF ′ code binding
(compCases, binding1 ) =

foldl ′ compileCase ([ ], binding) cases
(compDefault , binding2 ) =

compileSemtoFoF ′ defaultC (binding1 |− > binding)
(cont , binding3 ) = r (binding2 |− > binding)

compileConditionals Break binding =
(FClosing $ FBreak , binding)

compileConditionals Continue binding =
(FClosing $ FContinue, binding)

3.2.3 Run Instantiation

The implementation of the interpreter is straightforward. We start by dispatching calls to construct-
specific functions:

runConditionals (If a b c r) heap =
r $ runIf a b c heap

runConditionals (For a b c d r) heap =
r $ runFor a b c d heap

runConditionals (While a b r) heap =
r $ runWhile a b heap

runConditionals (DoWhile a b r) heap =
r $ runDoWhile a b heap

runConditionals (Switch a b c r) heap =
r $ runSwitch a b c heap

runConditionals Break heap =
error "runAlgebra: Break not yet implemented"

runConditionals Continue heap =
error "runAlgebra: Continue not yet implemented"

Then, we implement the semantics of each of these constructs:

runIf :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
Heap → Heap

runIf test ifTrue ifFalse heap =
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let (vtest , heap1 ) = run test heap in
let CLInteger valVtest = symbEval vtest in
if (valVtest 6≡ 0) then

let ( , heap2 ) = run ifTrue heap1 in
heap2

else
let ( , heap2 ) = run ifFalse heap1 in
heap2

runFor :: FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
FoFCode PureExpr →
Heap → Heap

runFor init test incr loop heap =
let ( , heap1 ) = run init heap in
loopWhile heap1
where loopWhile heap =
let (vtest , heap1 ) = run test heap in
let CLInteger valVtest = symbEval vtest in
if (valVtest 6≡ 0) then
let ( , heap2 ) = run loop heap1 in
let ( , heap3 ) = run incr heap2 in

loopWhile heap3
else heap1

runWhile :: FoFCode PureExpr →
FoFCode PureExpr →
Heap → Heap

runWhile test loop heap =
let (vtest , heap1 ) = run test heap in
let (CLInteger valVtest) = symbEval vtest in
if (valVtest 6≡ 0) then

let ( , heap2 ) = run loop heap1 in
runWhile test loop heap2

else heap1

runDoWhile :: FoFCode PureExpr →
FoFCode PureExpr →
Heap → Heap

runDoWhile loop test heap =
let ( , heap1 ) = run loop heap in
let (vtest , heap2 ) = run test heap1 in
let CLInteger valVtest = symbEval vtest in
if (valVtest 6≡ 0) then

runDoWhile loop test heap2
else

heap2

runSwitch :: PureExpr →
[(PureExpr ,FoFCode PureExpr)]→
FoFCode PureExpr →
Heap → Heap

runSwitch test cases defaultCase heap =
let res = symbEval test in

case res ‘lookup‘ cases of
Just stmt → let ( , heap1 ) = run stmt heap in

heap1
Nothing → let ( , heap1 ) = run defaultCase heap in
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heap1

3.3 Enumeration

The Enumeration construct mirrors the enum data-type of C. It allows us to name a finite number of
natural constants and manipulate these names instead of numbers.

3.3.1 Smart Constructors

The newEnum combinator is used to create a member value belonging to one of the fields of nameEnum .

newEnum :: String →
Enumeration →
String →
FoFCode PureExpr

newEnum nameEnum fields value =
inject (NewEnum Nothing nameEnum fields value return)

Similarly, newEnumN creates a named member of an enumeration.

newEnumN :: String →
String →
Enumeration →
String →
FoFCode PureExpr

newEnumN name nameEnum fields value =
inject (NewEnum (Just name) name fields value return)

3.3.2 Compile Instantiation

A NewEnum is compiled as follow.

compileEnumerations (NewEnum name enumName vals value r) binding =
(FStatement (FNewEnum publicName enumName vals value) cont ,

binding3 )
where (publicName, binding2 )

= case name of
Just x → (Provided x , binding)
Nothing → (makeVarName Local loc,

binding1 )
where (loc, binding1 ) = getFreshVar binding

ret = CLRef Global uint64T (Provided value)
(cont , binding3 ) = r ret binding2

Note that ret is actually the name of the enumerated value: it is treated as a constant and passed as
such to the remaining code. A more standard implementation would have been to create a variable
containing this constant value and pass the reference to the variable to the subsequent code. However,
when switch-ing over an enumerated value, the case would match a variable instead of a constant,
which is refused by the C compiler.

Clearly, a clean solution to this implementation must be found. However, the current solution, if not
perfect, seems to be good enough.
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3.3.3 Run Instantiation

Running a newEnum simply consists in getting the associated value.

runEnumerations (NewEnum enum name r) heap =
let ref = uint64 $ toInteger $ fromJust $ name ‘lookup‘ enum in
r ref heap

3.4 Function Definition

This module abstracts the function definition and manipulation mechanisms found in C. This consists
in a def constructor, to define functions, a call and callN functions to call functions, as well as a returnc
combinator to return from a function call.

3.4.1 Smart Constructors

When defining a function, we provide a list of attributes, its name, its body, its return type, and a list of
arguments types:

def :: [FunAttr ]→
String →
([PureExpr ]→ FoFCode PureExpr)→
TypeExpr →
[(TypeExpr ,Maybe String)]→
FoFCode PureExpr

def attr name fun returnT argsT =
inject (NewDef attr name (Fun fun) returnT argsT return)

Then, it is possible to call into a function, provided a list of parameters. The result, if any, can be named
by using the callN construct.

Currently, both the interpreter and the compiler are extremely optimistic about their inputs: in the fu-
ture, we should add more safety checks. For example, we should check that we are calling the functions
with the right arguments.

call :: PureExpr → [PureExpr ]→ FoFCode PureExpr
call funRef params =

inject (CallDef Nothing funRef params return)

callN :: String → PureExpr → [PureExpr ]→ FoFCode PureExpr
callN varName funRef params =

inject (CallDef (Just varName) funRef params return)

Finally, it is possible to return from a function thanks to the usual return. This should not be confused
with the monadic return of Haskell.

returnc :: PureExpr → FoFCode PureExpr
returnc value = inject (Return value)
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3.4.2 Compile Instantiation

Compiling functions is a little bit more tricky than usual. It requires generating or handling arguments,
as well as handling the return value, if any. This corresponds to the following code.

compileFunctions (NewDef attr nameF (Fun func) return args r)
binding =
(FNewDef attr nameF compBody return instanceArgs cont ,

binding2 )
where instanceArgs = instanciateArgs args
(compBody , binding1 ) = compileSemtoFoF ′ (func instanceArgs) binding
ref = CLRef Global (TFun nameF (Fun func) return args) (Provided nameF )
(cont , binding2 ) = r ref (binding1 |− > binding)
instanciateArgs :: [(TypeExpr ,Maybe String)]→ [PureExpr ]
instanciateArgs params = reverse $ foldl ′ instanciateArg [ ] $

zip [1 . .] params
where instanciateArg l (idx , (typ,mName)) = (CLRef Param typ name) : l

where name = case mName of
Just x → Provided x
Nothing → makeVarName Param idx

compileFunctions (CallDef mName f @(CLRef (TFun nameF
func
returnT
argsT ) )
args r) binding =
(FStatement (FCallDef name f args) cont ,

binding2 )
where (name, binding1 )

= case returnT of
TVoid → (Nothing , binding)
→ case mName of
Just x → (Just $ Provided x , binding)
Nothing →
(Just $ makeVarName Local loc,

binding ′)
where (loc, binding ′) = getFreshVar binding

(cont , binding2 )
= case returnT of

TVoid → r Void binding1
→ r (CLRef Local
returnT
(fromJust name))
binding1

The translation of the return statement, on the other hand, is trivial.

compileFunctions (Return e) binding =
(FClosing $ FReturn e, binding)

3.4.3 Run Instantiation

As usual, we dispatch here:
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runFunctions (NewDef f r) heap =
uncurry r $ runNewDef f heap

runFunctions (CallDef a b r) heap =
uncurry r $ runCallDef a b heap

runFunctions (Return a) heap =
runReturn a heap -- OK??

And compute there:

runReturn :: PureExpr → Heap → (PureExpr ,Heap)
runReturn e heap = (e, heap)

runNewDef :: Function → Heap → (PureExpr ,Heap)
runNewDef function heap =
(CLRef Global (TFun ⊥ function ⊥ ⊥) ⊥, heap)

runCallDef :: PureExpr → [PureExpr ]→ Heap →
(PureExpr ,Heap)

runCallDef (CLRef (TFun (Fun function) ) ) args heap =
let (result , heap1 ) = run (function args) heap in
(result , heap1 )

3.5 Reference Cells

The reference cell construct provides an abstraction to both variables and C pointers. It composed
by three combinators to create, read from, and write to reference cells. It can be compared to OCaml
references or Haskell IORef.

3.5.1 Smart Constructors

A reference cell is created in an initialized state. The variant newRefN allows the DSL designer to
provide a name to the created variable.

newRef :: Data → FoFCode Loc
newRef d = inject (NewRef Nothing d return)

newRefN :: String → Data → FoFCode Loc
newRefN name d = inject (NewRef (Just name) d return)

Follow primitives to read from and write to these reference cells:

readRef :: Loc → FoFCode Data
readRef l = inject (ReadRef l return)

writeRef :: Loc → Data → FoFCode PureExpr
writeRef l d = inject (WriteRef l d (return Void))

The current implementation lacks lots of sanity checks:

• read and Write on CLRef,

• write from and to compatible types,

• do not write local pointers into param/global ones,

• . . .
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3.5.2 Compile Instantiation

The compilation is tricky when it comes to computing the pointer type. I wouldn’t be surprised if some
bugs were lying there. This concerns newRef and readRef , which effect on references is not trivial.

compileReferences (NewRef refName ref r) binding =
(FStatement (FNewRef publicName ref ) cont ,

binding2 )
where (publicName, binding1 )

= case refName of
Just x → (Provided x , binding)
Nothing →
let (loc, binding1 ) = getFreshVar binding in
(makeVarName Local loc, binding1 )

ret = CLRef Local (TPointer (typeOf ref ) Avail) publicName
(cont , binding2 ) = r ret binding1

compileReferences (ReadRef ref @(CLRef xloc) r) binding =
(FStatement (FReadRef name ref ) cont ,

binding2 )
where (loc,name, binding1 ) = heritVarName binding xloc

ret = CLRef Local (unfoldPtrType ref ) name
(cont , binding2 ) = r ret binding1

writeRef is straightforward.

compileReferences (WriteRef ref d r) binding =
(FStatement (FWriteRef ref d) cont ,

binding1 )
where (cont , binding1 ) = r binding

3.5.3 Run Instantiation

On the other hand, the implementation of the interpreter is much simpler. We start with the dispatcher:

runReferences (NewRef d r) heap = uncurry r $ runNewRef d heap
runReferences (ReadRef l r) heap = uncurry r $ runReadRef l heap
runReferences (WriteRef l v r) heap = r $ runWriteRef l v heap

And the per-construct interpreters follow:

runNewRef :: Data → Heap → (Loc,Heap)
runNewRef value heap =
(CLRef Local typeOfVal name, heap2 )
where typeOfVal = typeOf value

loc = freshLoc heap
refs = refMap heap
name = makeVarName Local loc
heap1 = heap {freshLoc = loc + 1}
heap2 = heap1 {refMap = (name, value) : refs }

runReadRef :: Loc → Heap → (Data,Heap)
runReadRef (CLRef location) heap =
let refs = refMap heap in
let val = fromJust $ location ‘lookup‘ refs in
(val , heap)

runWriteRef :: Loc → Data → Heap → Heap
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runWriteRef (CLRef location) value heap =
let refs = refMap heap in
let refs1 = (location, value) : refs in
heap {refMap = refs1 }

3.6 Strings

The String construct corresponds to static arrays of characters. However, they are implemented here as
a special case as they are specially dealt with by the C compiler.

3.6.1 Smart Constructors

We only provide string creation combinators: accessing a string can be achieved thanks to Arrays com-
binators. As usual, we provide two combinators: one to create an anonymous string, one to create a
named string.

newString :: String → FoFCode Loc
newString value = inject (NewString Nothing value return)

newStringN :: String → String → FoFCode Loc
newStringN name value = inject (NewString (Just name) value return)

3.6.2 Compile Instantiation

The compilation is straightforward, on the model of static array declaration.

compileString (NewString name dat r) binding =
let (publicName, binding1 )

= case name of
Just x → (Provided x , binding)
Nothing →
let (loc, binding1 ) = getFreshVar binding in
(makeVarName Global loc,

binding1 ) in
let ret = CLRef Global

(TArray (StaticArray $ length dat) TChar)
publicName in

let (cont , binding2 ) = r ret binding1 in
(FStatement (FNewString publicName dat) cont ,

binding2 )

3.6.3 Run Instantiation

Similarly, the interpreter is simple.

runString (NewString a b r) heap = uncurry r $ runNewString b heap

runNewString :: String → Heap → (Loc,Heap)
runNewString string heap =
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let loc = freshALoc heap in
let size = length string in
let name = makeVarName Dynamic loc in
let ref = CLRef Dynamic (TArray (StaticArray size) TChar) name in
let heap1 = heap {freshALoc = loc + 1,

arrayMap = (name,map cchar string) : (arrayMap heap)} in
(ref , heap1 )

3.7 Structures Definition

The Structure construct allows you to mirror the struct data-type of C. It is composed by a newStruct
combinator, to instantiate an element of this type, a readStruct combinator, to read a field from a struc-
ture, and a writeStruct combinator, to write into a field.

3.7.1 Smart Constructors

As often with instantiation operators, we can chose between statically or dynamically allocating the
value. Then, it is possible to chose between an anonymous or a named value. All these choices are
provided by the following four combinators.

newStaticStruct :: String →
[(TypeExpr ,String ,Data)]→
FoFCode Loc

newStaticStruct name stt =
inject (NewStruct Nothing StaticStruct name
(map (λ(t ,n, v)→ (n, (t , v))) stt)
return)

newStaticStructN :: String →
String →
[(TypeExpr ,String ,Data)]→
FoFCode Loc

newStaticStructN nameStr name stt =
inject (NewStruct (Just nameStr) StaticStruct name
(map (λ(t ,n, v)→ (n, (t , v))) stt)
return)

newStruct :: String →
[(TypeExpr ,String ,Data)]→
FoFCode Loc

newStruct name stt =
inject (NewStruct Nothing DynamicStruct name
(map (λ(t ,n, v)→ (n, (t , v))) stt)
return)

newStructN :: String →
String →
[(TypeExpr ,String ,Data)]→
FoFCode Loc

newStructN nameStr name stt =
inject (NewStruct (Just nameStr) DynamicStruct name

(map (λ(t ,n, v)→ (n, (t , v))) stt)
return)
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Follow the read and write combinators:

readStruct :: Loc → String → FoFCode Data
readStruct l f = inject (ReadStruct l f return)

writeStruct :: Loc → String → Data → FoFCode ()
writeStruct l f d = inject (WriteStruct l f d (return ()))

3.7.2 Compile Instantiation

Apart from type handling, the compilation naturally follows the definition. As often, computing the
CLRef is a magic voodoo, which is far from being provably correct.

compileStructures (NewStruct refName allocStruct name fields r) binding =
(FStatement newS cont ,

binding2 )
where (loc, binding1 ) = getFreshVar binding

structName = case refName of
Just x → Provided x
Nothing → makeVarName Dynamic loc

fieldsTypeStr = [(field , typ)
| (field , (typ, ))← fields ]

typeStr = TStruct DynamicStruct name fieldsTypeStr
ret = CLRef Dynamic typeStr structName
(cont , binding2 ) = r ret binding1
newS = FNewStruct structName allocStruct name fields

compileStructures (ReadStruct ref @(CLRef origin
typ@(TStruct alloc name fields)
xloc)
field r) binding =
(FStatement readS cont ,

binding2 )
where (loc, varName, binding1 ) = heritVarName binding xloc

typeField = fromJust $ field ‘lookup‘ fields
ret = CLRef (allocToOrigin alloc) (readOf typeField) varName
(cont , binding2 ) = r ret binding1
readS = FReadStruct varName ref field
allocToOrigin StaticStruct = Local
allocToOrigin DynamicStruct = Dynamic

compileStructures (WriteStruct ref @(CLRef origin
typ@(TStruct alloc name fields)
xloc)
field
value r) binding =
(FStatement writeS cont ,

binding1 )
where (cont , binding1 ) = r binding

writeS = FWriteStruct ref field value

3.7.3 Run Instantiation

The interpreter follows with a dispatcher:
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runStructures (NewStruct a b c r) heap =
uncurry r $ runNewStruct a b c heap

runStructures (ReadStruct a b r) heap =
uncurry r $ runReadStruct a b heap

runStructures (WriteStruct a b c r) heap =
r $ runWriteStruct a b c heap

And the per-construct implementation:

runNewStruct :: AllocStruct →
String →
[(String , (TypeExpr ,Data))]→
Heap → (Loc,Heap)

runNewStruct alloc name struct heap =
let structT = map (λ(x1 , (x2 , ))→ (x1 , x2 )) struct in
let structD = map (λ(x1 , ( , x2 ))→ (x1 , x2 )) struct in
let loc = freshLoc heap in
let structs = strMap heap in
let varName = makeVarName Local loc in
let heap1 = heap {freshLoc = loc + 1} in
let heap2 = heap1 {strMap = (varName, structD) : structs } in
(CLRef Local (TStruct alloc name structT ) varName, heap2 )

runReadStruct :: Loc → String → Heap → (Data,Heap)
runReadStruct (CLRef location) field heap =
let structs = strMap heap in
let struct = fromJust $ location ‘lookup‘ structs in
let val = fromJust $ field ‘lookup‘ struct in
(val , heap)

runWriteStruct :: Loc → String → Data → Heap → Heap
runWriteStruct (CLRef location) field value heap =
let structs = strMap heap in
let struct = fromJust $ location ‘lookup‘ structs in
let struct1 = (field , value) : struct in
let structs1 = (location, struct1 ) : structs in
heap {strMap = structs1 }

3.8 Type Definition

The Typedef construct provides a similar service than the C typedef.

3.8.1 Smart Constructors

In particular, Typedef offers two combinators. The first one, alias allows you to locally define a type
alias.

alias :: TypeExpr → FoFCode PureExpr
alias typedef = inject (Typedef typedef (return void))

The other one, aliasE allows you to mention an aliasing declared in an external library, such as <stdbool.h>
that declares a bool as an integer.

aliasE :: String →
TypeExpr →
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FoFCode PureExpr
aliasE incl typedef = inject (TypedefE incl typedef (return void))

3.8.2 Compile Instantiation

The compilation to FoF is straightforward:

compileTypedef (Typedef (TTypedef typ aliasName) r) binding =
let (cont , binding1 ) = r binding in
(FStatement (FTypedef typ aliasName) cont ,

binding1 )

compileTypedef (TypedefE inclDirective typeDef @(TTypedef typ aliasName) r) binding =
let (cont , binding1 ) = r binding in
(FStatement (FTypedefE inclDirective typeDef ) cont ,

binding1 )

3.8.3 Run Instantiation

These operations occurring at the type-level, the interpreter doesn’t pay any attention to them:

runTypedef (Typedef r) heap = r heap
runTypedef (TypedefE r) heap = r heap

3.9 Unions Definition

The Union constructs abstracts the union data-type of C.

3.9.1 Smart Constructors

Hence, creating an union is available in four flavors, statically or dynamically allocated, and anonymous
or named.

newStaticUnion :: String →
[(TypeExpr ,String)]→
String →
Data →
FoFCode Loc

newStaticUnion name fields field dat =
inject (NewUnion Nothing StaticUnion name
(map (λ(s1 , s2 )→ (s2 , s1 )) fields)
(field , dat)
return)

newStaticUnionN :: String →
String →
[(TypeExpr ,String)]→
String →
Data →
FoFCode Loc

FiletOFish - 42 Barrelfish TN-024



newStaticUnionN nameU name fields field dat =
inject (NewUnion (Just nameU ) StaticUnion name

(map (λ(s1 , s2 )→ (s2 , s1 )) fields)
(field , dat)
return)

newUnion :: String →
[(TypeExpr ,String)]→
String →
Data →
FoFCode Loc

newUnion name fields field dat =
inject (NewUnion Nothing DynamicUnion

name
(map (λ(s1 , s2 )→ (s2 , s1 )) fields)
(field , dat)
return)

newUnionN :: String →
String →
[(TypeExpr ,String)]→
String →
Data →
FoFCode Loc

newUnionN nameU name fields field dat =
inject (NewUnion (Just nameU ) DynamicUnion

name
(map (λ(s1 , s2 )→ (s2 , s1 )) fields)
(field , dat)
return)

Reading and writing follow the usual scheme:

readUnion :: Loc → String → FoFCode Data
readUnion l f = inject (ReadUnion l f return)

writeUnion :: Loc → String → Data → FoFCode ()
writeUnion l f d = inject (WriteUnion l f d (return ()))

3.9.2 Compile Instantiation

As usual the difficulty of the compilation stands in not messing up created and read types. Apart from
that, it is a simple translation.

compileUnions (NewUnion refName allocUnion nameU fields (initField , initData) r) binding =
(FStatement newU cont ,

binding2 )
where typeUnion = TUnion DynamicUnion nameU fields
(loc, binding1 ) = getFreshVar binding
name = case refName of

Nothing → makeVarName Dynamic loc
Just x → Provided x

ret = CLRef Dynamic typeUnion name
(cont , binding2 ) = r ret binding1
newU = FNewUnion name allocUnion nameU fields (initField , initData)

compileUnions (ReadUnion ref @(CLRef typeU@(TUnion alloc
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nameU
fields) xloc)
field r) binding =
(FStatement readU cont ,

binding2 )
where (loc,name, binding1 ) = heritVarName binding xloc

typeField = fromJust $ field ‘lookup‘ fields
origin = allocToOrigin alloc
ret = CLRef origin (readOf typeField) name
(cont , binding2 ) = r ret binding1
readU = FReadUnion name ref field
allocToOrigin StaticUnion = Local
allocToOrigin DynamicUnion = Dynamic

compileUnions (WriteUnion ref @(CLRef origin
typ@(TUnion alloc fields)
xloc)
field
value r) binding =
(FStatement writeU cont ,

binding1 )
where (cont , binding1 ) = r binding

writeU = FWriteUnion ref field value

3.9.3 Run Instantiation

This part has not been implemented yet. Hence, the interpreter will blow up in presence of unions. To
get an idea of the desired implementation, take a look at the reference cells interpreter. It should be
similarly easy.

runUnions (NewUnion a b c d r) heap = error "runUnions: not yet implemented"

runUnions (ReadUnion a b r) heap = error "runUnions: not yet implemented"

runUnions (WriteUnion a b c r) heap = error "runUnions: not yet implemented"
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Chapter 4

Lib-C Operators

Mortician: Bring out your dead! [clang] . . .
Customer: Here’s one – nine pence.
Dead person: I’m not dead!
Mortician: What?
Customer: Nothing – here’s your nine pence.

Monty Python

4.1 Printf

The Printf constructs is a simple foreign function wrapper around the C library printf.

4.1.1 Smart Constructors

Provided with a format string and a list of parameters, the printf Pcombinator emulates printf.

printf :: String → [PureExpr ]→ FoFCode PureExpr
printf format params = inject (Printf format params (return Void))

4.1.2 Compile Instantiation

Compilation is a natural foreign function call. Note the quoting of format : we sacrify the semantics
of the format string. We could possibly apply some tricks to recover it, or to get it in a ”nice” format
thanks to the printf combinator. However, for simplicity, we drop its semantics for now.

compilePrintf (Printf format params r) binding =
let (cont , binding1 ) = r binding in
(FStatement (FFFICall "printf" ((quote format) : params)) cont ,

binding1 )
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4.1.3 Run Instantiation

For the reason mentioned above, it is a pain to recover the semantics of the printf. Hence, we drop its
side-effect when interpreting it.

runPrintf (Printf a b r) heap = r heap

An esthetically satisfying solution would be to store this (and others) side-effecting operations in a
stream, along with its arguments. Hence, we could compare side-effecting programs by their so-called
trace. By ignoring the effect of printf here, we consider that side-effects have no semantic significance.
This is kind of lie when interpreting an imperative language.

4.2 Assert

The construct Assert embeds the C assert function into FoF.

4.2.1 Smart Constructors

The use of assert is obvious, by its definition.

assert :: PureExpr → FoFCode PureExpr
assert test = inject (Assert test (return Void))

4.2.2 Compile Instantiation

The compilation is a direct translation into a foreign function:

compileAssert (Assert e r) binding =
let (cont , binding1 ) = r binding in
(FStatement (FFFICall "assert" [e ]) cont ,

binding1 )

4.2.3 Run Instantiation

As mentioned with Printf , we take here the easy option of ignoring the run-time behaviour of an asser-
tion.

runAssert (Assert a r) heap = r heap

Being able to capture the semantics of that operation would be helpful when debugging a compiler. So,
some efforts are worth being devoted here.
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Chapter 5

Lib-barrefish Operators

Here may be found the last words of Joseph
of Aramathea. He who is valiant and pure of
spirit may find the Holy Grail in the Castle of
uuggggggh

Monty Python

5.1 Has Descendants

The construct HasDescendants embeds the libarrelfish function has_descendants into FoF.

5.1.1 Smart Constructors

This function is provided in two flavors: an anonymous one, which stores its result in an anonymous
variable, and a named one, which allows you to name the resulting variable.

has descendants :: PureExpr → FoFCode PureExpr
has descendants cte = inject (HasDescendants Nothing cte return)

has descendantsN :: String → PureExpr → FoFCode PureExpr
has descendantsN name cte = inject (HasDescendants (Just name) cte return)

5.1.2 Compile Instanciation

This function is translated into a foreign function definition, as usual:

compileHasDescendants (HasDescendants mName arg r) binding =
let (loc, binding1 ) = getFreshVar binding in
let name = case mName of

Nothing → makeVarName Local loc
Just x → Provided x in

let ref = CLRef Local uint64T name in
let (cont , binding2 ) = r ref binding1 in
(FStatement (FFFICall "has_descendants" [ref , arg ]) cont ,

binding2 )
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5.1.3 Run Instantiation

As for libc functions, we have not yet implemented the semantics of that operation. A trace-based
semantics would make sense, too.

runHasDescendants (HasDescendants a r) heap = error "HasDescendants: eval not implemented"

5.2 Mem To Phys

This construct embeds the libarrelfish function mem_to_phys into FoF.

5.2.1 Smart Constructors

As for HasDescendants , both named and anonymous function are provided. They are direct wrappers
around the mem_to_phys function.

mem to phys :: PureExpr → FoFCode PureExpr
mem to phys cte = inject (MemToPhys Nothing cte return)

mem to physN :: String → PureExpr → FoFCode PureExpr
mem to physN name cte = inject (MemToPhys (Just name) cte return)

5.2.2 Compile Instantiation

Compiling is straightforward: just declare a foreign function.

compileMemToPhys (MemToPhys mName arg r) binding =
let (loc, binding1 ) = getFreshVar binding in
let name = case mName of

Just x → Provided x
Nothing → makeVarName Local loc in

let ref = CLRef Local uint64T name in
let (cont , binding2 ) = r ref binding1 in
(FStatement (FFFICall "mem_to_phys" [ref , arg ]) cont ,

binding2 )

5.2.3 Run Instantiation

However, the semantics remains to be defined.

runMemToPhys (MemToPhys a r) heap = error "MemToPhys: eval not implemented"
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Part II

The Filet-o-Fish Compiler
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The Filet-O-Fish Compiler(s)

I’m French!
Why do think I have this outrageous accent,
you silly king-a?!

Monty Python

The Filet-o-Fish to C compiler is major component of Filet-o-Fish. Major in the sense that it is a big
chunk of code, which correctness is critical. So, when playing with this part of the code, better be
cautious. The high-level specification of the compiler is straightforward: given a Filet-o-Fish code, it
should translate it into a semantically equivalent C code. Well, it is a compiler, after all.

However, from a usability point of view, it is vital to be able to understand what the generated code
is doing: think of a debugging session that needs to go through some code generated by Filet-o-Fish.
Hence, we have implemented some so-called optimizations that tidy up the generated code. In order
to ease the implementation of these optimizations we rely on two standard compiler techniques: first,
we define a bunch of intermediate languages (IL) to tackle a specific optimization issue, second we
implement the optimizer as a data-flow analysis solver. The current state of affair is not as idyllic and
the reader is referred to Chapter A to get an overview of my dreams.

Let us sketch the compilation process.

compile :: Semantics FoFConst PureExpr → PakaCode
compile sem =

optimizePaka $!
compileFoFtoPaka $!
compileSemtoFoF sem

First of all, The compiler is provided a value of type Semantics FoFConst PureExpr , built by the op-
erators of Chapter 3. While this structure has a nice functional definition, making it convenient for
interpretation, it is bothersome to navigate on it. Therefore, the first pass of the compiler is to reify this
data-structure, as explained in Chapter 6.

At the end of this compilation pass, the initial input has been translated into an (hopefully) equivalent
one in the FoF intermediate language. In order to remove unnecessary variable assignments, a second
pass of the compiler translate the FoF code into Paka code. In a nutshell, the Paka language only
captures variable assignments, ignoring the computational parts of statements. Hence, seeking and
simplifying redundant assignments is made easy: it corresponds to an optimization phase applied to
the resulting Paka code.

Because different optimizations will focus on different aspects of the code, one could imagine several
intermediate languages and refinements between them. FoF and Paka are just an example of what could
be done. The name Paka comes from a retired hurricane: to pursue that tradition, you can look up the
list of retired hurricane names [1]. There is fair amount of ILs to be implemented.
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Chapter 6

The FoF Intermediate Language

- [...] For, since the tragic death of her father –
- He’s not quite dead!
- Since the near fatal wounding of her father–
- He’s getting better!
- For, since her own father. . . who, when he
seemed about to recover, suddenly felt the
icy hand of death upon him,. . .
- Oh, he’s died!
- And I want his only daughter to look upon
me. . . as her own dad – in a very real, and
legally binding sense. And I feel sure that the
merger – uh, the union – between the
Princess and the brave, but dangerous, Sir
Launcelot of Camelot...

Monty Python

6.1 The FoF Intermediate Language

The FoF IL is nothing more than a direct translation of the Filet-o-Fish operators. In retrospect, calling it
FoF might be confusing. Never forget that lives in the IL/ directory, so it is simply not the abbreviation
for Filet-o-Fish, and that’s it.

Having said that, it is also obvious that, essentially, FoF is Filet-o-Fish: it is a dumb translation of
the Filet-o-Fish constructs into a data-type. Hence, an ILFoF term is the reification of the language
constructs:

data ILFoF
= FConstant PureExpr
| FStatement FStatement ILFoF
| FClosing FClosing
| FNewDef [FunAttr ] String ILFoF TypeExpr [PureExpr ] ILFoF
| FIf ILFoF ILFoF ILFoF ILFoF
| FFor ILFoF ILFoF ILFoF ILFoF ILFoF
| FWhile ILFoF ILFoF ILFoF
| FDoWhile ILFoF ILFoF ILFoF
| FSwitch PureExpr [(PureExpr , ILFoF )] ILFoF ILFoF

Where an FStatement is one of the sequential statement of the Filet-o-Fish language, that is:
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data FStatement
= FNewUnion VarName AllocUnion String [(String ,TypeExpr)] (String ,Data)
| FReadUnion VarName Loc String
| FWriteUnion Loc String Data
| FTypedef TypeExpr String
| FTypedefE String TypeExpr
| FNewStruct VarName AllocStruct String [(String , (TypeExpr ,Data))]
| FReadStruct VarName Loc String
| FWriteStruct Loc String Data
| FNewString VarName String
| FNewRef VarName Data
| FReadRef VarName Loc
| FWriteRef Loc Data
| FNewEnum VarName String Enumeration String
| FNewArray VarName AllocArray [Data ]
| FReadArray VarName Loc Index
| FWriteArray Loc Index Data
| FCallDef (Maybe VarName) PureExpr [PureExpr ]
| FFFICall String [PureExpr ]

And an FClosing is a standard C end of something statement:

data FClosing
= FReturn PureExpr
| FBreak
| FContinue

6.2 Translating FoFCode to IL.FoF

6.2.1 The compiler

We already know how to translate individual statements of the FoFCode language, by using the one
step compiler compileAlgebra defined in ./Expressions.lhs and provided a Binding capturing the
state of the compiler. The game is then to chain up these compilation steps into a single one. Here,
foldSemantics nicely comes to the rescue and automatically build this compiler.

compileSemtoFoF ′ :: FoFCode PureExpr → Binding → (ILFoF ,Binding)
compileSemtoFoF ′ = foldSemantics compilePure compileAlgebra

Where compilePure is used to compile pure expressions. Pure expressions are, by definition, constants
and returned as such. This is used when generating tests for conditional expressions: the computational
part is generated above the test handler and only the (pure) result is tested.

compilePure :: PureExpr → Binding → (ILFoF ,Binding)
compilePure x binding = (FConstant x , binding)

For our convenience, we can define the following compileSemToFoF function that takes a closed FoFCode
and compiles it in the empty environment: that’s our compiler for self-contained expressions.

compileSemtoFoF :: FoFCode PureExpr → ILFoF
compileSemtoFoF term = fst $ compileSemtoFoF ′ term emptyBinding
where emptyBinding = Binding {freshVar = 1,

defStructs = [ ],
defUnions = [ ],
defEnums = [ ]}
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6.2.2 The machinery

Manipulating the compiler environment

We very often need to generate fresh names, while keeping the freshness invariant of the compiler
environment. The following function just does that:

getFreshVar :: Binding → (Int ,Binding)
getFreshVar binding = (loc, binding1 )
where loc = freshVar binding

binding1 = binding {freshVar = loc + 1}

Note that a clever implementation would be something of type:

better getFreshVar :: Binding → (Int → Binding → t)→ t
better getFreshVar binding f = ⊥

Which enforces the fact that the function f is provided a synchronized compiler state. This ensures
that people don’t inadvertently mess up the compiler state. This remark holds for too many functions
below, I’m a bit sad about that.

In order to ensure the freshness of names across bindings, we define the following passFreshVar func-
tion that builds a stableBinding whose fresh variables are ensured not to clash with the one generated
using upBinding . Similarly, it carries the structures defined in upBinding .

passFreshVar :: Binding → Binding → Binding
passFreshVar upBinding stableBinding =

stableBinding {freshVar = freshVar upBinding ,
defStructs = defStructs upBinding ,
defUnions = defUnions upBinding ,
defEnums = defEnums upBinding }

(|− >) = passFreshVar

From variable identifier and an origin, we can later make VarName . In a craze of Hungarian naming,
the origin dictactes the name of variables.

makeVarName :: Origin → Int → VarName
makeVarName orig loc = Generated $ makeVarName ′ orig loc
where makeVarName ′ Local x = "fof_x"++ show x

makeVarName ′ Param x = "fof_y"++ show x
makeVarName ′ Dynamic x = "fof_d"++ show x
makeVarName ′ Global x = "fof_g"++ show x

The Hungarian fever can go further: when a variable is somehow related to another VarName , the
heritVarName makes it explicit at the name level by deriving a fresh name from the previous one.

heritVarName :: Binding → VarName → (Int ,VarName,Binding)
heritVarName binding name = (loc, Inherited loc name, binding1 )
where (loc, binding1 ) = getFreshVar binding

From Expressions to Types

Let us be honest: the code which follows is tricky. Change something there and the generated code
will be wrong, if it is not already. I’m looking at you readOf and liftType . They came to life during the
implementation of References and its painful compiler. After a lot of work, I came to the conclusion (and
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proof) that they are correct. The question is now: are they correct when mixed with complex data-types,
such as structs and arrays. The practician seems to say “yes”, the theoretician remains proofless.

The intrinsic difficulty is that a Reference abstracts both a C variable and a C pointer. However, in C,
both concepts are quite distinct. Hence, the compiler needs to be clever to translate the unified notion
of Reference in two semantically different objects. Hence that horrible machinery.

typeOf : Obviously, there exists a map going from each well-typed element of PureExpr to an element
of TypeExpr . Hence, this map assigns a type to a given, well-typed expression. As for ill-typed expres-
sions, we simply return an error message.

Computing the type of base values as well as of unary operations is straightforward:

typeOf :: PureExpr → TypeExpr
typeOf (Void) = TVoid
typeOf (CLInteger sign size ) = TInt sign size
typeOf (CLFloat ) = TFloat
typeOf (CLRef typ ) = typ
typeOf (Unary x ) = typeOf x

A binary operation is well-typed if and only if both sub-terms are well-typed and of same type. The
same goes for the branches of a conditional expression:

typeOf (Binary x y) =
if (typeOfx ≡ typeOfy) then

typeOfx
else error "typeOf: Binop on distinct types."

where typeOfx = typeOf x
typeOfy = typeOf y

typeOf (Test t1 t2 ) =
if (typeOft1 ≡ typeOft2 ) then

typeOft1
else error "typeOf: Test exits on distinct types"

where typeOft1 = typeOf t1
typeOft2 = typeOf t2

By convention, the value returned by sizeof is an unsigned 64 bits integer:

typeOf (Sizeof ) = TInt Unsigned TInt64

Finally, the type of a casted expression is the assigned type. Note that we do not judge of the legality of
this cast here. This aspect is handled by the dynamic semantics of FoF’s meta-language.

typeOf (Cast t ) = t

readOf and unfoldPtrType : When we read the content of the reference cell, of type TPointer typeCell modeCell ,
the type of the object read is either:

• A constant of type typeCell , or

• A reference cell of type typeCell , in a Read mode

We can distinguish both cases thanks to typeCell . If typeCell is a TPointer itself (first case, below), this
means that we are dealing with a reference cell. If typeCell is a base type (second case), this means that
this is a constant.
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readOf :: TypeExpr → TypeExpr
readOf (TPointer typ ) = TPointer typ Read
readOf x = x

unfoldPtrType :: PureExpr → TypeExpr
unfoldPtrType (CLRef (TPointer typ ) ) = readOf typ

liftType : Although our Reference Cell representation abstracts away the distinction between variables
and pointers, it has one drawback. A variable is assigned a TPointer type, whereas, in C, we will be
working one TPointer -level below: our reference cell types corresponds to the same C type but one
pointer dereference. Hence, we introduce the following lifting function:

liftType :: TypeExpr → TypeExpr
liftType (TPointer x ) = x
liftType x = x

deref : The deref is another operator dealing with the specify of reference cells. In the compiler, we
translate the high-level reference cell operators by pointer manipulations and assignment. Therefore,
when manipulating a reference cell, we will not interested in its actual content but its address. Hence
the following function. Values will manipulated just as usual, by value.

deref :: PureExpr → String
deref (CLRef (TPointer ) ) = "&"

deref = ""

6.3 Evaluator

Just as for the compiler, described in the previous section, the implementation of the Filet-o-Fish inter-
preter is automatically derived from the one-step interpreters. Again, foldSemantics comes to the rescue
and computes the interpreter:

run :: Semantics FoFConst PureExpr → Heap → (PureExpr ,Heap)
run = foldSemantics (, ) runAlgebra
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Chapter 7

The Paka Intermediate Language

Listen, lad.
I’ve built this kingdom up from nothing.
When I started here, all there was was
swamp. All the kings said I was daft to build
a castle in a swamp, but I built it all the same,
just to show ’em. It sank into the swamp.
So, I built a second one. That sank into the
swamp.
So I built a third one. That burned down, fell
over, then sank into the swamp.
But the fourth one stayed up. An’ that’s what
your gonna get, lad – the strongest castle in
these islands.

Monty Python

7.1 The Paka Intermediate Language

The purpose of Paka is to ease the task of tracking down unnecessary variable assignment in the to-
be-generated C code. Therefore, its syntax is extremely close to C and focused on intra-procedural
statements. This is reflected by the definition of PakaCode : the structure of the C file is almost here,
with includes, type definitions and prototypes, function prototypes, and function definitions, in this
order.

Note that they are all defined by a Map or associative list from String to something else. The String
plays the role of an identifier which should be compiled only once in the C code. Typically, a type
definition should appear only once, otherwise the C compiler will complain. Map is used when the
definition order is not important, associative list is used when we want to keep it (when a declaration
might be defined in term of another declaration defined earlier).

data PakaCode
= PakaCode {includes :: Map.Map String Doc,

types :: Map.Map String Doc,
declarations :: [(String ,Doc)],
prototypes :: Map.Map String Doc,
globalVars :: [(String ,Doc)],
functions :: Map.Map String (Doc,Doc,String ,Doc,PakaIntra, ILPaka)}

emptyCode = PakaCode {includes = Map.empty ,
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types = Map.empty ,
declarations = [ ],
prototypes = Map.empty ,
globalVars = [ ],
functions = Map.empty }

Each function is defined by a PakaIntra record, which stands for intra-procedural. In there, we find
local variable definitions and, potentially, a constant. This constant is used to carry the result of a side-
effecting test: the side-effecting is compiled before the test-handler and the constant is tested instead.

data PakaIntra
= PakaIntra { localVars :: Map.Map String Doc,

expr :: (Maybe PureExpr)}
deriving Show

emptyIntra = PakaIntra { localVars = Map.empty ,
expr = Nothing }

As part of the definition of functions, we find the body of the function. This is presented as an ILPaka
data-type. This is a strip-down version of the FoF IL: we have kept most of the control-flow structures
(at the exception of the for loop, translated into while loops) and statements. Because we are describing
intra-procedural code, we have removed the function definition construct.

data ILPaka
= PVoid
| PClosing PakaClosing
| PStatement PakaStatement ILPaka
| PIf ILPaka PureExpr ILPaka ILPaka ILPaka
| PWhile ILPaka PureExpr ILPaka ILPaka
| PDoWhile ILPaka ILPaka PureExpr ILPaka
| PSwitch PureExpr [(PureExpr , ILPaka)] ILPaka ILPaka

However, the major specificity of Paka is its definition of a statement: a statement is either an assigment
or an instruction. An assignment PAssign x t ys is a term t in which the variable x is assigned a value
computed from the variables ys . On the other hand, an instruction PInstruction t ys is a side-effecting
operation t making use of the variables ys .

In a nutshell, when chasing redundant assignments, we will track down raw assignment PAssign x t [y ],
remove the assignment, and replace all use of x by y .

data PakaStatement
= PAssign PakaVarName Term [PakaVarName ]
| PInstruction Term [PakaVarName ]

A Term is an almost valid C statement, with holes in it. The holes correspond to the variable names:
provided with the list of variable names, it computes a C statement.

Hence, when we have settled the input and output variables of a PAssign x t ys , we obtain the
corresponding C statement by applying t x : xs . Similarly, we get the C code from an instruction
PInstruction t ys by computing t ys .

type Term = [Doc ]→ Doc

However, things are not that simple. First, we need more information about the variable: are they raw C
variables, or pointers, or dereferenced from somewhere else? This information is vital to avoid aliasing
issues.

Similarly, when a variable y is used in some operationally non-trivial term t , we cannot simply replace
x by y : we would have to compute some sort of t y to be correct. Although it would be doable, we
do not support that at the moment and tag the variable name as Complex , meaning “non prone to
simplification”.
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Finally, constants are a gold opportunity we don’t want to miss, hence we explicitly carry the value
instead of variable name. Therefore, we are able to do some naive constant propagation for free.

data PakaVarName
= Var String
| Ptr PakaVarName
| Deref PakaVarName
| Complex PakaVarName
| K PureExpr
deriving (Show ,Eq)

data PakaClosing
= PReturn PureExpr
| PBreak
| PContinue
deriving Show

7.2 Paka building blocks

I’m particularly proud of the Paka code generation architecture. To build a Paka term, we simply call
some builders functions which are chained up together with the # operator. These builders take care
of inserting the definitions in the right place in PakaCode , PakaIntra , or sequentially extend the ILPaka
code. Thanks to that machinery, we don’t have to explicitly build these data-structures, we just call
functions.

Hence, a builder is just putting a brick in the PakaBuilding wall:

type PakaBuilding = (ILPaka → ILPaka,PakaCode,PakaIntra)

That is, operations taking some arguments and extending a PakaBuilding into a new one.

7.2.1 Low-level machinery

To give a feeling of “sequential code”, the # operator is simply an inversed composition operation:

f # g = λx → g (f x )

Using #, we will compose our builders with a sequential feeling.

Because most, if not all, operations modify one element of the PakaBuilding triple, we define the fol-
lowing combinators:

first :: (a → b)→ (a, c, d)→ (b, c, d)
first f (a, b, c) = (f a, b, c)

second :: (a → b)→ (c, a, d)→ (c, b, d)
second f (a, b, c) = (a, f b, c)

third :: (a → b)→ (c, d , a)→ (c, d , b)
third f (a, b, c) = (a, b, f c)
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7.2.2 Building PakaCode

We can add new C includes:

include :: String → PakaBuilding → PakaBuilding
include id = second $ include ′ id
where include ′ id globalEnv

= case id ‘Map.lookup‘ incls of
Nothing → globalEnv {includes = Map.insert id decl incls }
Just → globalEnv

where incls = includes globalEnv
decl = text "#include"< + > text id

We can declare new C types:

declare :: String → Doc → Doc → PakaBuilding → PakaBuilding
declare id typ decl = second $ declare ′ id typ decl
where declare ′ id typ decl globalEnv =
case id ‘Map.lookup‘ typs of

Nothing → globalEnv {declarations = (id , decl) : decls,
types = Map.insert id typ typs }

Just → globalEnv
where decls = declarations globalEnv

typs = types globalEnv

We can declare global variables:

globalVar :: String → Doc → PakaBuilding → PakaBuilding
globalVar id def = second $ globalVar ′ id def
where globalVar ′ id def globalEnv =
case id ‘lookup‘ vars of

Nothing → globalEnv {globalVars = (id , def ) : vars }
Just → globalEnv

where vars = globalVars globalEnv

We can add function prototypes:

prototype :: String → Doc → PakaBuilding → PakaBuilding
prototype id proto = second $ prototype ′ id proto
where prototype ′ id proto globalEnv =
case id ‘Map.lookup‘ protos of

Nothing → globalEnv {prototypes = Map.insert id proto protos }
Just → globalEnv

where protos = prototypes globalEnv

And we can define new functions:

function :: Doc → Doc → String → Doc → PakaIntra → ILPaka → PakaBuilding → PakaBuilding
function returnT attrs funName funArgs lEnv body =

second $ function ′ returnT attrs funName funArgs lEnv body
where function ′ returnT attrs funName funArgs lEnv body gEnv =

case funName ‘Map.lookup‘ functions ′ of
Nothing → gEnv {functions = Map.insert funName (returnT , attrs, funName, funArgs, lEnv , body) functions ′}
Just → gEnv

where functions ′ = functions gEnv
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7.2.3 Building PakaIntra

As for global variables in the PakaCode, we can add local variables in the PakaIntra environment:

localVar :: String → Doc → PakaBuilding → PakaBuilding
localVar id def = third $ localVar ′ id def
where localVar ′ id def localEnv

= case id ‘Map.lookup‘ vars of
Nothing → localEnv { localVars = Map.insert id def vars }
Just → localEnv

where vars = localVars localEnv

And we can bring a constant in the PakaIntra :

constant :: PureExpr → PakaBuilding → PakaBuilding
constant e = third $ constant ′ e
where constant ′ e lEnv = lEnv {expr = Just e }

7.2.4 Building ILPaka

Obviously, the serious stuff happens in ILPaka , or more precisely ILPaka → ILPaka : this code is
seriously continuation-passing. The plan is that we want to build a ILPaka value. However, we note
that, for instance, to build a PStatement value, we need to know the remaining code. But we don’t
know it yet, as we are compiling it! So, we return a continuation that waits for that uncompiled chunk
and plug it in the right place. Continuation-passing style, yay!

As an example of that technique in action, take a look at instr and assgn below. Apart from that CPS
detail, they are computationally trivial, bringing their arguments in the right place of the constructor
and returning by calling the continuation.

instr :: Term → [PakaVarName ]→ PakaBuilding → PakaBuilding
instr instruction vars = first $ instr ′ instruction vars

where instr ′ instruction varNames k
= λc →

k $ PStatement (PInstruction instruction varNames) c

assgn :: PakaVarName → Term → [PakaVarName ]→ PakaBuilding → PakaBuilding
assgn wVarName assgnmt rVarNames = first $ assgn ′ wVarName assgnmt rVarNames
where assgn ′ wVarName assgnmt rVarNames k

= λc →
k $ PStatement (PAssign wVarName assgnmt rVarNames) c

As you can expect, we need to stop “continuating” at some point. This naturally fits with the role of
closing terms:

close :: PakaClosing → PakaBuilding → PakaBuilding
close c = first $ close ′ c

where close ′ c = λk → k (PClosing c)

Similarly, the control-flow operators closes all their branches and only continue downward:

pif :: ILPaka → PureExpr → ILPaka → ILPaka → PakaBuilding → PakaBuilding
pif cond test ifTrue ifFalse = first $ pif ′ cond test ifTrue ifFalse
where pif ′ cond test ifTrue ifFalse cont = λc →

cont $ PIf cond test ifTrue ifFalse c

pwhile :: ILPaka → PureExpr → ILPaka → PakaBuilding → PakaBuilding
pwhile cond test loop = first $ pwhile ′ cond test loop
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where pwhile ′ cond test loop cont = λc →
cont $ PWhile cond test loop c

pdoWhile :: ILPaka → ILPaka → PureExpr → PakaBuilding → PakaBuilding
pdoWhile loop cond test = first $ pdoWhile ′ loop cond test
where pdoWhile ′ loop cond test cont = λc →

cont $ PDoWhile loop cond test c

pswitch :: PureExpr → [(PureExpr , ILPaka)]→ ILPaka → PakaBuilding → PakaBuilding
pswitch test cases defaultCase = first $ pswitch ′ test cases defaultCase
where pswitch ′ test cases defaultCase cont = λc →

cont $ PSwitch test cases defaultCase c

7.3 Translating IL.FoF to IL.Paka

To translate IL.FoF code, we simply iterate over it and build the corresponding IL.Paka term.

compileFoFtoPaka :: ILFoF → PakaCode
compileFoFtoPaka code = ccode
where ( , ccode, ) = compileFoFtoPaka ′ code (id , emptyCode, emptyIntra)

The translation is often trivial, because both languages are very similar in structure. The major novelty
is that intra-procedural and extra-procedural code are translated into different data-structures: building
an ILPaka term for the former, defining a PakaCode record for the latter. At the same time, we carry a
PakaIntra environment during intra-procedural compilations. All these details are abstracted away by
the builders we have defined in the previous section and that we abuse in this section.

At this stage, the compiler simply dispatches to construct-specific compilers. Hence the following code:

compileFoFtoPaka ′ :: ILFoF → PakaBuilding → PakaBuilding
compileFoFtoPaka ′ (FStatement stmt k) = compileFoFtoPakaStmt stmt k
compileFoFtoPaka ′ t@(FIf ) = compileFoFtoPakaIf t
compileFoFtoPaka ′ (FClosing c) = compileFoFtoPakaClosing c
compileFoFtoPaka ′ t@(FNewDef ) = compileFoFtoPakaFunDef t
compileFoFtoPaka ′ t@(FWhile ) = compileFoFtoPakaWhile t
compileFoFtoPaka ′ t@(FDoWhile ) = compileFoFtoPakaDoWhile t
compileFoFtoPaka ′ t@(FFor ) = compileFoFtoPakaFor t
compileFoFtoPaka ′ t@(FSwitch ) = compileFoFtoPakaSwitch t
compileFoFtoPaka ′ (FConstant e) = compileFoFtoPakaCst e

7.3.1 Compiling Function definition

The compilation of a function definition consists in building a prototype, compiling the body of the
function, building it, and pursuing with the next definition.

compileFoFtoPakaFunDef :: ILFoF → PakaBuilding → PakaBuilding
compileFoFtoPakaFunDef (FNewDef funAttrs

funName
body
returnT
args
k) (cont , gEnv , lEnv) =
prototype funName (attr < + > returnType < + > text funName <> parens functionArgs <> semi)
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# function attr returnType funName functionArgs lEnv1 cbody
# compileFoFtoPaka ′ k
$ (cont , gEnv1 , lEnv)
where returnType = toC returnT

attr = hsep (map (text ◦ show) funAttrs)
functionArgs = buildFunctionArgs args
buildFunctionArgs params = hcat $ intersperse comma $

map buildFunctionArg params
buildFunctionArg x = toC (liftType $ typeOf x )< + > toC x
(cbody , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ body (id , gEnv , emptyIntra)
cbody = cbody PVoid

7.3.2 Compiling Constant

This one is directly handled by the so-called builder:

compileFoFtoPakaCst :: PureExpr → PakaBuilding → PakaBuilding
compileFoFtoPakaCst = constant

7.3.3 Compiling Closing statements

As for closing statements, this is not much more difficult:

compileFoFtoPakaClosing :: FClosing → PakaBuilding → PakaBuilding
compileFoFtoPakaClosing (FReturn expr) = close $ PReturn expr
compileFoFtoPakaClosing (FBreak) = close PBreak
compileFoFtoPakaClosing (FContinue) = close PContinue

7.3.4 Compiling control-flow operators

The mechanics of control-flow operators does not vary much between operators, so they are all here,
together.

Some points worth mentioning. First, sub-branches are compiled down with compileFoFtoPaka ′, as
one would expect. Second, to get a ILPaka value out of an ILPaka → ILPaka continuation k , we call
k pVoid : void is the ultimate closing statement, after all. Third, an expression computing a tested value
must return a pure expression, which we can grab fromJust $ expr intraEnv . This is an invariant, if not
respected fromJust will blow up.

Finally, it’s all fine and good to compile sub-branches privately (inside where statements) but don’t
forget to bring the resulting global and local environments in the public setting. This corresponds to
the use of second (const globalEnv) and third (const localEnv) in the public flow. Also, don’t forget
to thread these environments in your private compilations, too. Someone should think of a less error-
prone solution.

compileFoFtoPakaIf :: ILFoF → PakaBuilding → PakaBuilding
compileFoFtoPakaIf (FIf cond

ifTrue
ifFalse
k) (cont , gEnv , lEnv) =
pif ccond test cifTrue cifFalse
# second (const gEnv3 )
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# third (const lEnv3 )
# compileFoFtoPaka ′ k
$ (cont , gEnv3 , lEnv3 )
where (ccond , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ cond (id , gEnv , lEnv)

ccond = ccond PVoid
test = fromJust $ expr lEnv1
(cifTrue , gEnv2 , lEnv2 ) = compileFoFtoPaka ′ ifTrue (id , gEnv1 , lEnv1 )
cifTrue = cifTrue PVoid
(cifFalse , gEnv3 , lEnv3 ) = compileFoFtoPaka ′ ifFalse (id , gEnv2 , lEnv2 )
cifFalse = cifFalse PVoid

compileFoFtoPakaWhile (FWhile cond
loop
k) (cont , gEnv , lEnv) =
pwhile ccond test cloop
# second (const gEnv2 )
# third (const lEnv2 )
# compileFoFtoPaka ′ k
$ (cont , gEnv2 , lEnv2 )
where (ccond , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ cond (id , gEnv , lEnv)

ccond = ccond PVoid
test = fromJust $ expr lEnv1
(cloop , gEnv2 , lEnv2 ) = compileFoFtoPaka ′ loop

# compileFoFtoPaka ′ cond
$ (id , gEnv1 , lEnv1 )

cloop = cloop PVoid

compileFoFtoPakaDoWhile (FDoWhile loop
cond
k) (cont , gEnv , lEnv) =
pdoWhile cloop ccond test
# second (const gEnv2 )
# third (const lEnv2 )
# compileFoFtoPaka ′ k
$ (cont , gEnv2 , lEnv2 )
where (ccond , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ cond (id , gEnv , lEnv)

ccond = ccond PVoid
test = fromJust $ expr lEnv1
(cloop , gEnv2 , lEnv2 ) = compileFoFtoPaka ′ loop

# compileFoFtoPaka ′ cond
$ (id , gEnv1 , lEnv1 )

cloop = cloop PVoid

compileFoFtoPakaSwitch (FSwitch test
cases
defaultCase
k) (cont , gEnv , lEnv) =
pswitch test ccases cdefaultCase
# second (const gEnv2 )
# third (const lEnv2 )
# compileFoFtoPaka ′ k
$ (cont , gEnv , lEnv)
where (cdefaultCase , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ defaultCase (id , gEnv , lEnv)

cdefaultCase = cdefaultCase PVoid
(codes, fcases) = unzip cases
(ccases , gEnv2 , lEnv2 ) = compileCases fcases gEnv1 lEnv1
ccases = zip codes ccases
compileCases [ ] x y = ([ ], x , y)
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compileCases (fcase : fcases) gEnv lEnv =
-- cfcase ‘deepSeq‘ codes ‘deepSeq‘

(cfcase : codes, gEnv2 , lEnv2 )
where (fcase , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ fcase (id , gEnv , lEnv)

cfcase = fcase PVoid
(codes, gEnv2 , lEnv2 ) = compileCases fcases gEnv1 lEnv1

For my personal convenience, for loops are compiled into while loops. If you’re not happy with that,
go ahead and implement that. However, I have to warn you that dealing with computations inside the
indices is not a joy.

compileFoFtoPakaFor (FFor init
test
inc
loop
k) (cont , gEnv , lEnv) =
pwhile ccond etest cloop
# second (const gEnv2 )
# third (const lEnv2 )
# compileFoFtoPaka ′ k
$ (cont , gEnv2 , lEnv2 )
where (ccond , gEnv1 , lEnv1 ) = compileFoFtoPaka ′ init

# compileFoFtoPaka ′ test
$ (id , gEnv , lEnv)

ccond = ccond PVoid
etest = fromJust $ expr lEnv1
(cloop , gEnv2 , lEnv2 ) = compileFoFtoPaka ′ loop

# compileFoFtoPaka ′ inc
# compileFoFtoPaka ′ test
$ (id , gEnv1 , lEnv1 )

cloop = cloop PVoid

7.3.5 Compiling statements

The real stuff happens below: compiling these damned statements. And there is a lot of them. That was
for the bad news. The good news is that, individually, these functions are quite easy to understand.

The careful reader will notice that Terms are not using all their arguments. Honestly, I just wanted
the basic Optimizer to be done, so I dropped everything not necessary. So, you have the architecture,
now fill the holes if you want to do something clever. Therefore, when you see a term defined with
(λ[xs, , xss ] → ...), this means that the ignored variable is hard-coded in the term, and cannot be
actually replaced. This is ok with my simple optimizer, that would probably need to be changed if you
are to do something more clever.

Compiling References

As a starting, non frightening example, here is the code to compile references. Honestly, it is self-
explanatory, isn’t it?

compileFoFtoPakaStmt (FNewRef varName dat) k =
localVar mvarName (toC (typeOf dat)< + > toC varName <> semi)
# assgn pvarName (λ[ , e ]→ toC varName < + > char ’=’< + > e <> semi)
[pakaVarName dat ]

# compileFoFtoPaka ′ k
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where mvarName = mkPakaVarName varName
pvarName = Var $ mkPakaVarName varName

compileFoFtoPakaStmt (FReadRef varName ref ) k =
localVar mvarName (toC (unfoldPtrType ref )< + > toC varName <> semi)
# assgn pvarName (λ[ , e ]→

toC varName < + > char ’=’< + > e <> semi)
[pakaValName ref ]

# compileFoFtoPaka ′ k
where mvarName = mkPakaVarName varName

pvarName = Var $ mkPakaVarName varName

compileFoFtoPakaStmt (FWriteRef ref dat) k =
assgn (pakaValName ref )

(λ[ , e ]→ toC ref < + > char ’=’< + > e <> semi)
[pakaVarName dat ]

# compileFoFtoPaka ′ k

Compiling Arrays

Similarly, compiling arrays work the same way. There is minor nitpick in the current implementation:
it doesn’t support dynamic array (that is, malloc’ed arrays).

Actually, I suspect that if you are reading this file, it is because your code is using a dynamic array and
the compiler blew up when you use it. Well, the code needs to be written. It is remotely similar to
static arrays, with the additional need to malloc memory and initialize the data. If you are looking for
a word to describe your situation, I think that “screwed” is appropriate. Hint: a dynamic array should
be defined by a single initial element and an integer variable specifying (at run time) the length of the
array.

compileFoFtoPakaStmt (FNewArray varName
alloc@(StaticArray size)
dat) k =

globalVar mvarName (toC typeOfDat < + > toC varName <> brackets Pprinter .empty
< + > char ’=’< + > braces (

nest 4 $
fsep (punctuate comma
[text (deref val)<> toC val
| val ← dat ]))<>

semi)
# compileFoFtoPaka ′ k
where mvarName = mkPakaVarName varName

typeOfDat = typeOf $ head dat

compileFoFtoPakaStmt (FReadArray varName
(CLRef origin
(TArray (StaticArray size) typ)
xloc)

index ) k =
localVar mvarName (toC typ < + > toC varName <> semi)
# (case symbEval index of

CLInteger x →
if x < (toInteger size) then

assgn pvarName (λ[ , ]→
toC varName < + > char ’=’

< + > toC xloc <> brackets (toC index )<> semi)
[Complex $ Var $ mkPakaVarName xloc ]
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else
instr (\ →

text "assert"<> parens (text "! \"ReadArray: Out of bound\"")<> semi)
[ ]

→
assgn pvarName (λ[ , , e ]→

text "if"< + > parens (e
< + > char ’<’

< + > int size)<> lbrace
$ + $
nest 4 (toC varName < + > char ’=’

< + > toC xloc <> brackets e <> semi)
$ + $
rbrace < + > text "else"< + > lbrace $ + $

nest 4 (text "assert"<> parens (text "! \"ReadArray: Out of bound\"")<> semi
$ + $ toC varName < + > char ’=’< + > text "NULL"<> semi)

$ + $
rbrace)

[Complex $ Var $ mkPakaVarName xloc,
pakaValName index ])

# compileFoFtoPaka ′ k
where mvarName = mkPakaVarName varName

pvarName = Var $ mkPakaVarName varName

compileFoFtoPakaStmt (FWriteArray ref @(CLRef origin
(TArray (StaticArray size) typ)
xloc)

index
dat) k =
assgn pxloc (λ[ , e, f ]→

text "if"< + > parens (f < + > char ’<’< + > int size)<> lbrace
$ + $ nest 4 (toC xloc <> brackets f
< + > char ’=’< + > e <> semi)

$ + $ rbrace < + > text "else"< + > lbrace
$ + $ nest 4 (text "assert"<> parens (text "! \"Out of bound \"")<> semi)
$ + $ rbrace) [pakaValName dat , pakaValName index ]

# compileFoFtoPaka ′ k
where pxloc = Var $ mkPakaVarName xloc

Compiling Strings

Building a new string is as simple as building a new static array:

compileFoFtoPakaStmt (FNewString varName dat) k =
globalVar mvarName (toC TChar < + > toC varName <> text "[]"
< + > char ’=’

< + > doubleQuotes (text dat)<> semi)
# compileFoFtoPaka ′ k
where mvarName = mkPakaVarName varName

Compiling Function call

As for function call, there is no black magic either:
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compileFoFtoPakaStmt (FCallDef mVarName
(CLRef (TFun nameF

func
returnT
argsT ) )

args) k =
case mVarName of

Nothing →
instr (\ →

text nameF
<> parens (hcat $ intersperse comma $ map toC args)<> semi)
(map (Complex ◦ pakaVarName) args)

Just varName →
localVar (mkPakaVarName varName)

(toC returnT < + > toC varName <> semi)
# assgn (Var $ mkPakaVarName varName)
(\ → toC varName < + > char ’=’

< + > text nameF
<> parens (hcat $ intersperse comma $ map toC args)<> semi)

(map (Complex ◦ pakaValName) args)
# compileFoFtoPaka ′ k

Compiling Enumerations

We can safely compile enumerations:

compileFoFtoPakaStmt (FNewEnum varName
nameEnum
fields
initVal) k =
declareEnum nameEnum fields
# compileFoFtoPaka ′ k
where mvarName = mkPakaVarName varName

pvarName = Var $ mkPakaVarName varName

Compiling Union

It is not a big deal to compile union operations either:

compileFoFtoPakaStmt (FNewUnion name
DynamicUnion
nameUnion
fields
(initField , initData)) k =
declareRecursive (TUnion DynamicUnion nameUnion fields)
# localVar (mkPakaVarName name) (text "union"< + > text nameUnion <> char ’*’< + > toC name <> semi)
# assgn varName (λ[ ]→

toC name < + > char ’=’< + >
parens (text "union"< + > text nameUnion <> char ’*’)
< + > text "malloc"<> parens (

text "sizeof"<> parens (
text "union"< + > text nameUnion))

<> semi) [ ]
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# assgn varName (λ[ , b ]→
toC name <> text "->"<> text initField
< + > char ’=’< + > b <> semi)

[pakaVarName initData ]
# compileFoFtoPaka ′ k
where varName = Var $ mkPakaVarName name

compileFoFtoPakaStmt (FNewUnion name StaticUnion nameUnion fields (initField , initData)) k =
declareRecursive (TUnion StaticUnion nameUnion fields)
# localVar (mkPakaVarName name) (text "union"< + > text nameUnion < + > toC name <> semi)
# assgn varName (λ[ , e ]→

toC name <> char ’.’<> text initField
< + > char ’=’< + > e <> semi)

[pakaVarName initData ]
# compileFoFtoPaka ′ k
where varName = Var $ mkPakaVarName name

compileFoFtoPakaStmt (FReadUnion varName
(CLRef typeU@(TUnion alloc

nameU
fields)

xloc)
field) k =
declareRecursive typeU
# localVar mpVarName (toC typeField < + > toC varName <> semi)
# assgn pVarName (λ[ , ]→

toC varName
< + > char ’=’

< + > toC xloc <> ptrSigUnion alloc <> text field <> semi)
[Complex $ Var $ mkPakaVarName xloc ]

# compileFoFtoPaka ′ k
where typeField = fromJust $ field ‘lookup‘ fields

mpVarName = mkPakaVarName varName
pVarName = Var $ mkPakaVarName varName

compileFoFtoPakaStmt (FWriteUnion (CLRef origin
typeU@(TUnion alloc

nameU
fields)

xloc)
field
value) k =
declareRecursive typeU
# assgn pxloc (λ[ , e ]→

toC xloc <> ptrSigUnion alloc <> text field
< + > char ’=’< + > e <> semi)
[pakaVarName value ]

# compileFoFtoPaka ′ k
where pxloc = Var $ mkPakaVarName xloc

Compiling Structs

Quite the same goes for structure operations:

compileFoFtoPakaStmt (FNewStruct varName
DynamicStruct
nameStruct

FiletOFish - 68 Barrelfish TN-024



fields) k =
declareRecursive (TStruct DynamicStruct nameStruct fieldsTypeStr)
# localVar mVarName (text "struct"< + > text nameStruct < + > toC varName <> semi)
# (assgn pVarName (λ[ ]→

toC varName < + > char ’=’

< + > parens (text "struct"< + > text nameStruct < + > char ’*’)
< + > text "malloc"
<> parens (text "sizeof"
<> parens (text "struct"< + > text nameStruct))
<> semi) [ ])

# foldl ′ (#) id [assgn pVarName (λ[ , e ]→
toC varName <> text "->"<> text field
< + > char ’=’

< + > e <> semi) [pakaVarName val ]
| (field , (typ, val))← fields ]
where mVarName = mkPakaVarName varName

pVarName = Var $ mkPakaVarName varName
fieldsTypeStr = [(field , typ)
| (field , (typ, ))← fields ]

compileFoFtoPakaStmt (FNewStruct varName
StaticStruct
nameStruct
fields) k =
declareRecursive (TStruct StaticStruct nameStruct fieldsTypeStr)
# localVar mvarName (text "struct"< + > text nameStruct < + > toC varName

< + > char ’=’

< + > braces (nest 4 $
hcat (punctuate comma
[text (deref val)<> toC val
| ( , ( , val))← fields ]))

<> semi)
# compileFoFtoPaka ′ k

where mvarName = mkPakaVarName varName
fieldsTypeStr = [(field , typ)
| (field , (typ, ))← fields ]

compileFoFtoPakaStmt (FReadStruct varName
ref @(CLRef origin

typeS@(TStruct alloc
nameStruct
fields)

xloc)
field) k =
declareRecursive typeS
# localVar mvarName (toC typeField < + > toC varName <> semi)
# assgn pvarName (λ[ , ]→

toC varName < + > char ’=’

< + > toC xloc <> ptrSigStruct alloc <> text field <> semi)
[Complex $ Var $ mkPakaVarName xloc ]

# compileFoFtoPaka ′ k
where typeField = fromJust $ field ‘lookup‘ fields

mvarName = mkPakaVarName varName
pvarName = Var $ mkPakaVarName varName

compileFoFtoPakaStmt (FWriteStruct ref @(CLRef origin
typeS@(TStruct alloc

nameStruct
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fields)
xloc)
field
value) k =
declareRecursive typeS
# assgn pxloc (λ[ , e ]→

toC xloc <> ptrSigStruct alloc <> text field
< + > char ’=’< + > e <> semi)

[pakaVarName value ]
# compileFoFtoPaka ′ k
where pxloc = Var $ mkPakaVarName xloc

Compiling Typedef

And we can even get typedefs:

compileFoFtoPakaStmt (FTypedef typ aliasName) k =
declareRecursive typ
# declare aliasName Pprinter .empty
(text "typedef"< + > toC typ < + > text aliasName <> semi)

# compileFoFtoPaka ′ k

compileFoFtoPakaStmt (FTypedefE inclDirective
(TTypedef typ aliasName)) k =
include inclDirective
# compileFoFtoPaka ′ k

Compiling Foreign calls

It is always the same story for foreign function calls. If you have extended Filet-o-Fish with a new
foreign-function, don’t look further: you should put your foreign call here!

So, as often, we have an inoffensive dispatcher. Don’t touch it.

compileFoFtoPakaStmt (FFFICall nameCall args) k =
compileFFI nameCall args
# compileFoFtoPaka ′ k

And the dispatched function, in which you should add your foreign code generator. This is just like
writing C code, so don’t be shy.

compileFFI nameCall params | nameCall ≡ "printf" =
include "<stdio.h>"

# instr (\ → text "printf"<> parens (hcat (punctuate comma (map toC params)))<> semi)
(map (Complex ◦ pakaVarName) params)

compileFFI nameCall [e ] | nameCall ≡ "assert" =
include "<assert.h>"

# instr (λ[e ]→ text "assert"<> parens e <> semi) [pakaValName e ]

compileFFI nameCall [varName, param ] | nameCall ≡ "has_descendants" =
include "<mdb/mdb.h>"

# include "<capabilities.h>"

# include "<stdbool.h>"

# localVar (show $ toC varName)
(text "bool"< + > toC varName <> semi)
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# assgn (pakaValName $ varName)
(λ[ , e ]→

toC varName < + > char ’=’

< + > text "has_descendants"
<> parens e <> semi)

[pakaValName $ param ]

-- XXX: mem to phys was renamed to mem to local phys .
-- This is a temporary hack till we get around to producing
-- a whole list of translation functions here. -Akhi
-- XXX: moved include to hamlet file compilation so that user version of
-- cap predicates can be built -Ross

compileFFI nameCall [varName, param ] | nameCall ≡ "mem_to_phys" =
localVar (show $ toC varName)

(toC uint64T < + > toC varName <> semi)
# assgn (pakaValName $ varName)
(λ[ , e ]→

toC varName < + > char ’=’< + >
text "mem_to_local_phys"<> parens (toC param)<> semi)

[pakaValName $ param ]

compileFFI nameCall [varName, param ] | nameCall ≡ "get_address" =
localVar (show $ toC varName)

(toC uint64T < + > toC varName <> semi)
# assgn (pakaValName $ varName)
(λ[ , e ]→

toC varName < + > char ’=’< + >
text "get_address"<> parens (toC param)<> semi)

[pakaValName $ param ]

Declaring types

Above, we have dealt with the compilation of operations on complex structures, such as enums, structs,
and unions. When compiling a code operating on such structure, we need to make sure that the corre-
sponding type is defined.

Hence, we provide an advanced builder to declare a struct or an union:

declareStructUnion kind name fields =
declare name (text kind < + > text name <> semi)
(text kind < + > text name < + > braces (

nest 4 (vcat ′ [toC typ < + > text field <> semi
-- special case for static array?
| (field , typ)← fields ]))<> semi)

And similarly for declaring an enum, however without the forward declaration:

declareEnum nameEnum fields =
declare nameEnum empty
(text "enum"< + > text nameEnum < + > lbrace

$ + $ nest 4 (vcat ′ $ punctuate comma
([text name < + > char ’=’< + > int val
| (name, val)← fields ]))

$ + $ rbrace <> semi)
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However, that does not solve the problem: a structure or an union might be defined in term of other
structures or unions. Hence, we need to declare the dependencies before defining the concerned object.
This is handled by declareRecursive :

declareRecursive = declareRecursive ′

where declareRecursive ′ (TStruct name fields) (code, gEnv , lEnv) =
case name ‘Map.lookup‘ types gEnv of

Just → (code, gEnv , lEnv)
Nothing →

foldl ′ (#) id [declareRecursive ′ typ | ( , typ)← fields ]
# declareStructUnion "struct" name fields
$ (code, gEnv , lEnv)

declareRecursive ′ (TUnion name fields) (code, gEnv , lEnv) =
case name ‘Map.lookup‘ types gEnv of

Just → (code, gEnv , lEnv)
Nothing →

foldl ′ (#) id [declareRecursive ′ typ | ( , typ)← fields ]
# declareStructUnion "union" name fields
$ (code, gEnv , lEnv)

declareRecursive ′ (TEnum name fields) t =
declareEnum name fields $ t

declareRecursive ′ t = id t

These two functions have also been handy above, even though they are not fundamentally clever. De-
pending on the allocation policy of the data-structure, they choose to dereference and access it, or di-
rectly access it.

ptrSigUnion :: AllocUnion → Doc
ptrSigUnion DynamicUnion = text "->"
ptrSigUnion StaticUnion = char ’.’

ptrSigStruct :: AllocStruct → Doc
ptrSigStruct DynamicStruct = text "->"
ptrSigStruct StaticStruct = char ’.’

7.4 Translating IL.Paka to C

This file could as well be called ./IL/C/C.lhs but I felt guilty of introducing yet another confusing IL.
So, it is here but feel free to move it around.

7.4.1 Printing types and expressions

Because we are good kids, we create a type-class called Compileable. A data-type satisfying Compileable
can be pretty-printed to something vaguely looking like a bunch of C code.

class Compileable a where
toC :: a → Doc

Part of the Compileable class are FoF’s types TypeExpr and FoF’s pure expressions PureExpr .

There is nothing but boiler plate code to get the job done for pure expressions:

instance Compileable PureExpr where
toC (Quote s) = doubleQuotes $ text s
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toC Void = empty
toC (CLInteger x ) = integer x
toC (CLFloat x ) = Pprinter .float x

toC (CLRef origin (TPointer Avail) loc) = toC loc
toC (CLRef origin (TPointer Read) loc) = char ’*’<> toC loc
toC (CLRef origin loc) = toC loc

toC (Unary op x ) = parens $ toC op < + > toC x
toC (Binary op x y) = parens $ toC x < + > toC op < + > toC y
toC (Sizeof t) = text "sizeof"<> (parens $ toC t)
toC (Test t1 t2 t3 ) = parens $

parens (toC t1 )< + > char ’?’< + >
parens (toC t2 )< + > char ’:’< + >
parens (toC t3 )

toC (Cast t e) = parens $ parens (toC t)< + > toC e

instance Compileable UnaryOp where
toC Minus = char ’-’

toC Complement = char ’~’

toC Negation = char ’!’

instance Compileable BinaryOp where
toC Plus = text "+"
toC Sub = text "-"
toC Mul = text "*"
toC Div = text "/"
toC Mod = text "%"
toC Shl = text "<<"
toC Shr = text ">>"
toC AndBit = text "&"
toC OrBit = text "|"
toC XorBit = text "^"
toC Le = text "<"
toC Leq = text "<="
toC Ge = text ">"
toC Geq = text ">="
toC Eq = text "=="
toC Neq = text "!="

And similarly for types:

instance Compileable TypeExpr where
toC (TInt Signed TInt8 ) = text "int8_t"
toC (TInt Signed TInt16 ) = text "int16_t"
toC (TInt Signed TInt32 ) = text "int32_t"
toC (TInt Signed TInt64 ) = text "int64_t"
toC (TInt Unsigned TInt8 ) = text "uint8_t"
toC (TInt Unsigned TInt16 ) = text "uint16_t"
toC (TInt Unsigned TInt32 ) = text "uint32_t"
toC (TInt Unsigned TInt64 ) = text "uint64_t"
toC TFloat = text "float"
toC TVoid = text "void"
toC TChar = text "char"
toC (TArray DynamicArray typ) = toC typ <> char ’*’

toC (TArray (StaticArray size) typ) = toC typ <> char ’*’

toC (TPointer x ) = toC x <> char ’*’

toC (TStruct DynamicStruct name fields) = text "struct "< + > text name < + > char ’*’

toC (TStruct StaticStruct name fields) = text "struct "< + > text name
toC (TUnion DynamicUnion name fields) = text "union "< + > text name < + > char ’*’

Barrelfish TN-024 FiletOFish - 73



toC (TUnion StaticUnion name fields) = text "union "< + > text name
toC (TCompPointer name) = text "uintptr_t"
toC (TTypedef typ name) = text name
toC (TEnum name ) = text "enum"< + > text name

The picky reader will have noticed the absence of printer for function types. This is hardly a problem at
the moment because we do not support function pointers, so we are not going to declare function types
anytime soon. Note that this argument might well be circular: if we do not support function pointers,
it is because it is a pain to write their type, among other things (if I remember correctly). Oh well.

Printing variable names is dead easy:

instance Compileable VarName where
toC x = text $ mkPakaVarName x

7.4.2 Names, everywhere

I am not very proud of that section, and of the way I abused these functions in IL/Paka/Paka.lhs. I
beg your pardon for that. There must some abstraction to bust here but I was not able to catch it.

Provided a FoF VarName , we turn it into a string with a bit of Hungarianism, but very little. Why this
function is called mkPakaVarName when it does not deal with PakaVarName? I have no clue.

mkPakaVarName :: VarName → String
mkPakaVarName (Generated x ) = "_"++ x
mkPakaVarName (Provided x ) = x
mkPakaVarName (Inherited y x ) = mkPakaVarName x ++ "__"++ show y

Then, we have to functions turning a PureExpr into a PakaVarName . PakaValName provides you with
the value described by the PureExpr . On the other hand, PakaVarName works one level below and
gives you the value contained in the PureExpr .

I have to admit that I am not myself convinced by this explanation. Basically, I would have to look at
the former code, the typeOf , deref , readOf functions, and the new code. Then, I might be able to make
more sense of that. However, intrinsically, references are a non-sense.

pakaValName :: PureExpr → PakaVarName
pakaValName (CLRef origin (TPointer Avail) loc) = Var $! mkPakaVarName loc
pakaValName (CLRef origin (TPointer Read) loc) = Ptr $! Var $ mkPakaVarName loc
pakaValName (CLRef loc) = Var $! mkPakaVarName loc
pakaValName x = K x

pakaVarName :: PureExpr → PakaVarName
pakaVarName (CLRef origin (TPointer Avail) loc) = Deref (Var $ mkPakaVarName loc)
pakaVarName (CLRef origin (TPointer Read) loc) = Var $ mkPakaVarName loc
pakaVarName (CLRef loc) = Var $ mkPakaVarName loc
pakaVarName x = K x

Finally, we need to be able to print these PakaVarName into meaning C code. Here you go.

instance Compileable PakaVarName where
toC (Deref x ) = char ’&’<> toC x
toC (Var x ) = text x
toC (Ptr x ) = char ’*’<> toC x
toC (Complex ) = error "Cannot convert a Complex var name to C"

toC (K x ) = toC x
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7.4.3 Generating C

The following is a small addendum to the pretty-printer library. We don’t know why it is not defined
there.

vcat ′ :: [Doc ]→ Doc
vcat ′ [ ] = empty
vcat ′ (x : xs) = l ‘seq ‘ r ‘seq ‘ r
where l = vcat ′ xs

r = x $ + $ l

For once, I will do a bottom-up presentation. So, I will describe the implementation of pretty-printers
from Paka code to C.

The first step consists in printing closing terms:

pprintClosing :: PakaClosing → Doc
pprintClosing (PReturn e) = text "return"< + > parens (toC e)<> semi
pprintClosing PBreak = text "break"
pprintClosing PContinue = text "continue"

Then, we print statements. As you remember, we need to build the final code by applying the variables
to the term:

pprintStmt :: PakaStatement → Doc
pprintStmt (PAssign dst x srcs) = x (toC dst : map toC srcs)
pprintStmt (PInstruction x srcs) = x (map toC srcs)

The next step consists in compiling intra-procedural code. This is rather simple and quite directly
follows from the Paka definitions:

pprintPaka :: ILPaka → Doc
pprintPaka PVoid = empty
pprintPaka (PClosing c) = pprintClosing c
pprintPaka (PStatement stmt k) =

pprintStmt stmt $ + $
pprintPaka k

pprintPaka (PIf cond test ifTrue ifFalse k) =
pprintPaka cond $ + $
text "if"< + > parens (toC test)<> lbrace $ + $

(nest 4 $! pprintPaka ifTrue) $ + $
rbrace < + > text "else"< + > lbrace $ + $
(nest 4 $! pprintPaka ifFalse) $ + $

rbrace $ + $
pprintPaka k

pprintPaka (PWhile cond test loop k) =
pprintPaka cond $ + $
text "while"<> parens (toC test)<> lbrace $ + $

(nest 4 $! pprintPaka loop) $ + $
rbrace $ + $
pprintPaka k

pprintPaka (PDoWhile loop cond test k) =
text "do"< + > lbrace $ + $

(nest 4 $! pprintPaka loop) $ + $
rbrace < + > text "while"< + > parens (toC test)<> semi $ + $
pprintPaka k

pprintPaka (PSwitch test cases defaultCase k) =
text "switch"< + > parens (toC test)< + > lbrace $ + $
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(nest 4 $ vcat ′ $ map compileCase cases) $ + $
(nest 4 (text "default:"< + > lbrace $ + $

(nest 4 $! pprintPaka defaultCase) $ + $
rbrace)) $ + $

rbrace $ + $
pprintPaka k
where compileCase (i , code) =

text "case"< + > toC i <> colon < + > lbrace $ + $
(nest 4 $! (pprintPaka code $ + $

text "break"<> semi)) $ + $
rbrace

Finally, we can pretty-print a complete PakaCode by iterating other each section, and, in each section,
pretty-printing each element.

pprint :: PakaCode → Doc
pprint code =

text "/* Includes: */" $ + $
space $ + $
text "#include <stdint.h>" $ + $
vcat ′ (extractM $ includes code) $ + $
space $ + $
(case Map.null $ types code of

True → empty
→ text "/* Type Declarations: */" $ + $
space $ + $
vcat ′ (extractM $ types code) $ + $
vcat ′ (extractL $ declarations code) $ + $
space) $ + $

(case null $ globalVars code of
True → empty
→ text "/* Global Variables: */" $ + $

space $ + $
vcat ′ (map (λy → text "static"< + > y) $

extractL $
globalVars code) $ + $

space) $ + $
(case Map.null $ prototypes code of

True → empty
→ text "/* Prototypes: */" $ + $

space $ + $
vcat ′ (extractM $ prototypes code) $ + $
space) $ + $

(case Map.null $ functions code of
True → empty
→ text "/* Function Definitions: */" $ + $

space $ + $
vcat ′ (map (λ(returnT , attrs,name, args, lEnv , body)→

returnT < + > attrs < + > text name <> parens args < + > lbrace $ + $
(nest 4 $ vcat ′ $ extractM $ localVars lEnv) $ + $
space $ + $
(nest 4 $ pprintPaka body) $ + $
rbrace $ + $
space)
$ extractM
$ functions code) $ + $
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space)
$ + $ space

We note the use of two extraction functions: these functions remove the keys from the associative struc-
ture in use, and simply return the content. When an order was maintained, ie. an associative list was
used, the definition order is carefully restored by reversing the list.

extractL :: Eq a ⇒ [(a, b)]→ [b ]
extractL = (map snd) ◦

reverse

extractM :: Map.Map a b → [b ]
extractM = Map.elems

Because we have worked very hard, we are rewarded by the right to instantiate these PakaCode in the
Show .

instance Show PakaCode where
show = render ◦ pprint

7.5 IL.Paka Code Optimizer

The currently implemented optimizer is a naive redundant assignment simplifier, which happens to do
constant propagation at the same time. It is naive in the several dimensions. An important one is that
it is entirely hard-coded, while we all know that optimization is simply a matter of dataflow analysis.
So, at some point, we should use a more generic framework for that. It is also naive because it does
not try to reach a fix-point: it is single phase, while it is obvious that more assignments could still be
eliminated in subsequent phases. Finally, it is naive because any case that was not easy to deal with
have been discarded: more redundant assignments could be removed if the logic were more precise.

The purpose of that module is to show that “it is possible to do optimization”. It is a proof of con-
cept. Now, it is Future Work (Chapter A) to get a clever optimization framework. The ease I had in
implementing that stuff convince me that we are not far from this heaven.

So, if you want optimized Paka code, you will only get a slightly less redundant code:

optimizePaka :: PakaCode → PakaCode
optimizePaka = optimizeAssgmtElim

Because this analysis is intra-procedural, we go over each function and apply an intra-procedural opti-
mizer:

optimizeAssgmtElim :: PakaCode → PakaCode
optimizeAssgmtElim code = code {functions = optFunc}
where funcs = functions code

optFunc = Map.mapMaybe (λ(b, c, d , e, f , fun)→ Just (b, c, d , e, f , assgmtElim fun)) funcs

7.5.1 Implementation

This optimizer is quite easy to implement, assuming we have the right tools at hand. That is, assuming
that we are able to replace a variable x by a variable y in a code k – using replace (Var x ) (Var y) k –, that
we are able to say if a variable y is either a constant or never used in a code k – using isUsed flatten y k –,
and that we are able to say if a variable x is used without side-effects in a code k – using isUsed flattenS x k .
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The intra-procedural optimizer will turn an ILPaka into a better ILPaka :

assgmtElim :: ILPaka → ILPaka

The interesting case is obviously the variable assignment: a value y is assigned to a variable x . We
remove that assignment and replace x by y if and only if y is never used again and x is not involved in
some weird computation. Otherwise, we go ahead.

A small issue here is that we ask for y to be never used again. That’s quite restrictive. This results in
being able to carry only 4 assignment eliminations on today’s Hamlet and Fugu inputs. This is shame,
compared to the numerous opportunities. To solve that issue, we would have to extend or re-design
isUsed to allow the definition of more fine-grained predicates, such as “is overwritten”.

assgmtElim (PStatement a@(PAssign (Var x ) [Var y ]) k) =
if (¬ (isUsed flatten y k))
∧ (¬ (isUsed flattenS x k)) then

assgmtElim $ replace (Var x ) (Var y) k
else

PStatement a $
assgmtElim k

All other assignments that do not fit this scheme, or the instructions are skipped:

assgmtElim (PStatement a k) =
PStatement a $
assgmtElim k

Finally, control-flow operators are simply iterated over:

assgmtElim (PIf c t ifT ifF k) =
PIf
(assgmtElim c)
t
(assgmtElim ifT )
(assgmtElim ifF )
(assgmtElim k)

assgmtElim (PWhile c t l k) =
PWhile
(assgmtElim c)
t
(assgmtElim l)
(assgmtElim k)

assgmtElim (PDoWhile l c t k) =
PDoWhile
(assgmtElim l)
(assgmtElim c)
t
(assgmtElim k)

assgmtElim (PSwitch t cases d k) =
PSwitch
t
(map (λ(a, b)→ (a, assgmtElim b)) cases)
(assgmtElim d)
(assgmtElim k)

assgmtElim x = x

FiletOFish - 78 Barrelfish TN-024



7.5.2 Code predication

First, if I correctly remember my Software Testing lecture, a use site is a place where a variable is read.
In opposition to a def site where a variable is written to. Well, then the following is misleading.

isUsed f x k tells you that x has been found in a use or def site of k in a situation where it played a role
caught by f . To simplify, isUsed flatten will catch any kind of use or def. isUsed flattenS will catch a
use or def in a Complex state.

As for the implementation, it is simply going over ILPaka terms and doing the necessary on PStatement .

isUsed :: (PakaVarName → Maybe String)→ String → ILPaka → Bool
isUsed p var PVoid = False
isUsed p var (PClosing (PReturn k)) = Just var ≡ (flatten $ pakaValName k)
isUsed p var (PClosing ) = False
isUsed p var (PStatement s k) = isUsedStmt s ∨ isUsed p var k
where isUsedStmt (PAssign t ls) =

Just var ∈ map flatten (t : ls)
isUsedStmt (PInstruction ls) =

Just var ∈ map flatten ls
isUsed p var (PIf c t ifT ifF k)

= (Just var ≡ (flatten $ pakaValName t)) ∨
(isUsed p var c ∨ isUsed p var ifT
∨ isUsed p var ifF ∨ isUsed p var k)

isUsed p var (PWhile c t l k)
= (Just var ≡ (flatten $ pakaValName t)) ∨

isUsed p var c ∨ isUsed p var l ∨ isUsed p var k
isUsed p var (PDoWhile l c t k)

= (Just var ≡ (flatten $ pakaValName t)) ∨
isUsed p var c ∨ isUsed p var l ∨ isUsed p var k

isUsed p var (PSwitch t c d k)
= (Just var ≡ (flatten $ pakaValName t)) ∨

foldl ′ (λa ( , b)→ a ∨ isUsed p var b) False c
∨ isUsed p var d ∨ isUsed p var k

In light of the explanation above, the definition of flatten and flattenS should be obvious. Aren’t they?

flatten :: PakaVarName → Maybe String
flatten (Var s) = Just $ s
flatten (Ptr x ) = flatten x
flatten (Deref x ) = flatten x
flatten (Complex x ) = flatten x
flatten (K ) = Nothing

flattenS :: PakaVarName → Maybe String
flattenS (Var s) = Nothing
flattenS (Ptr x ) = Nothing
flattenS (Deref x ) = Nothing
flattenS (Complex x ) = flatten x
flattenS (K ) = Nothing

7.5.3 Code transformation

As for replace, it is by now standard: go over the terms, hunt the dest , and kill it with source. It is
surgical striking, in its full glory.
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replace :: PakaVarName → PakaVarName → ILPaka → ILPaka
replace dest source (PStatement (PAssign dst stmt srcs) k) =

PStatement (PAssign dst stmt srcs ′)
(replace dest source k)
where srcs ′ = replaceL dest source srcs

replace dest source (PStatement (PInstruction stmt srcs) k) =
PStatement (PInstruction stmt srcs ′)
(replace dest source k)
where srcs ′ = replaceL dest source srcs

replace dest source (PIf c t ifT ifF k) =
PIf (replace dest source c) t
(replace dest source ifT )
(replace dest source ifF )
(replace dest source k)

replace dest source (PWhile c t l k) =
PWhile (replace dest source c)

t
(replace dest source l)
(replace dest source k)

replace dest source (PDoWhile l c t k) =
PDoWhile (replace dest source l)
(replace dest source c)
t
(replace dest source k)

replace dest source (PSwitch t cases d k) =
PSwitch t
(map (λ(a, b)→ (a, replace dest source b)) cases)
(replace dest source d)
(replace dest source k)

replace dest source x = x

replaceL x y = map (λz → if z ≡ x then y else z )
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Part III

Appendix
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Appendix A

Future Work

Follow! But! follow only if ye be men of
valor, for the entrance to this cave is guarded
by a creature so foul, so cruel that no man yet
has fought with it and lived! Bones of four
fifty men lie strewn about its lair. So, brave
knights, if you do doubt your courage or
your strength, come no further, for death
awaits you all with nasty big pointy teeth.

Monty Python

This is going to look like a brain dump, despite any effort to make it understandable by the Outside
World.

Module import clean-up: for historical reasons, some imports might be completely useless now. Simi-
larly, imports such as —Debug.Trace— should disappear too ;

Paka terms with real holes: in Section 7.3, we have seen that Paka terms are ignoring most of their
holes by using hard-coded values ;

More efficient redundant assignment optimizer: in Chapter 7.5, we have seen that the optimizer is
quite conservative, making it quite useless in practice ;

Supporting function pointers: preventing Filet-o-Fish users to abuse function pointers is a violation
to Geneva convention. I do not think that there is some deep technical difficulty to get that. But
printing the type of such pointer was a first trouble, if I remember correctly ;

Implementing the interpreter in the Agda language: this was already one of my goal initially, but the
NICTA people insisted that without an in-theorem-prover semantics, the dependability argument
is just bullsh*t. Ha, these Australians. . . ;

Code generator back-back-end: following the steps of FoF and Paka, we need a more principled back-
back-end, generating (correct) out of —FoFCode— ;

Hoopl-based optimization framework: the Hoopl [4] framework is a promising tool to implement any
kind of data-flow analysis and optimization. Instead of developing our own crappy optimizer, we
should use that stuff, when the source is released. This is the reason why @IL.Paka.Optimizer@ is
such a joke: it must be dropped asap ;

Translation validation infrastructure: because we claim dependability but our compiler is such a tricky
mess, we need a good bodyguard. Translation validation [3] is an affordable technique that tells
you, when you run your compiler, if it has barfed (and where), or not. If it has not failed, then you
know for sure that the generated code is correct ;
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More stringent syntactic tests: it is very easy to build ill-formed Filet-o-Fish terms, because the types
of constructs have not been engineered to ensure their invariants, and there is little or no run-time
checks. It is just a matter of putting more run-time checks, a lot more ;

Compiling to macros: that’s an interesting topic: we are able to generate C code. We might need to
generate C macro at some point. How would that fit into Filet-o-Fish?

Compiling with assertions: assuming that Filet-o-Fish-generated C code is correct, we are ensured that
it must never failed at run-time, except if it is provided with bogus input data. Being able to
specify what is a valid input data and translating that into assertions might be useful. Similarly,
when reading in an array, for example, we probably want to ensure that we are not going out of
bounds, and an assert should fail if this is the case.
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