
Barrelfish Project
ETH Zurich

Message Notifications

Barrelfish Technical Note 9

Barrelfish project

16.06.2010

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

1.0 16.06.2010 RI Initial version

Notifications - 2 Barrelfish TN-9

Chapter 1

Overview

1.1 Introduction

Inter-core messaging on Barrelfish (UMP) is currently based on shared memory circular buffers
and a polling mechanism which is designed to work efficiently given the cache-coherence pro-
tocols of a typical NUMA multiprocessor system. Communication latency can vary by many
orders of magnitude depending on how frequently the receiving process polls each channel.
This document describes the design and implementation of a new kernel notification primitive
for Barrelfish.

The reason I believe we need an IDC notification path can be seen in most of the traces I took
of Tim’s IDC and THC test program (see email of 21/5/10).

screenshot goes here

If you look on core 0 you see 3 domains polling for incoming URPC messages. Each polls for a
while and then yields, and with 3 domains it takes up to 10000 cycles to notice a message, and
obviously the current mechanism will scale with the number of domains on the destination
core. (always ¿= 2!). This could be reduced by moving polling into the kernel, but if any
domain is running we have no way to pre-empt it until the next timer interrupt (about 18
million cycles!).

1.1.1 Polling and cache coherence

Sending a message involves the sender modifying a single cache line which (in the expected
case) the receiver is actively polling. The cache line starts in shared (S) mode in the cache of
both sender and receiver cores. When the sender writes to the cache line this causes a transition
to the owned (O) state and an invalidation of the copy in the receiver’s cache. On most of our
NUMA systems, be they Hypertransport, QPI or shared bus, this is effectively a system-wide
broadcast. Newer AMD Istanbul processors have a directory-based cache coherency protocol
which avoids the broadcast. The receiver then pulls the modified cache line from the sender’s
cache resulting in the cache line being in both caches in the shared (S) state.

Barrelfish TN-9 Notifications - 3

1.1.2 Message Latency

When sender and receiver threads are the only things running on each core this can be ex-
tremely low latency (600 cycles). When the destination core is shared by multiple threads, or
even multiple domains, the message latency is determined by kernel- and user-mode schedul-
ing policies and is typically a function of the kernel clock interrupt rate and the number of
domains (and channels) in the system. Even in simple cases the message latency will usually
increase to at least one timer tick (at least 1ms, probably 10ms - i.e. millions of cycles!)

Several Barrelfish papers have talked about sechemes where receiver domains initially poll
for messages, but eventually back off to a more heavyweight blocking mechanism. In the
current tree this involves domains eventually “handing off” the polling of message channels
to their local monitor process via a (blocking) local IPC. The monitor polls URPC channels for
all blocked domains an when it finds a message it sends an IPC to the receiver process causing
it to wake. Since all these cache lines will be “hot” in the cache, this is not as expensive as it
might appear, but still does not allow for preemption of a running thread before the next clock
interrupt. It also potentially captures kernel scheduling policy.

1.1.3 Scalability

Barrelfish does not currently multiplex URPC channels in any way, so it is common to see O(N)
and even O(N2) URPC channels between services which run on each core (e.g. monitors),
or between the dispatchers of a domain which “spans” multiple cores. Though the memory
consumption is not a huge problem (a URPC channel is a handful of cache lines), the number
of channels can grow rapidly and this will have an effect on polling costs and message latency.

Domains do not have any efficient way to identify the (probably) small set of URPC channels
which currently have pending messages. In Nemesis this was achieved by each domain having
a “hint FIFO” which contained a list of channels with new incoming messages (identifying new
messages required an explicit acknowlegement count in each channel). However, when a domain
was activated it could efficiently dispatch new messages, and if the FIFO overflowed then the
domain resorted to polling all channels.

In a many-core environment, a single hint FIFO would potentitally be an expensive bottleneck
due to shared-write cache lines accessed by many cores. Having a FIFO for each potential
sending core requires O(N) space, but would avoid contention.

1.1.4 Primitives

Ideally we need primitives which allow fast URPC-style messaging when a receiver is known
to be polling, but which also allow us to control sending timely notifications to a remote kernel,
domain and thread.

Notifications - 4 Barrelfish TN-9

Chapter 2

Design

In the global kernel data page have an array of pointers to per-core notification (PCN) pages.
(by the way, why is struct global still declared in kputchar.h! :-) Each per-core notification page
is divided into cacheline-sized slots. (i.e. 1 page has 64 slots of 64-bytes) There is one slot for
each sending core. Each slot is treated as a shared FIFO with some agreed number of entries.
Each entry can contain a short channel ID or zero. Each kernel keeps private arrays of head
pointers and tail pointers (need only 1 byte per entry x num cpus).

On the sending side I have a new system call:

sys notify(dest core, dest chanid);

This looks up the PCN page of the destination core in the kernel globals page. It then indexes
into the PCN page using its own core id to locate the pairwise notification FIFO. It looks up
the FIFO head pointer using the dest core id. It then looks at that entry of the FIFO... if it is
non-zero then the fifo is full. If the entry is zero then it writes the dest chanid and increments
the private head pointer.

On the receiving side, the destination core keeps a private index into each of its incoming fifos.
These tells it which entry it needs to look at next. It could therefore poll each of the FIFOs
waiting for a non-zero channelID value...

The mechanism so far results in a single FIFO cacheline toggling between Shared and Modified
state on both sender and receiver. I timed 10000 invocations of the above sys notify() call (with
the receiver core in a tight polling loop) with a cost of 350 cycles per notification (for a shared
L3) and 450 cycles cross-package. Note that the extra cache traffic of this design is probably
not optimal, but it’s in the noise compared to our current IDC costs when we have >1 domain
on a core (i.e. always!)

Obviously a tight polling loop on the receiver is not ideal... we aren’t always polling, and in
any event this would scale as O(N cores).

One solution is for sys notify() to send an IPI to dest core whenever the FIFO goes non-empty,
or at the request of the receiver (e.g. if it wrote a special ’request IPI’ value into the next empty
slot, rather than zero).

Given the number of CPUs in our current ccNUMA machines, we could easily afford to use
a separate interrupt vector for each sending core. This would identify to the destination core
which FIFO to look at, with no polling overhead. We could use a single IPI vector, but this

Barrelfish TN-9 Notifications - 5

would need some hierarchical shared datastructure to efficiently identify which fifos to poll.
(the PCN entry for src core == dest core is unused and could be treated as 512 flag-bits c/f
Simons RCK code)

Sending the IPI within sys notify() would take a few hundred extra cycles (but may overlap
with the cache coherence messages?) Taking the IRQ and acking it on the receiver is probably
between 500 and 1000 cycles depending on which ring the destination core is executing in. (I
tried Richard’s HLT in Ring0 with interrupts disabled trick and it does not work any more!).

One interesting trick might be to deliver notifications to a hyperthread so that interrupt latency
and polling costs were interleaved with normal processing...and only interrupt the ’application
hyperthread’ if a reschedule is necessary.

In all of the above cases, I would imagine that notifications would not necessarily cause the
running domain to be pre-empted. However a scheduler activation for incoming IDC would
be possible.

Given that true polling URPC *could* cost only a few hundred cycles if both domains are
in a tight loop, this notification mechanism is not something I would imagine using on each
message. Instead I would suggest having a ’PUSH’ flag you can pass on urpc send(), or a b-
¿push() method on the flounder binding so the programmer can decide to expedite message
delivery a suitable points.

Notifications - 6 Barrelfish TN-9

Chapter 3

Implementation

I just finished doing a more complete version of the UMP Notification mechanism. It now
uses a UmpNotify capability which you get by retyping your Dispatcher cap. The monitor’s
UMP binding mechanism already propagates a notification cap between client and server. I
hand edited the bench.if stubs to allocate the caps and invoke the notification when doing a
message send.

The cap invoke handler puts the receivers’s DCB pointer into the destination core’s incoming
notification FIFO and sends an IPI with a vector identifying the sender core (allowing demux
without polling). The receiving core has an notification IPI handler which drains the notifi-
cation fifo and does a cswitch to the most recently notified domain. The domain will get an
activation and poll its URPC channels (eventually).

After thinking a bit more about the costs of notification, it seems that 2800 cycles is quite a lot
to pay in the default path to send a notification. Quite a bit of this is the high cost of cap invoke
on x86 64 (2K cycles) compared to the hacky syscall I was using last week (800), but in general
we don’t want to pay much for notification unless it’s necessary.

I added code in the domain dispatch path to publish the identity of the currently running DCB,
and ideally the time at which it will next be preempted. The notification kernel code on the
sender side can therefore tell if it’s worth sending an IPI and return immediately if the domain
is already running. This leads to the behaviour below where, just before T=70000 core 1 sends
a message to core 2, notices it isn’t the currently running domain and so sends a notification
IPI. The monitor on core2 is preempted and the receiver domain gets to run. Activation code
takes about 2000 cycles but the message gets there pretty quickly.

This allows me to increase MAX POLLS PER TIMESLICE to 1000 without excessive penalty,
which in turn allows the client and server to remain in the polling loop and notice messages
before they yield to other domains. Net result is that the common case RPC cost is about 4x
faster. The worst case is hopefully bounded by the cost of (cap invoke + notifiy IPI + domain
activation + ump poll)... about 4000 cycles. I ought to check this by running some “while(1)”
domains on each core... but I’m fairly (naively?) optimistic.

3.1 Performance

Barrelfish TN-9 Notifications - 7

Chapter 4

Testing and Debugging

Notifications - 8 Barrelfish TN-9

