
Barrelfish Project
ETH Zurich

Barrelfish OS Services

Barrelfish Technical Note 012

Team Barrelfish

20.08.2010

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/



Revision History

Revision Date Author(s) Description

1.0 20.08.2010 kuzi Initial version

Barrelfish Services - 2 Barrelfish TN-012



Chapter 1

Barrelfish OS Services

1.1 Introduction

Barrelfish is a multi-server OS, which means that any OS based on Barrelfish will consist of a collection
of mutually dependent services. Each of these services provides some functionality required for the OS.

In Barrelfish, a service can be implemented as a single-dispatcher domain, a multi-dispatcher domain,
multiple domains, one or more libraries, or some combination of these.

In this document we review the services that will make up the base building blocks of a Barrelfish OS.
After introducing the services, we discuss dependencies between the services, and then the current
implementation status of each service.

1.2 Services

The specific services we’ve identified are (presented in alphabetical order):

• Binding

• Capability Management

• Debugging

• Device Driver

• Device Management

• Environment

• Group Communication

• Locking

• Memory Allocation

• Naming

• Network Stack

• Power Management

• Principals

• Process Management

• Resource Accounting and Management

Barrelfish TN-012 Barrelfish Services - 3



• Routing

• Shell

• SKB

• Storage Management

• Terminal

• Threading

• Tracing

• Virtual Machine Monitor

• Virtual Memory

1.2.1 Binding

The binding service facilitates communication in the system, allowing dispatchers to export interfaces
through endpoints, and enabling other threads of execution to connect to dispatchers through end-
points. The binding service also implements the inter-dispatcher communication mechanisms allowing
threads to send messages over connections.

1.2.2 Capability Management

The capability management service provides the functionality to manage capabilities outside the kernel.
It provides the ability to allocate space for and create new capabilities, as well as to manipulate them
by moving, copying, and destroying them. It also implements the functionality necessary to transfer
capabilities between cores, and to manage and invoke remote capabilities.

1.2.3 Debugging

The debugging service provides the functionality to access and manipulate system memory, and control
execution of the system. It may provide these services at a minimal level, or provide higher level
services that allow control of system abstractions such as capabilities, dipatchers, domains, and threads
(for example by attaching to and controlling specific threads).

1.2.4 Device Driver

A device driver service provides access and control over a specific device. A device driver manages
access to device hardware as well as handling interrupts and other device events. The devices managed
by device drivers inlcude IO devices, as well as internal devices such as busses, timers, etc.

1.2.5 Device Management

The device management service stores and manages information about devices in the system. Its re-
sponsibilities include collecting such information, making it available to others, and implementing pol-
icy relating to device initialisation, startup, shutdown, power management, etc.

Barrelfish Services - 4 Barrelfish TN-012



1.2.6 Environment

The environment service provides an execution environment to threads of execution. Examples of this
are environment variables.

1.2.7 Group Communication

The group communication service provides facilities for multicast commuincation within groups. It
will provide group management, as well as management of delivery trees, and the mechanisms for
message delivery and reception (including impementation of necessary consensus protocols).

1.2.8 Locking

The locking service provides facilities and primitives for mutual exclusion and synchronisation. This
includes implementation of locks, condition variables, semaphores, etc. It also involves managing ex-
cution threads to block and wake them as necessary.

1.2.9 Memory Allocation

The memory allocation service manages physical memory (using capabilities). It processes requests for
memory, allocating appropriate memory, and freeing it when necessary. It tracks which memory is in
use, and which memory is free and can be reused.

1.2.10 Naming

The naming service provides a name space and a name/value mapping database that allows entries
to be added or retreived. It is largely used in communication for finding registered services. It also
supports notification of new entries and changed entries, and a blocking lookup.

1.2.11 Network Stack

The network stack implements network protocols. It works together with a networking device. It may
provide further surfaces such as packet filtering, packet instpection, etc.

1.2.12 Power Management

The power management services monitors power usage in the system, reacts to power-related events,
and can manipulate system resources to control power usage. It also manages system sleep and wakeup,
and can manipulate subsystems and hardware according to its policy.

1.2.13 Principals

The principals service provides the concept of principals in the system (e.g., accounts, users, process
ids, etc.). The principals are used for access control, that is, access control policies can be defined in
terms of principals’ access to objects. This service can also provide authentication functionalities, to
authenticate principals’ identities, as well as management of principles (e.g., account control).

Barrelfish TN-012 Barrelfish Services - 5



1.2.14 Process Management

The process management service provides functionality to create, manipulate, and manage dispatchers
and domains. It may provide a conventional process abstraction based on the Barrelfish primitives, or
deal with the primitives themselves. The functionality provided includes creating, starting, stopping,
and pausing processes, as well as mechanisms for loading processs, and migrating processes. Part of
process creation and management involves setting up and managing address spaces.

1.2.15 Resource Accounting and Management

The resource accounting and management service provides mechanisms to monitor resource usage,
keep accounting, and manipulate resource usage. Resources include basic resources such as CPU, mem-
ory, and IRQs, as well as OS resources such as devices, files, network bandwidth, etc. Manipulating
resource usage includes scheduling processes, scheduling IO operations, throttling network traffic, etc.

1.2.16 Routing

The routing service supports communication between entities that are not directly connected. The
service is responsible for determining (intra-machine) routes between the entities, as well as sending
the messages over the communication network, and reserving sufficient resources over the routes to be
able to provide performance and reliability guarantees.

1.2.17 Shell

The shell service provides a command interpreter and task launcher. It provides an interface for dynam-
ically starting, stopping, and manipulating system tasks. Note that this is not limited to a traditional
command-line console.

1.2.18 SKB

The system knowledge base service provides a database for storing information about the system (in-
cluding available hardware, properties of the hardware, configuration, running services, etc.). It also
provides an interface for querying the database, as well as for running complex analysis (e.g., constraint
solving) of the data stored within.

1.2.19 Storage Management

The storage management service manages the system’s storage infrastructure and provides abstractions
for persistent storage. This could be in the form of a file system, a database, or something completely
different.

1.2.20 Terminal

The terminal service provides a terminal abstraction that provides programs with input and output.
A terminal typically multiplexes output from different programs to a single output destination and
demultiplexes a single source of input among multiple programs. The terminal service implements the
terminal abstraction, and provides mechanisms for multiplexing multiple terminals.

Barrelfish Services - 6 Barrelfish TN-012



1.2.21 Threading

The threading service provides a thread model and thread manipulation functionality. This allows
thread manipulation (creation, destruction, suspend, wakeup, etc.), thread scheduling and thread local
storage.

1.2.22 Tracing

The tracing service collects tracing information and makes it available to analysis and display appli-
cations. The service allows running entities in the system to log traces with it as well as to query it
about these traces. Such a service can be used for logging system events, debugging information, error
events, etc. The tracing service can also actively monitor the system, and dynamically query system
entities based on queries. It can also provide notification functionality to notify entities when given
events occur.

1.2.23 Virtual Machine Monitor

The virtualisation service provides a virtual machine monitor that enables guest software (typically
an OS) to be run on virtual hardware. The service manages the loading and unloading of the guest
software, manages emulation of sensitive and privileged instructions and hardware, and manages the
virtualised memory.

1.2.24 Virtual Memory

The virtual memory management service manages the system’s virtual memory (by manipulating Bar-
relfish vnodes and memory caps). It provides functionality to map and unmap pages, manage mapping
of device memory, and the creation and manipulation of address spaces. It is also responsible for paging
and swapping.

1.3 Service Categories

The above services can be grouped into two categories, depending on what they are used for in the sys-
tem. Roughly, we distinguish between services that provide key Barrelfish functionality, and services
that provide more general OS functionality.

1.3.1 Fundamental Barrelfish Services

• Binding

• Capability Management

• Group Communication

• Naming

• Process Management

• Routing

• SKB

Barrelfish TN-012 Barrelfish Services - 7



1.3.2 General OS Services

• Debugging

• Device Driver

• Device Management

• Environment

• Locking

• Memory Allocation

• Network Stack

• Power Management

• Principals

• Resource Accounting and Management

• Shell

• Storage Management

• Terminal

• Threading

• Tracing

• Virtual Machine Monitor

• Virtual Memory

Barrelfish Services - 8 Barrelfish TN-012



Chapter 2

Service Dependencies

The above services are system building blocks and do not operate in isolation but make use of each
other’s services. This leads to dependencies between the various services.

We distinguish between several types of dependencies.

• Fundamental dependencies: dependencies that exist due to the service’s required functionality
(e.g., network stack relies on the ethernet device driver).

• Implementation dependencies: dependencies that exist due to implementation details. This can
be further subdivided into:

– dependencies due to being implemented as communicating Barrelfish dispatchers (e.g., net-
work stack relies on binding because it needs to communicate with the ethernet device
driver).

– dependencies due to specific implementation decisions (e.g., network stack using the locking
service because it is multithreaded).

2.1 Dependencies

All the dependencies between the specific services are shown in Figure 2.1.

The subset of fundamental dependencies are shown in Figure 2.2. Likewise the subset of implementa-
tion dependencies are shown in Figures 2.3 and 2.4.

Discussion of these dependencies is presented below.

2.1.1 Binding

All services have a Barrelfish-specific dependency on the binding service, since, if they are implemented
as Barrelfish dispatchers, they will require the binding service to make their interfaces available to
others, as well as to connect to and communicate with other services.

The binding service itself requires endpoint capabilities for the communication and therefore has a
dependency on the capability management service. It also needs to know about the cores and hardware
support for communication available in the system, and therefore has a dependency on the SKB, which
provides such information.

The binding service, besides providing poin-to-point connections, also provides access to the group
communication service and the routing service for more complex communication, and therefore has a

Barrelfish TN-012 Barrelfish Services - 9



dependency on both these services. Communication also involves notifying and scheduling dispatchers
when messages arrive, so the binding service must also make use of the process management service.

Finally, the implmentation of the binding service needs to set up shared memory areas for the imple-
mentation of UMP, so needs to use the virtual memory service. Its impementation may also make use
of locking and synchronisation primitives, leading to a potential dependency on the locking service.

2.1.2 Capability Management

Managing capabilities requires access to basic memory capabilities, which are provided through the
memory allocation service, leading to a dependency on that service. This service will also depend on
the virtual memory management service, since it will require control of memory for management of
metadata.

2.1.3 Debugging

The debugging service needs access to lower level services in order to inspect and modify the system.
This includes: capability management for access to system capabilities, threading to attach to and con-
trol threads, process management to attach to and control processes (dispatchers and domains), virtual
memory service to inspect and modify address spaces, memory mappings, etc. The debugging service
will also use the SKB service to provide further information about the system and its resources.

2.1.4 Device Drivers

Device drivers depend on the capability management service since they need to manage and use ca-
pabilities to the hardware devices. Drivers also use the memory allocation service since they need to
manipulate memory, for example, to use DMA and access device memory. This also requires the use of
the virtual memory service.

Since drivers must react to system power events (e.g., to turn devices on and off when the system
suspends) they may also depend on the power management service.

2.1.5 Device Management

The device management service works closely with the SKB since it needs to find out (and register)
information about devices in the system. It may also depend on the power management service to
determine current power state and possibly inform drivers of changes in the state.

2.1.6 Environment

The environment service may use the principals service if provides per-principal environments, and
the process management service if it provides per-process environements.

2.1.7 Group Communication

The group communication service depends on the binding service to provide a frontend interface, as
well as to send individual messages. The group communication service will also depend on the SKB to
find out information about the system (e.g., interconnect toplogy) to help implement efficient message
delivery (e.g., multicast trees).

Barrelfish Services - 10 Barrelfish TN-012



Group communication is typically associated with consensus protocols, and may therefore rely on a
locking services. Alternatively, the group communication service may be used by the locking service to
implement some synchronisation.

The service may require endpoints to implement the underlying communication, and will then be de-
pendent on the capability management service. The service will typically also make use of the routing
service to send messages to group members.

2.1.8 Locking

The locking service interacts closely with the process management and threading services since it must
be able to suspend and resume execution to correspond with blocking and signalling.

The locking service may depend on the group communication service to implement consensus and
other forms of synchronisation.

2.1.9 Memory Allocation

The memory allocation service requires capabilities to do memory management in Barrelfish, so has a
dependency on the capabiity management service.

It may also depend on the SKB to find out about all the memory resources in the system, and it may
also act as a client of the resource accounting and management service to provide it with information
about memory usage.

2.1.10 Naming

All services have a Barrelfish-specific dependency on the name service, since, if they are implemented
as Barrelfish dispatchers then they will either need to register with it, or use it to find other services that
they depend on.

Depending on its implementation the naming service may use the group communication service.

2.1.11 Network Stack

The network stack service requires access to NIC drivers to access the network hardware. It may also
need to use the SKB to determine what network hardware and drivers are available in the system.

Depending on implementation details, the network stack may also need to use the virtual memory
service to implement zero-copy mechanisms, etc.

2.1.12 Power Management

The power management service requires access to device drivers and the device management service
to monitor and control the power states of hardware. It will also need to use the SKB to determine what
devices to manage in the system and what power management hardware is available.

The service may also need access to the the resource management service to help make power manage-
ment decisions. The power management service may also need to manipulate capabilities for power
management hardware, in which case it will need access to the capability management service.

Depending on its implementation it may also use the group communication and locking services.

Barrelfish TN-012 Barrelfish Services - 11



2.1.13 Principals

In Barrelfish the principals service will make use of capabilities to implement access control, and will
therefore require access to the capability management service.

2.1.14 Process Management

The process management service will need access to the capability management and virtual memory
services in order to prepare and manipulate process address spaces for execution. It will also work
closely with the threading service, to manage execution, and the principals service, to provide processes
with the appropriate caps for access control.

The service may use the group communication service depending on how it is implemented.

2.1.15 Resource Accounting and Management

The resource accounting and management service will use the various other management and account-
ing services (power management, process management, bus management, drivers, storage manage-
ment) to determine the state of the system and resource usage in the system. It will also use these
services to change resource usage according to policy.

It will also both read from and write to the SKB.

In order to manage resource usage the resource management service may need to manipulate caps, in
which case it will use the capability management service.

Depending on implementation it may also use the group communication and locking services.

2.1.16 Routing

The routing service will require endpoint capabilities for communication and therefore has a depen-
dency on the capability management service. It also needs to know about the cores and hardware
support for communication available in the system, and therefore has a dependency on the SKB, which
provides such information.

The routing service will both make use of the binding service for its point-to-point connections, as well
as be accessed through the binding service, and thus has a strong dependency to it.

The routing service will use the SKB to determine the system topology.

It will likely also be implemented using locking and group communication.

2.1.17 Shell

The shell service requires access to process management and threading to start and control programs,
it also requires access to the environment service to provide programs with appropriate execution en-
vironments, and allow manipulation of those environments. It uses the principals service to determine
and set up access control for the programs it starts. The storage management service is used to fetch
the code to execute, and the terminal service is used for input and output.

2.1.18 SKB

The SKB relies on the storage management service to read its startup files, and possibly store its knowl-
edge base.

Barrelfish Services - 12 Barrelfish TN-012



2.1.19 Storage Management

The storage management service needs access to appropriate storage hardware (e.g., disk).

It will also use the virtual memory service if it implements zero-copy features and needs to manipulate
shared memory buffers. It may need to use the SKB to determine what devices are available.

The service may also require access to the principals service for access control, however this depends
on the chosen design.

Depending on implementation it may also use the using locking and group communication services.

2.1.20 Terminal

The terminal service will need to use drivers to access the input and output hardware.

Depending on implementation it may use the virtual memory and capability management services to
provide access through a framebuffer.

The implementation will likely use locking, and may require the SKB to determine what interaction
devices are available.

2.1.21 Threading

The threading service closely cooperates with the process management service. It also needs to manage
the memory accessible by threads and uses the capability management and virtual memory manage-
ment services for this.

It may also cooperate closely with the locking service to suspend and resume threads as part of the
locking mechanism implemententations.

2.1.22 Tracing

The tracing service is not directly dependent on other services (other than binding and naming).

Any service may use the tracing service to log trace points. We have not represented these dependencies
explicitly.

2.1.23 Virtual Machine Monitor

The virtual machine monitor service uses the capability management, memory allocation, virtual mem-
ory management, and process management services to provide a virtual machine environment to a
guest OS. It also uses the driver and device menagement services to provide access to hardware de-
vices.

It may also use the storage managment and network stack services to virtualise disk and network
traffic. The power management service may be used to allow power management of and by the virtual
machine. The SKB may be used to determine which system resources to provide to the virtual machine.

Its implementation is likely to use locking.

Barrelfish TN-012 Barrelfish Services - 13



2.1.24 Virtual Memory

The virtual memory service uses the capability management and memory allocation services to help
manage the virtual memory mappings and address spaces. The SKB is used to determine the available
memory resources in the system.

Paging will use an appropriate disk driver, and may require access to a storage management service.

The implementation of virtual memory management is likely to use locking and group communication.

2.2 Status

Some of the services discussed above have already been implemented. In many cases the implementa-
tion has been a simple prototype implementation, where the basic functionality has been implemented,
but without regard to issues such as scalability, and also, without attempting to dynamically configure
or alter functionality based on information about the system gathered at runtime (e.g., from the SKB).

In this section we provide an overview of the current status of each service. A service’s status can be:

N : Does not exist

P : Exists as a prototype

E : Fully featured implementation

D : Scalable, distributed, implementation

We also provide an overview of the development priority of services. The priorities relate to the goal of
developing a complete OS and an environment and tools for developing complete OSes. The priorities
are:

High : This service must exist before more of the system can be built, or it is a bottleneck and must be
implemented in a scalable way. It is a core building block.

Medium : Some services rely on this, so it has some priority. Availability of the service may also help
the usability of the system. It is a useful building block.

Low : Hardly any services depend on this, so lack of it will not stand in the way of developing a system.

The status of the services is as follows:

Barrelfish Services - 14 Barrelfish TN-012



Service Status Priority Comment
Binding E High implemented by combination of

monitor, barrelfish library, and
flounder stubs.

Capability Management P High implemented by combination of
monitor and barrelfish library. The
revoke fnctionality is not imple-
mented.

Debugging N Low
Device Driver E Medium existing drivers: serial, pci, e1000
Device Management P Medium implemented by pci driver and skb
Environment P Low implemented by barrelfish library

and spawnd dispatcher
Group Communication N Medium
Locking P High ??? how is locking/synchronisation

currently done???
Memory Allocation P High implemented by memory server do-

main. No ability to free or reuse
memory.

Naming E High implemented by chips domain.
Network Stack P Medium implemented as library. can be used

by only 1 dispatcher at a time. It is
based on LWIP.

Power Management N Low
Principals N Medium
Process Management P High implemented by combination of

spawnd domain, monitor, and
barrelfish library.

Resource Accounting and Management N Low
Routing N Medium
Shell P Low implemented by fish domain.
SKB E Medium implemented by skb domain.
Storage Management P Medium implemented by combination of

ramfsd domain, and vfs library.
Terminal N Medium there is some code to handle this in

lib barrelfish.
Threading E High implemented by barrelfish library.
Tracing E Medium implemented by tracing library.
Virtual Machine Monitor P Medium implemented by vmmkit domain.
Virtual Memory P High implemented by monitor and bar-

relfish library (???). No support for
paging, unmap, or fault handling.

Barrelfish TN-012 Barrelfish Services - 15



d
e
b
u
g
g
in
g
_1

b
in
d
in
g
_2

n
a
m
in
g
_2

V
M
e
m
_2

sk
b
_2

p
ro
ce
ss_m

g
m
t_2

ca
p
a
b
ility

_m
g
m
t_2

th
re
a
d
in
g
_2

b
in
d
in
g
_1

ro
u
tin

g
_2

g
ro
u
p
_co

m
m
_2

lo
ck
_se

rv
ice

_2

n
a
m
in
g
_1

e
n
v
iro

n
m
e
n
t_1

p
rin

cip
a
ls_2

d
e
v
ice

_m
a
n
_1

p
o
w
e
r_m

g
m
t_2

te
rm

in
a
l_1

d
riv

e
r_2

V
M
e
m
_1

m
e
m
_a
llo
c_2

ro
u
tin

g
_1

sk
b
_1

sto
ra
g
e
_m

g
m
t_2

p
rin

cip
a
ls_1

p
ro
ce
ss_m

g
m
t_1

re
so
u
rce

_a
cct_m

g
m
t_2

sh
e
ll_1

e
n
v
iro

n
m
e
n
t_2

te
rm

in
a
l_2

p
o
w
e
r_m

g
m
t_1

d
e
v
ice

_m
a
n
_2

d
riv

e
r_1

m
e
m
_a
llo
c_1

ca
p
a
b
ility

_m
g
m
t_1

g
ro
u
p
_co

m
m
_1

re
so
u
rce

_a
cct_m

g
m
t_1

tra
cin

g
_2

tra
cin

g
_1

V
M
a
ch
in
e
_1

n
e
tw

o
rk
_sta

ck
_2

th
re
a
d
in
g
_1

n
e
tw

o
rk
_sta

ck
_1

lo
ck
_se

rv
ice

_1
sto

ra
g
e
_m

g
m
t_1

Figure 2.1: Use dependencies between OS services. Dashed lines indicate dependencies we are uncer-
tain about.

Barrelfish Services - 16 Barrelfish TN-012



d
e
b
u
g
g
in
g
_1

V
M
e
m
_2

sk
b
_2

p
ro
ce
ss_m

g
m
t_2

ca
p
a
b
ility

_m
g
m
t_2

th
re
a
d
in
g
_2

b
in
d
in
g
_1

ro
u
tin

g
_2

g
ro
u
p
_co

m
m
_2

e
n
v
iro

n
m
e
n
t_1

p
rin

cip
a
ls_2

d
e
v
ice

_m
a
n
_1

p
o
w
e
r_m

g
m
t_2

te
rm

in
a
l_1

d
riv

e
r_2

V
M
e
m
_1

m
e
m
_a
llo
c_2

ro
u
tin

g
_1

b
in
d
in
g
_2

p
rin

cip
a
ls_1

p
ro
ce
ss_m

g
m
t_1

re
so
u
rce

_a
cct_m

g
m
t_2

sh
e
ll_1

e
n
v
iro

n
m
e
n
t_2

te
rm

in
a
l_2

sto
ra
g
e
_m

g
m
t_2

p
o
w
e
r_m

g
m
t_1

d
e
v
ice

_m
a
n
_2

d
riv

e
r_1

m
e
m
_a
llo
c_1

ca
p
a
b
ility

_m
g
m
t_1

g
ro
u
p
_co

m
m
_1

lo
ck
_se

rv
ice

_2

re
so
u
rce

_a
cct_m

g
m
t_1

V
M
a
ch
in
e
_1

th
re
a
d
in
g
_1

n
e
tw

o
rk
_sta

ck
_1

lo
ck
_se

rv
ice

_1
sto

ra
g
e
_m

g
m
t_1

Figure 2.2: Subset of fundamental use dependencies between OS services.

Barrelfish TN-012 Barrelfish Services - 17



d
e
b
u
g
g
in
g
_1

b
in
d
in
g
_2

n
a
m
in
g
_2

n
a
m
in
g
_1

d
e
v
ice

_m
a
n
_1

te
rm

in
a
l_1

V
M
e
m
_1

ro
u
tin

g
_1

sk
b
_1

p
rin

cip
a
ls_1

p
ro
ce
ss_m

g
m
t_1

sh
e
ll_1

p
o
w
e
r_m

g
m
t_1

d
riv

e
r_1

m
e
m
_a
llo
c_1

ca
p
a
b
ility

_m
g
m
t_1

re
so
u
rce

_a
cct_m

g
m
t_1

tra
cin

g
_1

V
M
a
ch
in
e
_1

th
re
a
d
in
g
_1

n
e
tw

o
rk
_sta

ck
_1

lo
ck
_se

rv
ice

_1
sto

ra
g
e
_m

g
m
t_1

Figure 2.3: Subset of barrelfish-implementation specific use dependencies between OS services.

Barrelfish Services - 18 Barrelfish TN-012



b
in
d
in
g
_1

V
M
e
m
_2

lo
ck
_se

rv
ice

_2

n
a
m
in
g
_1

g
ro
u
p
_co

m
m
_2

d
e
v
ice

_m
a
n
_1

te
rm

in
a
l_1

ca
p
a
b
ility

_m
g
m
t_2

V
M
e
m
_1

ro
u
tin

g
_1

sk
b
_1

sto
ra
g
e
_m

g
m
t_2

p
ro
ce
ss_m

g
m
t_1

p
o
w
e
r_m

g
m
t_1

d
riv

e
r_1

ca
p
a
b
ility

_m
g
m
t_1

g
ro
u
p
_co

m
m
_1

ro
u
tin

g
_2

re
so
u
rce

_a
cct_m

g
m
t_1

tra
cin

g
_2

V
M
a
ch
in
e
_1

p
o
w
e
r_m

g
m
t_2

n
e
tw

o
rk
_sta

ck
_2

n
e
tw

o
rk
_sta

ck
_1

e
n
v
iro

n
m
e
n
t_2

lo
ck
_se

rv
ice

_1
sto

ra
g
e
_m

g
m
t_1

Figure 2.4: Subset of non-barrelfish implementation dependencies between OS services

Barrelfish TN-012 Barrelfish Services - 19


