
Barrelfish Project
ETH Zurich

CPU drivers in Barrelfish

Barrelfish Technical Note 21

Barrelfish project

01.12.2015

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

0.1 01.12.2015 GZ Initial Version

CPU drivers - 2 Barrelfish TN-21

Contents

1 Introduction 5
1.1 General design decisions . 5
1.2 Code file structure and layout . 5

2 x86-64 6
2.1 Boot process . 6

2.1.1 BSP Core . 6
2.1.2 APP Core . 7

2.2 Virtual Address Space . 7
2.3 IO capabilities . 7
2.4 Global Descriptor Table (GDT) . 8
2.5 Interrupts and Exceptions . 8
2.6 Local Descriptor Table (LDT) . 10
2.7 Registers . 10
2.8 Hardware devices . 10

2.8.1 Serial port . 10
2.8.2 PIC – Programmable Interrupt Controller 11
2.8.3 xAPIC – Advanced Programmable Interrupt Controller 11
2.8.4 System call API . 11

Barrelfish TN-21 CPU drivers - 3

CPU drivers - 4 Barrelfish TN-21

Chapter 1

Introduction

This document describes the CPU driver, the part of Barrelfish that typically runs in privileged
mode (also known as kernel) on our supported architectures.

Barrelfish currently supports the following CPU drivers for different CPU architectures and
platforms:

• x86-32

• x86-64

• k1om

• ARMv7

• ...

• ARMv8

1.1 General design decisions

• No dynamic memory allocation

• No preemption

• ...

1.2 Code file structure and layout

TODO: Should explain things such as naming, where goes architecture dependent, platform
specific code? What libraries we use in the kernel? Where is the shared code between libbar-
relfish and a cpudriver?

Barrelfish TN-21 CPU drivers - 5

Chapter 2

x86-64

The x86-64 implementation of Barrelfish is specific to the AMD64 and Intel 64 architectures.
This text will refer to features of those architectures. Those and further features can be found
in [?] and [?] for the Intel 64 and AMD64 architectures, respectively.

2.1 Boot process

We first describe the boot process for the initial BSP core, followed by the boot process of an
APP core.

2.1.1 BSP Core

Barrelfish relies on a multiboot v1 [?] compliant boot-loader to load the initial kernel on the BSP
core. In our current set-up we use GRUB as our boot-loader which contains an implementation
of the multiboot standard.

On start-up, GRUB will search the supplied kernel module (on x86-64 this is the binary called
elver in tools/elver/) for a magic byte sequence (defined by multiboot) and begin execution
just after that sequence appeared (see tools/elver/boot.S).

boot.S in elver will set-up an preliminary GDT, an IA32-e page-table, and stack for execution.
elver.cwill then search for a binary called kernel or cpu in all the multiboot modules, relocate
that module and then jump to the relocated kernel module. At this point, we have set-up a
1 GiB identity mapping of the physical address space using 2 MiB pages in order to address
everything we need initially.

Note that the reason elver exists is because multiboot v1 does not support ELF64 images (or
setting up long-mode). If we use a bootloader that supports loading relocatable ELF64 images
into 64-bit mode, elver would be redundant.

Afterelver is done, execution in the proper BSP kernel program begins inkernel/arch/x86 64/boot.S
which then calls arch init, the first kernel C entry point.

CPU drivers - 6 Barrelfish TN-21

2.1.2 APP Core

APP cores are booted using the coreboot infrastructure in Barrelfish. The logic that boots APP
cores resides in usr/drivers/cpuboot.

The source code responsible for booting a new core on x86 is found inusr/drivers/cpuboot/x86boot.c,
specifically in the function called spawn xcore monitor. spawn xcore monitor will load the
kernelandmonitorbinary, and relocate the kernel. The function calledstart aps x86 64 start
will afterwards map in the bootstrap code (which is defined in init ap x86 64.S) for booting
the APP core. One complication for this code is that it has to resides below 1 MiB in physical
memory since the new APP core starts in protected mode and therefore can not address any-
thing above that limit in the beginning. Once the mapping is initiated, the entry point address
for the new APP kernel will be written into this memory region. Finally, a set of system calls
are invoked in order to send the necessary IPIs to bootstrap the new processor.

2.2 Virtual Address Space

The page table is constructed by copying VNode capabilities into VNodes to link intermedi-
ate page tables, and minting Frame / DeviceFrame capabilities into leaf VNodes to perform
mappings.

When minting a frame capability to a VNode, the frame must be at least as large as the smallest
page size. The type-specific parameters are:

1. Access flags: The permissible set of flags is PTABLE GLOBAL PAGE — PTABLE ATTR INDEX
— PTABLE CACHE DISABLED — PTABLE WRITE THROUGH. Access flags are set
from frame capability access flags. All other flags are not settable from user-space (like
PRESENT and SUPERVISOR).

2. Number of base-page-sized pages to map: If non-zero, this parameter allows the caller
to prevent the entire frame capability from being mapped, by specifying the number of
base-page-sized pages of the region (starting from offset zero) to map.

[address space layout after initialization is done]

2.3 IO capabilities

IO capabilities provide kernel-mediated access to the legacy IO space of the processor. Each
IO capability allows access only to a specific range of ports.

The Mint invocation (see sec:mint) allows the permissible port range to be reduced (with the
lower limit in the first type-specific parameter, and the upper limit in the second type-specific
parameter).

At boot, an IO capability for the entire port space is passed to the initial user domain. Aside
from being copied or minted, IO capabilities may not be created.

Barrelfish TN-21 CPU drivers - 7

2.4 Global Descriptor Table (GDT)

The GDT table is loaded by the gdt reset function during start-up and statically defined.

The table contains the following entries:

Index Description
0 NULL segment
1 Kernel code segment
2 Kernel stack segment
3 User stack segment
4 User code segment
5 Task state segment
6 Task state segment (cont.)
7 Local descriptor table
8 Local descriptor table (cont.)

2.5 Interrupts and Exceptions

The initial (Interrupt Descriptor Table) IDT is set-up by setup default idt in irq.c. The
number of entries in the IDT is set to 256 entries which are initialized in the following way:

CPU drivers - 8 Barrelfish TN-21

Index Description
0 Divide Error
1 Debug
2 Nonmaskable External Interrupt
3 Breakpoint
4 Overflow
5 Bound Range Exceeded
6 Undefined/Invalid Opcode
7 No Math Coprocessor
8 Double Fault
9 Coprocessor Segment Overrun
10 Invalid TSS
11 Segment Not Present
12 Stack Segment Fault
13 General Protection Fault
14 Page Fault
15 Unused
16 FPU Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD Floating-Point Exception
32

PIC Interrupts...
47
48

Generic Interrupts...
61
62 Tracing IPI
63 Tracing IPI
64

Unused...
247
248 Halt IPI (Stopping a core)
249 Inter core vector (IPI notifications)
250 APIC Timer
251 APIC Thermal
252 APIC Performance monitoring interrupt
253 APIC Error
254 APIC Spurious interrupt
255 Unused

The lower 32 interrupts are reserved as CPU exceptions. Except for a double fault exception,
which is always handled by the kernel directly, an exception is forwarded to the dispatcher
handling the domain on the CPU on which it appeared.

Page faults (interrupt 14) are dispatched to the ‘pagefault‘ entry point of the dispatcher. All
other exceptions are dispatched to the ‘trap‘ entry point of the dispatcher.

There are 224 hardware interrupts, ranging from IRQ number 32 to 255. The kernel delivers

Barrelfish TN-21 CPU drivers - 9

an interrupt that is not an exception and not the local APIC timer interrupt to user-space. The
local APIC timer interrupt is used by the kernel for preemptive scheduling and not delivered
to user-space.

Unused entries will be initialized by a special handler function. The slots reserved for generic
interrupts can be allocated by user-space applications.

2.6 Local Descriptor Table (LDT)

The local descriptor table segment in the GDT will initially point to NULL as no LDT is installed.

User-space applications can install their own LDT table which is loaded on context-switching
using the maybe reload ldt function.

2.7 Registers

Segment registers Segment registers are initialized by the gdt reset function during start-
up and each of them points to a GDT entry (index of the GDT table slot for each segment is
given in brackets).

cs Kernel code segment (1)

ds NULL segment (0)

es NULL segment (0)

fs NULL segment (0)

gs NULL segment (0)

ss Kernel stack segment (2)

We also note that the fs and gs segment registers are preserved and restored across context
switches.

General purpose registers

• rcx contains the start address when running a dispatcher for the first time.

[Floating point / SIMD] [Machine specific registers (MSR)]

2.8 Hardware devices

2.8.1 Serial port

On x86, the serial device (a PC16550 compatible controller) is initialized for the first time by
the BSP core on boot-up.

By default serial port 0x3f8will be used, but the port can be changed by using a command line
argument supplied to the kernel.

CPU drivers - 10 Barrelfish TN-21

Notable settings for the serial driver are:

• Interrupts are disabled.

• FIFOs are enabled.

• No stop bit.

• 8 data bits.

• No parity bit.

• BAUD rate is 115200.

The serial device is later re-initialized into a different state once the serial driver takes over the
device. For example, interrupts will then be enabled and handled by the driver.

2.8.2 PIC – Programmable Interrupt Controller

[describe]

2.8.3 xAPIC – Advanced Programmable Interrupt Controller

[describe]

2.8.4 System call API

This section describe the architectural system calls that are not common with other architectures.

7 SYSCALL X86 FPU TRAP ON: Turn FPU trap on (x86)

8 SYSCALL X86 RELOAD LDT: Reload the LDT register (x86 64)

Barrelfish TN-21 CPU drivers - 11

