
Barrelfish Project
ETH Zurich

Skate in Barrelfish

Barrelfish Technical Note 020

Barrelfish project

20.04.2017

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

0.1 16.11.2015 MH Initial Version
0.2 20.04.2017 RA Renaming ot Skate and expanding.

Skate - 2 Barrelfish TN-020

Contents

1 Introduction and usage 5
1.1 Use cases . 6
1.2 Command line options . 6

2 Lexical Conventions 7

3 Schema Declaration 9
3.1 Syntax Highlights . 9
3.2 Conventions . 9
3.3 The Skate File . 10
3.4 Imports . 10
3.5 Types . 10

3.5.1 BuiltIn Types . 11
3.5.2 Declaring Types . 11

3.6 Schema . 11
3.7 Namespaces . 12
3.8 Declarations . 12

3.8.1 Flags . 13
3.8.2 Constants . 14
3.8.3 Enumerations . 15
3.8.4 Facts . 16

3.9 Documentation . 17
3.9.1 Schema . 17
3.9.2 Text . 17
3.9.3 Sections . 18

4 Operations and checks on the AST 19
4.1 Filename Check . 19
4.2 Uniqueness of declarations / fields . 19
4.3 Type Checks . 19
4.4 Sorting of Declarations . 19

5 C mapping for Schema Definitions 20
5.1 Using Schemas . 20
5.2 Preamble . 21
5.3 Constants . 21
5.4 Flags . 21
5.5 Enumerations . 22
5.6 Facts . 22

Barrelfish TN-020 Skate - 3

5.7 Namespaces . 22
5.8 Sections and text blocks . 22

6 Prolog mapping for Schema Definitions 23

7 Generated Documentation 24

8 Access Control 25

9 Integration into the Hake build system 26

Skate - 4 Barrelfish TN-020

Chapter 1

Introduction and usage

Skate1 is a domain specific language to describe the schema of Barrelfish’s System Knowledge
Base (SKB) [?]. The SKB stores all statically or dynamically discovered facts about the system.
Static facts are known and exist already at compile time of the SKB ramdisk or are added
through an initialization script or program.

Examples for static facts include the device database, that associates known drivers with devices
or the devices of a wellknown SoC. Dynamic facts, on the otherhand, are added to the SKB
during and based on hardware discovery. Examples for dynamic facts include the number of
processors or PCI Express devices.

Inside the SKB, a prolog based constraint solver takes the added facts and computes a solution
for hardware configuration such as PCI bridge programming, NUMA information for memory
allocation or device driver lookup. Programs can query the SKB using Prolog statements and
obtain device configuration and PCI bridge programming, interrupt routing and constructing
routing trees for IPC. Applications can use information to determine hardware characteristics
such as cores, nodes, caches and memory as well as their affinity.

The Skate language is used to define format of those facts. The DSL is then compiled into
a set of fact definitions and functions that are wrappers arround the SKB client functions, in
particular skb add fact(), to ensure the correct format of the added facts.

The intention when designing Skate is that the contents of system descriptor tables such as
ACPI, hardware information obtained by CPUID or PCI discovery can be extracted from the
respective manuals and easily specified in a Skate file.

Skate complements the SKB by defining a schema of the data stored in the SKB. A schema defines
facts and their structure, which is similar to Prolog facts and their arity. A code-generation tool
generates a C-API to populate the SKB according to a specific schema instance.

The Skate compiler is written in Haskell using the Parsec parsing library. It generates C header
files from the Skate files. In addition it supports the generation of Schema documentation.

The source code for Skate can be found in SOURCE/tools/skate.

1Skates are cartilaginous fish belonging to the family Rajidae in the superorder Batoidea of rays. More than 200
species have been described, in 32 genera. The two subfamilies are Rajinae (hardnose skates) and Arhynchobatinae
(softnose skates). Source: Wikipedia

Barrelfish TN-020 Skate - 5

https://en.wikipedia.org/wiki/Skate_(fish)

1.1 Use cases

We envision the following non exhausting list of possible use cases for Skate:

• A programmer is writing PCI discovery code or a device driver. The program inserts
various facts about the discovered devices and the state of them into the SKB. To make
the inserted facts usable to other programs running on the system, the format of the facts
have to be known. For this purpose we need a common to specify the format of those
facts and their meaning.

• Each program needs to ultimately deal with the issue of actually inserting the facts into
the SKB or query them. For this purpose, the fact strings need to be formatted accordingly,
and this may be done differently for various languages and is error prone to typos. Skate
is intended to remove the burden from the programmer by providing a language native
(e.g. C or Rust) to ensure a safe way of inserting facts into the SKB.

• Just knowing the format and the existence of certain facts is useless. A programmer needs
to understand the meaning of them and their fields. It’s not enough just to list the facts
with the fields. Skate provides a way to generate a documentation about the specified
facts. This enables programmers to reason about which facts should be used in particular
selecting the right level of abstraction. This is important given that facts entered into the
SKB from hardware discovery are intentionally as un-abstracted as possible.

• Documenting the available inference rules that the SKB implements to abstract facts into
useful concepts for the OS.

1.2 Command line options

$ skate <options> INFILE.skt

Where options is one of

-o filename The output file name

-L generate latex documentation

-H generate headerfile

-W generate Wiki syntax documentation

Skate - 6 Barrelfish TN-020

Chapter 2

Lexical Conventions

The Skate parser follows a similar convention as opted by modern day programming languages
like C and Java. Hence, Skate uses a java-style-like parser based on the Haskell Parsec Library.
The following conventions are used:

Encoding The file should be encoded using plain text.

Whitespace: As in C and Java, Skate considers sequences of space, newline, tab, and carriage
return characters to be whitespace. Whitespace is generally not significant.

Comments: Skate supports C-style comments. Single line comments start with// and continue
until the end of the line. Multiline comments are enclosed between /* and */; anything
inbetween is ignored and treated as white space.

Identifiers: Valid Skate identifiers are sequences of numbers (0-9), letters (a-z, A-Z) and the
underscore character “ ”. They must start with a letter or “ ”.

identi f ier→ (letter |)(letter | digit |)*

letter→ (A . . . Z | a . . . z)
digit→ (0 . . . 9)

Note that a single underscore “ ” by itself is a special, “don’t care” or anonymous identifier
which is treated differently inside the language.

Case Sensitivity Skate is not case sensitive hence identifiers foo and Foowill be the same.

Integer Literals: A Skate integer literal is a sequence of digits, optionally preceded by a radix
specifier. As in C, decimal (base 10) literals have no specifier and hexadecimal literals
start with 0x. Binary literals start with 0b.

In addition, as a special case the string 1s can be used to indicate an integer which is
composed entirely of binary 1’s.

digit→ (0 . . . 9)1

hexadecimal→ (0x)(0 . . . 9 | A . . . F | a . . . f)1

binary→ (0b)(0, 1)1

Barrelfish TN-020 Skate - 7

String Literals String literals are enclosed in double quotes and should not span multiple lines.

Reserved words: The following are reserved words in Skate:

schema, fact, flags, constants, enumeration, text, section

Special characters: The following characters are used as operators, separators, terminators or
other special purposes in Skate:

{ } [] () + - * / ; , . =

Skate - 8 Barrelfish TN-020

Chapter 3

Schema Declaration

In this chapter we define the layout of a Skate schema file, which declarations it must contain
and what other declarations it can have. Each Skate schema file defines exactly one schema,
which may refer to other schemas.

3.1 Syntax Highlights

In the following sections we use the syntax highlighting as follows:

bold: Keywords

italic: Identifiers / strings chosen by the user

verbatim constructs, symbols etc

3.2 Conventions

There are a some conventions that should be followed when writing a schema declaration.
Following the conventions ensures consistency among different schemas and allows generating
a readable and well structured documentation.

Identifiers Either camelcase or underscore can be used to separate words. Identifiers must be
unique i.e. their fully qualified identifier must be unique. A fully qualified identifier can
be constructed as schema.(namespace.) ∗ name.

Descriptions The description fields of the declarations should be used as a more human
readable representation of the identifier. No use of abbreviations or

Hierarchy/Grouping Declarations of the same concept should be grouped in a schema file
(e.g. a single ACPI table). The declarations may be grouped further using namespaces
(e.g. IO or local interrupt controllers)

Sections/Text Additional information can be provided using text blocks and sections. Each
declaration can be wrapped in a section.

which conventions do we actually want

Barrelfish TN-020 Skate - 9

3.3 The Skate File

A Skate file must consist of zero or more import declarations (see Section 3.6) followed by a
single schema declaration (see Section 3.6) which contains the actual definitions. The Skate file
typically has the extension *.sks, referring to a Skate (or SKB) schema.

/* Header comments */

(import schema)*

/* the actual schema declaration */

schema theschema "" {...}

Note that all imports must be stated at the beginning of the file. Comments can be inserted at
any place.

3.4 Imports

An import statement makes the definitions in a different schema file available in the current
schema definition, as described below. The syntax of an import declaration is as follows:

Syntax

import schema;

Fields

schema is the name of the schema to import definitions from.

The order of the imports does not matter to skate. At compile time, the Skate compiler will try
to resolve the imports by searching the include paths and the path of the current schema file
for an appropriate schema file. Imported files are parsed at the same time as the main schema
file. The Skate compiler will attempt to parse all the imports of the imported files transitively.
Cyclic dependencies between device files will not cause errors, but at present are unlikely to
result in C header files which will successfully compile.

3.5 Types

The Skate type system consists of a set of built in types and a set of implicit type definitions
based on the declarations of the schema. Skate performs some checks on the use of types.

Skate - 10 Barrelfish TN-020

3.5.1 BuiltIn Types

Skate supports the common C-like types such as integers, floats, chars as well as boolean values
and Strings (character arrays). In addition, Skate treats the Barrelfish capability reference
(struct capref) as a built in type.

UInt8, UInt16, UInt32, UInt64, UIntPtr

Int8, Int16, Int32, Int64, IntPtr

Float, Double

Char, String

Bool

Capref

3.5.2 Declaring Types

All declarations stated in Section 3.8 are implicitly types and can be used within the fact
declarations. This can restrict the values that are valid in a field. The syntax of the declarations
enforces certain restrictions on which types can be used in the given context.

In particular, fact declarations allow fields to be of type fact which allows a notion of inheritance
and common abstractions. For example, PCI devices and USB devices may implement a
specialization of the device abstraction. Note, cicular dependencies must be avoided.

Defining type aliases using a a C-Like typedef is currently not supported.

3.6 Schema

A schema groups all the facts of a particular topic together. For example, a schema could be
the PCI Express devices, memory regions or an ACPI table. Each schema must have a unique
name, which must match the name of the file, and it must have at least one declaration to be
considered a valid file. All checks that are being executed by Skate are stated in Chapter 4.
There can only be one schema declaration in a single Schema file.

Syntax

schema name "description" {
declaration;
...

};

Fields

name is an identifier for the Schema type, and will be used to generate identifiers in the target
language (typically C). The name of the schema must correspond to the filename of the

Barrelfish TN-020 Skate - 11

file, including case sensitivity: for example, the file cpuid.skswill define a schema type
of name cpuid.

description is a string literal in double quotes, which describes the schema type being specified,
for example "CPUID Information Schema".

declaration must contain at least one of the following declarations:

• namespace – Section 3.7

• flags – Section 3.8.1

• constants – Section 3.8.2

• enumeration – Section 3.8.3

• facts – Section 3.8.4

• section – Section 3.9.3

• text – Section 3.9.2

3.7 Namespaces

The idea of a namespaces is to provide more hierarchical structure similar to Java packages
or URIs (schema.namespace.namespace) For example, a PCI devices may have virtual and
physical functions or a processor has multiple cores. Namespaces can be nested within a
schema to build a deeper hierarchy. Namespaces will have an effect on the code generation.

does everything has to live in a namespace?, or is there an implicit default namespace?

Syntax

namespace name "description" {
declaration;
...

};

Fields

name the identifier of this namespace.

description human readable description of this namespace

declarations One or more declarations that are valid a schema definition.

3.8 Declarations

In this section we define the syntax for the possible fact, constant, flags and enumeration
declarations in Skate. Each of the following declarations will define a type and can be used.

Skate - 12 Barrelfish TN-020

3.8.1 Flags

Flags are bit fields of a fixed size (8, 16, 32, 64 bits) where each bit position has a specific
meaning e.g. the CPU is enabled or an interrupt is edge-triggered.

In contrast to constants and enumerations, the bit positions of the flags have a particular mean-
ing and two flags can be combined effectively enabling both options whereas the combination
of enumeration values or constants may not be defined. Bit positions that are not defined in
the flag group are treated as zero.

As an example of where to use the flags use case we take the GICC CPU Interface flags as
defined in the MADT Table of the ACPI specification.

Flag Bit Description
Enabled 0 If zero, this processor is unusable.
Performance Interrupt Mode 1 0 - Level-triggered,
VGIC Maintenance Interrupt Mode 2 0 - Level-triggered, 1 - Edge-Triggered
Reserved 3..31 Reserved

Syntax

flags name width "description" {
position1 name1 "description1" ;
...

};

Fields

name the identifier of this flag group. Must be unique for all declarations.

width The width in bits of this flag group. Defines the maximum number of flags supported.
This is one of 8, 16, 32, 64.

description description in double quotes is a short explanation of what the flag group repre-
sents.

name1 identifier of the flag. Must be unique within the flag group.

position1 integer defining which bit position the flag sets

description1 description of this particular flag.

Type

Flags with identifier name define the following type:

flag name;

Barrelfish TN-020 Skate - 13

Example

The example from the ACPI table can be expressed in Skate as follows:

flags CPUInterfaceFlags 32 "GICC CPU Interface Flags" {
0 Enabled "The CPU is enabled and can be used" ;
1 Performance "Performance Interrupt Mode Edge-Triggered " ;
1 VGICMaintenance "VGIC Maintenance Interrupt Mode Edge-Triggered" ;

};

3.8.2 Constants

Constants provide a way to specify a set of predefined values of a particular type. They are
defined in a constant group and every constant of this group needs to be of the same type.

Compared to flags, the combination of two constants has no meaning (e.g. adding two version
numbers). In addition, constants only define a set of known values, but do not rule out the
possibility of observing other values. As an example for this may be the vendor ID of a PCI
Expess device, where the constant group contains the known vendor IDs.

As an example where constants ca be used we take the GIC version field of the GICD entry of
the ACPI MADT Table.

Value Meaning
0x00 No GIC version is specified, fall back to hardware discovery for GIC version
0x01 Controller is a GICv1
0x02 Controller is a GICv2
0x03 Controller is a GICv3
0x04 Controller is a GICv4
0x05-0xFF Reserved for future use.

Syntax

constants name builtintype "description" {
name1 = value1 "description1" ;
...

};

Fields

name the identifier of this constants group. Must be unique for all declarations.

builtintype the type of the constant group. Must be one of the builtin types as defined in 3.5

description description in double quotes is a short explanation of what the constant group
represents.

name1 identifier of the constant. Must be unique within the constant group.

Skate - 14 Barrelfish TN-020

value1 the value of the constant. Must match the declared type.

description1 description of this particular constant

Type

Constants with identifier name define the following type:

const name;

Example

The GIC version of our example can be expressed in the syntax as follows:

constants GICVersion uint8 "The GIC Version" {
unspecified = 0x00 "No GIC version is specified" ;
GICv1 = 0x01 "Controller is a GICv1" ;
GICv2 = 0x02 "Controller is a GICv2" ;
GICv3 = 0x03 "Controller is a GICv3" ;
GICv4 = 0x04 "Controller is a GICv4" ;

};

3.8.3 Enumerations

Enumerations model a finite set of states effectively constants that only allow the specified
values. However, in contrast to constants they are not assigned an specific value. Two
enumeration values cannot be combined. As an example, the enumeration construct can
be used to express the state of a device in the system which can be in one of the following
states: uninitialized, operational, suspended, halted. It’s obvious, that the combination of the states
operational and suspended is meaning less.

Syntax

enumeration name "description" {
name1 "description1";
...

};

Fields

name the identifier of this enumeration group. Must be unique for all declarations.

description description in double quotes is a short explanation of what the enumeration group
represents.

Barrelfish TN-020 Skate - 15

name1 identifier of the element. Must be unique within the enumeration group.

description1 description of this particular element

Type

Enumerations with identifier name define the following type:

enum name;

Example

enumeration DeviceState "Possible device states" {
uninitialized "The device is uninitialized";
operational "The device is operaetional";
suspended "The device is suspended";
halted "The device is halted";

};

3.8.4 Facts

The fact is the central element of Skate. It defines the actual facts about the system that are put
into the SKB. Each fact has a name and one or more fields of a given type. Facts should be
defined such that they do not require any transformation. For example, take the entries of an
ACPI table and define a fact for each of the entry types.

Syntax

fact name "description" {
type1 name1 "description1" ;
...

};

Fields

name the identifier of this fact. Must be unique for all declarations.

description description in double quotes is a short English explanation of what the fact defines.
(e.g. Local APIC)

type1 the type of the fact field. Must be one of the BuiltIn types or one of the constants, flags
or other facts. When using facts as field types, there must be no recursive nesting.

name1 identifier of a fact field. Must be unique within the Fact group.

Skate - 16 Barrelfish TN-020

description1 description of this particular field

Type

Facts with identifier name define the following type.

fact name;

3.9 Documentation

The schema declaration may contain section and text blocks that allow providing an introduction
or additional information for the schema declared in the Skate file. The two constructs are for
documentation purpose only and do not affect code generation. The section and text blocks can
appear at any place in the Schema declaration. There is no type being defined for documentation
blocks.

3.9.1 Schema

The generated documentation will contain all the schemas declared in the source tree. The
different schema files correspond to chapters in the resulting documentation or form a page of
a Wiki for instance.

3.9.2 Text

By adding text blocks, additional content can be added to the generated documentation. This
includes examples and additional information of the declarations of the schema. The text
blocks are omitted when generating code. Note, each of the text lines must be wrapped in
double quotes. Generally, a block of text will translate to a paragraph.

Syntax

text {

"text"
...

};

Fields

text A line of text in double quotes.

Barrelfish TN-020 Skate - 17

3.9.3 Sections

The section construct allows to insert section headings into the documentation. A section
logically groups the declarations and text blocks together to allow expressing a logical hierarchy.

Syntax

section "name" {

declaration;
...

};

Fields

name the name will be used as the section heading

declaration declarations belonging to this section.

Note, nested sections will result into (sub)subheadings or heading 2, 3, ... Namespaces will
appear as sections in the documentation.

Skate - 18 Barrelfish TN-020

Chapter 4

Operations and checks on the AST

The following checks are executed after the parser has consumed the entire Skate file and
created the AST.

4.1 Filename Check

As already stated, the name of the Skate (without extension) must match the identifier of the
declared schema in the Skate file. This is required for resolving imports of other Schemas.

4.2 Uniqueness of declarations / fields

Skate ensures that all declarations within a namespace are unique no matter which type they
are i.e. there cannot be a fact and a constant definition with the same identifier. Moreover, the
same check is applied to the fact attributes as well as flags, enumerations and constant values.

Checks are based on the qualified identifier.

4.3 Type Checks

4.4 Sorting of Declarations

This requires generated a dependency graph for the facts etc.

Barrelfish TN-020 Skate - 19

Chapter 5

C mapping for Schema Definitions

For each schema specification, Skate generates

Abbrevations In all the sections of this chapter, we use the follwing abbrevations, where the
actual value may be upper or lower case depending on the conventions:

SN The schema name as used in the schema declaration.

DN The declaration name as used in the flags / constants / enumeration / facts declaration

FN The field name as used in field declaration of flags / constants / enumeration / facts

In general all defined functions, types and macros are prefixed with the schema name SN.

Conventions We use the follwing conventions for the generated code:

• macro definitions and enumerations are uppercase.

• type definitions, function names are lowercase.

• use of the underscore ’ ’ to separate words

just a header file (cf mackerel), or also C functions (cf. flounder)?

5.1 Using Schemas

Developers can use the schemas by including the generated header file of a schema. All header
files are placed in the schema subdirectory of the main include folder of the build tree. For
example, the schema SN would generate the file SN schema.h and can be included by a C
program with:

#include <schema/SN schema.h

Skate - 20 Barrelfish TN-020

5.2 Preamble

The generated headerfile is protected by a include guard that depends on the schema name.
For example, the schema SN will be guarded by the macro definition SCHEMADEF SN H . The
header file will include the folling header files:

1. a common header skate.h providing the missing macro and function definitions for
correct C generation.

2. an include for each of the imported schema devices.

5.3 Constants

For any declared constant group, Skate will generate the following:

Type and macro definitions

1. A type definition for the declared type of the constant group. The type typename will be
SN DN t.

2. A set of CPP macro definitions, one for each of the declared constants. Each macro will
have the name as in SN DN FN and expands to the field value cast to the type of the field.

Function definitions

1. A function to describe the value

SN DN describe(SN DN t);

2. An snprintf-like function to pretty-print values of type SN DN t, with prototype:

int SN DN print(char *s, size t sz);

Do we need more ?

5.4 Flags

Type and macro definitions

1. A type definition for the declared type of the flag group. The type typename will be
SN DN t.

Function definitions

1. A function to describe the value

SN DN describe(SN DN t);

Do we need more ?

Barrelfish TN-020 Skate - 21

5.5 Enumerations

Enumerations translate one-to-one to the C enumeration type in a straight forward manner:

typdef enum { SN DN FN1, ... } SN DN t;

Function definitions

1. A function to describe the value

SN DN describe(SN DN t);

2. A function to pretty-print the value

SN DN print(char *b, size t sz, SN DN t val);

5.6 Facts

Type and macro definitions

1. A type definition for the declared type of the flag group. The type typename will be
SN DN t.

Function definitions

1. A function to describe the value

SN DN describe(SN DN t);

2. A function to add a fact to the SKB

3. A function to retrieve all the facts of this type from the SKB

4. A function to delete the fact from the SKB

Provide some way of wildcard values. e.g. list all facts with this filter or delete all facts
that match the filter.

5.7 Namespaces

Function definitions

1. A function to retrieve all the facts belonging to a name space

5.8 Sections and text blocks

For the section and text blocks in the schema file, there won’t be any visible C constructs
generated, but rather turned into comment blocks in the generated C files.

Skate - 22 Barrelfish TN-020

Chapter 6

Prolog mapping for Schema Definitions

Each fact added to the SKB using Skate is represented by a single Prolog functor. The functor
name in Prolog consist of the schema and fact name. The fact defined in Listing ?? is represented
by the functor cpuid_vendor and has an arity of three.

Barrelfish TN-020 Skate - 23

Chapter 7

Generated Documentation

Skate - 24 Barrelfish TN-020

Chapter 8

Access Control

on the level of schema or namespaces.

Barrelfish TN-020 Skate - 25

Chapter 9

Integration into the Hake build system

Skate is a tool that is integrated with Hake. Add the attribute SkateSchema to a Hakefile to
invoke Skate as shown in Listing 9.1.

[build application {

SkateSchema = ["cpu"]

...

}]

Listing 9.1: Including Skate schemata in Hake

Adding an entry for SkateSchema to a Hakefile will generate both header and implementation
and adds it to the list of compiled resources. A Skate schema is referred to by its name and
Skate will look for a file ending with .Skate containing the schema definition.

The header file is placed in include/schema in the build tree, the C implementation is stored
in the Hakefile application or library directory.

Skate - 26 Barrelfish TN-020

References

Barrelfish TN-020 Skate - 27

	Introduction and usage
	Use cases
	Command line options

	Lexical Conventions
	Schema Declaration
	Syntax Highlights
	Conventions
	The Skate File
	Imports
	Types
	BuiltIn Types
	Declaring Types

	Schema
	Namespaces
	Declarations
	Flags
	Constants
	Enumerations
	Facts

	Documentation
	Schema
	Text
	Sections

	Operations and checks on the AST
	Filename Check
	Uniqueness of declarations / fields
	Type Checks
	Sorting of Declarations

	C mapping for Schema Definitions
	Using Schemas
	Preamble
	Constants
	Flags
	Enumerations
	Facts
	Namespaces
	Sections and text blocks

	Prolog mapping for Schema Definitions
	Generated Documentation
	Access Control
	Integration into the Hake build system

