
Barrelfish Project
ETH Zurich

Barrelfish on ARMv8

Barrelfish Technical Note 022

David Cock

11.04.2016

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

1.0 11.04.2016 DC Initial version

ARMv8 - 2 Barrelfish TN-022

Chapter 1

Summary

Barrelfish now supports ARMv7 and ARMv8 as primary platforms, and we have discontinued support
for all older architecture revisions (ARMv5, ARMv6). The current Barrelfish release contains a port to a
simulated ARMv8 environment, derived from the existing ARMv7 codebase and running under GEM5,
with generous contributions from HP Research.

Simultaneously, we are undertaking a clean-slate redesign of the CPU driver for ARMv8, as it presents
a number of novel features, and greatly improved platform standardisation (Section 2.1.1), that should
allow for a much cleaner and simpler implementation. This redesigned CPU driver will for the basis
for ongoing research into large-scale non-cache-coherent systems using ARMv8 cores. This document
presents the new CPU driver design (Chapter 3), briefly covering those features of ARMv8 of greatest
relevance (Chapter 2), and discusses a number of technical challenges presented by the new architecture
(Chapter 5).

Barrelfish TN-022 ARMv8 - 3

Chapter 2

Background

The Barrelfish research operating system is a vehicle for research into software support for likely fu-
ture architectures, where large numbers of non-coherent (or weakly-coherent) heterogeneous processor
cores are assembled into a single large-scale system. As such, support for a common non-x86 architec-
ture has always been part of the project, beginning with the ARMv5 (XScale) port, which permitted the
embedded processor on a network interface card to be integrated as a first-class part of the system, with
its own CPU driver. We have also actively maintained an ARMv7 port, to the OMAP4460 processor on
the Pandaboard ES, which we use as a teaching platform in the Advanced Operating Systems course at
ETH Zürich. These ports are described more fully in the accompanying technical report, Project [2013].

2.1 The ARMv8 Architecture

The ARMv8 architecture is quite a radical departure from previous versions, and represents the culmi-
nation of a trend that has been developing for quite some time. While the first wave of ARM-based
microservers, based on the 32-bit ARMv7 architecture, was largely a commercial failure, it’s clear that
ARM is now actively targeting the server market, where Intel currently has near-total dominance.

ARMv8 discards some long-standing features of the ARM instruction set: universal conditional ex-
ecution, multiple loads/stores, and the program counter as a general-purpose register. These most
likely caused difficulty in scaling the processor pipeline to high clock rates, and we present some conse-
quences of their loss in Section 5.1 and Section 5.2. The instruction-set changes, however challenging to
the systems programmer, are ultimately of little consequence compared to the consolidation of the ARM
ecosystem into a serious server platform. The two features of most interest at this stage in the design
process are the standardisation of hardware features and memory maps, and of the boot process.

2.1.1 ARM Server Base System Architecture

ARM has long been criticised by systems programmers for its highly fragmented, and non-uniform
programming interface. Linux, in particular, has struggled for years with supporting the great multi-
plicity of ARM platforms. The principal reason for this is the lack of any concept of a platform: a set of
assumptions (available hardware, memory map, etc.), that programmers can rely on when initialising
and managing a system. The Linux source tree famously contained a vastly greater amount of code in
the ARM platform support subtrees, than that for x86.

The relative standardisation of the x86 platform is largely a historical accident, due to the rapid pro-
liferation of PC/AT clones in the early 1980s. The x86 platform thus contains layers of ossified legacy
interfaces, necessary to ensure broad cross and backward compatibility. ARM’s business model, on
the contrary, has long emphasised the specialisation of implementations: an ARM licensee would take

ARMv8 - 4 Barrelfish TN-022

Supplier Processor Name

APM APM883208 Mustang 1P 8-core X-Gene 1 with serial trace.
APM883408-X2 X-C2 1P 8-core X-Gene 2.

Cavium CN8890 StratusX 1P 48-core ThunderX.
Cirrus 2P 48-core ThunderX.

ARM AEM Fixed Virtual Platform The architectural envelope model covers
the range of behaviour permitted by
ARMv8. Bare-metal debug.

Foundation Platform Freely available, compatible with FVP.

Table 2.1: ARMv8 platforms of interest

their ARM-designed CPU core, and integrate it themselves in to a complex SoC (system on a chip), with
their own specialised, proprietary interfaces. The upsides of this were the possibility to highly optimise
a particular design, and no requirement on ARM itself to maintain a coherent platform.

While ARM’s customisable platform worked well for embedded devices, and scaled reasonably well
to relatively powerful smartphones, it’s a disaster for producing high-quality systems software, able
to execute on a broad range of hardware from competing vendors: exactly what a competitive server
platform requires. ARM clearly know this, and since 2014 have published the Server Base System Ar-
chitecture [ARM, 2016]. To the extent that manufacturers adhere to these guidelines, our job as systems
programmers is significantly simpler: it should be possible to write a single set of initialisation and
configuration code for ARMv8, that will run on any SBSA-compliant system, much as we already do
for x86-64.

Our target platforms listed in Table 2.1 all support SBSA to some extent, and absent any compelling
reason, we will only support SBSA-compliant platforms.

2.1.2 UEFI

One aspect of the SBSA which eases portability is the specification, for the first time, of a boot process
for ARM systems. ARM has specified that SBSA systems must support UEFI [UEFI, 2016b] (the unified
extensible firmware interface). UEFI is a descendant of the EFI specification, developed by Intel for the
Itanium project. While Itanium is no longer a platform of any great commercial interest, UEFI support
is now widespread in the x86-64 market. UEFI, in turn, specifies the use of ACPI [UEFI, 2016a] (the
advanced configuration and power interface) for platform discovery and control.

Supporting ACPI and UEFI requires a one-off investment of effort to design a new boot and configura-
tion subsystem, but should pay off in the long term, as ports to new ARM boards will no longer require
extensive manual configuration. The code should also be largely reusable for x86 UEFI systems. Our
new UEFI bootloader is described in Section 4.1.

2.2 A Direct Port from ARMv7

As already described, the Barrelfish release current at time of writing includes an initial ARMv8 port to
the GEM5 simulator. This port contains code generously contributed by HP Research.

Being developed from the existing codebase, this ARMv8 port follows the structure of the existing
ARMv7 code closely. While it is highly useful to have a running port, we are nevertheless continuing
with a significant redesign of the CPU driver, as significant improvements and simplifications will be
possible, once we no longer need to follow the existing structure, originally developed for a significantly
different platform.

Barrelfish TN-022 ARMv8 - 5

The GEM5 simulator’s model of an ARMv8 platform is relatively primitive, and does not conform
to modern platform conventions, for example placing RAM at address 0, rather than 0x80000000 as
mandated by the SBSA. For this reason, in addition to better integration with ARM debugging tools,
we have switched to the ARM Fixed Virtual Platform as our default simulation environment, with the
Foundation Platform supported as a freely available simulator.

2.3 Registers

2.3.1 General-purpose Registers

In total there are 31+1 general purpose registers (r0-r30) of size 64bits(Table 2.3). They are usually
referred to by the names x0-x30. The 32-bit content of the registers are referred to as w0-w30. The
additional stack pointer SP register can be accessed with a restricted number of instructions.

Register Special Description
X0-X7 Caller-save function call arguments and return value
X8 indirect result e.g. location of large return value (struct)
X9-X15 Caller-save temporary registers
X16 IP0 The first intra-procedure-call scratch register1

X17 IP1 The second intra-procedure-call temporary register
X18 The Platform Register (TLS), if needed; otherwise a temporary register.
X19-X28 Callee-save need to be preseved and restored when modified
X29 FP frame pointer
X30 LR link register
SP stack pointer (XZR)

Table 2.2: ARMv8 General purpose Registers

Procedure call

• The registers x19-28 and SP are callee-saved and hence must be preserved by the called subrou-
tine. All 64 bits have to be preserved even when executing in the 32-bit mode.

• The registers x0-x7 and x9-x15 are caller saved.

• During procedure calls the registers x16, x17, x29 and x30 have special roles i.e. they store relevant
addresses such as the return address.

• Arguments for calls are passed in the registers x0-x7, v0-v7 for floats/SIMD and on the stack

Indirect result This register is used when returning a large value such as declared by this function:
struct mystruct foo(int arg);.

Platform specific The use of register x18 is platform specific and needs to be defined by the platform
ABI. This register can hold inter-procedural state such as the thread context.

Linker The registers IP0 and IP1 can be used by the linker as a scratch register or to hold intermediate
values between subroutine calls.

ARMv8 - 6 Barrelfish TN-022

2.3.2 SIMD and Floating point

There are 32 registers to be used by floating point and SIMD operations. The name of those registers
will change, depending on the size of the operation.

Register Description
v0-v7 function call arguments, intermediate values and return value, caller save registers
v8-v15 Callee-save registers. They need to be preserved
v16-v31 Caller-save registers

Table 2.3: ARMv8 General purpose Registers

Barrelfish TN-022 ARMv8 - 7

Chapter 3

Design and Implementation

3.1 Redesigning the CPU Driver

Given that ARMv8 is a significantly different platform to ARMv7, and that the ARMv7 codebase carries
a significant legacy, reaching right back to ARMv5, we are pursuing substantial redesign of the CPU
driver. Taking advantage of the standardisation of the hardware platform mandated by the SBSA (Sec-
tion 2.1.1), and the facilities provided by UEFI (Section 2.1.2), in addition to a relatively unrestricted
virtual address space, we are able to significantly reduce the complexity of the CPU driver. In this sec-
tion we describe the updated design, and our progress on its implementation, while the UEFI interface
(Hagfish) is described separately, in Section 4.1.

Terminology In the interest of clarity, in the discussion that follows, we use a few terms with precise
intent:

shall indicates features or characteristics of the design to which the Barrelfish implementation must
conform.

should indicates features which should be supported if at all possible.

initially indicates features which will be provided from the outset in the Barrelfish implementation.

eventually indicates features which will be provided later in the Barrelfish implementation, and which
the initial design will aim to facilitate.

3.1.1 Goals

Our goal is to provide a reference design for the CPU driver and user-space execution environment for
Barrelfish on an ARMv8 core, in order to understand both positive and negative implications of the ar-
chitecture for a multikernel system. The design should be applicable to any ARMv8 with virtualisation
(EL2) support.

Initially, our hardware development platform is the APM X-Gene 1, using the Mustang Development
Board. We are using the Mustang principally as it was relatively easily available, as well as being a
comparatively complex and powerful CPU. The ThunderX platform from Cavium is very interesting
for Barrelfish, as it ties a large number (48) of less-powerful (2-issue) cores. We do not have the resources
to develop for two platforms simultaneously, but we hope to eventually add support for the ThunderX.

Our target simulation environment is the ARM Fixed Virtual Platform, and the Foundation Platform.
These models are supplied by ARM. The Foundation Platform is freely available, and will be the default
supported simulation platform for the public Barrelfish tree, while we will use the FVP internally to

ARMv8 - 8 Barrelfish TN-022

allow bare-metal debugging. Future support for QEMU is desirable, to the extent that it models a
compatible system — GEM5, which the ARMv7 port targets, currently does not.

Initially, the design will support running both the CPU driver and user-space processes in AArch64
mode without support for virtualisation. Eventually the design will support running the CPU driver
in AArch64 mode, and user-space processes in both AArch64 and AArch32 modes without virtualisa-
tion, and virtual machines in AArch64 mode. We will only support virtualisation on ARMv8.1 or later
platforms, that support the VHE extensions, as described in Section 3.1.3.

3.1.2 Processor Modes and Virtualisation

Where possible, we will keep the virtualisation model similar to that on Barrelfish/x86. In particular, it
should be possible to implement native applications, fully virtualised (e.g. Linux) VMs, and VM-level
applications e.g. Arrakis [Peter et al., 2014].

ARMv8 has a somewhat different virtualisation model to x86, and different again from the ARMv7
virtualisation extensions. Rather than having exception levels (rings) duplicated between guest and
host, ARMv8 provides 4 exception levels (ELs):

• EL0 is unprivileged — user applications.

• EL1 is privileged — OS kernel.

• EL2 is hypervisor state.

• EL3 is for switching between secure and non-secure (TrustZone) modes. The X-Gene 1 does not
implement EL3, and it is currently not of interest for Barrelfish.

Explicit traps (syscalls/hypercalls) target only the next level up: EL0 can call EL1 using svc (syscall),
and EL1 can call EL2 using hvc (hypercall), but EL0 cannot directly call EL2, unless EL1 is completely
disabled. Exceptions return to the caller’s exception level.

ELs shall be distributed as follows: The CPU driver shall exist at both EL1 and EL2, and take both
syscalls (svc, from EL0 applications) and hypercalls (hvc, from EL1 applications). The system shall
support applications both at EL0, and at EL1 (e.g. Arrakis, VMs). Most code paths should be identical,
as most CPU driver operations do not depend on EL2 privileges. Hypercalls from EL0 shall be chained
via EL1 (with appropriate permission checks).

EL1 apps such as Arrakis, and paravirtualised VMs using hypercalls know that they are being virtu-
alised, and will use hvc explicitly. Fully-virtualised EL1 VMs do not make hypercalls.

ARMv8 implements two-level address translation: VA (virtual address) to IPA (intermediate physical
address), and IPA to PA (physical address). EL1 guests shall be isolated at the L1 translation layer, and
by trapping all accesses to system control registers.

3.1.3 Virtual Address Space Layout

ARMv8 has an effective 48-bit virtual address space. At the lowest execution levels (0 — BF user & 1 —
BF CPU driver), the hardware supports two (up to) 48-bit (256TB) ’windows’ in a 64-bit space: one at
the bottom, and one at the top. Each region has its own translation table base register (TTBR0 & TTBR1).
TTBR0 is used at EL0, and TTBR1 at EL1.

In the initial ARMv8 specification, this split address space was not implemented at EL2, which would
require a separate CPU driver instance for virtualisation, and hypercalls (e.g. for Arrakis). ARMv8.1
introduced the virtualisation host extensions (VHE) which, among other things, extends the split ad-
dress space to EL2. As this provides a cleaner implementation model, and to avoid having to support a
now-deprecated interface, virtualisation will only be supported on ARMv8.1 and later. This means that
we will not support virtualisation on the X-Gene 1. Both the simulation environment (FVP/FP) and,
seemingly, the ThunderX chips, support VHE.

Barrelfish TN-022 ARMv8 - 9

tpidrro el0 EL0 Read-Only Software Thread ID Register
tpidr el0 EL0 Read/Write Software Thread ID Register
tpidr el1 EL1 Read/Write Software Thread ID Register
tpidr el2 EL2 Read/Write Software Thread ID Register
tpidr el3 EL3 Read/Write Software Thread ID Register

Table 3.1: Thread ID registers in ARMv8

The CPU driver shall use TTBR1 to provide a complete physical window. The ARMv8 CPU driver shall
not dynamically map device memory into its own window (as the ARMv7 CPU driver does) — the
few memory-mapped devices required will be statically mapped on boot, with appropriate memory
attributes. All physical addresses, RAM and device, shall be accessible at a static, standard offset (the
base of the TTBR1 region).

User-level page tables will initially be limited to a 4k translation granularity. Eventually user-level
page tables should have access to all page-table formats and page sizes, as is the case in the current
Barrelfish x86 implementation.

3.1.4 Address Space, Context, and Thread Identifiers

ARMv8 also provides address-space identifiers (ASIDs) in the TLB to avoid flushing the translation
cache on a context switch.

ARMv8 ASIDs (referred to in ARM documentation as context IDs) are architecturally allowed to be
either 8 or 16 bits, although the SBSA specifies that they must be at least 16. Relying on the SBSA
platform will allow us to avoid multiplexing IDs among active processes, on any reasonably-sized
system. Managing the reuse of context IDs can be left to user-level code, and does not need to be on the
critical path of a context switch. The CPU driver need only ensure that every allocated dispatcher has a
unique ASID, which is loaded into the ContextID register on dispatch.

The value in the ContextID register is also checked against the hardware breakpoint and watchpoint
registers, in generating debug exceptions. Therefore, it shall be possible for authorised user-level code
to load the Context ID for a given dispatcher into a breakpoint register — this may be an invocation on
the dispatcher capability.

In addition to the ContextID register, used to tag TLB entries, ARMv8 also provides a set of thread ID
registers with no architecturally-defined semantics, as listed in Table 3.1. The client-writeable tpidr -

el0 and tpidr el1 shall have no CPU driver-defined purpose, but shall be saved and restored in a
dispatcher’s trap frame, to allow their use as thread-local storage (TLS). Recall that the Barrelfish CPU
driver has no awareness of threads, which are implemented purely at user level.

To implement the upcall/dispatch mechanism of Barrelfish, the CPU driver and the user-level dis-
patcher need to share a certain amount of state — the user-visible portion of the dispatcher control
block, which contains the trap frames, and the disabled flag (used to achieve atomic dispatch). The ad-
dress of this structure needs to be known to both the CPU driver, and to user-level code, and moreover
be efficiently-accessible, as the CPU driver needs to find the trap frame on the critical path of system
calls and exceptions. This pointer also needs to be trustworthy, from the CPU driver’s perspective, and
thus cannot be directly modifiable by user-level code.

The x86-32, x86-64, and ARMv7 CPU drivers all store the address of the running dispatcher’s shared
segment at a fixed known address, dcb current, which is loaded by the trap handler. At user level,
on x86 this address is held in a segment register (fs on x86-64, and gs on x86-32), while on ARMv7 we
sacrifice a general-purpose register (r9) for this purpose. Using the tpidrro el0 register to hold the
address of the current dispatcher structure will allow us to avoid both a memory load on the fast path,
and sacrificing a register in user-level code, thus tpidrro el0 shall hold the address of the currently-
running dispatcher.

ARMv8 - 10 Barrelfish TN-022

3.1.5 Instruction Sets

ARMv8 supports both AArch64, and legacy ARM/Thumb (renamed AArch32). Switching execution
mode is only possible when switching execution level i.e. on a trap or return, and can only be changed
while at the higher execution level. Thus, EL2 can set execution mode for EL1, and EL1 for EL0. There is
no way for a program to change its own execution mode. If ELn is in AArch64, then EL(n-1) can be in
either AArch64 or AArch32. If ELn is in AArch32, all lower ELs must also be AArch32.

The CPU driver shall execute in AArch64.

Initially, the CPU driver will enforce that all directly-scheduled threads also use AArch64, by control-
ling all downward EL transitions. An EL1 client (such as Arrakis or a full virtual machine) may execute
its own EL0 clients in AArch32 (and there is no way to prevent this). However, all transitions into the
CPU driver (svc, hvc or exception) must come from a direct client of the CPU driver, and thus from
AArch64. The syscall ABI shall be AArch64.

Eventually, Barrelfish should also support the execution of AArch32 dispatcher processes, by marking
each dispatcher with a flag indicating the instruction set to be used (much as is already done with
VM/non-VM mode in the Arrakis CPU driver).

3.1.6 User-Space Access to Architectural Functions

Generally, anything that can be safely exported, should be made available outside of the CPU driver,
preferable as a memory-mapped interface, at 4kiB granularity. The SBSA mandates that devices be
present at addresses that can be individually mapped, thus this should not be a problem.

3.1.7 Cache Management

ARMv8 has moved most cache and TLB management from the system control coprocessor (cp15), into
the core ISA. Several cache operations (invalidate/clean by VA) are executable at EL0, and thus no
kernel interface is required. The system must take into account that user-directed flushes may have
occurred, or may occur concurrently with any memory operation.

3.1.8 Performance Monitors

Performance monitors should be exposed, if it can be done safely.

3.1.9 Debugging

Self-hosted debug should be exposed, if it can be done safely. This is under active development.

3.1.10 Booting

Platform support i.e. a standard set of peripherals, and a defined boot process, has improved dramati-
cally on ARM, as it has been repositioned as a server platform. UEFI and ACPI support are widespread,
including on the Mustang development board. We will assume support for UEFI booting, make use of
ACPI data, where available.

The Barrelfish CPU driver and initial image shall be loaded and executed by a UEFI shim, which will
pass through all UEFI-supplied information, such as ACPI tables, and be able to interpret a Barrelfish
Multiboot image. This shim, or second-stage bootloader, is called Hagfish, and is described in Sec-
tion 4.1.

Barrelfish TN-022 ARMv8 - 11

3.1.11 Interrupts

ARMv8 interrupt handling is not substantially different from the existing architectures and platforms
supported by Barrelfish. While a redesign of the Barrelfish interrupt system is under way (to use ca-
pabilities to grant access to receive interrupts), we do not anticipate ARMv8 to impose any particular
challenges.

The ARMv8 systems we initially target all use minor variations on the ARM Generic Interrupt Con-
troller (GIC) design, already supported in Barrelfish. We currently have support for version 2 of the
GIC, with which later implementations are backward-compatible. We will eventually support GICv3,
the current specification at time of writing.

3.1.12 Inter-Domain Communication

User-level communication between cache-coherent cores in Barrelfish for ARMv8 is likely to the same
as with ARMv7 and x86, and we expect the existing User-level Message-Passing over Cache-Coherence
(UMP-CC) interconnect driver to work unmodified.

Between dispatchers on the same core, however, the different register set on the ARMv8 is likely to re-
sult in a very different Local Message Passing (LMP) interconnect driver—this is always an architecture-
specific part of the CPU driver. In practice, its design will be closely tied to the context switch and upcall
dispatch code.

ARMv8 - 12 Barrelfish TN-022

Chapter 4

Booting

Booting ARM systems has always been difficult to do in a standard way, and ARMv8 systems are no
exception. Barrelfish uses one of two methods of booting an initial ARMv8 core, depending on whether
the hardware platform supports UEFI UEFI [2016b] or U-Boot. If a platform supports neither, more
work will be required to boot the board.

If a board has full support for UEFI (such as TianoCore), you can use Hagfish 4.1 to individually load
the modules needed to boot Barrelfish and set up the initial CPU/MMU environment before entering
the CPU driver proper.

Note that U-Boot also claims to support UEFI. However, in practice it supports a small subset of UEFI
functionality sufficient to boot grub or the Linux kernel as an EFI binary. If your board boots via U-Boot,
you should use the minimal EFI bootloader 4.2 which loads a single multiboot image into memory and
sets up the environment similar to Hagfish.

4.1 Hagfish

The Barrelfish/ARMv8 UEFI loader prototype is called Hagfish1. Hagfish is a second-stage bootloader
for Barrelfish on UEFI platforms, initially the ARMv8 server platform. Hagfish is loaded as a UEFI
application, and uses the large set of supplied services to do as much of the one-time (boot core) setup
that the CPU driver needs as is reasonably possible. More specifically, Hagfish:

• Is loaded over BOOTP/PXE.

• Reuses the PXE environment to load a menu.lst-style configuration.

• Loads the kernel image and the initial applications, as directed, and builds a Multiboot image.

• Allocates and builds the CPU driver’s page tables.

• Activates the initial page table, and allocates a stack.

4.1.1 Why Another Bootloader?

The ARMv8 machines that we’re porting to are different to both existing ARM boards, and to x86. They
have a full pre-boot environment, unlike most embedded boards, but it’s not a PC-style BIOS. The ARM
Server Base Boot Requirements specify UEFI. Moreover, there is no mainline support from GNU GRUB
for the ARMv8 architecture, so no matter what, we need some amount of fresh code.

1A hagfish is a basal chordate i.e. something like the ancestor of all fishes.

Barrelfish TN-022 ARMv8 - 13

Given that we had to write at least a shim loader, and keeping in mind that UEFI is multi-platform
(and becoming more and more common in the x86 world), we’re taking the opportunity to simplify the
initial boot process within the CPU driver by moving the once-only initialisation into the bootloader.
In particular, while running under UEFI boot services, we have memory allocation available for free,
e.g. for the initial page tables. By moving ELF loading and relocation code into the bootloader, we can
eliminate the need to relocate running code, and can cut down (hopefully eliminate) special-case code
for booting the initial core. Subsequent cores can rely on user-level Coreboot code to relocate them, and
to construct their page tables.

4.1.2 Assumptions and Requirements

Hagfish is (initially at least) intended to support development work on AArch64 server-style hardware
and, as such, makes the following assumptions:

• 64-bit architecture, using ELF binaries. Porting to 32-bit architectures wouldn’t be hard, if it were
ever necessary (probably not).

• PXE/BOOTP/TFTP available for booting. Hagfish expects to load its configuration, and any bi-
naries needed, using the same PXE context with which it was booted. Changing this to boot from
a local device (e.g. HDD) wouldn’t be hard, as the UEFI LoadFile interface abstracts from the
hardware.

4.1.3 Boot Process

In detail, Hagfish currently boots as follows:

1. Hagfish.efi is loaded over PXE by UEFI, and is executed at a runtime-allocated address, with
translation (MMU) and caching enabled.

2. Hagfish queries EFI for the PXE protocol instance used to load it, and squirrels away the current
network configuration.

3. Hagfish loads the file hagfish.A.B.C.D.cfg from the TFTP server root (where A.B.C.D is the IP
address on the interface that ran PXE).

4. Hagfish parses its configuration, which is essentially a GRUB menu.lst, and loads the kernel im-
age and any additional modules specified therein. All ELF images are loaded into page-aligned
regions of type EfiBarrelfishELFData.

5. Hagfish queries UEFI for the system memory map, then allocates and initialises the inital page
tables for the CPU driver (mapping all occupied physical addresses, within the TTBR1 window,
see Section 3.1.3). The frames holding these tables are marked with the EFI memory type
EfiBarrelfishBootPagetable, allocated from the OS-specific range (0x80000000–0x8fffffff).
All memory allocated by Hagfish on behalf of the CPU driver is page-aligned, and tagged with
an OS-specific type, to allow EFI and Hagfish regions to be safely reclaimed.

6. Hagfish builds a Multiboot 2 information structure, containing as much information as it can get
from EFI, including:

• ACPI 1.0 and 2.0 tables.

• The EFI memory map (including Hagfish’s custom-tagged regions).

• Network configuration (the saved DHCP ack packet).

• The kernel command line.

• All loaded modules.

• The kernel’s ELF section headers.

ARMv8 - 14 Barrelfish TN-022

7. Hagfish allocates a page-aligned kernel stack (type EfiBarrelfishCPUDriverStack), of the size
specified in the configuration.

8. Hagfish terminates EFI boot services (calls ExitBootServices), activates the CPU driver page
table, switches to the kernel stack, and jumps into the relocated CPU driver image.

4.1.4 Post-Boot state

When the CPU driver on the boot core begins executing, it can assume the following:

• The MMU is configured with all RAM and I/O regions mapped via TTBR1.

• The CPU driver’s code and data are both fully relocated into one or more distinct 4kiB-aligned
regions.

• The stack pointer is at the top of a distinct 4kiB-aligned region of at least the requested size.

• The first argument register holds the Multiboot 2 magic value.

• The second holds a pointer to a Multiboot 2 information structure, in its own distinct 4kiB-aligned
region.

• The console device is configured.

• Only one core is enabled.

• The Multiboot structure contains at least:

– The final EFI memory map, with all areas allocated by Hagfish to hold data passed to the
CPU driver marked with OS-specific types, all of which refer to non-overlapping 4k-aligned
regions:

EfiBarrelfishCPUDriver The currently-executing CPU driver’s text and data segments.

EfiBarrelfishCPUDriverStack The CPU driver’s stack.

EfiBarrelfishMultibootData The Multiboot structure.

EfiBarrelfishELFData The unrelocated ELF image for a boot-time module (including that
for the CPU driver itself), as loaded over TFTP.

EfiBarrelfishBootPageTable The currently-active page tables.

– The CPU driver (kernel) command line.

– A copy of the last DHCP Ack packet.

– A copy of the section headers from the CPU driver’s ELF image.

– Module descriptions for the CPU driver and all other boot modules.

– If UEFI provided an ACPI root table, the Multiboot structure contains a pointer to it.

4.1.5 Configuration

Hagfish configures itself by loading a file whose path is generated from its assigned IP address. Thus if
your development machine receives the address 192.168.1.100, Hagfish will load the file
hagfish.192.168.1.100.cfg from the same TFTP server used to load it. The format is intended to be
as close as practical to that of an old-style GRUB menu.lst file. The example configuration in Figure 4.1
loads /armv8/sbin/cpu apm88xxxx as the CPU driver, with arguments loglevel=3, and an 8192B (2-
page) stack.

Barrelfish TN-022 ARMv8 - 15

1 kernel /armv8/sbin/cpu_apm88xxxx loglevel =3

2 stack 8192

3 module /armv8/sbin/cpu_apm88xxxx

4 module /armv8/sbin/init

5

6 # Domains spawned by init

7 module /armv8/sbin/mem_serv

8 module /armv8/sbin/monitor

9

10 # Special boot time domains spawned by monitor

11 module /armv8/sbin/chips boot

12 module /armv8/sbin/ramfsd boot

13 module /armv8/sbin/skb boot

14 module /armv8/sbin/kaluga boot

15 module /armv8/sbin/spawnd boot bootarm =0

16 module /armv8/sbin/startd boot

17

18 # General user domains

19 module /armv8/sbin/serial auto portbase =2

20 module /armv8/sbin/fish nospawn

21 module /armv8/sbin/angler serial0.terminal xterm

22

23 module /armv8/sbin/memtest

24

25 module /armv8/sbin/corectrl auto

26 module /armv8/sbin/usb_manager auto

27 module /armv8/sbin/usb_keyboard auto

28 module /armv8/sbin/sdma auto

Figure 4.1: Hagfish configuration file

4.1.6 Booting with Hagfish in QEMU

When booting a QEMU image for 64-bit ARM, a number of options are available (see make help-boot).
Building a boot image for QEMU with ARMv8 will typically result in a file in the build directory called
armv8<coretype >q emuimage.ThisisadiskimagewhichcanbereadbyHagfishthroughEFIcalls.

Booting this with a boot target from make will run the following:

1 srcdir/tools/qemu -wrapper.sh \\

2 --image armv8_ <core_type >_qemu_image \\

3 --arch armv8 \\

4 --bios ../ git/barrelfish/tools/hagfish/QEMU_EFI.fd

This wrapper script is complex, but reasonably well documented (use ’--help’). It will

invoke QEMU as follows:

1 qemu -system -aarch64 \\

2 -m 1024 \\

3 -cpu cortex -a57 \\

4 -M virt \\

5 -d guest_errors \\

6 -M gic_version =3 \\

7 -smp 1 \\

8 -bios ../ git/barrelfish/tools/hagfish/QEMU_EFI.fd \\

9 -device virtio -blk -device ,drive=image \\

10 -drive if=none ,id=image ,file=armv8_ <core_type >_qemu_image ,format=raw \\

11 -nographic

ARMv8 - 16 Barrelfish TN-022

Note that for this script to work, you need to have mtools (the MS-DOS file system manipulation

tools) installed, since they are used to prepare the armv8<coretype >q emuimagefile.

More specifically, the armv8<coretype >q emuimagefileisgeneratedbytools/harness/efiimage.py.ThiscreatesanEFIfilesystemimageoutoftheplainBarrelfishbinariesbuiltinbuilddir /armv8/sbin, plustheHagfishEFIimageweregularlyuseforrealhardware.TheQEMU EFI.fdfileistheUEFIruntimebuiltforQEMU.

4.2 Booting from U-Boot

Where a full UEFI environment is not available, it is possible to boot Barrelfish from U-Boot DENX

Software Engineering [2017]. We boot Barrelfish from U-Boot using U-Boot’s limited EFI

support: a build-time tool (armv8 bootimage builds a single binary which only requires

the minimal EFI environment provided by U-Boot. This binary contains a loader (efi loader)

which sets up the rest of the image as a multiboot image in memory before starting the CPU

driver.

4.2.1 Booting in QEMU with U-Boot

A ‘‘platform’’ target like QEMU UBoot which build such an image for QEMU, and the qemu-wrapper.sh

script can be invoked to use U-Boot instead of Hagfish:

1 srcdir/tools/qemu -wrapper.sh \\

2 --image armv8_a57_qemu_image.efi \\

3 --arch armv8 \\

4 --uboot -img srcdir/tools/qemu -armv8 -uboot.bin

This invoked QEMU as follows:

1 qemu -system -aarch64 \\

2 -m 1024 \\

3 -cpu cortex -a57 \\

4 -M virt \\

5 -d guest_errors \\

6 -M gic_version =3 \\

7 -smp 1 \\

8 -bios srcdir/tools/qemu -armv8 -uboot.bin \\

9 -device loader ,addr=0x50000000 ,file=armv8_a57_qemu_image.efi \\

10 -nographic

As you can see, the UBoot binary is given as the BIOS, and the minimal EFI image with the

complete set of multiboot modules compiled in is pre-loaded into memory when QEMU starts.

Barrelfish TN-022 ARMv8 - 17

Chapter 5

Technical Observations

5.1 User-Space Threading

1 clrex

2 /* Restore CPSR */

3 ldr r0 , [r1], #4

4 msr cpsr , r0

5 /* Restore registers */

6 ldmia r1 , {r0 -r15}

1 /* Restore PSTATE , load resume

2 * address into x18 */

3 ldp x18 , x2 , [x1 , #(PC_REG * 8)]

4 /* Set only NZCV. */

5 and x2 , x2 , #0 xf0000000

6 msr nzcv , x2

7 /* Restore the stack pointer and x30. */

8 ldp x30 , x2 , [x1 , #(30 * 8)]

9 mov sp , x2

10 /* Restore everything else. */

11 ldp x28 , x29 , [x1 , #(28 * 8)]

12 ldp x26 , x27 , [x1 , #(26 * 8)]

13 ldp x24 , x25 , [x1 , #(24 * 8)]

14 ldp x22 , x23 , [x1 , #(22 * 8)]

15 ldp x20 , x21 , [x1 , #(20 * 8)]

16 /* n.b. don ’t reload x18 */

17 ldr x19 , [x1 , #(19 * 8)]

18 ldp x16 , x17 , [x1 , #(16 * 8)]

19 ldp x14 , x15 , [x1 , #(14 * 8)]

20 ldp x12 , x13 , [x1 , #(12 * 8)]

21 ldp x10 , x11 , [x1 , #(10 * 8)]

22 ldp x8 , x9 , [x1 , #(8 * 8)]

23 ldp x6 , x7 , [x1 , #(6 * 8)]

24 ldp x4 , x5 , [x1 , #(4 * 8)]

25 ldp x2 , x3 , [x1 , #(2 * 8)]

26 /* n.b. this clobbers x0&x1 */

27 ldp x0 , x1 , [x1 , #(0 * 8)]

28 /* Return to the thread. */

29 br x18

Figure 5.1: disp resume context on ARMv7 (left) and ARMv8 (right)

The ARMv8 architecture is in some ways an improvement, and in other ways problematic, for

the sort of user-level threading implemented in Barrelfish, via scheduler activations. Under

this scheme, the kernel (in Barrelfish terms, the CPU driver), does not schedule threads

directly, but instead exposes all scheduling-relevant events via upcalls to predefined

user-level handlers (in Barrelfish, the dispatcher), which then implements thread scheduling

(or something else entirely), as it sees fit. This differs from the behaviour of a system

ARMv8 - 18 Barrelfish TN-022

such as UNIX, which only ever restores a user-level execution context simultaneously with

dropping from a privileged to an unprivileged execution level.

Processor architectures are, understandably, designed with common software in mind. Thus,

the primitives available for restoring an execution context i.e. register state are often

tied closely to those for changing privilege level. A common design (which ARMv8 also implements)

is the exception return, where privileged code can atomically drop its privilege, and jump

to a user-level execution address. In ARMv8, the eret instruction atomically updates the

program state (PSTATE, most importantly the privilege level bits), and branches to the address

held in the exception link register, elr.

In implementing user-level threading, we’re not concerned with privilege levels, but the

lack of some equivalent of elr is frustrating. Not only does eret provide an atomic update

of the program counter and the program state, it does so without modifying any general-purpose

register. Replicating this behaviour at EL0, where eret is unavailable is problematic.

ARMv8 differs from ARMv7, in that the program counter can no longer be the target of a load

instruction, but can only be loaded via a general-purpose register.

Specifically, the only PC-modifying instructions (other than eret) are PC-relative branches

(which are useless in this scenario) and branch-to-register (of which br, blr and ret are

all special encodings). Since ARMv8 has also removed the ldm (load multiple) instruction,

there is no way to load the program counter with an arbitrary value (the thread’s restart

address), without overwriting one of the general-purpose registers. We cannot restore the

thread’s register value before we branch to it, as we’d overwrite the return address, and

we obviously can’t do so afterwards, as the thread likely has no idea that it’s been interrupted.

The only alternative is to trampoline through kernel mode in order to use eret (which would

eliminate the speed benefit of user-level threading), or to reserve a general-purpose register

for use by the dispatcher. Neither option is appealing, but we went with the second option,

reserving x18, reasoning that with 31 general-purpose registers available, the loss of one

isn’t a huge penalty. Register x18 is explicitly marked as the platform register in the

AArch64 ABI [ARM, 2013], for such a purpose.

Future revisions of the ARM architecture could prevent this issue in a number of ways: allowing

the use of eret at EL0 or providing an equivalent functionality (specifically a non-general-purpose

register such as elr, that doesn’t need to be restored); or alternatively, adding indirect

jumps (load to PC) back to the instruction set.

Figure 5.1 compares the user-level thread resume code for the Barrelfish dispatcher (function

disp resume) for ARMv7 and ARMv8 side-by-side. The effect of removing the load-multiple

instructions, and direct-to-SP loads, on code density is clearly visible: everything on

lines 8--29 for ARMv8 corresponds to the single ldmia instruction on lines 9 for ARMv7 ---

one instruction is now 18, on the thread-switch critical path! Note also, on line 17, that

the ARMv8 code does not restore the thread’s r18, but instead uses it to hold the branch

address for use on line 29. The only improvement on ARMv8 is that the clrex (clear exclusive

monitor) instruction is no longer required, as the monitor is cleared on returning from

the kernel. Note also that the usual method to efficiently load multiple registers, using

16-word SIMD (NEON) loads, isn’t available, as there’s no guarantee that the SIMD extensions

are enabled on this dispatcher, and we cannot handle a fault in this code.

5.2 Trap Handling

Figure 5.2 shows the CPU driver exception stub, for a synchronous abort from EL0. This

exception class includes system calls, breakpoints, and page faults on both code and data.

The effect of the loss of store multiple instructions is again visible, for example on lines

27--32. Although not as severe as in the case of the user-level thread restore in Section 5.1,

Barrelfish TN-022 ARMv8 - 19

1 el0_aarch64_sync:

2 msr daifset , #3 /* IRQ and FIQ masked , Debug and Abort enabled. */

3

4 stp x11 , x12 , [sp , #-(2 * 8)]!

5 stp x9 , x10 , [sp , #-(2 * 8)]!

6

7 mrs x10 , tpidr_el1

8 mrs x9 , elr_el1

9

10 ldp x11 , x12 , [x10 , #OFFSETOF_DISP_CRIT_PC_LOW]

11 cmp x11 , x9

12 ccmp x12 , x9, #0, ls

13 ldr w11 , [x10 , #OFFSETOF_DISP_DISABLED]

14 ccmp x11 , xzr , #0, ls

15 /* NE <-> (low <= PC && PC < high) || disabled != 0 */

16

17 mrs x11 , esr_el1 /* Exception Syndrome Register */

18 lsr x11 , x11 , #26 /* Exception Class field is bits [31:26] */

19

20 b.ne el0_sync_disabled

21

22 add x10 , x10 , #OFFSETOF_DISP_ENABLED_AREA

23

24 save_syscall_context:

25 str x7 , [x10 , #(7 * 8)]

26

27 stp x19 , x20 , [x10 , #(19 * 8)]

28 stp x21 , x22 , [x10 , #(21 * 8)]

29 stp x23 , x24 , [x10 , #(23 * 8)]

30 stp x25 , x26 , [x10 , #(25 * 8)]

31 stp x27 , x28 , [x10 , #(27 * 8)]

32 stp x29 , x30 , [x10 , #(29 * 8)] /* FP & LR */

33

34 mrs x20 , sp_el0

35 stp x20 , x9 , [x10 , #(31 * 8)]

36

37 mrs x19 , spsr_el1

38 str x19 , [x10 , #(33 * 8)]

39

40 cmp x11 , #0x15 /* SVC or HVC from AArch64 EL0 */

41 b.ne el0_abort_enabled

42

43 add sp , sp , #(4 * 8)

44

45 mov x7 , x10

46

47 b sys_syscall

Figure 5.2: BF/ARMv8 synchronous exception handler

ARMv8 - 20 Barrelfish TN-022

the extra instructions required do constrain us somewhat, as each trap handler is constrained

to 128 bytes, or 32 instructions, before branching to another code block.

We were able to squeeze the necessary code into the space available, including the optimised

test for a disabled dispatcher at lines 10--14, but only by splitting the page fault handler

(el0 abort enabled) into a separate subroutine, incurring an unnecessary branch. A more

significant annoyance is that system calls (svc and hvc) are routed to the same exception

vector as page faults (aborts). The effect of this is that we are forced to spill registers

to the stack (x9--x12 on lines 4--5), even on the system call fast path, as we need at least

one register to check the exception syndrome (esr el1) to distinguish aborts (where we must

preserve all registers) from system calls (where we could immediately begin using the caller-saved

registers). Note that the code on lines 27--32 only needs to stack the callee-saved registers,

and leaves the system call arguments in x0--x7, to be read as required by sys syscall (in

C).

This sort of mismatch between the exception-handling interface of the CPU architecture,

and what is required for really high-performance systems code is unfortunately extremely

common. Unnecessary overheads, such as the additional stacked registers here hurt the performance

of highly-componentised systems, such as Barrelfish, which rely on frequently crossing protection

domains.

The relatively well-compressed boolean arithmetic on lines 10--14 demonstrates that, even

with the loss of ARM’s fully-conditional instructions, the conditional compares which remain

are still relatively powerful.

5.3 Cache Coherence

One aspect of the ARM architecture that is of particular interest for the Barrelfish project,

but which we have not yet explored in depth, is the configurable cache coherency and fine-grained

cache management operations available. Any virtual mapping on a recent ARM architecture,

including both ARMv7 and ARMv8, can be tagged with various cacheability properties: inner

(L1), outer (L2+, usually), write-back or write-through. Combined with the explicit flush

operations at cache-line granularity, able to target either PoU (point of unification, where

data and instruction caches merge) or PoC (point of coherency, typically RAM), a multi-core,

multi-socket ARMv8 system would make a very interesting testbed for investigating efficient

cache management and communication primitives for future partially-coherent architectures.

Indeed, the latest revision of the ARMv8 specification, ARMv8.2, introduced flush to PoP,

or point of persistence --- perhaps in response to interest from well-known systems integration

firms investigating large persistent memories.

The design presented in this report is intended to expose as much control over the caching

hierarchy as possible to user-level code, to provide a platform for future research.

Barrelfish TN-022 ARMv8 - 21

References

ARM. Procedure call standard for the ARM 64-bit architecture (AArch64). Technical

Report ARM-IHI-0055B, May 2013. URL http://infocenter.arm.com/help/topic/com.arm.

doc.ihi0055b/IHI0055B_aapcs64.pdf.

ARM. Server base system architecture. Technical Report ARM-DEN-0029, February 2016.

URL http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html.

DENX Software Engineering. Das U-Boot -- the Universal Boot Loader. https://www.denx.

de/wiki/U-Boot/, April 2017.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,

Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control

Plane. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and

Implementation, Broomfield, Colorado, USA, October 2014.

Barrelfish Project. Barrelfish on ARMv7. Barrelfish Technical Note 017, Systems Group,

ETH Zurich, December 2013.

UEFI. Advanced configuration and power interface specification. Technical report,

January 2016a. URL http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf.

UEFI. Unified extensible firmware interface specification. Technical report, January

2016b. URL http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf.

ARMv8 - 22 Barrelfish TN-022

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html
https://www.denx.de/wiki/U-Boot/
https://www.denx.de/wiki/U-Boot/
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf

	Summary
	Background
	The ARMv8 Architecture
	ARM Server Base System Architecture
	UEFI

	A Direct Port from ARMv7
	Registers
	General-purpose Registers
	SIMD and Floating point

	Design and Implementation
	Redesigning the CPU Driver
	Goals
	Processor Modes and Virtualisation
	Virtual Address Space Layout
	Address Space, Context, and Thread Identifiers
	Instruction Sets
	User-Space Access to Architectural Functions
	Cache Management
	Performance Monitors
	Debugging
	Booting
	Interrupts
	Inter-Domain Communication

	Booting
	Hagfish
	Why Another Bootloader?
	Assumptions and Requirements
	Boot Process
	Post-Boot state
	Configuration
	Booting with Hagfish in QEMU

	Booting from U-Boot
	Booting in QEMU with U-Boot

	Technical Observations
	User-Space Threading
	Trap Handling
	Cache Coherence

