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Chapter 2

Flounder stub compiler

2.1 Overview

2.2 Interface definition language

2.2.1 Lexical conventions

The following convention, derived from Mackerel [1] has been adopted for Flounder. It is similar to the
convention in modern day programming languages like C and Java.

Whitespace: As in C and Java, Flounder considers sequences of space, newline, tab, and carriage return
characters to be whitespace. Whitespace is generally not significant.

Comments: Flounder supports C-style comments. Single line comments start with // and continue
until the end of the line. Multiline comments are enclosed between /* and */; anything inbetween
is ignored and treated as white space.

Identifiers: Valid Flounder identifiers are sequences of numbers (0-9), letters (a-z, A-Z) and the under-
score character “ ”. They must start with a letter or “ ”.

identifier → (letter | )(letter | digit | )

letter → (A . . . Z | a . . . z)
digit→ (0 . . . 9)

Integer Literals: A Flounder integer literals is a sequence of digits, optionally preceded by a radix
specifier. As in C, decimal (base 10) literals have no specifier and hexadecimal literals start with
0x.

digit→ (0 . . . 9)
hexadecimal→ (0x)(0 . . . 9 | A . . . F | a . . . f)

Reserved words: The following are reserved words in Flounder:

alias call enum in interface message

out response rpc struct typedef

Builtin types: The following identifiers are recognised as builtin types:

bool cap char give_away_cap int int8

int16 int32 int64 intptr iref size

string uint8 uint16 uint32 uint64 uintptr
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Special characters: The following characters are used as operators, separators, terminators or for other
special purposes in Flounder:

{ } [ ] ( ) ; ,

2.2.2 Interface specification

A Flounder input file must specify a single interface, of the form:

interface name ["description"]
{

types;
...

messages;
...

};

name is an identifier for the interface type, and will be used to generate identifiers in the target lan-
guage (typically C). While not currently enforced by the Flounder compiler, by convention this
should only differ from the name of the file in case and suffix, e.g. the file xapic.dev defines a
device type of name xAPIC.

description is a string literal in double quotes, which describes the interface being specified, for exam-
ple "Name service".

After the description string follows in curly brackets a series of declarations which specify types, mes-
sages and their arguments. Each declaration must be one of the following:

• A transparent type alias, using the alias declaration, described in Section 2.2.3.

• A type definition, using the typedef declaration, described in Section 2.2.4.

• A simple message specification, using either the message, call or response declarations, describ-
ing a single unidirectional message with typed arguments, and described in Section 2.2.5.

• An rpc specification, which describes two related messages (a call and the response) with a single
declaration, and described in Section 2.2.6.

Type aliases and definitions (alias and typedef) are optional, but if present must precede all messages.
There must be at least one message in every interface.

2.2.3 Transparent type alias

alias aliasname builtintype;

This simply declares a given alias name that may henceforth be used in the interface file in place of the
given builtin type. It does not alter the generated code.

2.2.4 Type definition

In contrast to an alias, the typedef keyword causes a new type to be created in the context of both the
interface file and the programming language where the generated stubs are used.
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Structure

typedef struct {

typename fieldname;
...

} structname;

This declares a compound type, akin to a structure in C.

Fixed-size array

typedef typename arrayname[size];

Where typename is a previously-defined type, and size is an integer literal, defines an array type with
the given arrayname. This name refers to an array of a fixed size.

Enumeration

typedef enum {

fieldname,
...

} structname;

An enumeration, as in C, is represented as an integer type that may take one of the predefined symbolic
values.

Alias

typedef aliasname typename;

This form creates a new name (in both Flounder and C) for a previously-defined or builtin type.

2.2.5 Simple message

A simple message specification takes the form:

@context(name=value, ... ) (optional)
message|call|response name (argdecl, ... );

The three identifiers message, call, and response exist for legacy reasons, and are treated identically by
the stub compiler. They may be used as a simple form of documentation, when messages are intended
to travel in a particular direction between client and server.

The meta-parameters beginning with the context identifier are optional and may be used by individual
stub compilers for additional information about messages that is not part of the payload. Multiple such
contexts may also be provided.

Message arguments use a comma-separated C-like syntax, and may take one of the following forms:
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Simple arguments are denoted by type name and argument name literals, separated by whitespace.

Dynamic array arguments include the type name, argument name, and size name literals, as follows:

typename argname[sizename]

For example, the following defines a message named “dummy” with three arguments: an integer, a
character string, and a dynamic array of unsigned 8-bit integers (ie. a data buffer).

message dummy(int32 arg, string s, uint8 buf[buflen]);

2.2.6 RPC

@context(name=value, ... ) (optional)
rpc name (in|out argdecl, ... );

An rpc declaration defines a pair of related one-way messages for the RPC call and its response. Argu-
ment declarations take the same syntax as for a simple message, but are prefixed with either in or out.
All in arguments are arguments of the call, and all out arguments are arguments of the response.

For example, the following defines an RPC that takes as input a string and returns an errval type
(which must previously have been defined):

rpc testrpc(in string s, out errval reterr);

With the exception of its special treatment by the RPC client backend (described in Section 6.3), this
RPC is exactly equivalent to the following message specifications:

message testrpc_call(string s);

message testrpc_response(errval reterr);

2.3 Invocation

When invoked, Flounder processes a single interface file, and generates into a single output file the
results of one or more backends. The names of the input and output files and the backends to use are
determined by the command-line arguments, which are as follows:

Usage: flounder [OPTION...] input.if output

-G --generic-header Create a generic header file

--generic-stub Create generic part of stub implemention

-a ARCH --arch=ARCH Architecture for stubs

-i FILE --import=FILE Include a given file before processing

--lmp-header Create a header file for LMP

--lmp-stub Create a stub file for LMP

--ump-header Create a header file for UMP

--ump-stub Create a stub file for UMP

--rck-header Create a header file for RCK

--rck-stub Create a stub file for RCK

--bmp-header Create a header file for BMP

--bmp-stub Create a stub file for BMP

--loopback-header Create a header file for loopback

--loopback-stub Create a stub file for loopback

Barrelfish TN-011 IDC - 9



--rpcclient-header Create a header file for RPC

--rpcclient-stub Create a stub file for RPC

--msgbuf-header Create a header file for message buffers

--msgbuf-stub Create a stub file for message buffers

-T --thc-header Create a THC header file

-B --thc-stubs Create a THC stubs C file

--ahci-header Create a header file for AHCI

--ahci-stub Create a stub file for AHCI

Zero or more files may be specified as imports. An import file provides a simplistic mechanism for shar-
ing type definitions among multiple interfaces: it consists of one or more alias or typedef statements.
All import files are processed in the order in which they occur on the command line, before parsing
of the interface definition file begins. Otherwise, types defined in import files are equivalent to types
appearing in an interface definition.

The architecture option must be specified when generating stubs for either LMP, UMP, or RCK back-
ends; when specified, it must be one of the architectures Flounder understands (see Arch.hs in the
flounder source), which is typically the same as the set of architectures supported by Barrelfish.

All other options cause Flounder to emit the C code generated by one of its backends. The generic
backend defines the common interface and support code that is shared by all other backends, and is
always required. Chapter 8 describes the location and contents of the generated files that are used in
the Barrelfish build system.
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Chapter 3

Flounder stub API

Most Flounder backends generate message stubs for specific interconnect drivers, with implementa-
tions varying widely according to the properties of the interconnect driver. However, common to all
interconnect drivers for a given interface is the interface to the binding object, which allows the typed
messages defined in the interface definition to be sent and received in an event-driven programming
style. The interface to the binding object for a given interface is generated by the --generic-header

option to Flounder, and is documented here.

Most interaction with bindings involves interface-type-specific functions. In the examples that follow,
we assume that a Flounder interface named iface is used, with the following specification:

interface iface {
message basic(uint32 arg);

message str(uint32 arg, string s);

message caps(uint32 arg, cap cap1, cap cap2);

message buf(uint8 buf[buflen]);

};

3.1 Binding process

In order to communicate, two dispatchers must establish a communication channel using a common
interconnect driver, and must acquire binding objects for each endpoint of the channel. This process is
known as binding, and operates in two modes:

1. A client dispatcher initiates a binding to a service by calling the interface’s bind function

2. A server dispatcher accepts an incoming binding request from a client, on a service which it has
previously exported

In any binding attempt, one dispatcher must act as server and the other as the client, however once
a binding is established, the binding objects and the process of communication on both sides of the
binding are equivalent and indistinguishable.

3.1.1 Server-side: export

In order to accept binding requests, a dispatcher must first export a service. This is done by calling the
export function for the given interface:

typedef void idc_export_callback_fn(void *st, errval_t err, iref_t iref);

typedef errval_t iface_connect_fn(void *st, struct iface_binding *binding);
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errval_t iface_export(void *st, idc_export_callback_fn *export_cb,

iface_connect_fn *connect_cb, struct waitset *ws,

idc_export_flags_t flags);

The iface_export() function initiates the export of a new service. It takes a state pointer, export callback,
connection callback, waitset pointer, and flags. If it returns success, the export has been successfully
initiated.

When the export either succeeds or fails, the export callback will be invoked. It takes the state pointer
(which was passed to iface_export()), an error code indicating success or failure of the export, and an
interface reference (iref). The iref is only meaningful if the export succeeds; if this is the case, it identifies
the exported service in such a way that a client can use the iref to initiate a binding to the service.
In order for the service to be usable, the iref must be communicated to the potential clients in some
manner; typically by registering it in the name service, which is described in Chapter 7.

Once a service has been exported, clients may attempt to bind to it. When this occurs, the connection
callback will be invoked. This function takes the state pointer used at export time, and a pointer to the
new partly-constructed binding object. If it returns success, the binding request will be accepted, and
the binding process will complete. If it returns an error code indicating failure, the binding attempt
will be rejected, and the error code will be returned to the client. When accepting a binding request,
the connection callback also has the task of filling in the vtable of receive handers, as described in
Section 3.3, and the error handler, described in Section 3.6.

3.1.2 Client-side: bind

In order to initiate a binding, a client dispatcher calls the bind function for a given interface:

typedef void iface_bind_continuation_fn(void *st, errval_t err,

struct iface_binding *binding);

errval_t iface_bind(iref_t i, iface_bind_continuation_fn *continuation,

void *st, struct waitset *waitset, idc_bind_flags_t flags);

This function takes the iref for the service (obtained, for example, by a name service query), a bind
continuation function, state pointer, waitset poitner, and flags. If it returns success, a binding attempt
has been initiated.

At some later time, when the binding either completes or fails, the bind continuation function will be
run. This takes the state pointer passed to iface_bind(), an error code indicating success or failure, and
a pointer to the newly-constructed binding, which is only valid if the error code indicates success.

3.2 Binding objects

The end result of the binding process (either client-side or server-side) is a binding object, which is the
abstract interface to a specific interconnect driver for a specific interface type. It is implemented in C
as the struct iface_binding type, the defined portion of which is shown below, and described in the
following sections:

struct iface_binding {

/* Arbitrary user state pointer */

void *st;

/* Waitset used for receive handlers and send continuations */

struct waitset *waitset;

/* Mutex for the use of user code. */
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/* Must be held before any operation where there is a possibility of

* concurrent access to the same binding (eg. multiple threads, or

* asynchronous event handlers that use the same binding object). */

struct event_mutex mutex;

/* returns true iff a message could currently be accepted by the binding */

iface_can_send_fn *can_send;

/* register an event for when a message is likely to be able to be sent */

iface_register_send_fn *register_send;

/* change the waitset used by a binding */

iface_change_waitset_fn *change_waitset;

/* perform control operations */

iface_control_fn *control;

/* error handler for any async errors associated with this binding */

/* must be filled-in by user */

iface_error_handler_fn *error_handler;

/* Incoming message handlers (filled in by user) */

struct iface_rx_vtbl rx_vtbl;

};

The st pointer is available for users to associate arbitrary local state with each binding object. It is not
used by the binding implementation.

The waitset pointer identifies the waitset used by the binding for executing receive handler functions,
send continuations, and internal logic. It is read-only for users of the binding; to change the actual
waitset, the change_waitset() control function must be used.

Binding implementations are not thread-safe, and it is the responsibility of user code to ensure that no
concurrent access to the same binding occurs. The mutex field is not used by the binding implementa-
tion, but is provided for user code to ensure safety of concurrent accesses to the binding object. It is
used, for example, to arbitrate access to the shared monitor binding, as described in Section 5.1.1.

The remaining fields are documented in the following sections.

3.3 Receiving messages

When a message arrives, the binding implementation calls the receive handler function located in the
binding’s rx_vtbl table of function pointers. This table has an entry for each message type, with argu-
ments corresponding to those of the message, as shown below:

/*

* Message type signatures (receive)

*/

typedef void iface_basic__rx_method_fn(struct iface_binding *_binding, uint32_t arg);

typedef void iface_str__rx_method_fn(struct iface_binding *_binding, uint32_t arg, char *s);

typedef void iface_caps__rx_method_fn(struct iface_binding *_binding, uint32_t arg,

struct capref cap1, struct capref cap2);

typedef void iface_buf__rx_method_fn(struct iface_binding *_binding, uint8_t *buf, size_t buflen);

/*

* VTable struct definition for the interface (receive)

*/

struct iface_rx_vtbl {

iface_basic__rx_method_fn *basic;
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iface_str__rx_method_fn *str;

iface_caps__rx_method_fn *caps;

iface_buf__rx_method_fn *buf;

};

It is the responsibility of the user to fill in the rx_vtbl when the binding is initialised, either in the con-
nection callback on the server side, or in the bind callback on the client side. This is typically achieved
by copying a static table of function pointers. It is a fatal error if a message arrives on a binding and the
handler function for that message type is uninitialised or NULL.

Any message arguments passed by reference become the property of the user, and must be freed by the
appropriate memory management mechanisms:

• Strings and arrays live on the heap, and should be released by a call to free()

• Capabilities refer to an occupied capability slot allocated from the standard capability space allo-
cator, and should be released by a call to cap_destroy()

3.4 Sending messages

A message may be sent on the binding by calling the appropriate transmit function. For our example
interface, these are as follows:

errval_t iface_basic__tx(struct iface_binding *_binding, struct event_closure _continuation,

uint32_t arg);

errval_t iface_str__tx(struct iface_binding *_binding, struct event_closure _continuation,

uint32_t arg, const char *s);

errval_t iface_caps__tx(struct iface_binding *_binding, struct event_closure _continuation,

uint32_t arg, struct capref cap1, struct capref cap2);

errval_t iface_buf__tx(struct iface_binding *_binding, struct event_closure _continuation,

const uint8_t *buf, size_t buflen);

Each function takes as arguments the binding pointer and a continuation closure (described below),
followed by the message payload. If it returns success, the message has been successfully enqueued for
transmission, and will eventually be sent if no asynchronous errors occur.

The continuation is optional. When specified, it provides a generic closure which will be executed after
the given message has been successfully sent. Two macros are provided to construct continuations:
NOP_CONT provides a no-op continuation, to be used when this functionality is not required, whereas
MKCONT(func,arg) constructs a one-off continuation given a function pointer and its argument.

All binding implementations can buffer exactly one outgoing message. If another send function is
called on the same binding while the buffer is full, the FLOUNDER_ERR_TX_BUSY error will be returned,
indicating that the binding is not currently able to accept another message. In this case, the user must
arrange to retry the send at a later time, typically from a send continuation function, or by using the
register_send() control function (described below).

Any message arguments passed by reference (strings, arrays, and capabilities) are borrowed by the
binding, and must remain live for as long as the message is buffered but not yet completely sent. The
send continuation may be used to determine when it is safe to reclaim the memory used by reference
parameters.

3.5 Control functions

Four standard control functions are defined for all binding implementations, and are invoked through
function pointers in the binding object: can_send, register_send, change_waitset and control.
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can send

typedef bool iface_can_send_fn(struct iface_binding *binding);

This function returns true if and only if the binding could currently accept an outgoing message for
transmission. Note this does not indicate the message could immediately be delivered to the underlying
channel (further queuing may be involved), simply that a send function would succeed.

register send

typedef errval_t iface_register_send_fn(struct iface_binding *binding,

struct waitset *ws, struct event_closure continuation);

This function arranges for the given continuation closure to be invoked on the given waitset when the
binding is able to accept another outgoing message (i.e. when can_send would next return true). It
may fail if a continuation is already registered and has not yet executed; only one continuation may be
registered at a time.

change waitset

typedef errval_t iface_change_waitset_fn(struct iface_binding *binding, struct waitset *ws);

This function changes the waitset used by the binding for send continuations and running its internal
event handlers.

control

typedef errval_t iface_control_fn(struct iface_binding *binding, idc_control_t control);

This function provides a generic control mechanism. The currently-defined control operations are:

IDC CONTROL TEARDOWN Initiate connection teardown.

IDC CONTROL SET SYNC Enable synchronous optimisations. See below.

IDC CONTROL CLEAR SYNC Disable synchronous optimisations. Currently only implemented for the LMP
interconnect driver, this operation disables the (default) behaviour of yielding the CPU timeslice
to the receiver on every message send.

3.6 Error handling

The binding structure contains an error_handler function pointer field, of the following type:

typedef void iface_error_handler_fn(struct iface_binding *binding, errval_t err);

This function is called to report any asynchronous errors occuring on the binding, including connection
teardown, and should be filled-in by the user during the binding process (i.e. whenever the rx_vtbl is
installed). The default implementation of the error handler for every binding simply prints a message
and terminates the current dispatcher.
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Chapter 4

Runtime support

This chapter describes the IDC runtime support that is part of libbarrelfish which is used by the
Flounder-generated stubs.

4.1 Waitsets and event handling

At the core of the Barrelfish event handling mechanism lies the waitset, represented by the struct waitset

type in C. Informally, waitsets facilitate the rendezvous of threads with events, where an event is repre-
sented simply as a closure (function and argument pointers), as follows:

struct event_closure {

void (*handler)(void *arg);

void *arg;

};

These events are typically raised by message channels in response to activity, such as the ability to re-
ceive a message on a specific channel. In the following we introduce the abstract properties of channels
as they interact with the waitset; the concrete channel interfaces are specific to each interconnect driver
and are described in the respective parts of Chapter 5.

All waitsets are local to a specific dispatcher, and may not be accessed from other dispatchers. Al-
though there is no limit to the number of waitsets used, there always exists one default waitset for each
dispatcher, which may be located by calling the following function:

struct waitset *get_default_waitset(void);

4.1.1 (Abstract) event channels

All events managed by a waitset originate in channels,1 represented internally by the struct waitset_chanstate

type. This struct is typically embedded into the state of a real message channel or other event mecha-
nism.

Channels are used to track the registration of handlers for and occurrence of a single specific event.
Multiple events (such as the ability to send a message, as distinct from the ability to receive a message)
are supported by distinct channels – an interconnect driver will typically use multiple event channels
in its implementation. Moreover, each event channel supports only one registration – registration of
multiple event handlers on a single event may be implemented above this mechanism.

1The term “channel” is now something of a misnomer in this context, as events are no longer used exclusively for message
channels.
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Every channel exists in one of the following states:

Unregistered: the channel is initialised, but no event handler has been registered, and it is not associ-
ated with a waitset

Idle: an event handler closure has been registered with the channel on a specific waitset, but the event
has not yet occurred

Polled: this is similar to an idle channel, in that an event has been registered and not yet occurred,
but due to the nature of the channel implementation, it must be periodically polled for activity to
detect the occurrence of the event

Pending: the event for which a handler was registered has occurred, and the channel is now waiting
to deliver the event

The following operations on channels are used by interconnect drivers to change their state in the wait-
set:

Register: Associates an event handler with a previously-unregistered channel, and moves it to either
the idle or polled state

Deregister: Cancels the previously-registered event handler of a channel, moving it from either idle,
polled or pending state back to unregistered

Trigger: Signals occurrence of an event on a idle or polled channel, and changes it to the pending state

These operations are available only to interconnect drivers, using the “private” API defined in waitset chan.h.

Once a channel is in the pending state, if it is not deregistered it will eventually be delivered to a user of
the waitset (calling a function such as get_next_event() or event_dispatch()) unless it is deregistered
beforehand. Once the event is delivered a channel reverts to unregistered state. Event registrations
are therefore single-shot; an event handler function that wishes to handle future events will typically
re-register itself.

4.1.2 Waitset API

Waitset creation/destruction

void waitset_init(struct waitset *ws);

errval_t waitset_destroy(struct waitset *ws);

These functions initialise the state of a new waitset, or destroy the state of an existing waitset.

Event dispatch

errval_t get_next_event(struct waitset *ws, struct event_closure *retclosure);

This function is the core of the event handling mechanism. It returns the next pending event on the
given waitset, if necessary by blocking the calling thread until an event is triggered.

errval_t event_dispatch(struct waitset *ws);

This function is a wrapper for get_next_event() which also invokes the event (by calling event.handler(event.arg))
before returning. It is typically used within an infinite loop on an event-handling thread.

4.1.3 Implementation

Internally, the waitset maintains a queue of waiting threads, and three queues of channels: one each for
channels in the idle, pending and polled state. The majority of the implementation consists of manipulat-
ing these queues, and implementing the state transitions described in the previous subsection.

The core logic of the waitset lies in the get_next_event() function, whose operation is as follows:
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1. If there are any channels in the pending queue, remove the next channel from the queue, mark it
unregistered, and return its event closure.

2. Otherwise, if there are any channels in the polled queue, and no other thread is already polling
channels on this waitset, poll channels in the polled queue long for as long as the pending queue
remains empty. The polling mechanism is presently used only by the UMP interconnect driver,
and is described in more detail in Section 5.2.

3. Otherwise, block on the queue of waiting threads. When unblocked (either when a channel be-
comes pending or when needed to begin polling), resume from step 1.

4.2 Interconnect drivers

Interconnect drivers implement the runtime support needed by specific message transport mechanisms.
Chapter 5 describes the specifics of each interconnect driver. Although there is no uniform interface to
the interconnect drivers, they typically support the following:

• Binding (connection setup), as described in Section 4.3

• A mechanism to send a message on a channel

• A mechanism to receive messages from a channel

• An interface to the waitset, allowing the user to register for event notifications when it is possible
to send or receive on a channel

• Various channel-specific control operations

In general, messages at this level of the system are word-granularity fixed-size (or variable-size with an
upper bound) untyped data.

The interconnect drivers that are available in a given domain are determined by the compile-time con-
figuration and processor architecture. The only driver that is always present is local message passing
(LMP), which provides kernel-mediated communication with other dispatchers on the same core, and
is used to communicate with the local Monitor.

4.3 Export and binding

The export and binding process for all interconnect drivers is mediated by the monitors. Section 3.1
documents the user-level API provided by the binding objects, while here we describe what happens
under the covers.

The monitors are responsible for allocating interface references, or irefs, tracking the association of irefs
to the dispatcher implementing that service, and mediating the bind process when a client wishes to
bind to an iref. In order to boot-strap this mechanism, every dispatcher is always created with a binding
to its local monitor, as described in Section 5.1.1.

4.3.1 Export

In order to export a new service, a dispatcher sends an alloc_iref_request message to its local monitor,
passing an opaque service identifier (which is unique to the dispatcher). The monitor constructs an iref,
and returns it to the user along with the service identifier in an alloc_iref_reply message.
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Figure 4.1: UMP bind process

4.3.2 Binding

In order to bind, a client dispatcher on a core presents the iref to its local monitor, and requests to
bind with a specific interconnect driver. Although different interconnect drivers use different messages
and parameters, the process is very similar for all, so by way of example we present here the binding
mechanism for the UMP interconnect driver.

Figure 4.1 shows the steps in setting up UMP binding:

1. The client sends bind_ump_client_request to its local monitor, with the iref, the client’s (opaque)
connection ID, and various parameters that are specific to the interconnect driver. For UMP, this
includes a capability to a shared frame, which will be used for message transfer.

2. The local monitor determines (from the iref) the core on which the service resides, and forwards
the request to the monitor on that core using a bind_ump_request message (NB: mislabelled remote_bind_request

in the figure).

3. The monitor on the server’s core determines the local dispatcher which has exported this iref, and
forwards the bind request to it using a bind_ump_service_request message. It also provides the
opaque service identifier which the dispatcher gave when originally exporting the service.

4. The server dispatcher uses the service identifier to locate and invoke the connection callback for
the given service. Assuming this succeeds, it allocates its local state for the binding (e.g. the bind-
ing object). It then replies to its local monitor with a bind_ump_reply_monitor message (labelled
bind_service_reply in the figure).

5. The monitor proxies the reply back to the monitor on the client’s core

6. The monitor on the client core proxies the reply back to the client, providing the client’s connection
ID, which allows it to locate the binding object and run the bind callback. The binding has now
completed.

The binding mechanisms for other interconnect drivers (e.g. LMP, BMP) are similar, in that they involve
an exchange of capabilities between client and server mediated by the monitors. Once the binding is
established, direct communication can take place using the exchanged resources.
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4.4 Indirect capability transfer

Because capabilities are maintained as references to per-core state in the CPU drivers, only the LMP
interconnect driver, which traverses kernel-mode code, can directly deliver a capability along with
untyped message payload. For other interconnect drivers, such as UMP, capabilities travel out-of-band
from message payload through the monitors.

The process of indirect transmission of capabilities is as follows:

1. The binding object waits to acquire a mutex on its local monitor binding. This is necessary, because
it must send a message to its local monitor, and the local monitor binding is shared by all bindings
(and binding-related code) executing on the same dispatcher. While waiting, it sends the non-
capability payload of the message as usual.

2. Upon receipt of the first message payload, the receiver sends back an acknowledgement that it
is ready to receive a capability. This handshake is necessary to avoid over-running the receiver’s
buffers, and to ensure that capabilities can be associated with the correct messages.

3. Once the monitor binding mutex is acquired, and the capability acknowledgement has been seen,
a cap_send_request message is sent to the local monitor, containing the capability and an identifier
for the channel on which the capability is to be sent.

4. The monitor determines whether the cap may be sent to the remote core. A full discussion of
the rules used is beyond the scope of this document, but in general capability types that refer
to inherently local state (such as LMP endpoints) may not be sent, nor may capabilities that are
currently being revoked. If the check fails, a cap_send_reply error is sent back to the local dis-
patcher; if it succeeds, the capability is serialised and proxied to the remote monitor as another
cap_send_request message on the inter-monitor channel.

5. The remote monitor reconstructs the capability from its serialised representation, and forwards it
on to the destination dispatcher with a cap_receive_request message.

6. The receiver identifies the binding to which the capability belongs, and invokes a callback on that
binding. This in turn stores the capability in the appropriate location.

7. When the last capability and message payload are received, the binding object delivers the mes-
sage to the user as usual.
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Chapter 5

Interconnect drivers

5.1 LMP: local (intra-core) message passing

IDC between dispatchers on the same core uses LMP (local message passing). LMP uses endpoint
capabilities for communication. In this case the channel struct contains a reference to a remote endpoint
cap (for the sender) and a local endpoint cap (for the receiver). It also contains a reference to an endpoint
structure. This is a struct contained in the receiver’s dispatcher and refers to a buffer that is used to store
incoming messages. The dispatcher can have multiple such endpoint buffers.

The sender’s remote endpoint cap is derived from the receiver’s dispatcher cap, and contains a pointer
back to the DCB and an offset into the associated endpoint buffer.

When a message is sent, the sender invokes the remote endpoint cap with the message to send. This
causes the kernel to copy the message into the associated endpoint buffer and then make the receiver
dispatcher runnable (which will cause it’s run() upcall to be invoked when it is scheduled). The run
function then finds the endpoint with a message in it and invokes the trigger on the appropriate waitset.
The channel’s event handler is responsible for getting the rest of the message out of the buffer and
invoking appropriate user-defined handlers.

Sender: lmp deliver payload (dispatch.c)

Receiver: disp run (dispatch.c) lmp endpoints poll disabled (lmp endpoints.c)

Event handler: myappif lmp rx handler (myappif flounder bindings.c)

Binding: The process of binding for LMP involves the sender creating the endpoint capability and

myapp

binding:

remote_cap

EndPoint cap Dispatcher cap

dispatcher 
struct

binding:
endpoint 

buffer

myapp

user level
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dispatcher dispatcher 
structoffset into buffer

syscall with remote cap
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Figure 5.1: Local Message Passing
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Figure 5.2: User-level Message Passing

appropriate buffers, then invoking lmp bind request on the monitor. The monitor sends the request to
the receiver, where it sets up its own endpoint cap and buffer and binding struct, and returns the cap
through the monitor to the sender.

Passing capabilities - LMP: When a capability is sent in a message, then the kernel must additionally
copy the cap to the receiver’s cspace (a slot for this is setup in the endpoint). The receive handler must
ensure that it copies the cap out of this cspace slot in order to free it for future transfers.

5.1.1 Messaging with the local Monitor

5.2 UMP: user-level message passing with coherent shared memory

IDC between dispatchers on different cores uses UMP (user-level message passing) (on x86).

UMP uses shared memory and polling and inter-processor interrupts for communication. The shared
memory is split into a send buffer and a receive buffer (Figure 5.2), with each entry in the buffers being
the size of a cache line. The sender writes into the send buffer, and the receiver reads from it. The
receiver polls to determine whether new messages have been received.

The binding struct for a UMP channel contains UMP specific channel structs (nested within various
included structs) which contain a reference to the shared memory, as well as a counter specifying the
current read or write position.

In order to detect whether the write position has been reached when reading, the channel also contains
an epoch flag. Every buffer entry has an epoch bit that is flipped every time a new entry is added. When
reading a new entry the channels’s epoch is compared to the epoch bit of the buffer slot to be read. If
it is the same, then the entry is valid, if it is different then it is not valid. The channel’s epoch flag is
flipped every time the counter wraps around.

The sender also has to know whether it is going to run up against the receivers’s read position. Rather
than flip epoch bits on a read (in order to avoid bouncing cache lines the buffer is kept write-only for the
sender and read-only for the receiver) each message has a sequence id. When replying to the sender the
receiver sends its latest read sequence id. The sender then knows how many messages are outstanding
and together with knowledge of the buffer size, can avoid overwriting messages that haven’t been read
yet.

Binding: The UMP binding process involves the source creating the channel buffers, then sending a
cap to the buffer along with a bind request through LMP to the monitor. The monitor serialises the cap
and sends it through to the destination monitor. The destination monitor recreates the cap, and sends
it on to the receiver. This sets up its channel struct accordingly and finalises the binding.
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Passing capabilities - UMP: UMP messages containing capabilities must be sent in two phases. The
non-cap message is sent as normal. The capability must be sent through the monitor as only the monitor
is able to invoke a syscall to serialise and deserialise a capability. The sender sends the capability with
a request to the monitor, the monitor serialises it and sends it to the destination monitor, where it is
deserialised, and send through LMP to the destination.

5.3 RCK: message passing on the SCC

5.4 BMP: Beehive message passing
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Chapter 6

Additional Flounder backends

6.1 Loopback

6.2 Message buffers

6.3 RPC Client

6.4 THC

6.5 AHCI Command Translator

This backend is documented in the AHCI TN.
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Chapter 7

Name service

TODO
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Chapter 8

Interaction with Hake build system

TODO

• Configuration options

• Contents of Hakefiles

• Location/contents of generated files

• Dependencies
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Chapter 9

Unsupported features and future work

TODO

• Connection/binding teardown

• Variable-length arrays of types other than char, int8 and uint8

• Types shared by multiple interfaces, control over C naming of generated type definitions

• Non-blocking variant of get_next_event()

• Fast LRPC optimisations (combines waitset, thread switch and send)
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