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History of versions

Version Date Author(s) Changes

0.1 08.02.2010 SP,TR Initial version
1.0 20.07.2010 SP,TR,AB Updates, more detail
1.1 11.08.2010 SP Fill in missing details
1.2 12.08.2010 TR Initial release version
1.3 09.09.2010 SP,RB Corrections to typos and for clarity
1.4 10.05.2012 SP Fake VGA console removed. Physical memory layout

added.
1.5 12.12.2013 TR Final. SCC program terminated.
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Chapter 1

Introduction

Note: the Intel MARC program involving the Single-Chip Cloud Computer was a part, was terminated in 2013.
As a consequence, Barrelfish support for the SCC also stopped at the end of the year and this technical note should
be regarded as historical.

This report describes the Barrelfish port to the Intel Single-chip Cloud Computer [3]. It serves as a
general repository for information about the SCC platform, and therefore contains a number of very
different kinds of information, for different audiences. It should be regarded as an evolving set of
notes, rather than a polished document.

• Chapter 2 describes the SCC-specific aspects of the port. This information is of most interest to
people trying to understand the SCC-specific functionality in Barrelfish.

• Chapter 3 collects various hardware microbenchmarks which were used to guide the implemen-
tation. This is of interest to those wishing to understand the performance of individual operations
on the SCC, for example to optimize the Barrelfish implementation.

• Chapter 4 provides both a quantitative and qualitative evaluation of Barrelfish running on the
SCC. This summarizes our results of running a limited number of applications on Barrelfish using
the SCC.

• Chapter 5 discusses the implications of our early experience for future system software on the
SCC, and provides some thoughts on the suitability of the SCC’s hardware for running a message-
based OS such as Barrelfish. This deals primarily with how well-matched the Barrelfish design is
with the hardware features of the SCC.

• Chapter 6 collects information about historical features of the port that are not supported any-
more.

The work described in the current version of this document was carried out entirely on the “Copper
Ridge” SCC platform. As the Barrelfish project gains more experience with the “Rocky Lake” SCC
platform, this document will be updated accordingly.

We would like thank Intel Corporation, in particular the SCC team and the Intel Braunschweig Lab, for
their help and early access to the SCC platform.

Barrelfish TN-005 Single-chip Cloud Computer - 3



Chapter 2

Barrelfish implementation on SCC

This chapter describes the SCC-specific parts of Barrelfish, and how they differ from other target archi-
tectures. The SCC port of Barrelfish is still in its early stages (the version described here is based on
less than 10 person-days of access to early SCC hardware), so this should be viewed as a preliminary
discussion.

The work was carried out by Simon Peter at the Intel Braunschweig lab from the 8th to the 12th March
2010, and subsequently from the 26th to the 30th April 2010.

2.1 CPU driver

All cores in a Barrelfish system run a CPU driver, which is the only code which runs in privileged mode
on the core.

The SCC CPU driver is based on the x86-32 port of Barrelfish, and is identical to it except for not sup-
porting the various address extensions (PAE, etc.) available on modern 32-bit ia32 machines. Instead,
kernel-mode support for multiplexing access to message passing buffers (MPBs) and configuration reg-
isters is provided.

The SCC CPU driver also supports the x86 UART for debugging output. A version of the SCC host PC
driver1 supports a virtual UART for each core on the SCC.

2.2 Compilation

A symbolic target scc has been added to the Barrelfish makefile. This target carries out two additional
steps necessary to produce a bootable binary image file:

1. A Barrelfish binary image is compiled from ELF images of the kernel and user-space binaries,
together with essential bootup information (like commandline parameters for those binaries and
a memory map) from an enhanced GRUB [1] menu.lst file. This is done using the dite image
generation tool, written at ETH and included in the /tools/dite directory of the Barrelfish source
tree. The image is relocated to be loaded at address 0xff000.

2. This binary image is converted into Intel 32.obj binary format (an Intel-proprietary format) and
combined with a 5 byte jump vector, to be loaded at address 0xfffffff0, long jumping to 0x100000,
the fixed entry point of the kernel.

1Available at: http://www.dcl.hpi.uni-potsdam.de/research/scc/serial.htm
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3. Another 32.obj file is created, containing only the 5 byte jump vector to the same fixed entry point
of the kernel.

2.3 Boot process: first (bootstrap) core

The tools/scc/bootscc.sh shell script can be used to boot the SCC. This script will invoke the follow-
ing sccKit tools on the host PC to bootstrap the first SCC core:

sccReset -g

sccMerge -m4 -n12 -noimage -lut default -force barrelfish48.mt

sccBoot -g obj

sccReset -r 0

The first sccReset will reset the SCC board into a known state, in particular all configuration registers.

sccMerge creates memory images for all memory controllers from the previously created 32.obj files. It
will load the boot image to core 0’s memory and load the boot jump vector to all other cores. The default
LUT mappings are created for each core. The file barrelfish48.mt provided on the commandline
is responsible for this configuration. It is shipped with the Barrelfish source distribution. sccMerge

creates an obj subdirectory containing the produced memory images. If the directory already exists, it
is removed first.

sccBoot loads the memory images into the memory controllers from the obj subdirectory.

The second sccReset will release the reset pin of the first SCC core (core ID 0).

The kernel boot code switches from real mode to protected mode, activates paging, all caches and the
message passing buffers. In addition to the regular x86-32 startup sequence, it initializes the in-kernel
SCC support code and reads the core ID from the local core mapping.

The rest of the local boot process is identical to the x86-32 boot process.

2.4 Boot process: subsequent cores

When told to boot another SCC core with a given core ID, the CPU driver will modify the booter’s LUT
mapping to map in the first 16MB (one LUT entry) of the bootee at a known fixed address, known not
to contain useful memory of the booter.

The booter will then ELF load a copy of the CPU driver to address 0x10000 and append copies of the
ELF binaries of the CPU driver, the monitor, init, and mem serv. These programs are needed to bring up
the bootee core. A special configuration region at address 0xff00 is also written to inform the bootee that
it is an application kernel, the address of the inter-monitor CC-UMP message passing region in shared
RAM, the location of the binary copies, as well as the notification channel ID used for that channel. CC-
UMP and notification channels are described in Section 2.8. Then, the reset pin of the bootee is released
via configuration registers.

2.5 Physical address space

The SCC allows the physical address space of each core to be configured using the 256-entry Lookup
Table [2] (LUT). In normal operation, we use the default LUT memory map, as is used by Intel for the
Linux OS, and amend it for extra physical memory if available. The memory map is described in the
hake/menu.lst.scc file, and inserted into the boot image by the dite tool, where the kernel can find it.
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Area start end
Private DDR3 RAM 0 0x28ffffff
Remote boot LUT 0x29000000 0x29ffffff
Unused 0x2a000000 0x7fffffff
Shared DDR3 RAM 0x80000000 0xbfffffff
On-tile MPBs 0xc0000000 0xd7ffffff
Local on-tile MPB 0xd8000000 0xd8ffffff
Unused 0xd9000000 0xdfffffff
Configuration registers 0xe0000000 0xf7ffffff
Local configuration regs 0xf8000000 0xf8ffffff
eMAC access 0xf9000000 0xf9ffffff
TCP/IP traffic (unused) 0xfa000000 0xfaffffff
RPC (unused) 0xfb000000 0xfbffffff
SATA (unused) 0xfc000000 0xfcffffff
Unused 0xfd000000 0xfeffffff
Private DDR3 RAM 0xff000000 0xffffffff

2.6 Virtual address space

The available virtual address space on a core is split into 2GB user-space access (addresses 0x0 –
0x7fffffff) and 2GB for kernel-only access (addresses 0x80000000 – 0xffffffff).

The kernel-only space maps directly to physical address 0x0 until 0x3fffffff, allowing access to all of
private RAM with the default LUT mapping. This resembles mappings used in single address space
operating systems and provides better performance when handling kernel objects than can be provided
with classical operating systems, like Linux. Kernel objects can point to other objects directly and the
mapping is identical across all cores. Also, physical addresses can be calculated simply by subtracting
an offset, instead of via complicated mappings.

Space is reserved at the top of this range to map all MPBs and all configuration registers, as well as the
local APIC and one remappable 4K page to map in a foreign core’s private RAM, used for booting that
core. The rest of kernel virtual address space is unused. This implies that kernel objects can only be
created in the lower 2GB of physical memory (ie. in private RAM), which is sufficient in Barrelfish, as
kernel objects are never shared between cores.

The user-space address range can be arbitrarily mapped to physical addresses.

2.7 Memory allocation

A memory allocation server (mem serv) is spawned for every on-line core in the system.

Available shared RAM is equi-partitioned into 48 regions. Remaining shared RAM not fitting this par-
tition is thrown away and is not usable. The reason for this is that the memory allocators are not able to
handle allocation from unaligned memory regions and sizes that are not a power of two.

The server gets given capabilities for all of the private RAM of the local core and all of shared RAM.
This is necessary so that allocation of shared mappings is possible from every core’s region without
having to contact a designated memory allocator for this region of RAM, a feature not yet implemented.

As shared RAM is handled identical to private RAM, the kernel is responsible for clearing a newly
allocated page of memory from previous usage before allowing it to be mapped into the allocator’s
address space. As shared RAM resides outside the lower 2GB of physical address space, the kernel is
incapable of accessing that RAM in order to clear it. For SCC, we have modified the kernel to instead
neglect clearing the page, at the expense of protection when memory is reused from other address
spaces.
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This issue is fixable however, either by reserving another remappable address range inside the kernel
that can be used to map and clear the page before allowing the user to map it, at an expense of perfor-
mance. Another way to fix it is to introduce a special memory allocator for shared RAM that would map
and clear allocated RAM first into its own address space before granting it to the requesting address
space.

Per-core memory servers are necessary on SCC. Memory servers do not currently support allocation
from multiple private RAM regions with overlapping address regions.

2.8 Interconnect driver

In Barrelfish, an interconnect driver is the lowest-level part of a particular messaging mechanism. The
inter-core interconnect driver for the SCC is based on the cache-coherent user-level message passing
(CC-UMP) driver used by Barrelfish on x86 systems. With some modifications this mechanism reliably
transports cache-line-sized messages through non-coherent shared memory on SCC.

The modifications are:

• The size of a cache-line, and thus message, is 32 bytes.

• Memory for both the send and receive message channel is allocated in the core’s region of shared
RAM that is initiating a bind to another core, using the NUMA allocation features of Barrelfish.
These are currently not thread-safe and thus the interconnect driver initialisation phase is cur-
rently not thread-safe.

• Memory for the message channel is mapped as cacheable, message passing buffer type, enabling
the use of the write-combining buffer for faster memory writes. For this, the implementation of the
virtual memory manager inside libbarrelfish had to be extended to support the architecture-
specific mapping flags.

While CC-UMP was originally optimized for cache-coherent transports, these optimizations do not hurt
performance on SCC and we are not aware of other SCC-specific optimizations that CC-UMP does not
already employ.

However, the polling approach used by CC-UMP on Barrelfish to detect incoming messages is inappro-
priate on the SCC, since each poll of a message-passing channel requires a CL1INVMB operation followed
by a load from DDR3 memory.

Consequently, an additional SCC notification driver (named rck notify) was implemented which aug-
ments the CC-UMP driver with notification support. For this, support for pluggable notification drivers
was added to CC-UMP.

The notification driver uses the on-tile MPB for efficiently communicating the identifiers of active mes-
sage channels, and an inter-core interrupt as the notification mechanism. It is implemented mostly
within the CPU driver on each core, as follows: [AB: Diagram?]

• A ring-buffer of IDs of those channels containing unread payload is held in the receiver’s MPB.
The buffer is written only by senders and read only by the receiver. However, there are two
read-shared cache lines before the buffer, holding the current write and current read position,
respectively.

• A buffer entry spans a cache-line (32 bytes). Currently, only a 16-bit channel ID is written to that
cache-line, limiting the number of distinct notifiable channels to 65,536. The rest of the space in
unused. Using a cache-line per ID allows a sender to write new channel IDs to the buffer without
having to read the cacheline for already existing IDs first.

• A new capability type is used on the sender side, holding the core ID and channel ID of the
receiver core of the notification. When invoked, the sender’s CPU driver:

1. Acquires the test-and-set lock for the receiving core
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2. Reads the current write position from the receiver’s MPB

3. Writes the channel ID into the next slot in the reciever’s MPB

4. Updates the current write position in the receiver’s MPB

5. Reads the receiver’s interrupt status

6. If no inter-core interrupt is pending, writes the status word with the interrupt set to trigger a
remote interrupt

7. Clears the test-and-set lock for the receiving core

• On the receiver, a regular LMP endpoint capability is registered in a special notification table
inside the CPU driver. This table maps channel IDs to local LMP endpoints that will be signalled
on notification. When the receiver core is interrupted, it looks up all pending channel IDs present
in the MPB ring-buffer, and dispatches an empty message on the registered endpoint in the table.
If no endpoint is registered, an error is signalled.

• In user-space, the notification driver triggers the waitset used to wait on incoming messages
for the corresponding message channel, activating the receive message handler in the generated
stubs, which are described in the following section.

In case of the receiver ring buffer being full when the sender tries to write a new channel ID, the sender
aborts the process and returns with an error code to the sending user-space application, indicating a
failed notification. The user-space application should try to notify the receiver again at a later point in
time (currently unimplemented as we did not reach this case during our benchmarks). Rolling back the
message send is not easily possible, as the receiver might have been actively polling for and already
reading it.

Allocation of new channel IDs is managed by the monitor of the receiving core as part of the bind
process. The CPU driver does not allocate IDs.

There are many design alternatives for an SCC interconnect driver, and the above should be regarded as
only one point in the space. At first sight, it may seem odd to use main memory (rather than the on-tile
MPB) for passing message payloads, and to require a trap to the kernel to send a message notification.

This design is motivated by the need to support many message channels in Barrelfish and, furthermore,
more than one application running on a core. The SCC’s message-passing functionality does not appear
to have been designed with this use-case in mind. We discuss this issue further in Chapter 5.

We considered two further design alternatives: notification trees and payload in MPB. The former we
have implemented and benchmarked, but it turned out to have worse performance than the ring buffer
implementation presented above.

Notification trees use the same notification scheme as ring buffers, but employ a bitmap of channel
IDs, represented as a two-level tree in the receiver’s MPB. One bit for every distinct channel that can be
notified. Tree nodes are of the size of one cache-line (256 bits). The tree’s layout in the ring buffer is such
that the root node occupies the first cache-line. All other nodes are leaves and are stored in left-to-right
order after the root node. There are 255 leaves which contain a bit for each notifiable channel, yielding
65,280 notifiable channels. A bit set in the root node indicates that the corresponding leave contains set
bits and should be scanned when the tree is traversed. In this scheme, sending a notification can never
fail: A bit can either be set or is already set, in which case no further notifications need to be sent for the
respective channel ID.

Sending a notification for a given channel ID in this design requires the sender to:

1. Acquire the test-and-set lock for the receiving core

2. Read the root node from the receiver’s MPB

3. Set the bit for the corresponding leaf node of the channel ID in the root node

4. Write the root node to the receiver’s MPB
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5. Read the leaf node from the receiver’s MPB

6. Set the bit for the corresponding channel ID in the leaf node

7. Write the leaf node to the receiver’s MPB

8. Read the receiver’s interrupt status

9. If no inter-core interrupt is pending, write the status word with the interrupt set to trigger a remote
interrupt

10. Clear the test-and-set lock for the receiving core

This mechanism requires 2 full cache-line reads and 2 full cache-line writes from/to the receiver’s MPB
and 2 bit operations as opposed to only two 32-bit reads and 2 full cache-line writes in the ring buffer
scheme. We originally proposed notification trees, assuming the cost to access remote MPBs would be
an order of magnitude lower, as well as cheaper bit operations on full cache-lines. After implementing
and benchmarking this scheme, it turned out not to be the case. We assume the slow bit operations
to be due to the size of the operands. Holding a full cache-line would require 8 integer registers on
the Pentium. With only 7 present, we always have to go to memory in order to execute a bit-scan, an
expensive operation, especially when the cache does not allocate on a write miss.

The final design we devised is “payload in MPB”. In this scheme, instead of notifying the receiver of
a message in shared RAM, the message payload itself is written to the MPB, obliviating the need for
shared RAM. The main drawback of this scheme is that it requires quite complicated book-keeping, as
messages are variable size and might not fit into the rather small 8KB receive buffer.

It also complicates managing quality of service, as multiple applications now compete for the same
receiver MPB. This forbids receiving applications the use of the payload inside the MPB directly, as the
MPB has to be freed up as quickly as possible to allow other competing applications to make progress.
This requires copying the message out of the MPB into private RAM of the receiver, which is again a
costly operation, especially as caches do not allocate on a write miss. We elaborate more on this issue
in Chapter 5.

2.9 Message passing stubs

In Barrelfish, message-passing stubs are the next layer of functionality above the interconnect driver,
and implement typed variably-sized messages over various interconnects. They are generated by our
stub-generation tool, named Flounder.

The Flounder backend for SCC message passing is derived from, and shares much code with, the back-
end for CC-UMP. The important differences are:

• The generated stubs are configured for a cache-line size of 32 bytes, and thus the message-fragments
used to transmit message payload are never more than 32-bytes in size.

• The binding logic allocates and initialises the SCC notification endpoints, and transmits their
capabilities to the receiver.

• The code to send messages is modified to emit a notification either at the end of a complete
(application-level) message, or when the message channel ring buffer is full and the sender needs
to block. In this way, needless notifications (for fragments of a high-level message) are avoided.

• The receive side never polls for incoming messages. When no more messages are present in the
channel, it instead blocks on a waitset that will be signalled when an inter-core notification arrives.

2.10 Bulk transfer

Bulk transfer shared memory is mapped the same way as CC-UMP memory on SCC (cacheable, MPB).
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As shared memory is directly manipulated by the application for a bulk transfer region, the bulk prepare()
function for SCC touches a random cacheline that is not of the bulk transfer region. This forces the write
combine buffer to flush the last written cacheline out to memory (see Section 1.4.5 of [4]). This needs to
be done, as an application may have written an incomplete cacheline to the transfer area, to force that
line out to memory before sending.
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Chapter 3

Hardware measurements

Cost of assorted local operations:

operation cycles

NOP system call 200
RDTSC instruction 14
XCHG instruction 35

LOCK CMPXCHG instruction 39
LOCK DEC instruction 36

clear memory 3
NOP instruction 2

CL1INVMB 1

Cost in cycles to write a complete 32-byte cache line (8 DWORD writes) to an on-tile MPB from a core
on tile 0:

target tile x-coordinate
0 1 2 3 4 5

y

0 39 84 89 90 95 101
1 84 89 89 95 101 108
2 89 89 95 101 107 113
3 89 95 101 108 113 119

Cost to read a single DWORD from on-tile MPBs from tile 0 (this will pull the cache line into local L1
on tile 0):

source tile x-coordinate
0 1 2 3 4 5

y

0 20 63 69 72 78 84
1 63 69 72 78 84 90
2 69 72 78 84 90 96
3 72 78 84 90 96 102

3.1 Memory map and shared memory areas

In this benchmark, a user-space application reads/writes repeatedly from/to shared memory, using dif-
ferent mapping configurations. Core 0 executed this benchmark. All numbers presented are in machine
cycles.
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Memory controller average total for 1,000,000 iterations

DWORD from shared RAM (uncacheable):

0 97 97,338,585
1 121 121,492,066
2 105 105,348,809
3 134 133,690,789

Cacheline to shared RAM (uncacheable):

0 779 778,680,899
1 972 971,920,810
2 843 842,761,220
3 1069 1,069,474,168

Cacheline to shared RAM (MPB):

0 122 121,504,321
1 146 146,014,496
2 134 133,697,675
3 158 157,781,513

3.2 Thread Switch Time

In this benchmark two threads are yielding between each other in a ping-pong like benchmark. There-
fore, Barrelfish’s thread yield dispatcher function is used. This function donates the callers time-slice
to the dispatcher pointed to by the argument to this function.

A call to this function requires an endpoint capability to the partner, which needs to be exchanged
between the threads at startup. One of the dispatchers acts as a server, calling export to offer the service
to the nameserver, the other one as a client calling the bind function.

The waitloops are broken as soon as both partners have the required endpoint capabilities set up. When
looking at the numbers given in this benchmark, it is important to keep in mind that the domains might
run some event processing code on scheduling.

The decision to include those numbers in the measurements is on purpose for this analysis.

The number of cycles given is from one thread to the partner and back to the original thread and there-
fore needs to be divided by two to get an approximation for the actual thread switch time.

thread cycles

server 6732.79
client 6636.08
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Chapter 4

Evaluation of the implementation

This chapter describes the effort required to bring up Barrelfish on the SCC, together with early micro-
and application benchmark results.

4.1 Development effort

Bringing up Barrelfish on the SCC first required a 32-bit ia32 port, since up to that point we had only
targetted 64-bit Intel Archtecture platforms. This port was carried out in advance by Simon using a
mixture of real hardware and QEMU configured to emulate a Pentium processor, and substantially
reduced the time required on actual SCC hardware.

The process was also helped by Orion Hodson’s ARM port, and Richard Black’s Beehive port, which
threw up many 64-bit dependencies at an early stage. In the event, most of these issues were resolved
well before the SCC port started.

Lines of code, using David Wheeler’s SLOCCount:

• As of August 11, 2010, the x86-32 specific code yields 8705 lines of C code and 410 lines of assembly
code (not counting imported code, like libc or libm). Out of this, 6011 lines (69%) is kernel (CPU
driver) code.

• In addition to the x86-32 specific code, 2235 lines of SCC-specific C code and 130 lines of assembly
code were written, 391 lines (17%) of these being CPU driver. This count does not include the
sections of x86-32 specific code that have workarounds for SCC using #ifdef constructs.

By and large, the bringup for SCC was straightforward:

• Porting back from x86-64 using a memory-window based model for kernel state allowed us to
keep the programming model and general address space layout. One minor issues was the re-
quirement to initialize shared RAM from user-space. This makes it unsafe to allow regular user-
space applications access to untyped memory, as they could snoop its previous content without
erasing the memory.

• At the time of the x86-32 port, most arch-generic Barrelfish code was still mostly x86-64-specific
and so time was spent on separating out arch-specific quirks from otherwise generic code and
clean-up.

• The message passing transport was designed within one day. However, it turned out it was not as
efficient as expected, due to our (overly optimistic) assumptions about memory access latencies.

• Overall, the work took about 2 person-months.
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Figure 4.1: MPB ping-pong experiment setup

At time of writing, we believe the major performance issues with our code are due to the SCC L2
caches’ non-allocate-on-write policy. Our code is not optimized for this behavior and shows major
inefficiencies, in particular on function call boundaries immediately after kernel crossings.

4.2 Microbenchmark: Notification via MPB

We implemented a ping-pong notification experiment to evaluate the cost for OS-level notification de-
livery via message passing buffers (MPBs). MPB notifications are used in Barrelfish to notify a user-
space program on another core of message payload arrival on a CC-UMP channel and are thus perfor-
mance critical.

The experiment entails two peer cores sending notifications back and forth. Based on their roles, we
call these two cores initiator and collaborator, respectively. The experiment is driven by a user-space
program on the initiator. After setup, one iteration of the experiment is carried out in several steps.
The experiment as depicted by Figure 4.1 is symmetric, thus we only describe the steps carried out and
observed by the initiator:

1. The initiator’s monitor calls a special system call to send a message directly to the collaborator
and control is transfered to the initiator’s CPU driver.

2. The initiator’s CPU driver writes the message into the collaborator’s MPB and sets the corre-
sponding configuration registers of the collaborator to raise its hardware INTR line.

3. The collaborator receives the message and replies, by carrying out steps 4, 1 and 2 in that order
[AB: unclear].

4. The initiator’s CPU driver traps upon receiving the interrupt, determines the cause for the trap,
reads the message from its MPB and transfers control back to its monitor, which records the time
taken for all 4 steps.

We carried out this benchmark between core 0 and all other cores inside the system, measuring the
round-trip latency for an MPB message containing one cacheline, and halved the result to extrapolate
the one-way latency. Figure 4.2 shows the result, as well as a break-down into interesting steps of the
experiment.

4.3 Microbenchmark: Inter-processor interrupt (IPIs) latency

We modify the message latency ping-pong experiment described in Section 4.2 to approximate the cost
for hardware-level inter-processor interrupt delivery. IPIs are used in Barrelfish to notify another core
of message arrival and are thus performance critical.

The core roles are kept and the numbers presented are still for two cores on the same tile. After setup,
one iteration of the experiment is carried out in 5 steps, as depicted by Figure 4.3:
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Figure 4.3: IPI ping-pong experiment setup

1. The initiator’s monitor calls a special system call to send a message directly to the collaborator
and control is transfered to the initiator’s CPU driver.

2. The initiator’s CPU driver writes the message into the collaborator’s MPB and sets the corre-
sponding configuration registers of the collaborator to raise its hardware INTR line.

3. The collaborator’s CPU driver traps upon receiving the interrupt, determines the cause for the
trap, reads the message from its MPB and immediately replies with another message to the initia-
tor, using the mechanism of step 2, upon which the initiator’s CPU driver traps.

4. Upon determining the trap cause, the initiator’s CPU driver reads the message from its MPB.

5. The initiator’s CPU driver transfers control back to its monitor, which records the time taken for
all 4 steps.

In this version of the experiment, which ran over 100,000 iterations, eliminating the first 10% of values,
the average time for an IPI round-trip is 8746 cycles. Table 4.1 presents a break-down of the measured
costs. The measured average latency for step i is denoted as λi. We did not collect measurements for all
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op cycles∑
i=1..5 λi 8746

λ1 + λ2 1135
λ4 + λ5 3864
λ2 684
λ3 3662
λ4 1754
λIPI 612

Table 4.1: Measured and extrapolated IPI benchmark latencies

steps individually and some measurements are only made for steps in combination.

We can then approximate the latency λIPI involved to deliver the IPI, including the time to execute
the trap, by λIPI = λ3−(λ2+λ4)

2 , the total time spent inside the peer kernel, minus the time to send and
receive an IPI inside the local kernel, divided by two to yield the time needed for only one trap (we are
in a ping-pong loop).

Note that this is an optimistic approximation. As the local side includes user-code to drive the bench-
mark, the measured latencies inside the local kernel might be too large, due to missing cache lines
caused by executing user code. As this cost does not occur on the peer kernel, where only kernel code
is executed, the real cost for an IPI might be higher. Furthermore, we only measured the cost for two
kernels on the same tile. The cost to deliver an IPI between cores of far away tiles might be slightly
higher.

We consider a latency of at least 612 cycles to deliver an IPI very high for it to be useful as a signaling
primitive for the majority of message sends in a message-passing system like Barrelfish.

4.4 Application-level benchmarks

The only other software environment presently available on SCC uses a separate instance of the Linux
kernel on each core. Above this runs RCCE [5], a library for light-weight, efficient communication that
has been co-designed with SCC as a research vehicle for message-passing API design on non-cache-
coherent many-core chips, and as such is highly optimized for this platform. RCCE runs in user-mode
with raw access to the MPBs, providing basic point-to-point message passing functionality as well as a
set of higher-level primitives, such as barriers and a reduce operation, akin to those found in MPI [6].

We implemented a substrate supporting the RCCE message-passing interface using Barrelfish stubs and
interconnect drivers for messaging, and thus can securely support multiple applications. We evaluated
the NASA benchmarks shipped with RCCE to compare the performance achieved on Barrelfish to a
system running 48 instances of Linux, as used at Intel.

Figures 4.4 and 4.5 show the result of this comparison. We can see that at the application level, when a
single application is run, Barrelfish does show only slightly lower performance than 48 Linux instances.
We attribute this to the early version of our port. There is no reason why Barrelfish should not have
identical performance to 48 instances of Linux when only a single application is run. We furthermore
expect Barrelfish to have better performance than the Linux setup when multiple applications need to
be scheduled on the SCC.

Single-chip Cloud Computer - 16 Barrelfish TN-005



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  4  8  12  16  20  24  28  32

Ti
m

e
 (

s)

Cores

LU benchmark

Barrelfish
Linux

 0

 500

 1000

 1500

 2000

 2500

 1  4  8  12  16  20  24  28  32  36

Ti
m

e
 (

s)

Cores

BT benchmark

Barrelfish
Linux

Figure 4.4: RCCE benchmark absolute performance comparison
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Figure 4.5: RCCE benchmark speedup comparison
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Chapter 5

Reflections on SCC as a platform

This chapter contains a set of reflections on the challenges of implementing Barrelfish on SCC hardware.
It should be regarded as a snapshot of our current thinking, rather than a definite set of conclusions.
Indeed, as our understanding of how to effectively exploit SCC as a platform evolves, we expect some
of these views to change. We would warmly welcome any feedback or suggestions with regard to this
points.

5.1 Build environment

SCC is a straightforward platform for us to build Barrelfish for – we already cross-compile for 32- and
64-bit Intel Architecture machines, and the P54C is fully supported by gcc.

Two features of the SCC development environment could be improved (or were during the porting
process):

• The tools provided for board setup, initialization, console, etc. were all GUI-based, making it
impossible to script commonly used processes. All the boot tools used for Barrelfish at ETHZ
and MSR are command-line based, and fully automated (for example, our regression tools start
by powering on the machine and turn the hardware off when done) and we use build-and-boot
scripts extensively. The bringup process would have been considerably faster with CLI tools for
board control.

Many of these tools exist (partly as a result of our feedback), but it would be helpful if the
command-line interface was regarded as a first-class requirement.

• A proper console driver (a low-level, bidirectional character channel between the HCPC would
have been very useful. Our other platforms (even Beehive) assume a low-level UART or analo-
gous hardware. Our initial solution involved emulating a VGA character frame buffer in shared
memory, and reading this out from the host PC, but this is highly unsatisfactory, and a better so-
lution is a synchronized ring buffer of characters in DDR3 together with a logging daemon on the
host which DMAs this regularly to the host, and routes this to a Unix socket, for example. Once
again, GUIs are of limited use here (though we appreciate their value in demos).

5.2 Debugging

The SCC platform has no debugging facility. Instead, memory regions for per-core kernel log buffers
were reserved on every core and later dumped into files using external memory reader tools provided.
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This provided for convenient debugging, especially as we already use such a technique for fine-grained
tracing on x86-64 hardware. We found that log buffers could always simply be made big enough to
carry the whole record needed for one debugging or performance measuring session.

However, debugging timing-related issues, like races, was hard using this scheme, as there is no global
clock inside SCC and so messages could not be reliably timestamped, making it unclear which messages
are emitted at what times, when debugging processes that involve interactions between cores.

A preliminary workaround for this would be to derive clock skew information online and log this when
cores start, post-processing this information by extending our existing trace analysis tools. Adapting
our tracing framework to use Lamport clocks would be a more elegant solution.

In the longer term, part of our research agenda is to deal with the general clock problem in arbitrary
machines, and so in this respect SCC is a useful case for us, the lack of synchronized clocks is actually a
useful feature of the platform.

5.3 Lack of cache coherence

We experienced no significant problems with Barrelfish due to the lack of coherent caches on the SCC.
This was not a huge surprise for us, but it was a nice confirmation of our expectations, and a validation
of the OS design.

As with the lack of clock synchronization, we regard the lack of coherent caches as a useful feature
from a research perspective. Indeed, we would like to be able to (perhaps selectively) turn off cache
coherence in more mainstream Intel processors.

Much more useful to us would be the ability to have more than one memory write per core in flight (in
particular, a simple write buffer would dramatically increase performance).

5.4 The L2 caches

The caches (both L1 and L2) do not allocate a cache line on a write miss, treating it as an uncached write
to memory. Furthermore, the M-unit allows the core to have only one outstanding write transaction;
when such a write miss occurs, any subsequent memory or L2 cache access causes the core to stall
until the write to memory completes (typically around 100 cycles on the SCC). Combined with the lack
of a store buffer, this policy causes severe performance degradation for word-sized writes to data not
already present in the cache. When storing to a fresh stack frame, or saving registers in a context switch
path, each individual write instruction will stall the processor on memory access.

For example, in Barrelfish kernel code, we observed that simple function calls in hot paths of the system
regularly have an order of magnitude greater overhead (in cycles) on SCC than function calls on newer
x86 processors. Our tentative explanation is that caller-saved registers will be pushed onto the stack
upon a function call and then restored upon return from the function. Both cases miss in the cache,
but the call incurs particularly high overhead, as each individual write goes to memory, and the cache
lines are only allocated when reading them on return. We do not yet have an explanation of why this
is occuring every time after entering the kernel – the logical behaviour for it would be to only occur
once when the cache is cold. We have also observed substantially increased costs for exception and trap
handling, which may also be caused by the high cost of saving register state to memory not present in
the cache.

It is possible that an OS workload is a particularly bad case for this cache design – systems software
is well-known for exhibiting usage patterns very different to parallel HPC applications. More work is
required to both confirm this as the cause, and explore possible solutions. Ideally this could be fixed
in hardware, through changes to the cache architecture, the addition of a store buffer in the M unit, or
simply allowing the write-combining buffer to be used for non-message-buffer memory, which would
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mitigate the problem by allowing full cache-line writes to memory. A possible software fix would
involve reading from each cache line before it was written, to ensure its presence in the cache; in the
case of context save code this could be done explicitly, but for stack access would probably require
compiler modifications.

5.5 Message-passing memory

The ability to bypass the L2 cache for areas of address space designated messaging buffers, combined
with an efficient L1 invalidation of all such lines, is one of the most interesting features of SCC.

As with other message-passing features of the SCC, this functionality may have been designed with a
single-application system in mind. When using MB memory for the operating system, as in Barrelfish,
we typically have a number of communication channels in use at any one time.

For this reason, although the CL1INVMB instruction is extremely cheap to execute, its effects may be
somewhat heavyweight, since it invalidates all messaging data, some of which we may wish to have
remain in the L1 cache.

It would be useful for us to have more fine-grained control over the L1 cache. An instruction which
would invalidate a region around a given address would be ideal for us. The size of this region would
typically be a cache line, but it would be fine if this was implementation-defined (as long as we could
find out at run time).

In our message-passing implementations, we generally know precisely which addresses we wish to
invalidate. Consequently, we would find such fine-grained cache control very useful.

Better still would be to extend such functionality to the L2. Receiving data in an MPB generally involves
an L1 miss (ideally to the on-tile MPB, but see below why this is problematic), followed by a miss to
main memory caused by copying the data somewhere where it can be cached in L2, followed by a
second L2 miss when the data needs to be subsequently read.

This penalty can be mitigated somewhat by performing a read of the destination location (and so pop-
ulating the L2) before writing the received data there.

This latter miss penalty itself is generally doubled, due to the non-write-allocate property of the L2:
there’s the immediate stall while the write completes to DDR3, followed by an L2 miss later when the
core tries to use it. This is ironic: the cache architecture seems to prohibit any efficient zero-copy I/O
implementation, since if it’s from MPB, it will be flushed any time further I/O occurs.

Our position overall is that explicit cache management is good, and Barrelfish (and, we believe, other
OS code) would benefit from future SCC implementations providing much more fine-grained control
over it.

5.6 Lookup tables

From the perspective of system software design, the SCC Lookup tables for physical memory are an
interesting feature of the design. In particular, being able to address any other core’s configuration
registers (including interrupt and reset pins), and that core’s lookup table as well, is a powerful feature.

At present, we do not exploit this functionality fully in Barrelfish, other than for booting secondary
cores and sending inter-processor interrupts, plus the use of the TAS bit for interlocking access to the
on-tile MPB. More novel uses of the LUTs are an interesting area of future research for us.

An interesting possibility, not explored by us at this stage, is to use the LUTs to completely “sequester”
cores: by removing a core’s access to its own LUT entries, its ability to access any system resources not
its own can be tightly restricted. This would allow us to provide stronger fault-containment properties
than are possible in a shared-memory system, for example, which means that the message-passing
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structure of Barrelfish combined with suitable distributed algorithms at the intra-OS routing layer
(which is a focus on ongoing work at ETH) may result in an OS tolerant to partial crash-failures or
even Byzantine faults.

Another direction is to explore using the LUT for context-switching by integrating it much more into
the OS, rather than using the static mapping we have now. We currently have no performance data for
how quickly updates to the LUT take, however, which will be a factor in how useful such operations
are in practice.

5.7 Lock (TAS) bits

Not having TAS bits on the SCC would have caused serious problems for us. However, we did not
encounter any need for more than one TAS bit per core. Since almost everything in Barrelfish is per-
formed with a messaging model, we simply use the TAS bit to synchronize access to the receiving core’s
messaging and IPI state. One lock is enough.

Our code would be simplified, however, if there was an operation to atomically assert IRQ on a remote
core only if it has not already been asserted.

5.8 The on-tile message passing buffer

We experienced two significant challenges when using the on-tile message passing buffers on SCC.
These challenges are related, but different.

5.8.1 Size

We are not the first to suggest that the on-tile MPBs are small. Small buffers mean that message queues
have to be short. If messages cannot be lost (a typical design assumption for message-passing appli-
cations, and at present also the case for Barrelfish), this means head-of-line blocking. The smaller the
buffer, the shorter the queues, which means tighter coupling between communicating processes, mak-
ing blocking on sends more likely.

Barrelfish uses message-passing throughout for communication, and consequently requires a large
number of independent message channels to share the MPBs. This leads to the question of how to
allocate space in the MPBs to message channels. Assuming (for simplicity at this stage) that each chan-
nel is allocated resources on the tile where its destination core resides, the options are:

1. Allocate a fixed portion of the on-tile MPB to each channel for payload. The minimum allocation
is realistically a cache line (32 bytes), allowing a maximum of 256 incoming channel end-points
per core in the 8192 bytes available. This is quite small (think sockets), and even so allows only a
single cacheline of buffering. Giving each channel a buffer of 8 cache lines would only allow us
32 message channels per core, which is impractical.

2. Allocate a fixed portion of the on-tile MPB for channel metadata, and pass payloads in DDR3
RAM. Without inter-core synchronization, this still requires a cache line per channel to avoid
corruption due to concurrent writes, limiting the number of channels again to 256.

3. Allocate channel metadata in the on-tile MPB in units smaller than a cache line, and use the TAS
registers to mediate access. With 16-bit pointers in memory, this allows 2048 channels per core, at
the cost of TAS-implemented spinlocks to prevent corruption. This channel limit may be enough
for Barrelfish, as we might then be able to use the MPB locations as a cache for active channels
and “swap” idle channels to memory (though we have no idea if the workloads would make this
feasible or not).
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4. Multiplex all Barrelfish channels onto a single channel per pair of cores, requiring only 47 end-
points in the on-tile MPB but kernel code to demultiplex incoming messages. This allows 170
bytes of buffer per core pair, still small, but possibly useful for Barrelfish (which messages are
small). The penalty here is a kernel crossing, however (and see below for more on multiplexing).

5. Do away entirely with channels at this level, and since have each core take out a spinlock on a
destination core (via TAS), followed by dynamic allocation in the whole 8k block.

5.8.2 Multiplexing

The single most serious limitation of SCC as a platform for a message-passing OS like Barrelfish is the
inability to securely multiplex the on-tile MPBs without a kernel-mode transition on the message path.
An operating system on the SCC must mediate access to the MPBs to ensure safe sharing of the buffers
between applications. This issue does not arise if the SCC is only running a single MPI application.

This is ironic, since the very high performance of loads from and stores to the on-tile MPB is completely
swamped by the cost of kernel crossing to validate the access. We have, to date, been unable to come
up with a good workaround for this.

This strongly suggests that the intended use-case for the MPBs was single-application scientific com-
puting, or perhaps the SCC chip as a dedicated, single-user “accelerator” (like a GPU), rather than a
main processor in its own right.

Let’s look at this issue in more detail. Like most resources in a computer, the MPBs can be multiplexed
in space, and in time.

The MPBs can’t be efficiently space-multiplexed between applications

Space-multiplexing the MPBs requires a protection mechanism to divide the buffer between applica-
tions or other resource principals. For main memory, this is performed by each core’s MMU (on the
SCC, the LUTs can do this as well). The OS can allocate memory between different virtual address
spaces in advance, but protection is enforced in hardware on every load or store (by the TLBs).

This doesn’t work with the MPBs, since the MMU can only guarantee protection at page granularity,
and each core’s MPB is only two pages. Two applications per core is better than one, but not by much.

The only way to enforce protection on MPB memory at a finer granularity is to delegate to the kernel
the ability to read/write MPB memory, and pay the cost of a system call on every load and store.

As an additional cost, since multiple cores can be expected to be accessing each tile’s MPB (Barrelfish
makes extensive use of “message channels” between application dispatchers on different cores), write
access to each core’s memory must be done under a lock (hence the use of the TAS bit for each core to
protect the MPB).

The MPBs can’t be efficiently time-multiplexed between applications

Time-multiplexing the MPBs require copying each application’s state into or out of the MPBs on a
context switch, or performing this lazily. This is potentially 8kb of message data, a substantial context-
switch overhead (see the L2 cache discussion above).

It’s actually worse than that. Unlike memory which is under the exclusive use of an application, mem-
ory used for communication between applications on different cores is shared between a pair of princi-
pals. Time-multiplexing on-tile MPB memory entails highly complex co-scheduling of communicating
principals on different cores, which severely constrains the system-wide schedule and requires consid-
erable communication overhead in itself.
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In summary:

• Lack of fine-grained protection prevents efficient space-sharing of on-tile MPB without a kernel
mediating all accesses.

• The fact that the buffers are inherently shared between cores (because they are used for commu-
nication) prevents efficient time-sharing without a kernel mediating all accesses.

• The cost of kernel entry and exit dwarfs any performance gain from the fast on-tile memory.

5.9 Dynamic Voltage and Frequency Scaling

The flexibility of the dynamic voltage and frequency scaling features of the SCC look particular inter-
esting. Unfortunately, to date we have not explored how to use them in Barrelfish.

5.10 System Interface

We are only beginning to exploit the System Interface as anything more than a development / boot
feature. A new Barrelfish interconnect driver which spans the PCI Express bus and allows seamless
communication between Barrelfish dispatchers on SCC cores and host PC cores is in development.

So far, we think the design of the software-visible aspects of the System Interface is nearly ideal from
an OS design perspective. In particular, exposing flits to system software on the host machine allows
us great flexibility in how to communicate across the PCI Express bus.

In general, as OS designers we favor exposing more hardware mechanism (and thereby increasing
policy freedom) as much as possible, unless this entails removing functionality from the fast data path
which is critical to performance (as would be the case with virtual address translation, for example).

5.11 Interrupt latency and notification

A second reason for the relatively leisurely performance of Barrelfish on SCC is the cost of kernel cross-
ings, coupled with the need to perform them frequently for messaging (see Section 5.8.2). This is the
case both for system calls and interrupts, since asserting IRQ is the only way to send notifications to
cores (rather than waiting for polling to complete).

Part, but not all, of the overhead is due to L2 cache performance and lack of write-allocation.

As OS designers, we would really appreciate a fast way to transition to kernel mode, and hardware
which allows us to something useful and fast when we get there (such as scratch registers, or alternative
register banks). This is an area where the ARM architecture really shines.

In addition, our experience with Barrelfish so far suggests that some kind of inter-core notification
mechanism is an important complement to polled message-passing support. The fact that we can access
interrupt pins on cores remotely on the SCC is very nice in this regard, but even better would be some
kind of fast user-space control transfer. One option is to introduce address space identifiers (these
should be orthogonal to virtualization in any case), and cause a lightweight same-address-space jump
if and only if that address space is running.
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Chapter 6

Historical features

This chapter described features once present in older versions of Barrelfish that have been deprecated
or superseded by newer functionality.

6.1 Console driver

Up to release2012-03-02, there is no support for serial or VGA console hardware on the SCC, so the
CPU driver contains no kernel-mode support for either and the Barrelfish user-level UART and VGA
drivers are not supported.

Instead, console output is written into a core-local log buffer starting at address 0xb8000 in private
RAM, which can be read by the sccDump tool on the host. The buffer size is configurable at compile
time and defaults to 16,000 bytes.

This technique evolved from the x86 VGA driver and is why the buffer originates at address 0xb8000,
the x86 text-mode buffer. We have removed VGA control character emission and are instead writing
C strings as given into the buffer. This turned out to be the simplest way to achieve readable console
output without having to write additional tools on the host to receive console characters emitted by
kernels running on the SCC.

We have developed a shell script to run on the host to periodically re-read a specified core’s log buffer
at a frequency of roughly 10 times a second and output it to the host’s console, so the log buffer can be
displayed analogous to a monitor displaying the contents of video memory. As it evolved from the x86
VGA driver, our console driver will rearrange the contents of the log buffer when its capacity exceeds
by assuming an 80x25 character matrix layout and moving all rows “up” by one matrix row position,
eliminating the top row, freeing up another row of characters for more console output, just like a VGA
driver would produce a line feed on an x86 VGA terminal. When the terminal on the host has equal
dimensions, this technique provides an identical effect on the host terminal.

A drawback with this technique despite suboptimal performance and logging capabilities is the inabil-
ity to map console output across cores to a global timeline. There is no global clock inside the SCC, so
timestamps on log messages do not help. We elaborate more on this in Section 5.2.

Obviously, this technique is a kludge and does not represent what could be done if proper console
support were provided via the SCC system interface by additional software written on the host. We
assume that standard UART support via the system interface would provide sufficient performance
while moving all buffering capabilites into the host and providing a single concentrator for console
output by all cores of the SCC simultaneously, eliminating the global timeline problem.
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6.2 MPB emulator

As part of development, an MPB emulator for x86-32 was created. It was available up to version
release2012-03-02. The emulator is implemented as a device driver for the SCC CPU driver and
replaces the original SCC device driver, exporting an identical interface.

This emulator was used for functional testing and debugging of the SCC user-space interconnect driver
and message passing stubs, as well as the ported RCCE library and user-space applications, without
the need for access to a real SCC.

As the emulator allowed us to compile and run the SCC CPU driver largely unmodified on a standard
ia32 core, it was also used for initial testing of the SCC boot process, before gaining access to real SCC
hardware for the first time.

The emulator uses a region of unmapped RAM on an x86 for the MPBs and sends inter-core interrupts
using the local APIC IPI mechanism. Configuration registers are unsupported. Core IDs are reported
from the local APIC core ID register.
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